简单文件系统的实现
实现一个简单的文件系统
实现一个简单的文件系统一个简单的文件系统是指一个用于管理文件和文件夹的系统,可以进行基本的文件和文件夹的创建、删除、重命名、查找、打开、关闭等操作。
以下是一个简单文件系统的实现,主要包括文件和文件夹的数据结构和相关操作。
1.数据结构:- 文件(File):包含文件名、文件内容、创建时间、修改时间等属性。
- 文件夹(Folder):包含文件夹名、文件夹路径、创建时间、修改时间等属性,以及包括的文件和文件夹列表。
2.操作:-创建文件夹:可以根据输入的文件夹名和路径,在对应的位置创建一个新的文件夹对象,并将其添加到上级文件夹的文件夹列表中。
-创建文件:可以根据输入的文件名和路径,在对应的位置创建一个新的文件对象,并将其添加到对应的文件夹的文件列表中。
-删除文件夹:可以根据输入的文件夹名和路径,将对应的文件夹对象从上级文件夹的文件夹列表中删除,并删除其包含的所有文件和文件夹。
-删除文件:可以根据输入的文件名和路径,将对应的文件对象从所在文件夹的文件列表中删除。
-重命名文件夹:可以根据输入的原文件夹名和路径以及新文件夹名,将对应的文件夹对象重命名。
-重命名文件:可以根据输入的原文件名和路径以及新文件名,将对应的文件对象重命名。
-查找文件夹/文件:可以根据输入的文件夹名和路径,查找对应的文件夹对象。
-打开文件:可以根据输入的文件名和路径,打开对应的文件对象,并显示其内容。
-关闭文件:可以关闭当前打开的文件。
3.实现:- 定义一个文件夹类(Folder),包含文件夹名、文件夹路径、创建时间、修改时间等属性,以及一个存储文件夹对象的列表。
- 定义一个文件类(File),包含文件名、文件内容、创建时间、修改时间等属性。
- 实现创建文件夹的方法(createFolder),在对应的位置创建一个新的文件夹对象,并将其添加到上级文件夹的文件夹列表中。
- 实现创建文件的方法(createFile),在对应的位置创建一个新的文件对象,并将其添加到对应的文件夹的文件列表中。
操作系统课程设计-一个简单的文件系统的详细设计
计算机系课程设计实验报告课程名称操作系统课程设计实验学期 2012 至 2013 学年第 1 学期学生所在系部计算机与信息管理系年级 2010 专业班级计算机001班学生姓名学号任课教师实验成绩计算机系制一个简单的文件系统的详细设计一、实验目的(1)阅读并调试一个简单的文件系统,模拟文件管理的工作过程。
从而对各种文件操作命令的实质内容和执行过程有比较深入的了解。
(2)了解设计一个n个用户的文件系统,每个用户可以保存M个文件。
用户在一次运行中只能打开一个文件,对文件必须设置保护措施,且至少有create、delete、open、close、read、write等命令。
二、实验要求1、阅读所给文件系统源程序,并加注释(注释量达60%),2、修改、完善该系统,画出所设计的文件系统的详细流程图。
三、文件系统功能设计1. 功能设计该文件系统是一个多用户、多任务的文件系统。
对用户和用户的文件数目并没有上限。
也就是说该系统允许任何用户申请空间,而且在其目录下的文件数目并不做任何的限制。
该系统可以支持的操作命令如下:①bye——用户注销命令。
当使用该命令时,用户退出系统,注销该用户功能设计并回到登陆界面。
命令格式:bye②close——删除用户注册信息命令。
执行该命令后,用户在系统中的所有信息,包括该用户目录下的所有文件都被删除。
命令执行完成后返回登陆界面。
命令格式:close③create——在当前目录下创建一个文件,且该文件不能跟当前已有的文件重名。
该文件的管理信息登记在用户文件信息管理模块中。
执行完该命令后回到执行命令行。
命令格式:create>file1其中:“>”符为提示符,file1为要创建的文件名。
④delete——删除当前用户目录下的一个文件,命令执行完毕返回至命令行。
命令格式:delete>file1其中:file1为要删除的文件名。
⑤list——显示当前注册目录下的所有文件信息,包括文件名、文件长度、文件操作权限。
EEPROM
