高中物理竞赛热学模拟试题及答案

合集下载

物理竞赛热学专题40题刷题练习(带答案详解)

物理竞赛热学专题40题刷题练习(带答案详解)

物理竞赛热学专题40题刷题练习(带答案详解)1.潜水艇的贮气筒与水箱相连,当贮气筒中的空气压入水箱后,水箱便排出水,使潜水艇浮起。

某潜水艇贮气简的容积是2m 3,其上的气压表显示内部贮有压强为2×107Pa 的压缩空气,在一次潜到海底作业后的上浮操作中利用简内的压缩空气将水箱中体积为10m 3水排出了潜水艇的水箱,此时气压表显示筒内剩余空气的压强是9.5×106pa ,设在排水过程中压缩空气的温度不变,试估算此潜水艇所在海底位置的深度。

设想让压强p 1=2×107Pa 、体积V 1=2m 3的压缩空气都变成压强p 2=9.5×106Pa 压缩气体,其体积为V 2,根据玻-马定律则有p 1V 1=p 2V 2排水过程中排出压强p 2=9.5×106Pa 的压缩空气的体积 221V V V '=-,设潜水艇所在处水的压强为p 3,则压强p 2=9.5×106Pa 、体积为2V '的压缩空气,变成压强为p 3的空气的体积V 3=10m 3。

根据玻马定律则有2233p V p V '=联立可解得p 3=2.1×106Pa设潜水艇所在海底位置的深度为h ,因p 3=p 0+ρ gh解得h =200m2.在我国北方的冬天,即便气温很低,一些较深的河 流、湖泊、池塘里的水一般也不会冻结到底,鱼类还可以在水面结冰的情况下安全过冬,试解释水不会冻结到底的原因?【详解】由于水的特殊内部结构,从4C ︒到0C ︒,体积随温度的降低而增大,达到0C ︒后开始结冰,冰的密度比水的密度小。

入秋冬季节,气温开始下降,河流、湖泊、池塘里的水上层的先变冷,密度变大而沉到水底,形成对流,到达4C ︒时气温如果再降低,上层水反而膨胀,密度变小,对流停止,“漂浮”在水面上,形成一个“盖子”,而下面的水主要靠热传导散失内能,但由于水是热的不良导体,这样散热是比较慢的。

高二物理竞赛热学测试题1

高二物理竞赛热学测试题1

嗦夺市安培阳光实验学校高二物理竞赛热学测试题1、(6分)已知理想气体的内能与温度成正比。

如图所示的实线为汽缸内一定质量的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的内能()(A)先增大后减小(B)先减小后增大(C)单调变化(D)保持不变2、(6分)一定质量的理想气体由状态A经过图中所示过程变到状态B。

在此过程中气体的密度()A. 一直变小B. 一直变大C. 先变小后变大D. 先变大后变小3、(6分)一定质量的理想气体处于某一平衡状态,此时其压强为P0,有人设计了四种途径,使气体经过每种途经后压强仍为P0。

这四种途径是D①先保持体积不变,降低压强,再保持温度不变,压缩体积②先保持体积不变,使气体升温,再保持温度不变,让体积膨胀③先保持温度不变,使体积膨胀,再保持体积不变,使气体升温④先保持温度不变,压缩气体,再保持体积不变,使气体降温可以断定,A.①、②不可能 B.③、④不可能C.①、③不可能 D.①、②、③、④都可能4、(6分)用隔板将一绝热容器隔成 A和 B两部分,A中盛有一定质量的理想气体,B为真空(如图①)。

现把隔板抽去,A中的气体自动充满整个容器(如图②),这个过程称为气体的自由膨胀。

下列说法正确的是C A.自由膨胀过程中,气体分子只作定向运动B.自由膨胀前后,气体的压强不变C.自由膨胀前后,气体的温度不变D.容器中的气体在足够长的时间内,能全部自动回到A部分5、(6分)如图所示,两端开口的弯管,左管插入水银槽中,右管有一段高为h 的水银柱,中间封有一段空气,则(A)弯管左管内外水银面的高度差为h(B)若把弯管向上移动少许,则管内气体体积增大(C)若把弯管向下移动少许,则右管内的水银柱沿管壁上升(D)若环境温度升高,则右管内的水银柱沿管壁上升答案:ACD【解析】:封闭气体的压强等于大气压与水银柱产生压强之差,故左管内外水银面高度差也为h,A对;弯管上下移动,封闭气体温度和压强不变,体积不变,B错C对;环境温度升高,封闭气体体积增大,则右管内的水银柱沿管壁上升,D对。