嵌入式系统中EEPROM文件系统的设计与实现彭晓锋北京邮电大学电信工程学院,北京(100876)摘要:AT24CXX系列EEPROM在嵌入式领域有着广泛的运用。
本文参考微机文件系统的原理实现能兼容AT24C08-AT24C1024的简单文件系统,实验结果证明本系统高效可行。
关键词:EEPROM, 文件系统,嵌入式1.引言随着大量嵌入式设备的出现,在嵌入式系统中用于存储数据的EEPROM因其简单、方便、可靠的性能和低廉的价格而被广为使用。
当今社会嵌入式系统无所不在,各种嵌入式设备品种繁多,差别巨大。
因此各公司也推出多种不同容量不同型号的EEPROM适应多样的市场应用。
人们一方面希望能像管理大容量存储器(如硬盘,FLASH等)中数据一样简单便捷的操作EEPROM中的数据(包括打开、关闭、读写文件等),同时也希望这种文件系统能兼容不同容量、型号,具有较强的通用性。
而对于采用两线IIC总线读写方式[1]的EEPROM来说,无法使用类似与FLASH所支持的TFFS之类的文件系统,本文参照上述思想,实现了一种能兼容AT24C08-AT24C1024类似于文件系统的用于管理EEPROM中数据的方法,并在实践项目中得到良好运用。
2.AT24CXX系列EEPROM简介AT24CXX系列是ATMEL公司生产的串行电可擦的可编程存储器,它采用8引脚封装,具有可掉电记忆,结构紧凑、存储容量大等特点,可以在2线总线上并接多片芯片,适用于具有大容量数据存储要求的嵌入式系统[2]。
ⅰ)封装及管脚说明AT24C08-AT24C1024的封装如图1所示(对不同型号A0-A2相应改为NC,详见表1),各引脚的功能如下:⑴ A0、A1、A2:器件地址(device address)。
IIC串行总线需连接多个EEPROM芯片时,可用A0、A1、A2来区分各芯片,悬空时为0。
⑵ SDA:I2C 串行数据。
图1. A T24CXX系列EEPROM封装⑶ SCL:I2C 串行时钟。
如何实现一个文件系统
如何实现一个文件系统本文作者:康华:计算机硕士,主要从事Linux操作系统内核、Linux技术标准、计算机安全、软件测试等领域的研究与开发工作,现就职于信息产业部软件与集成电路促进中心所属的MII-HP Linux软件实验室。
如果需要可以联系通过kanghua151@联系他。
摘要:本文目的是分析在Linux系统中如何实现新的文件系统。
在介绍文件系统具体实现前先介绍文件系统的概念和作用,抽象出了文件系统概念模型。
熟悉文件系统的内涵后,我们再近一步讨论Linux系统中和文件系统的特殊风格和具体文件系统在Linux中组成结构,为读者勾画出Linux中文件系统工作的全景图。
最后,我们再通过Linux中最简单的Romfs 作实例分析实现文件系统的普遍步骤。
(我们假定读者已经对Linux文件系统初步了解)什么是文件系统首先要谈的概念就是什么是文件系统,它的作用到底是什么。
文件系统的概念虽然许多人都认为是再清晰不过的了,但其实我们往往在谈论中或多或少地夸大或片缩小了它的实际概念(至少我时常混淆),或者说,有时借用了其它概念,有时说的又不够全面。
比如在操作系统中,文件系统这个术语往往既被用来描述磁盘中的物理布局,比如有时我们说磁盘中的“文件系统”是EXT2或说把磁盘格式化成FAT32格式的“文件系统”等——这时所说的“文件系统”是指磁盘数据的物理布局格式;另外,文件系统也被用来描述内核中的逻辑文件结构,比如有时说的“文件系统”的接口或内核支持Ext2等“文件系统”——这时所说的文件系统都是内存中的数据组织结构而并非磁盘物理布局。
还有些时候说“文件系统”负责管理用户读写文件——这时所说的“文件系统”往往描述操作系统中的“文件管理系统”,也就是文件子系统。
虽然上面我们列举了混用文件系统的概念的几种情形,但是却也不能说上述说法就是错误的,因为文件系统概念本身就囊括众多概念,几乎可以说在操作系统中自内存管理、系统调度到I/O系统、设备驱动等各个部分都和文件系统联系密切,有些部分和文件系统甚至未必能明确划分——所以不能只知道文件系统是系统中数据的存储结构,一定要全面认识文件系统在操作系统中的角色,才能具备自己开发新文件系统的能力。
计算机程序设计员实操考核分布式系统题目
计算机程序设计员实操考核分布式系统题目一、题目描述设计一个分布式系统,实现一个简单的分布式文件系统。
该系统应包含以下功能:1.文件上传:用户可以上传文件至分布式文件系统。
2.文件下载:用户可以从分布式文件系统下载文件。
3.文件删除:用户可以在分布式文件系统中删除文件。
二、设计思路为了实现一个分布式文件系统,我们需要考虑以下几个关键问题:数据分布、数据复制和数据一致性。
2.1 数据分布将文件的数据分布在不同的节点上,可以提高系统的并发能力和数据读取速度。
可以使用一致性哈希算法来决定文件数据应存储在哪个节点上。
将文件分成多个块,并选择多个节点进行数据的复制,以提高系统的可用性和容错性。
2.2 数据复制为了提高系统的可用性和容错性,需要在多个节点上复制文件的数据。
可以使用主从复制的方式,其中一个节点作为主节点负责接受文件上传请求,其他节点作为从节点,负责数据的复制和文件的下载请求。
当主节点故障时,从节点可以接替成为新的主节点,保证系统的可用性。
2.3 数据一致性在分布式系统中,数据一致性是一个重要的问题。
当用户上传文件或删除文件时,需要保证系统中所有节点的数据一致。
可以使用分布式一致性协议来解决这个问题,比如使用Paxos协议或Raft协议。
三、系统架构3.1 节点类型在分布式文件系统中,可以定义以下几种节点类型:1.主节点(Master):负责接受文件上传请求,并将文件数据分发到其他节点上。
2.从节点(Slave):负责接收主节点发送的文件数据,并在本地进行存储。
3.客户端(Client):用户使用的接口,可以通过客户端进行文件上传、下载和删除操作。
3.2 节点之间的通信节点之间的通信可以使用RPC框架(如gRPC)来实现。
主节点可以通过RPC调用从节点的接口,将文件数据发送给从节点。
客户端也可以通过RPC调用主节点的接口,实现文件的上传、下载和删除等操作。
3.3 文件分块和数据分布将文件分成多个块,并计算每个块的哈希值。
如何编写一个简单的操作系统文件系统
如何编写一个简单的操作系统文件系统操作系统文件系统是操作系统管理存储设备上文件和目录的系统。
它的设计和实现对操作系统的性能和功能有着重要的影响。
一个好的文件系统需要具备高效的存储管理、可靠的数据存储和恢复机制、良好的用户接口等特点。
下面通过简单的文件系统设计来介绍文件系统的基本原理和实现步骤。
一、文件系统的基本要求1.存储管理:文件系统需要能够有效地管理存储设备上的存储空间,实现文件的分配和释放。
2.数据存储与恢复:文件系统需要具备数据持久化的能力,能够保证文件在存储设备上安全存储,并能够在系统崩溃时自动恢复数据。
3.文件操作接口:文件系统需要提供用户友好的文件操作接口,如读取、写入、创建、删除、重命名等操作。
二、文件系统设计1.文件控制块(FCB):文件系统中的每个文件都有对应的文件控制块,用来存储文件的基本信息,如文件名、大小、创建时间、修改时间、访问权限等。
2.目录结构:文件系统需要维护一个目录结构,用来记录文件和目录的层次关系。
可以采用树形结构来组织目录,每个目录节点包含文件或子目录的信息。
3.空闲块管理:文件系统需要通过空闲块管理来实现文件存储空间的分配和释放。
可以采用位图或空闲块链表的方式进行管理。
4.存储分配策略:文件系统需要设计合适的存储分配策略,如连续分配、链式分配、索引分配等。
不同的分配策略对文件系统的性能和可靠性有着重要影响。
5.数据恢复机制:文件系统需要设计合适的数据恢复机制来保证文件在系统崩溃时能够正确地恢复数据。
可以采用日志、备份、快照等方式来实现数据恢复。
6.用户接口:文件系统需要提供良好的用户接口,使用户能够方便地进行文件操作。
可以设计命令行或图形界面来实现用户与文件系统的交互。
三、文件系统实现步骤1.设计文件控制块结构:根据文件系统的需求,设计合适的文件控制块结构,包括文件名、文件大小、创建时间、修改时间、访问权限等字段。
2.设计目录结构:根据文件系统的需求,设计合适的目录结构,包括目录名称、父目录、子目录和文件的信息等字段。
操作系统设计一个二级文件系统报告
v .. . ..