高中物理竞赛十年预赛真题热学纯手打word版含答案

高中物理竞赛十年预赛真题热学纯手打word版含答案

十年真题-热学(预赛)1.(34届预赛2)系统1和系统2质量相等,比热容分别为C 1和C 2,两系统接触后达到够达到共同的温度T ,整个过程中与外界(两系统之外)无热交换.两系统初始温度T 1和T 2的关系为A .T 1=C 2C 1(T -T 2)-TB .T 1=C 1C 2(T -T 2)-T C .T 1=C 1C 2(T -T 2)+T D .T 1=C 2C 1(T -T 2)+T 2.(31届预赛1)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A .αB .α1/3C .α3D .3α3.(29届预赛1)下列说法中正确的是A .水在0℃时密度最大B .一个绝热容器中盛有气体,假设把气体中分子速率很大的如大于v A 的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v A 的分子C .杜瓦瓶的器壁是由两层玻璃制成的,两层玻璃之间抽成真空,抽成真空的主要作用是既可降低热传导,又可降低热辐射D .图示为一绝热容器,中间有一隔板,隔板左边盛有温度为T 的理想气体,右边为真空.现抽掉隔板,则气体的最终温度仍为T4.(28届预赛2)下面列出的一些说法中正确的是A .在温度为20ºC 和压强为1个大气压时,一定量的水蒸发为同温度的水蒸气,在此过程中,它所吸收的热量等于其内能的增量.B .有人用水银和酒精制成两种温度计,他都把水的冰点定为0度,水的沸点定为100度,并都把0刻度与100刻度之间均匀等分成同数量的刻度,若用这两种温度计去测量同一环境的温度(大于0度小于100度)时,两者测得的温度数值必定相同.C .一定量的理想气体分别经过不同的过程后,压强都减小了,体积都增大了,则从每个过程中气体与外界交换的总热量看,在有的过程中气体可能是吸收了热量,在有的过程中气体可能是放出了热量,在有的过程中气体与外界交换的热量为零.D .地球表面一平方米所受的大气的压力,其大小等于这一平方米表面单位时间内受上方作热运动的空气分子对它碰撞的冲量,加上这一平方米以上的大气的重量.5.(27届预赛2)烧杯内盛有0℃的水,一块0℃的冰浮在水面上,水面正好在杯口处.最后冰全部融化成0℃的水.在这过程中A .无水溢出杯口,但最后水面下降了B .有水溢出杯口,但最后水面仍在杯口处C .无水溢出杯口,水面始终在杯口处D .有水溢出杯口,但最后水面低于杯口6.(27届预赛3)如图所示,a和b是绝热气缸中的两个活塞,它们把气缸分成甲和乙两部分,两部分中都封有等量的理想气体.a是导热的,其热容量可不计,与气缸壁固连.b 是绝热的,可在气缸内无摩擦滑动,但不漏气,其右方为大气.图中k为加热用的电炉丝.开始时,系统处于平衡状态,两部分中气体的温度和压强皆相同.现接通电源,缓慢加热一段时间后停止加热,系统又达到新的平衡,则A.甲、乙中气体的温度有可能不变B.甲、乙中气体的压强都增加了C.甲、乙中气体的内能的增加量相等D.电炉丝放出的总热量等于甲、乙中气体增加内能的总和7.(27届预赛4)一杯水放在炉上加热烧开后,水面上方有“白色气”;夏天一块冰放在桌面上,冰的上方也有“白色气”.A.前者主要是由杯中水变来的“水的气态物质”B.前者主要是由杯中水变来的“水的液态物质”C.后者主要是由冰变来的“水的气态物质”D.后者主要是由冰变来的“水的液态物质”8.(26届预赛3)一根内径均匀、两端开中的细长玻璃管,竖直插在水中,管的一部分在水面上.现用手指封住管的上端,把一定量的空气密封在玻璃管中,以V0表示其体积;然后把玻璃管沿竖直方向提出水面,设此时封在玻璃管中的气体体积为V1;最后把玻璃管在竖直平面内转过900,让玻璃管处于水平位置,设此时封在玻璃管中的气体体积为V2.则有A.V1>V0≥V2B.V1>V0>V2C.V1=V2>V0D.V1>V0,V2>V09.(25届预赛4)如图所示,放置在升降机地板上的盛有水的容器中,插有两根相对容器的位置是固定的玻璃管a和b,管的上端都是封闭的,下端都是开口的.管内被水各封有一定质量的气体.平衡时,a管内的水面比管外低,b管内的水面比管外高.现令升降机从静止开始加速下降,已知在此过程中管内气体仍被封闭在管内,且经历的过程可视为绝热过程,则在此过程中A.a中气体内能将增加,b中气体内能将减少B.a中气体内能将减少,b中气体内能将增加C.a、b中气体内能都将增加D.a、b中气体内能都将减少10.(25届预赛5)图示为由粗细均匀的细玻璃管弯曲成的“双U形管”,a、b、c、d 为其四段竖直的部分,其中a、d上端是开口的,处在大气中.管中的水银把一段气体柱密封在b、c内,达到平衡时,管内水银面的位置如图所示.现缓慢地降低气柱中气体的温度,若c中的水银面上升了一小段高度Δh,则A.b中的水银面也上升ΔhB.b中的水银面也上升,但上升的高度小于ΔhC .气柱中气体压强的减少量等于高为Δh 的水银柱所产生的压强D .气柱中气体压强的减少量等于高为2Δh 的水银柱所产生的压强11.(31届预赛9)图中所示的气缸壁是绝热的.缸内隔板A 是导热的,它固定在缸壁上.活塞B 是绝热的,它与缸壁的接触是光滑的,但不漏气.B 的上方为大气.A 与B 之间以及A 与缸底之间都盛有n mol 的同种理想气体.系统在开始时处于平衡状态,现通过电炉丝E 对气体缓慢加热.在加热过程中,A 、B 之间的气体经历_________过程,A 以下气体经历________过程;气体温度每上升1K ,A 、B 之间的气体吸收的热量与A 以下气体净吸收的热量之差等于_____________.已知普适气体常量为R .答案:等压、等容、nR解析:在加热过程中,AB 之间的气体的压强始终等于大气压强与B 活塞的重力产生的压强之和,故进行的是等压变化,由于隔板A 是固定在气缸内的,所以,A 以下的气体进行的是等容变化,当气体温度升高1K 时,AB 之间的气体吸收的热量为Q 1=P ΔV +ΔU ,A以下的气体吸收的热量为Q 2=ΔU ,又根据克拉伯龙方程p ΔV =nR ΔT ,所以Q 1-Q 2=p ΔV=nR .12.(28届预赛6)在大气中,将一容积为0.50m 3的一端封闭一端开口的圆筒筒底朝上筒口朝下竖直插人水池中,然后放手,平衡时,筒内空气的体积为0.40m 3.设大气的压强与10.0m 高的水柱产生的压强相同,则筒内外水面的高度差为 .答案:2.5m13.(34届预赛13)横截面积为S 和2S 的两圆柱形容器按图示方式连接成一气缸,每隔圆筒中各置有一活塞,两活塞间的距离为l ,用硬杆相连,形成“工”字形活塞,它把整个气缸分隔成三个气室,其中Ⅰ、Ⅲ室密闭摩尔数分别为ν和2ν的同种理想气体,两个气室内都有电加热器;Ⅱ室的缸壁上开有一个小孔,与大气相通;1mol 该种气体内能为CT(C 是气体摩尔热容量,T 是气体的绝对温度).当三个气室中气体的温度均为T 1时,“工”字形活塞在气缸中恰好在图所示的位置处于平衡状态,这时Ⅰ室内空气柱长亦为l ,Ⅱ室内空气的摩尔数为32ν.已知大气压不变,气缸壁和活塞都是绝热的,不计活塞与气缸之间的摩擦.现通过电热器对Ⅰ、Ⅲ两室中的气体缓慢加热,直至Ⅰ室内气体的温度升为其初始状态温度的2倍,活塞左移距离d .已知理想气体常量为R ,求:(1)Ⅲ室内气体初态气柱的长度;(2)Ⅲ室内气体末态的温度;(3)此过程中ⅠⅢ室密闭气体吸收的总热量.解析:(1)设大气压强为p 0.初态:Ⅰ室内气体压强为p 1;Ⅲ室内气体压强为p 1′,气柱的长度为l ′.末态:Ⅰ室内气体压强为p 2;Ⅲ室内气体压强为p 2′.由初态到末态:活塞左移距离为d .对初态应用气体状态方程,对Ⅰ室气体有:p 1lS =νRT 1 ①对Ⅱ室内气体有:p 0(l 2×S +l 2×2S )=32ν0RT 1②对Ⅲ室内气体有:p1′l′(2S)=(2ν)RT1③由力学平衡条件有:p1′(2S)=p1S+p0(2S-S) ④由题给条件和①②③④式得:l′=ν2ν1+ν0l=2νν+ν0l⑤(2)对末态应用气体状态方程,对Ⅰ室内气体有:p2(l-d)S=νRT2=νR·2T1⑥对Ⅲ室内气体有:p2′(l′+d)(2S)=(2ν)RT2′⑦由力学平衡条件有:p2′(2S)=p2S+p0(2S-S) ⑧联立②⑤⑥⑦⑧和题给条件得:T2′=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫1+ν02νl-dl T1⑨(3)大气对密闭气体系统做的功为W=p0(2S-S)(-d)=-p0Sd=-dlν0RT1⑩已利用②式.系统密闭气体内能增加量为:ΔU=νC(T2-T1)+(2ν)C(T2′-T1)=νC(2T2′-T1) ⑪由⑨⑩式得:ΔU=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫2ν+l-dlν0CT1-νCT1⑫系统吸收的热量为:Q=ΔU-W=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫2ν+l-dlν0CT1-νCT1+dlν0RT1⑬参考评分:第(1)问9分,①②③④式各2分,⑤式1分.第(2)问4分,⑥⑦⑧⑨式各1分.第(3)问7分,⑩⑪式各2分,⑫式1分,⑬式2分.14.(33届预赛16)充有水的连通软管常常用来检验建筑物的水平度.但软管中气泡会使得该软管两边管口水面不在同一水平面上.为了说明这一现象的物理原理,考虑如图所示的连通水管(由三段内径相同的U形管密接而成),其中封有一段空气(可视为理想气体),与空气接触的四段水管均在竖直方向;且两个有水的U形管两边水面分别等高.此时被封闭的空气柱的长度为L a .已知大气压强P 0、水的密度ρ、重力加速度大小为g ,L 0≡P 0/(ρg).现由左管口添加体积为ΔV =xS 的水,S 为水管的横截面积,在稳定后:(1)求两个有水的U 形管两边水面的高度的变化和左管添水后封闭的空气柱的长度;(2)当x <<L 0、L a<<L 0时,求两个有水的U 形管两边水面的高度的变化(用x 表出)以及空气柱的长度.已知1+z ≈1+12z ,当z <<1. 解析:解法(一)(1)设在左管添加水之前左右两个U 形管两边水面的高度分贝为h 1和h 2,添加水之后左右两个U 形管两边水面的高度分别为h 1L 和h 1R 、h 2L 和h 2R .如图所示,设被封闭的空气的压强为p ,空气柱的长度为L b .水在常温常压下可视为不可被压缩的流体,故:2h 1+x =h 1L +h 1R ①2h 2=h 2L +h 2R ②由力学平衡条件有:p 0+ρgh 1L =p +ρgh 1R ③p 0+ρgh 2R =p +ρgh 2L④由于连通管中间高度不变,有:h 1+h 2+L a =h 1R +h 2L +L b ⑤由玻意耳定律得:p 0L a =pL b ⑥联立①②③④⑤⑥式得p 满足的方程:L 0p 0p 2+⎝⎛⎭⎫L a -L 0-x 2p -p 0L a =0 解得:p =p 02L 0⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑦ 将⑦式带入⑥式得:L b =12⎣⎡⎦⎤L a -L 0-x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑧ 由①②③④⑦式得:Δh 1L ≡h 1L -h 1=x -Δh 1R=x -L 02+14[L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0] ⑨ =5x -2L a -2L 08+14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 1R ≡h 1R -h 1=L 0+x 2-p 2ρg=L 0+x 2-14⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑩=3x +2L a +2L 08-14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 2L ≡h 2L -h 2=L 02-p 2ρg =L 02-14⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑪ =2L a +2L 0-x 8-14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 2R ≡h 2R -h 2=-Δh 2L=x -2L a -2L 08+14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑫ (2)在x <<L 0和L a <<L 0的情形下,由⑧式得:L b ≈L a ⑬⑦式成为:p ≈p 0(1+x 2L 0) ⑭ 由⑨⑩⑪⑫⑬⑭式得:Δh 1L ≈34x ⑮ Δh 1R ≈-Δh 2L =Δh 2R ≈14x ⑯ 参考评分:第(1)问14分,①②③④⑤⑥⑦⑧式各1分,⑨⑩式各2分,⑪⑫式各1分;第(2)问6分,⑬⑭式各1分,⑮⑯式各2分.解法(二)(1)设U 形管1左侧末态水面比初态上升x 2+y ,右侧末态水面比初态上升x 2-y ,U 形管2左侧末态水面比初态下降y ,右侧末态水面比初态上升y .由玻意耳定律得: L a L 0=L b (L 0+2y ) ①由几何关系有:L a -x 2+2y =L b ②将②式带入①式得:L a L 0=(L a -x 2+2y ) (L 0+2y ) ③解得: y =x 8-L 04-L a 4+14⎝⎛⎭⎫L 0+L a -x 22+2xL 0 ④ 此即U 形管2左侧末态比初态水面下降值,也是右侧末态比初态水面上升值(负根y=x 8-L 04-L a 4-14⎝⎛⎭⎫L 0+L a -x 22+2xL 0不符合题意,已舍去).U 形管1左侧末态比初态水面上升:x 2+y =5x -2L a -2L 08+14⎝⎛⎭⎫L a +L 0-x 22+2xL 0 ⑤ 右侧末态比初态水面上升:x 2-y =3x +2L a +2L 08-14⎝⎛⎭⎫L a +L 0-x 2 2+2xL 0 ⑥ 将④式带入②式得:L b =L a -x 2+2y =2L a -2L 0-x 4+12⎝⎛⎭⎫L a +L 0-x 22+2xL 0 ⑦ (2)在x <<L 0和L a <<L 0的情形下,④⑤⑥⑦式中的根号部分⎝⎛⎭⎫L a +L 0-x 22+2xL 0=L a 2+L 02+x 24+2L 0L a -xL 0-xL a +2xL 0 =L 01+L a 2L 02+x 24L 02+2L a L 0-xL a 2L 02+x L 0≈L 0⎣⎡⎦⎤1+12(L a 2L 02+x 24L 02+2L a L 0-xL a L 02+x L 0 =L 0+12⎣⎡⎦⎤L a 2L 0+x 24L 0+2L a -xL a L 0+x ⑧ ≈L 0+12(2L a +x ) =L a +L 0+x 2⑧式在推导过程中用到了1+z ≈1+12z ,当z <<1. 将⑧式带入④⑤⑥⑦式中分别得到:y ≈x 8-L 04-L a 4+14⎝⎛⎭⎫L 0+L a +x 2=x 4⑨ x 2+y ≈x 2+x 4=3x 4⑩ x 2-y ≈x 2-x 4=x 4⑪ L b ≈L a 2-L 02-x 4+12⎝⎛⎭⎫L 0+L a +x 2=L a ⑫参考评分:第(1)问14分,①式4分,②③式各1分,④式3分,⑤式2分,⑥式1分.第(2)问6分,⑨⑩式各2分,⑪⑫式各1分.15.(32届预赛15)如图,导热性能良好的气缸A 和B 高度均为h (已除开活塞的厚度),横截面积不同,竖直浸没在温度为T 0的恒温槽内,它们的底部由一细管连通(细管容积可忽略).两气缸内各有一个活塞,质量分别为m A =2m 和m B =m ,活塞与气缸之间无摩擦,两活塞的下方为理想气体,上方为真空.当两活塞下方气体处于平衡状态时,两活塞底面相对于气缸底的高度均为h /2.现保持恒温槽温度不变,在两活塞上面同时各缓慢加上同样大小的压力,让压力从零缓慢增加,直至其大小等于2m g (g 为重力加速度)为止,并一直保持两活塞上的压力不变;系统再次达到平衡后,缓慢升高恒温槽的温度,对气体加热,直至气缸B 中活塞底面恰好回到高度为h /2处.求:(1)两个活塞的横截面积之比S A ∶S B .(2)气缸内气体的最后的温度.(3)在加热气体的过程中,气体对活塞所做的总功.解析:(1)平衡时气缸A 、B 内气体的压强相等,故:m A g S A =m B g S B① 由①式和题给条件得: S A ∶S B =2∶1 ②(2)两活塞上各放一质量为2m 的质点前,气体的压强p 1和体积V 1分别为:p 1=2mg S A =mg S B③ V 1=32S B h ④ 两活塞上各放一质量为2m 的质点后,B 中活塞所受到的气体压力小于它和质点所受重力之和,B 中活塞将一直下降至气缸底部为之,B 中气体全部进入气缸A .假设此时气缸A 中活塞并未上升到气缸顶部,气体的压强p 2=4mg S A =2mg S B⑤ 设平衡时气体体积为V 2,由于初态末态都是平衡态,由理想气体状态方程有:p 1V 1T 0=p 2V 2T 0⑥ 由③④⑤⑥式得: V 2=34S 0h =38S A h ⑦ 这时气体的体积小于气缸A 的体积,与活塞未上升到气缸顶部的假设一致.缓慢加热时,气体先等压膨胀,B 中活塞不动,A 中活塞上升;A 中活塞上升至顶部后,气体等容升压;压强升至3mg S B时,B 中活塞开始上升,气体等压膨胀.设当温度升至T 时,该活塞恰好位于h 2处.此时气体的体积变为V 3=52S B h ⑧ 气体压强 p 3=3mg S B⑨ 设此时气缸内气体的温度为T ,由状态方程有:p 2V 2T 0=p 3V 3T⑩ 由⑤⑦⑧⑨⑩式得: T =5T 0 ⑪(3)升高恒温槽的温度后,加热过程中,A 活塞上升量为h -38h =58h ⑫ 气体对活塞所做的总功为W =4mg ·58h +3mg ·h 2=4mgh ⑬ 参考评分:第(1)问3分,①式2分,②式1分;第(2)问13分,③④⑤⑥式各2分,⑦⑧⑨⑩⑪式各1分;第(3)问4分,⑫⑬式各2分.16.(31届预赛14)1mol 的理想气体经历一循环过程1-2-3-1,如p -T 图示所示,过程1-2是等压过程,过程3-1是通过p -T 图原点的直线上的一段,描述过程2-3的方程为c 1p 2+c 2p =T ,式中c 1和c 2都是待定的常量,p 和T 分别是气体的压强和绝对温度.已知,气体在状态1的压强、绝对温度分别为P 1和T 1,气体在状态2的绝对温度以及在状态3的压强和绝对温度分别为T 2以及p 3和T 3.气体常量R 也是已知的.(1)求常量c 1和c 2的值;(2)将过程1-2 -3 -1在p -v 图示上表示出来;(3)求该气体在一次循环过程中对外做的总功.