. . . 资 料. .
操作系统(2014年秋季学期)
实 验 报 告
系别:计算机科学与技术 班级:信安12-1班 姓名:*** 学号:
实验名称:进程调度
NORTH CHINA UNIVERSITY OF TECHNOLOGY
2022-4-26 2/17
.
Word 资料
NORTH CHINA UNIVERSITY OF TECHNOLOGY
2022-4-26 4/17
.
Word 资料
NORTH CHINA UNIVERSITY OF TECHNOLOGY
.
Word 资料
NORTH CHINA UNIVERSITY OF TECHNOLOGY
.
Word 资料
NORTH CHINA UNIVERSITY OF TECHNOLOGY
}
五、编译过程截图
(下面是一个例子,换上你自己的图)
六、测试用例
(下面是一个例子,换上你自己的)
文字叙述一下测试过程的实例。
如先创建用户***、再产生文件****、再打开文件****,再写入内容********,再退出,再打开用户***,再将文件读出,读出的内容应该是*******。
等等。
六、实验结果
(下面是一个例子,换上你自己的图,给出根据测试用例的截图)。
实现实时FAT文件系统的一种简单方法
Ab t a t M0 t e e d d mat d vc s n h ma k t o u e t e A f e y t m b c u e f i c mp t i t . w v r t e sr c : s mb d e s r e ie i t e r e n w s h F T i s se l e a s o t o ai l y Ho e e ,h s bi F wa n t e l e in d o AT s o w l d sg e t me t e l i r q i me t. h s ril p o o e a i l s l t n h t r al i r v s h e r a t me e u r e ns i T a t e r p s s smp e o ui t a g e t c o y mp o e t e r s o s i f t e AT f e s se wi o t u i g i o ai i t . ep ne t me o h F l y t m, t u h r n t c mp t ly i h t s bi Ke r s F y wo d : AT; l y tm ;e l t i fess e r a i me; o rs e AT;r e c u tr i d x c mp e s d F fe — l se n e
读写文件时文件系统经常需要进行文件逻辑簇号即这个文件中的第几个簇到物理簇号整个文件系统中的实际簇号的转换在这种链表结构中要进行这种转换必须对fat表进行遍历操作所以响应时间与读写位置呈线性关系时间复杂度为on其中n为要访问的数据所在的逻辑簇号
维普资讯
使用 FUSE 开发自己的文件系统
2014年6月13日使用 FUSE 开发自己的文件系统developerWorks 中国技术主题Linux文档库使用 FUSE 开发自己的文件系统无需进行内核编程使用用户空间的文件系统(FUSE),您无需理解文件系统的内幕,也不用学习内核模块编程的知识,就可以开发用户空间的文件系统框架。
本文是一篇简单的逐步介绍的指南,内容包括安装、定制和启用 FUSE 和 AFS,这样您就可以在Linux® 的用户空间中创建自己的功能完备的文件系统了。
Sumit Singh 是 IBM 企业文件系统组的一名软件工程师。
他的主要工作是为 AFS 提供 L3 支持。
2006 年 4 月 10 日文件系统是一种用来存储和组织计算机文件、目录及其包含的数据的方法,它使文件、目录以及数据的查找和访问得到简化。
如果您正在使用一台计算机,很可能使用了多个文件系统。
文件系统能提供丰富的扩展能力。
它可以编写成底层文件系统的一个封装程序,从而对其中的数据进行管理,并提供一个增强的、具有丰富特性的文件系统(例如 cvsfs-fuse,它为 CVS 提供了一个文件系统的接口;或 Wayback 文件系统,它提供了一种用于保留原始数据文件的文件备份机制)。
在用户空间的文件系统出现之前,文件系统的开发曾是内核开发人员的工作。
创建文件系统需要了解内核编程和内核技术(例如 vfs)方面的知识。