解析:(1)设气体在状态i (i =1、2、3)下的压强、体积和温度分别为p i 、V i 和T i ,由题设条件有:c 1p 22+c 2p 2=T 2 ①c 1p 32+c 2p 3=T 3 ②由此解得:c 1=T 2p 3-T 3p 2p 22p 3-p 32p 2=T 2p 3-T 3p 1p 12p 3-p 32p 1③ c 2=T 2p 32-T 3p 22p 2p 32-p 22p 3=T 2p 32-T 3p 12p 1p 32-p 12p 3④ (2)利用气体状态方程pV =RT 以及V 1=R T 1p 1、V 2=R T 2p 2、V 3=R T 3p 3⑤ 可将过程2—3的方程写为p V 2-V 3p 2-p 3=V +V 2p 3-V 3p 2p 2-p 3⑥ 可见,在p -V 图上过程2-3是以(p 2,V 2)和(p 3,V 3)为状态端点的直线,过程3-1是通过原点直线上的一段,因而描述其过程的方程为:p T =c 3 ⑦ 式中c 3是一常量,利用气体状态方程pV =RT ,可将过程3-1的方程改写为:V =R c 3=V 3=V 1 ⑧ 这是以(p 3,V 1)和(p 1,V 1)为状态端点的等容降压过程.综上所述,过程1-2-3-1在p -V 图上是一直角三角形,如图所示.(3)气体在一次循环过程中对外做的总功为:W =-12(p 3-p 1)(V 2-V 1) ⑨ 利用气体状态方程pV =RT 和⑤式,上式即:W =-12R (T 2-T 1)⎝⎛⎭⎫p 3p 1-1 ⑩ 参考评分:第(1)问8分,①②③④式各2分;第(2)问10分,⑤⑥式各2分,过程1-2-3-1在p -V 上的图示正确得6分;第(3)问2分,⑩式2分.17.(30届预赛14)如图所示,1摩尔理想气体,由压强与体积关系的p-V 图中的状态A 出发,经过一缓慢的直线过程到达状态B ,已知状态B 的压强与状态A 的压强之比为12,若要使整个过程的最终结果是气体从外界吸收了热量,则状态B 与状态A 的体积之比应满足什么条件?已知此理想气体每摩尔的内能为32RT ,R 为普适气体常量,T 为热力学温度.解析:令ΔU 表示系统内能的增量,Q 和W 分别表示系统吸收的热量和外界对系统所做的功,由热力学第一定律有:ΔU =Q +W ①令T 1和T 2分别表示状态A 和状态B 的温度,有:ΔU =32R (T 2-T 1) ②令p 1、p 2和V 1、V 2分别表示状态A 、B 的压强和体积,由②式和状态方程可得: ΔU=32(p 2V 2-p 1V 1) ③由状态图可知,做功等于图线下所围面积,即:W =-12(p 1+p 2)(V 2-V 1) ④要系统吸热,即Q >0,由以上格式可得:32(p 2V 2-p 1V 1)+12(p 1+p 2)(V 2-V 1)>0⑤按题意,p 2p 1=12,带入上式,可得:V 2V 1>32 ⑥参考评分:①②③式各3分,④式4分,⑤式3分,⑥式2分.18.(29届预赛14)由双原子分子构成的气体,当温度升高时,一部分双原子分子会分解成两个单原子分子,温度越高,被分解的双原子分子的比例越大,于是整个气体可视为由单原子分子构成的气体与由双原子分子构成的气体的混合气体.这种混合气体的每一种成分气体都可视作理想气体.在体积V =0.045m 3的坚固的容器中,盛有一定质量的碘蒸气,现于不同温度下测得容器中蒸气的压强如下:试求温度分别为1073K 和1473K 时该碘蒸气中单原子分子碘蒸气的质量与碘的总质量之比值.已知碘蒸气的总质量与一个摩尔的双原子碘分子的质量相同,普适气体常量R =8.31J·mol -1·K -1解析:以m 表示碘蒸气的总之,m 1表示蒸气的温度为T 时单原子分子的碘蒸气的质量,μ1、μ2分别表示单原子分子碘蒸气和双原子分子碘蒸气的摩尔质量,p 1、p 2分别表示容器中单原子分子碘蒸气和双原子分子碘蒸气的分压强,则由理想气体的状态方程有:p 1V =m 1μ1RT ① p 2V=m -m 1μ2RT②其中,R 为理想气体常量. 根据道尔顿分压定律,容器中碘蒸气的总压强p 满足:p =p 1+p 2 ③设α=m 1m 为单原子分子碘蒸气的质量与碘蒸气的总质量的比值,注意到μ1=12μ2 ④ 由以上各式解得:α=μ2V mR ·p T-1 ⑤ 带入有关数据可得,当温度为1073K 时,α=0.06 ⑥ 当温度为1473K 时,α=0051 ⑦ 参考评分:①②③⑤式各4分,⑥⑦式各2分.19.(26届预赛15)图中M 1和M 2是绝热气缸中的两个活塞,用轻质刚性细杆连结,活塞与气缸壁的接触是光滑的、不漏气的,M 1是导热的,M 2是绝热的,且M 2的横截面积是M 1的2倍.M 1把一定质量的气体封闭在气缸为L 1部分,M 1和M 2把一定质量的气体封闭在气缸的L 2部分,M 2的右侧为大气,大气的压强p 0是恒定的.K 是加热L 2中气体用的电热丝.初始时,两个活塞和气体都处在平衡状态,分别以V 10和V 20表示L 1和L 2中气体的体积.现通过K 对气体缓慢加热一段时间后停止加热,让气体重新达到平衡太,这时,活塞未被气缸壁挡住.加热后与加热前比,L 1和L 2中气体的压强是增大了、减小还是未变?要求进行定量论证.解析:解法(一)用n 1和n 2分别表示L 1和L 2中气体的摩尔数,p 1、p 2和V 1、V 2分别表示L 1和L 2中气体处在平衡状态时的压强和体积,T 表示气体的温度(因为M 1是导热的,两部分气体的温度相等),由理想气体状态方程有:p 1V 1=n 1RT ①p 2V 2=n 2RT ②式中R 为普适气体常量.若以两个活塞和轻杆构成的系统为研究对象,处在平衡状态时有:p 1S 1-p 2S 1+p 2S 2-p 0S 2=0 ③已知S 2=2S 1 ④有③④式得:p 1+p 2=2p 0 ⑤由①②⑤三式得:p 1=2n 1n 2p 0V 2V 1+n 1n 2V 2 ⑥若⑥式中的V 1、V 2是加热后L 1和L 2中气体的体积,则p 1就是加热后L 1中气体的压强.加热前L 1中气体的压强则为p 10=2n 1n 2p 0V 20V 10+n 1n 2V 2 ⑦ 设加热后L 1中气体体积的增加量为ΔV 1,L 2中气体体积的增加量为ΔV 2,因连接两活塞的杆是刚性的,活塞M 2的横截面积是M 1的2倍,故有:ΔV 1=ΔV 2=ΔV ⑧加热后L 1和L 2中气体的体积都是增大的,即ΔV >0.(若ΔV <0,即加热后活塞是向左移动的,则大气将对封闭在气缸中的气体做功,电热丝又对气体加热,根据热力学第一定律,气体的内能增加,温度将上升,而体积是减小的,故L 1和L 2中气体的压强p 1和p 2都将增大,这违反力学平衡条件⑤式)于是有V 1=V 10+ΔV ⑨V 2=V 20+ΔV ⑩由⑥⑦⑨⑩四式得:p 1-p 10=2n 1n 2p 0(V 10-V 20)ΔV ⎣⎡⎦⎤V 10+ΔV +n 1n 2(V 20+ΔV )⎝⎛⎭⎫V 10+n 1n 2V 20 ⑪由⑪式可知:若加热前V 10=V 20,则p 1=p 10,即加热后p 1不变,由⑤式知p 2亦不变;若加热前V 10<V 20,则p 1<p 10,即加热后p 1必减小,由⑤式知p 2必增大;若加热前V 10>V 20,则p 1>p 10,即加热后p 1必增大,由⑤式知p 2必减小.参考评分:得到⑤式3分,得到⑧式3分,得到⑪式8分,最后结论6分. 解法(二)设加热前L 1和L 2中气体的压强和体积分别为p 10、p 20和V 10、V 20,以p 1、p 2和V 1、V 2分别表示加热后L 1和L 2中气体的压强和体积,由于M 1是导热的,加热前L 1和L 2中气体的温度是相等的,设为T 0,加热后L 1和L 2中气体的温度也相等,设为T .因为加热前、后两个活塞和轻杆构成的系统都处在力学平衡状态,注意到S 2=2S 1,力学平衡条件分别为:p 10+p 20=2p 0 ①p 1+p 2=2p 0 ②由①②两式得:p 1-p 10=-(p 2-p 20) ③根据理想气体状态方程,对L 1中的气体有:p 1V 1p 10V 10=T T 0④ 对L 2中气体有:p 2V 2p 20V 20=T T 0⑤ 由④⑤两式得:p 1V 1p 10V 10=p 2V 2p 20V 20⑥ ⑥式可改写成:⎝⎛⎭⎫1+p 1-p 10p 10⎝⎛⎭⎫1+V 1-V 10V 10=⎝⎛⎭⎫1+p 2-p 20p 20⎝⎛⎭⎫1+V 2-V 20V 20 ⑦ 因连接两活塞的杆是刚性的,活塞M 2的横截面积是M 1的2倍,故有:V 1-V 10=V 2-V 20 ⑧把③⑧式带入⑦式得:⎝⎛⎭⎫1+p 1-p 10p 10⎝⎛⎭⎫1+V 1-V 10V 10=⎝⎛⎭⎫1-p 1-p 10p 20⎝⎛⎭⎫1+V 1-V 10V 20 ⑨ 若V 10=V 20,则由⑨式得p 1=p 10,若加热前L 1中气体的体积等于L 2中气体的体积,则加热后L 1中气体的压强不变,由②式可知加热后L 2中气体的压强亦不变;若V 10<V 20,则由⑨式得p 1<p 10,若加热前L 1中气体的体积小于L 2中气体的体积,则加热后L 1中气体的压强必减小,由②式可知加热后L 2中气体的压强必增大;若V 10>V 20,则由⑨式得p 1>p 10,若加热前L 1中气体的体积大于L 2中气体的体积,则加热后L 1中气体的压强必增大,由②式可知加热后L 2中气体的压强必减小;参考评分:得到①式和②式或得到③式得3分,得到⑧式得3分,得到⑨式得8分,最后结论得6分.。

高中物理竞赛测试题:热学

高中物理竞赛测试题:热学

高一下期半期考试(热学)1.将1大气压下的肥皂液吹成r=2.5厘米的肥皂泡,应作多少功?肥皂液的表面张力系数α=45×10-3牛/米。

解:首先要扩大泡内外的表面积需作功απα218r S W =∆=同时将空气由10=P 大气压等温压缩到泡内)3/4,/4(30r V r P P πα=+=需作功,由(8-17)式知)/ln()/ln(002P P PV V V nRT W ==)41ln(34)4(030r p r R P απα+⋅⋅+=103032434W r p r P =⋅⋅≈απ式中0P »r /4α,r P r P 00/4)/41ln(αα=+。

两项共需作功121)3/5(W W W W =+=32102.1)3/5(8-⨯=⨯=r π焦。

2.将少量的水银放在两块水平的平板玻璃之间,问要在上面的玻璃板上施加多大的压力才能使两板间的水银厚度处处都等于1.0×10-4m,并且平板和水银的接触面积是4.0×10-3m 2.设水银的表面张力系数是0.45N/m,水银与玻璃的接触角为1350.解:在水银边缘处截一小块水银,宽为Δx , 高度为h ,研究这小块水银受到的外力, 如图所示, 上下两表面的 表面张力在水平方向的分力是:f = 2σΔx sin450设水银内部对这小块水银的水平压力为F : 这小块水银的前后侧面的表面张力F 1和F 2可认为方向相反, 相互抵消, 依平衡条件有:f =F , 得 代入数据F 外=25.4(N )3.有一气缸,除底部外都是绝热的,上面是一个不计重力的活塞,中间是一块固定的导热隔板,把气缸分隔成相等的两部分A 和B ,上、下各有1mol 氮气(图27-3),现由底部慢慢地将350J 热量传送给缸内气体,求(1)A 、B 内气体的温度各改变了多少?(2)它们各吸收了多少热量。

若是将中间的导热隔板变成一个绝热活塞,其他条件不变,则A 、B 的温度又是各改变多少(不计一切摩擦)? 解:A 、B 中间的隔板导热,因而A 、B 两部分气体温度始终相同,B 中温度升高后将等压膨胀。

高中物理热学试题 及答案

高中物理热学试题 及答案

热学试题一选择题:1.只知道下列那一组物理量,就可以估算出气体中分子间的平均距离A.阿伏加徳罗常数,该气体的摩尔质量和质量B.阿伏加徳罗常数,该气体的摩尔质量和密度C.阿伏加徳罗常数,该气体的质量和体积D.该气体的质量、体积、和摩尔质量2.关于布朗运动下列说法正确的是A.布朗运动是液体分子的运动B.布朗运动是悬浮微粒分子的运动C.布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果D.温度越高,布朗运动越显著3.铜的摩尔质量为μ(kg/ mol),密度为ρ(kg/m3),若阿伏加徳罗常数为N A,则下列说法中哪个是错误..的A.1m3铜所含的原子数目是ρN A/μ B.1kg铜所含的原子数目是ρN AC.一个铜原子的质量是(μ / N A)kg D.一个铜原子占有的体积是(μ / ρN A)m3 4.分子间同时存在引力和斥力,下列说法正确的是A.固体分子间的引力总是大于斥力B.气体能充满任何仪器是因为分子间的斥力大于引力C.分子间的引力和斥力都随着分子间的距离增大而减小D.分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小5.关于物体内能,下列说法正确的是A.相同质量的两种物体,升高相同温度,内能增量相同B.一定量0℃的水结成0℃的冰,内能一定减少C.一定质量的气体体积增大,既不吸热也不放热,内能减少D.一定质量的气体吸热,而保持体积不变,内能一定减少6.质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100℃时A.它们的分子数目相同,分子的平均动能相同B.它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大C.它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大D.它们的分子数目不相同,分子的平均动能相同7.有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐渐变大,若不计气泡中空气分子的势能变化,则A.气泡中的空气对外做功,吸收热量 B.气泡中的空气对外做功,放出热量C.气泡中的空气内能增加,吸收热量 D.气泡中的空气内能不变,放出热量8.关于气体压强,以下理解不正确的是A.从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小B.从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的C.容器内气体的压强是由气体的重力所产生的D.压强的国际单位是帕,1Pa=1N/m29.一定质量的理想气体处于平衡状态Ⅰ,现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则( )A .状态Ⅰ时气体的密度比状态Ⅱ时的大B .状态Ⅰ时分子的平均动能比状态Ⅱ时的大C .状态Ⅰ时分子的平均距离比状态Ⅱ时的大D .状态Ⅰ时每个分子的动能都比状态Ⅱ时分子平均动能大10.如图所示,气缸内装有一定质量的气体,气缸的截面积为S ,其活塞为梯形,它的一个面与气缸成θ角,活塞与器壁间的摩擦忽略不计,现用一水平力F 推活塞,汽缸不动,此时大气压强为P 0,则气缸内气体的压强P 为A .P=P 0+θcos S F B .P=P 0+S FC .P=P 0+S F θcosD .P=P 0+SF θsin11.如图所示,活塞质量为m ,缸套质量为M ,通过弹簧吊在天花板上,气缸内封住一定质量的空气 ,缸套与活塞无摩擦,活塞截面积为S ,大气压强为p 0,则 A. 气缸内空气的压强为p 0-Mg /S B .气缸内空气的压强为p 0+mg /SC .内外空气对缸套的作用力为(M +m )gD .内外空气对活塞的作用力为Mg12.关于热力学温度的下列说法中, 不正确的是( ) A. B.热力学温度的零度等于-273.15 C. D.气体温度趋近于绝对零度时,13.若在水银气压计上端混入少量空气, 气压计的示数与实际大气压就不一致, 在这种情况下( )A.气压计的读数可能大于外界大B.C.只要外界大气压不变,D.14、根据分子动理论,下列关于气体的说法中正确的是 A .气体的温度越高,气体分子无规则运动越剧烈 B .气体的压强越大,气体分子的平均动能越大 C .气体分子的平均动能越大,气体的温度越高D .气体的体积越大,气体分子之间的相互作用力越大15. .如图所示,绝热隔板K 把绝热的气缸分隔成体积相等的两部分,K 与气缸壁的接触是光滑的。

物理竞赛热学部分习题

物理竞赛热学部分习题

能力训练A 组 1、夏天,在密闭的绝热的房间里,一直打开冰箱门让冰箱运转起来,房间内的温度将_______(填“升高”或“降低”或“不变”)。

2、最近我国一些城市出现了环保汽车,该车型采用“清洁燃料”加“汽油”双燃料系统,使尾气中有害气体的成份降低了80%。

这种燃料是气态碳氢化合物,在微微加压的情况下即变为液体而储存于钢瓶中,加装到汽车供油系统。

当向发动机供“油”时,该燃料在钢瓶中逐渐汽化,然后进入气缸被点燃,从而产生动力。

瓶中逐渐汽化,然后进入气缸被点燃,从而产生动力。

根据下表可知,最适合作为清洁燃料的物质是_____________。

(填化学式)(填化学式)化学式化学式CH 4 C 2H 6 C 4H 10 C 6H 14 沸点(℃)沸点(℃) -164 -89 -0.5 693、在气温是20℃的房间里,用水银温度计测沸水的温度,当水银面经过“20”到“100”之间的某一刻度时,温度计的示数表示之间的某一刻度时,温度计的示数表示( ) A 、房间里空气的温度、房间里空气的温度 B 、沸水的温度、沸水的温度C 、温度计中水银的温度、温度计中水银的温度D 、什么也不表示、什么也不表示4、在沿海或大湖附近的气温变化比远离水域的地区缓慢。

这主要是因为(、在沿海或大湖附近的气温变化比远离水域的地区缓慢。

这主要是因为() A 、水在一般情况下比土壤温度高、水在一般情况下比土壤温度高 B 、在一般情况下水比土壤温度低、在一般情况下水比土壤温度低C 、水比土壤更缓慢地变暖或变冷、水比土壤更缓慢地变暖或变冷D 、水比土壤更迅速地变暖或变冷、水比土壤更迅速地变暖或变冷5、两个相同的容器,内盛放相同体积、相同温度的热水,一个容器的表面是白色的,另一个表面是黑色的,把它们放在同一个房间内,让它们自然冷却,则(个表面是黑色的,把它们放在同一个房间内,让它们自然冷却,则() A 、白色容器里的水冷却得快、白色容器里的水冷却得快 B 、黑色容器里的水冷却得快、黑色容器里的水冷却得快C 、两个容器里的水冷却得一样快、两个容器里的水冷却得一样快D 、以上情况都有可能、以上情况都有可能6、我国发射的神州四号飞船返回舱的表面有一层叫做“烧蚀层”的物质,它可以在返回大气层时保护返回舱不因高温而烧毁。

物理竞赛热学专题精编大全(带答案详解)

物理竞赛热学专题精编大全(带答案详解)

物理竞赛热学专题精编大全(带答案详解)一、多选题1.如图所示为一种简易温度计构造示意图,左右两根内径粗细均匀的竖直玻玻璃管下端通过软管相连接,在管中灌入某种液体后环境的温度。