调试则需要 C 和 C++ 方面的专业技能。
但是其他开发人员需要熟练地操作文件系统以添加个性化特性(例如添加历史记录或转发缓存)及对其改进。
FUSE 简介使用 FUSE 您可以开发功能完备的文件系统:其具有简单的 API 库,可以被非特权用户访问,并可以安全的实施。
更重要的是,FUSE 以往的表现充分证明了其稳定性。
使用 FUSE,您可以像可执行二进制文件一样来开发文件系统,它们需要链接到 FUSE 库上 —— 换言之,这个文件系统框架并不需要您了解文件系统的内幕和内核模块编程的知识。
文件系统:探讨文件系统的基本原理、结构和实现
文件系统:探讨文件系统的基本原理、结构和实现作为我们日常计算机使用的一部分,文件系统是一项非常重要的技术。
它提供了存储和管理文件的功能,是操作系统的核心组成部分。
在本文中,我们将深入探讨文件系统的基本原理、结构和实现方法。
导言在我们使用计算机时,我们经常会处理各种类型的文件,如文档、图片、音频和视频。
这些文件在计算机中存储和组织的方式由文件系统决定。
文件系统是一种管理存储介质上数据的方法,它为我们提供了对文件的读取、写入和管理功能。
文件系统的基本原理文件系统的基本原理是将存储介质划分为固定大小的块,并管理这些块的分配和使用。
它将文件存储为连续的块或散布在存储介质的不同位置。
文件系统还包括对文件的命名、目录结构、权限管理和文件元数据的管理。
存储块和磁盘的使用文件系统使用存储块作为最小单位来管理数据的存储和访问。
存储介质(如硬盘)被划分成固定大小的存储块,通常为4KB或8KB。
文件数据存储在这些块中,并按照一定的方式分配和组织。
连续分配和链接分配文件系统可以使用连续分配或链接分配来组织文件的存储空间。
在连续分配中,文件被存储在存储介质上连续的块中。
这样可以提高文件的读取和写入性能,但会导致碎片问题。
在链接分配中,文件的数据块可以散布在存储介质的不同位置,通过文件的元数据进行链接。
这样可以更有效地利用存储空间,但会导致访问性能下降。
文件的命名和目录结构文件系统使用文件名来唯一标识文件。
文件名通常由字母、数字和一些特殊字符组成。
目录结构则用于组织和管理文件。
目录是一个包含其他文件和目录的特殊文件,通过目录的嵌套结构可以形成层次化的文件组织。
这样我们就可以通过路径来访问文件,例如/usr/share/doc/example.txt。
权限管理和文件元数据文件系统通过权限管理来控制对文件的访问权限。
权限可以被分为所有者权限、组权限和其他用户权限。
文件还包含一些元数据,如文件大小、创建时间、修改时间和访问时间。
模拟简单二级文件管理系统
模拟简单二级文件管理系统简单二级文件管理系统是一种用于管理和组织计算机文件的软件系统。
它提供了一种方便的方式来浏览、创建、修改和删除文件,以及对文件进行分类和搜索。
本文将介绍如何设计和实现一个模拟简单二级文件管理系统。
一、系统概述模拟简单二级文件管理系统是一个基于命令行界面的文件管理系统。
用户可以通过输入不同的命令来执行文件管理操作,如创建文件夹、创建文件、查看文件列表、移动文件等。
系统支持两级文件结构,即可以在根目录下创建文件夹,并在文件夹下创建文件。
系统还提供了文件搜索功能,用户可以根据文件名或文件类型进行搜索。
二、系统功能1. 创建文件夹:用户可以通过输入命令,在指定路径下创建一个新的文件夹。
2. 创建文件:用户可以通过输入命令,在指定路径下创建一个新的文件。
3. 查看文件列表:用户可以通过输入命令,查看指定路径下的文件夹和文件列表。
4. 移动文件:用户可以通过输入命令,将指定文件或文件夹移动到目标路径下。
5. 复制文件:用户可以通过输入命令,将指定文件或文件夹复制到目标路径下。
6. 删除文件或文件夹:用户可以通过输入命令,删除指定的文件或文件夹。
7. 文件搜索:用户可以通过输入命令,根据文件名或文件类型进行文件搜索。
三、系统设计1. 数据结构系统使用树状结构来表示文件系统,每个节点表示一个文件夹或文件。
节点包含以下属性:- 名称:节点的名称,可以是文件夹名称或文件名称。
- 类型:节点的类型,可以是文件夹或文件。
- 父节点:指向父节点的指针,用于表示文件夹的层次结构。
- 子节点列表:包含子节点的列表,用于表示文件夹下的文件和文件夹。
2. 系统流程系统的主要流程如下:- 用户输入命令。
- 系统解析命令,判断执行的操作类型。