重复上述操作,便可在左管上方标注出不同的温度刻,将左管上端通过橡皮塞插入小烧瓶中。

调节右管的高度,使左右两管的液面相平,在左管液面位置标上相应的温度刻度。

多次改变烧瓶所在度,为了增大这个温度计在相同温度变化时液面变化的髙度,下列措施中可行的是()A.增大液体的密度B.增大烧瓶的体积C.减小左管的内径D.减小右管的内径【答案】BC2.如图所示为两端封闭的U形玻璃管,竖直放置,管内左、右两段封闭空气柱A、B 被一段水银柱隔开,设原来温度分别为T A和T B,当温度分别升高△T A和△T B时,关于水银柱高度差的变化情况,下列说法中正确的是()A.当T A=T B,且△T A=△T B时,h一定不变B.当T A=T B,且△T A=△T B时,h一定增大C.当T A<T B,且△T A<△T B时,h一定增大D.当T A>T B,且△T A=△T B时,h一定增大【答案】BD【解析】【详解】AB.由于左边的水银比右边的高ℎ,所以右边的气体的压强比左边气体的压强大,即P B> P A,设在变化的前后AB两部分气体的体积都不发生变化,即AB做的都是等容变化,则根据PT =ΔPΔT可知,气体的压强的变化为ΔP=PΔTT,当T A=T B,且ΔT A=ΔT B时,由于P B>P A,根据ΔP=PΔTT可知ΔP B>ΔP A,ℎ一定增大,故选项A错误,B正确;C.当T A<T B,且ΔT A<ΔT B时,由于P B>P A,根据ΔP=PΔTT可知不能判断ΔP B和ΔP A变化的大小,所以不能判断ℎ的变化情况,故选项C错误;D.当T A>T,且ΔT A=ΔT B时,由于P B>P A,根据ΔP=PΔTT可知ΔP B>ΔP A,ℎ一定增大,故选项D正确;3.下列叙述正确的是()A.温度升高,物体内每个分子的热运动速率都增大B.气体压强越大,气体分子的平均动能就越大C.在绝热过程中外界对气体做功,气体的内能必然增加D.自然界中进行的涉及热现象的宏观过程都具有方向性【答案】CDA.温度升高,气体分子的平均动能增大,但是个别分子运动速率可能减小,故A错误;B.温度是气体分子的平均动能变化的标志。

高中物理竞赛热学部分优题选

高中物理竞赛热学部分优题选

高中物理竞赛——热学题选1.一个老式的电保险丝,由连接在两个端纽之间的一根细而均匀的导线构成。

导线按斯特藩定律从其表面散热。

斯特藩定律指出:辐射功率P 跟辐射体表面积S 以及一个与温度有关的函数成正比,即(),44外辐T T S P -∞试说明为什么用保险丝时并不需要准确的长度。

2.有两根长度均为50cm 的金属丝A 和B 牢固地焊在一起,另两端固定在牢固的支架上(如图21-3)。

其线胀系数分别为αA =1.1×10-5/℃,αB =1.9×10-5/℃,倔强系数分别为K A =2×106N/m ,K B =1×106N/m ;金属丝A 受到450N 的拉力时就会被拉断,金属丝B 受到520N 的拉力时才断,假定支架的间距不随温度改变。

问:温度由+30°C 下降至-20°C 时,会出现什么情况?(A 、B 丝都不断呢,还是A 断或者B 断呢,还是两丝都断呢?)不计金属丝的重量,在温度为30°C 时它们被拉直但张力为零。

3.长江大桥的钢梁是一端固定,另一端自由的。

这是为什么?如果在-10℃时把两端都固定起来,当温度升高到40℃时,钢梁所承担的胁强(压强)是多少?(钢的线胀系数为12×10-6/℃,弹性模量为2.0×105N/mm 2,g=10m/s 2)4.厚度均为a=0.2毫米的钢片和青铜片,在T 1=293开时,将它们的端点焊接起来,成为等长的平面双金属片,若钢和青铜的线膨胀系数分别为10-5/度和2×10-5/度,当把它们的温度升高到T 2=293开时,它们将弯成圆弧形,试求这圆弧的半径,在加热时忽略厚度的变化。

5.在负载功率P 1=1kW ,室温t 0=20℃时,电网中保险丝的温度达到t 1=120℃,保险丝的材料的电阻温u C 图21-13度系数α=4×10-3K-1,保险丝的熔断温度t2=320℃,其所释放的热量与温度差成正比地增加,请估计电路中保险丝熔断时负载的功率。

物理竞赛热学压轴题及答案

物理竞赛热学压轴题及答案

热学压轴题精选一、秘制气球生物在“执杖”星附近的行星上有稠密的大气,其中生活着一种气球状生物,当有人向它们询问小猪是否很会装13的时候,它们会回复BIBIBI的响声,我们暂且将这些生物命名为气球。

气球的半径和质量基本稳定,它们通过调节自身气囊内的气体温度,从而改变密度,用来调节自身的飞行高度。

这些生物白天由于日照,温度上升,飞行在空中捕食,夜晚温度下降,停落在地面上休息。

气球的质量为m0,半径为r,地面气温为T0,压强为p0,密度为ρ0。

取绝热大气模型,即大气不同地方为常数,其中γ=7/5,大气的定体摩尔热容量为C V=2.5R。

在高度h = 25m变化不大的范围内,可以认为大气的温度、密度和压强随高度线性变化。

重力加速度为g。

各参数取值如下:m0=202kg,T0=300K,ρ0=1.174kg/m3r=10m,g=10.6m/s2,p0=1.01×105Pa,κ=43.0Jm-2K-1s-1=2040Jm-2 s-1(1)气球在休息的时候,体内的气体和大气自由交换。

清晨它向外深深吐一口气,将体内压降减少到p0−Δp,于是恰好起飞,能稳定在h高度飞行。

这个过程很短,热量来不及交换。

求Δp为多少?(2)飞行了一段时间后,由于日照和气球自身的特殊生理结构能输运热量,气球的压强上升到和周围一样。

(于是它舒服的不用忍受压强差了)求此时气球内温度为多少?(3)气球皮内外温差为ΔT时,单位时间内单位面积上的的散热本领为κ=ΔQΔSΔTΔt,阳光正入射的时候,单位时间内单位面积提供的热量为λ=ΔQΔSΔt。

则气球为了舒服,单位时间需要搬运给内部气体多少热量,q=ΔQΔt?(4)考虑热力学第二定律,气球为了搬运这些热量,单位时间内至少应当做功W为多少?一、神奇的高压锅如图一个容积为V0的高压锅,初态温度为T0,内部有压强为p0的理想气体,该气体定体摩尔热容量为C V=2.5R。

气阀的面积为S,上面的重物质量为m,重力加速度为g,外面大气压强为p0.(1)至少需要升温到T1为多少才能把重物顶起?(2)如果这个过程中不考虑容器壁散热,则高压锅至少需要吸热Q1为多少才能把重物顶起?(3)如果高压锅吸热总量为Q2>Q1,则此时高压锅内的温度T2为多少?(4)之后再将温度降低到初态,但是气体不会从气阀回到高压锅内,则此时锅内压强p3为多少?二、气球猪若把猪皮看做不会收缩也不会伸长的柔软的导热性能良好的材料,给小猪肚子充气,制成的气球猪(因为小猪不服第一题的气球生物,决定挑战他们),肚皮和猪头(视为质点)质量M=12kg(由于小猪身体“被掏空”,忽略其他质量),小猪肚子的最大容积为V f=12.5m3。

全国中学生高中物理竞赛第16届—22届预赛热学题集锦(含答案)

全国中学生高中物理竞赛第16届—22届预赛热学题集锦(含答案)

全国中学生高中物理竞赛第16届—22届预赛热学题集锦(含答案)一、第16届预赛题. (15分)如图预16-3所示,两个截面相同的圆柱形容器,右边容器高为H ,上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的活塞。

两容器由装有阀门的极细管道相连通,容器、活塞和细管都是绝热的。

开始时,阀门关闭,左边容器中装有热力学温度为0T 的单原子理想气体,平衡时活塞到容器底的距离为H ,右边容器内为真空。

现将阀门缓慢打开,活塞便缓慢下降,直至系统达到平衡。

求此时左边容器中活塞的高度和缸内气体的温度。

提示:一摩尔单原子理想气体的内能为32RT ,其中R 为摩尔气体常量,T 为气体的热力学温度。

参考解答设容器的截面积为A ,封闭在容器中的气体为ν摩尔,阀门打开前,气体的压强为0p 。

由理想气体状态方程有00p AH RT ν= (1) 打开阀门后,气体通过细管进入右边容器,活塞缓慢向下移动,气体作用于活塞的压强仍为0p 。

活塞对气体的压强也是0p 。

设达到平衡时活塞的高度为x ,气体的温度为T ,则有0()p H x A RT ν+= (2) 根据热力学第一定律,活塞对气体所做的功等于气体内能的增量,即003()()2p H x A R T T ν-=- (3) 由(1)、(2)、(3)式解得25x H =(4) 075T T = (5)二、第17届预赛题.(20分)绝热容器A 经一阀门与另一容积比A 的容积大得很多的绝热容器B 相连。

开始时阀门关闭,两容器中盛有同种理想气体,温度均为30℃,B 中气体的压强为A 中的2倍。

现将阀门缓慢打开,直至压强相等时关闭。

问此时容器A 中气体的温度为多少?假设在打开到关闭阀门的过程中处在A 中的气体与处在B 中的气体之间无热交换.已知每摩尔该气体的内能为52U RT =,式中R 为普适气体恒量,T 是热力学温度. 参考解答设气体的摩尔质量为μ,容器A 的体积为V ,阀门打开前,其中气体的质量为M 。

高二物理竞赛热学测试题2

高二物理竞赛热学测试题2

高二物理竞赛热学测试题1、(6分)下列说法正确的是()A.物体吸收热量,其温度一定升高B.热量只能从高温物体向低温物体传递C.遵守热力学第一定律的过程一定能实现D.做功和热传递是改变物体内能的两种方式答案:D解析:由热力学第一定律可知,做功与热传递可以改变物体的内能,D正确;故物体吸收热量时,其内能不一定增大,A错;由热力学第二定律可知,宏观的热现象有方向性,但若通过外界做功,热量也可以从低温物体传到高温物体,B、C错2、(8分)(1)空气压缩机在一次压缩过程中,活塞对气缸中的气体做功为2.0×105J,同时气体的内能增加了1.5×l05J.试问:此压缩过程中,气体 (填“吸收”或“放出”)的热量等于 J.(2)若一定质量的理想气体分别按下图所示的三种不同过程变化,其中表示等压变化的是(填“A”、“B”或“C”),该过程中气体的内能 (填“增加”、“减少”或“不变”).答案:放出;5×104;(2)C;增加;解析:(1)由热力学第一定律△U = W+Q,代入数据得:1.5×105 = 2.0×105+Q,解得Q =-5×104;(2)由PV/T=恒量,压强不变时,V随温度T的变化是一次函数关系,故选择C图;3、(6分)地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能)A.体积减小,温度降低B.体积减小,温度不变C.体积增大,温度降低D.体积增大,温度不变答案:C解析:本题考查气体的有关知识,本题为中等难度题目。

随着空气团的上升,大气压强也随着减小,那么空气团的体积会增大,空气团对外做功,其内能会减小,因为不计分子势能,所以内能由其温度决定,则其温度会降低。

所以空气团的体积增大、温度降低、压强减小。

4、(6分)如图所示,由导热材料制成的气缸和活塞将一定质量的理想气体封闭在气缸内,活塞与气缸壁之间无摩擦,活塞上方存有少量液体。

热学模拟试题高考答案

热学模拟试题高考答案

热学模拟试题高考答案
第一题:热力学第一定律
答案:D。

内能的转移是热力学第一定律的内容之一。

第二题:热平衡的条件
答案:B。

两个系统之间达到热平衡的条件是它们之间不存在热量传递。

第三题:理想气体状态方程
答案:C。

理想气体状态方程可以用来描述气体的状态。

第四题:比热容的概念
答案:A。

比热容是单位质量物质升高单位温度所需要的热量。

第五题:理想气体的等温过程
答案:B。

理想气体的等温过程下压强和体积成反比。

第六题:卡诺循环效率
答案:D。

卡诺循环是理想循环中效率最高的循环。

第七题:热学定律
答案:A。

热辐射定律描述了物体的辐射与温度的关系。

第八题:热力学第二定律
答案:C。

热力学第二定律是指热量不会自发的从低温物体传递到高温物体。

第九题:热传导方程
答案:A。

热传导方程描述了热量如何在物体内传导。

第十题:热机效率
答案:B。

热机效率是指在热机工作时所能获得的功与吸收的热量之比。

以上为热学模拟试题的高考答案,希望可以对您有所帮助。

感谢阅读!。

高中热学竞赛测试题

高中热学竞赛测试题

H3(1)一定量的理想气体从状态a 开始,经历等温或等压过程ab 、bc 、cd 、da 回到原状态,其p -T 图像如图所示,其中对角线ac 的延长线过原点O .下列判断正确的是________.图1-A .气体在a 、c 两状态的体积相等B .气体在状态a 时的内能大于它在状态c 时的内能C .在过程cd 中气体向外界放出的热量大于外界对气体做的功D .在过程da 中气体从外界吸收的热量小于气体对外界做的功E .在过程bc 中外界对气体做的功等于在过程da 中气体对外界做的功33.(1)ABE [解析]由pV T =C 得p =CV ·T (C 为常量),因对角线ac 的延长线过原点O ,即p =kT ,故体积V 不变,即V a =V c ,选项A 正确;一定量的理想气体的内能由温度T 决定,而T a >T c ,故E a >E c ,选项B 正确;cd 过程为等温加压过程,外界对系统做正功,但系统内能不变,故系统要对外放热,放出热量Q =W 外,选项C 错误;da 过程为等压升温过程,体积增加,对外界做功,系统内能增加,故系统要从外界吸热,且吸收热量Q =W 外+ΔE 内>W 外,选项D 错误;bc 过程为等压降温过程,由V 1T 1=V 2T 2可知,气体体积会减小,W =p ΔV =C ΔT bc ;同理da 过程中,W ′=p ′ΔV ′=C ΔT da ,因为|ΔT bc |=|ΔT da |,故|W |=|W ′|,选项E 正确.2.液体的饱和汽压随温度的升高而增大( ) A .其规律遵循查理定律B .是因为饱和汽的质量随温度的升高而增大C .是因为饱和汽的体积随温度的升高而增大D .是因为饱和汽密度和蒸汽分子的平均速率都随温度的升高而增大解析:选D 当温度升高时,蒸汽分子的平均动能增大,导致饱和汽压增大;同时,液体中平均动能大的分子数增多,从液面飞出的分子数将增多,在体积不变时,将使饱和汽的密度增大,也会导致饱和汽压增大,故选D 。

物理竞赛热学专题精编大全(带答案详解)

物理竞赛热学专题精编大全(带答案详解)

物理竞赛热学专题精编大全(带答案详解)一、多选题1.如图所示为一种简易温度计构造示意图,左右两根内径粗细均匀的竖直玻玻璃管下端通过软管相连接,在管中灌入某种液体后环境的温度。

重复上述操作,便可在左管上方标注出不同的温度刻,将左管上端通过橡皮塞插入小烧瓶中。

调节右管的高度,使左右两管的液面相平,在左管液面位置标上相应的温度刻度。

多次改变烧瓶所在度,为了增大这个温度计在相同温度变化时液面变化的髙度,下列措施中可行的是()A .增大液体的密度B.增大烧瓶的体积C.减小左管的内径 D .减小右管的内径【答案】BC2.如图所示为两端封闭的U 形玻璃管,竖直放置,管内左、右两段封闭空气柱A、B 被一段水银柱隔开,设原来温度分别为T A和T B,当温度分别升高△ T A和△ T B时,关于水银柱高度差的变化情况,下列说法中正确的是()A.当T A=T B,且△ T A=△ T B时,h一定不变B.当T A=T B,且△ T A=△ T B时,h一定增大C.当T A<T B,且△ T A<△ T B时,h一定增大D.当T A>T B,且△ T A=△ T B时,h 一定增大【答案】BD【解析】【详解】AB. 由于左边的水银比右边的高?,所以右边的气体的压强比左边气体的压强大,即???> ???,设在变化的前后???两? 部分气体的体积都不发生变化,即???做?的都是等容变化,则?? ???? ??????根据????= ??????可??知,气体的压强的变化为 ????= ??????,??当????= ???,且????= ?? ??时,由于???>??????C. 当????< ???,且 ????< ????时,由于 ???> ???,根据 ????= ??????可??知不能判断 ?? ??和?? ??变化的大小,所以不能判断 ?的变化情况,故选项 C 错误;??????D. 当???? > ??,且?????= ?????时,由于 ???> ???,根据????=??????可??知 ????> ????,?一定增大, 故选项 D 正确;3.下列叙述正确的是()A .温度升高,物体内每个分子的热运动速率都增大B .气体压强越大,气体分子的平均动能就越大C .在绝热过程中外界对气体做功,气体的内能必然增加D .自然界中进行的涉及热现象的宏观过程都具有方向性 【答案】 CDA .温度升高,气体分子的平均动能增大, 但是个别分子运动速率可能减小, 故 A 错误; B.温度是气体分子的平均动能变化的标志。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)若在气温为-3ºC 时,用该气压计测得气压读数仍为
70cmHg,则实际气压应为多少厘米汞柱?
解:(1)以混入气压计内气体为研究对象,因温度不变,有
p0V0 P1V1, p0 76 70 6(cmHg)
V0 (100 70)S 30S ,V1 (100 68)S 32S

P1
据气态方程有
右管:
4 p0hS 3 p1hS
左管:
p0 hS
2 3
p2 hS
S
为管的截面积,图中,A、B
两处压强分别为:
pA
p2
1 3
gh
pB p1
而留在水平管内的水银柱质量 m 5 hS 3
其运动方程为 ( pA pB )S m a
由以上各式可得 a (9 p0 4gh) /(20h)
2、在两端开口的竖直放置的 U 型管中注入水银,水银柱的全长为 h,若把管的右端 封闭,被封闭的空气柱长 L,然后使水银柱作微小的振荡,设空气为理想气体,且认为 水银振荡时右管内封闭气体经历的是准静态绝热过程,大气压强相当于 h0 水银柱产生
的压强,空气的绝热指数为 。试求水银振动的周期 T2。已知对于理想气体的绝热过 程有 PV =常数。
T (t) T0[1 a(t t0 )]1/ 4 。其中 T0、a、t0 均为常量。求该金属片的热容量 CP 随温度 T
变化的关系。
解:由热容量定义 Cp
P t T
,而
1
1
T T0[1 a(t t t0 )4 ] T0[1 a(t t0 )4 ]
t
t
T0 {[1
a(t
1
t0 )]4
两处的压强分别为
pA
p
1 gh 3
pB p0
留在水平管内的水银柱的质量 m 5 hS 3
其运动方程为 ( pA pB )S m 2 R 4 2n2mR
其中
R 7h
6
1
由以上各式可得 n (9 p0 6gh) /(140 2 h2 ) 2
4、在大气压下用电流加热 1 个绝热金属片,使其以恒定的功率 P 获取电热,发现 在一定的温度范围内金属绝对温度 T 随时间 t 的增长关系为
期为:T2 2
m 2 k
h0
hs gs 2sg
2
h (2 h0 )g
L
L
3、有一个两端开口、粗细均匀的 U 型玻璃细管,放置在竖直平面内,处在压强为
p0 的大气中,两个竖直支管的高
度均为 h,水平管的长度为 2h,玻 璃细管的半径为 r,r«h,今将水平 管内灌满密度为 ρ 的水银,如图 24-54(a)所示。
设倒转过程均在大气环境下进行,温度不变。
解:(1)倒转前后,对于 A、B 气体有
pALA p0 gLL0 , pB LB p0L0 pA gLLB

LA LB 2L0 , p0 2gL, L 4L0
所以求得
LA 1.37L0 , LB 0.63L0.
(2)设倒转后水银不外泄,对于 A 端空气柱有
h H0 (L0 L) L
这也是全部水银倒在活塞上而无溢出时水银柱的高度。
当将水银缓缓倒向活塞直到活塞不再下移时,对应着水银能全部倒在活塞上而无
溢出和只有部分水银倒在了活塞上水银就开始溢出两种可能情况。
下面对这两种情况分别讨论:
(1)当
h
(L0
L)
,即
H0
(L0 L
L)
L0
L
时,得
L
H0
,瓶中水银可全部倒
求得 L H0
由此可以得出:当 L H0 时, L L ;当 L H0 时, L H0
高中物理竞赛热学模拟试题答案
1、解:(1)以混入气压计内气体为研究对象,因温度不变,有
p0V0 P1V1, p0 76 70 6(cmHg)
V0 (100 70)S 30S ,V1 (100 68)S 32S
C 状态研究水银柱受到的回复力,回复力 F 即由高度差为 2y 的水银柱的重力、内外气
体压力的合力提供,以位移 y 方向为正,即为:
F pyS p0S 2(m)g ( py p0)S 2ySg
h0 gys 2ysg L
( h0 gs 2sg) y L
令 k h0 gs 2sg 得 F ky ,可知水银柱的微小振荡为一简谐运动,其周 L
解:右端封闭后,随着水银柱的振荡,被封闭的空气经历绝热膨胀或绝热压缩过 程;封闭端的空气与外界空气对水银柱压强差提供水银柱作微小振动的回复力,本题 关注回复力的构成及所循规律。
如图所示,A、B、C 分别表示水银柱处于平衡位置,达到振幅位置时和有一任意小
位移 y 时的 3 个状态。建立如图坐标,设水银柱位移为 y 时,封闭气体的压强为 py ,

h H0 (L0 L)
(1)
L
式中 L 为此时活塞所在位置与缸底距离,h 的大小反映了水银质量的大小。
当水银注入后,活塞不再下移时,设活塞上水银的深度为 Hcm,活塞下移的距离
为 xcm ,则由玻意耳定律
H0L0 (H0 H )(L0 x)
解得
H H0 x L0 x
可能发生两种情况:
内水银柱长度稳定为 5 h 。 3
(U 型管作以上运动时,均不考虑管内水银液面的倾斜)
解:1、当 U 型管向右加速移动时,水平管内的水银柱将向左边的竖直支管中移
动,其稳定的位置是留在水平管内的水银柱所受的水平方向的合力等于使其以恒定加
速度 a 向右运动时所需的力。由于竖直支管内空气在膨胀或压缩前后的温度相等,根
2、解:右端封闭后,随着水银柱的振荡,被封闭的空气经历绝热膨胀或绝热压缩 过程;封闭端的空气与外界空气对水银柱压强差提供水银柱作微小振动的回复力,本 题关注回复力的构成及所循规律。
如图所示,A、B、C 分别表示水银柱处于平衡位置,达到振幅位置时和有一任意小
位移 y 时的 3 个状态。建立如图坐标,设水银柱位移为 y 时,封闭气体的压强为 py ,
求得 LA 1.05L0 , LB 1.55L0 。
6、如图所示,有一个直立的气缸,气缸底到气缸口的距离为 L0cm,用一厚度和质 量均可忽略不计的刚性活塞 A,把一定质量的空气封在气缸内,活塞与气缸间的摩擦可
忽略。平衡时活塞上表面与气缸口的距离很小(计算时可忽略不
计),周围大气的压强为 H0cmHg。现把盛有水银的一个瓶子放在 活塞上(瓶子的质量可忽略),平衡时活塞到气缸底的距离为
入而无溢出。此种情况与将整瓶水银放在活塞上等效,故活塞到缸底的距离 L =L。
(2)当 h
(L0
L) ,即
H 0 (L0 L
L)
L0
L ,得 L
H0
,瓶中水银只有部分倒在
活塞上就开始溢出。设此时活塞到缸底的距离为 L ,由玻意耳定律有
H0L0 (H0 L0 L)L
即此时水银高度只有 (L0 L) ,此时压强为 p0 (L0 L)
(1)如果先将 B 端封闭,再将试管缓慢转过 180°,试问管中 A
端空气柱长度 LA 与 B 端空气柱长度 LB 各为多少 ? (2)如果 B 端始终与大气连通,不封闭,先将试管缓慢倒转
180°,再缓慢回转 180°复原。试问最后管中 A 端空气柱长度 LA 与 B 端空气柱长度 LB 各为多少 L0?
银,这时 H x (4)
H h(5)
由(2)(4)式得 x L0 H0
则活塞到气缸底的距离 L L0 x H0
由(1)(4)(5)式得
L H0
可见,若 L H0 ,则 L H0
解二:设整瓶水银放在活塞上后,使气缸内气体增加的压强为 hcmHg,由玻意耳定
律得 H0L0 (H0 h)L
30 32
6
5.6(cmHg )
实际气压 p p1 68 73.6(cmHg)
(2)因体积不变,有
p0 /T0 P2 /T2 ,T0 273 27 300(K)
T2 273 3 270(K) , p0 6cmHg
则 实际气压
P2 6 270 / 300 5.4(cmHg) P P2 70 75.4(cmHg)

P1
30 32
6
5.6(cmHg )
实际气压 p p1 68 73.6(cmHg)
(2)因体积不变,有
p0 /T0 P2 /T2 ,T0 273 27 300(K)
T2 273 3 270(K) , p0 6cmHg

P2 6 270 / 300 5.4(cmHg)
实际气压 P P2 70 75.4(cmHg)
1 [1 4
a(t
3
t0 )] 4
at
[1
a(t
1
t0 )]4 }
t
T0 a 4
[1
a(t
t0
)]
3 4
Hale Waihona Puke T0a [T0 ]3 4T
故Cp
4P aT03
T3
5、如图所示,截面均匀,下端 A 封闭的细长试管 AB 竖直放置,管下端 A 内封有
长为 L0 的空气,管中间是长为 4L0 的水银柱,管上端 B 有长为 L0 的空 气。管中间有长为 L=4L0 的水银柱管上端 B 有长为 L0 的空气。开始时, 管上端 B 与大气连通,大气压强为 p0=2ρgL,其中ρ为水银密度。
(2)
(1)水银比较少,瓶内水银全部注入后,尚未灌满或刚好灌满活塞上方的气缸,
这时有 H h (3)
而且有 H x 由(1)(2)(3)式得 x L0 L 活塞到气缸底的距离 L L0 x L
H H0 x x l0 x
所以
L H0
若 L H0 ,则有 L L
相关文档
最新文档