- 根据操作类型,执行相应的操作。
- 更新文件系统的数据结构。
- 返回执行结果给用户。
四、系统实现系统可以使用编程语言来实现,如Python。
以下是一个简单的实现示例:```pythonclass Node:def __init__(self, name, type): = nameself.type = typeself.parent = Noneself.children = []class FileSystem:def __init__(self):self.root = Node("root", "folder")def create_folder(self, path, name):# 创建文件夹的逻辑def create_file(self, path, name):# 创建文件的逻辑def list_files(self, path):# 查看文件列表的逻辑def move_file(self, source_path, target_path): # 移动文件的逻辑def copy_file(self, source_path, target_path): # 复制文件的逻辑def delete_file(self, path):# 删除文件的逻辑def search_file(self, path, keyword):# 文件搜索的逻辑# 创建文件系统对象file_system = FileSystem()# 用户输入命令command = input("请输入命令:")# 解析命令并执行相应的操作# ...# 更新文件系统的数据结构# ...# 返回执行结果给用户# ...```以上是一个简单的模拟二级文件管理系统的设计和实现。
c++课程设计选题
c++课程设计选题共50个1. 学生信息管理系统:创建一个能够管理学生信息的系统,包括增、删、改、查等功能。
2. 图书管理系统:实现一个简单的图书管理系统,包括图书的增、删、改、查功能。
3. 简单计算器:设计一个支持基本数学运算的控制台计算器。
4. 日历应用程序:创建一个日历应用,能够显示日期、提醒重要事件等。
5. 文件加密工具:编写一个能够加密和解密文件的工具。
6. 电子商务系统:设计一个简单的电子商务系统,包括商品浏览、购物车、订单处理等功能。
7. 简单的数据库系统:实现一个简化版的数据库系统,支持基本的增删改查操作。
8. 学生成绩分析系统:创建一个学生成绩分析系统,能够统计和分析学生成绩。
9. 简单的社交网络:设计一个简单的社交网络系统,包括用户注册、发布动态等功能。
10. 音乐播放器:编写一个简单的音乐播放器,支持播放、暂停、跳转等功能。
11. 简单的贪吃蛇游戏:制作一个经典的贪吃蛇游戏,具备基本的游戏规则和图形界面。
12. 网络聊天程序:创建一个简单的网络聊天程序,支持多用户同时在线聊天。
13. 简单的画图程序:编写一个简单的画图程序,支持基本的绘图功能。
14. 简易文件系统:实现一个简单的文件系统,包括文件的读、写、删除等操作。
15. 电影票订购系统:设计一个电影票订购系统,支持选择电影、场次、购票等功能。
16. 简单的飞机大战游戏:制作一个简单的飞机大战游戏,玩家可控制飞机进行射击。
17. 简易银行管理系统:创建一个简单的银行管理系统,支持账户的增、删、改、查等功能。
18. 在线考试系统:设计一个在线考试系统,包括出题、考试、评分等功能。
19. 简易聚会活动管理系统:创建一个聚会活动管理系统,支持发布活动、报名等功能。
20. 简易邮件客户端:编写一个简易的邮件客户端,支持发送、接收邮件等操作。
21. 简单的天气预报应用:制作一个简单的天气预报应用,能够获取天气信息并显示。
22. 简易在线购物系统:创建一个简易的在线购物系统,包括商品浏览、购物车、结算等功能。
实现一个简单的文件系统
实现一个简单的文件系统
实现一个简单的文件系统是在计算机科学中不可或缺的一部分,因为它可以帮助我们理解文件存储、文件管理、文件共享以及限制对文件的访问。
简单的文件系统实现可以划分为三大部分:
一、文件系统的数据结构
文件系统的数据结构是指组成文件系统的所有数据,比如:文件名、目录信息、文件大小、权限等。
这些数据要组织在一起,用于描述文件系统中包含的文件和目录,文件系统的数据结构一般提供几种实现,比如树状结构、链表结构等。
二、文件系统文件存储和管理
文件系统文件存储和管理是指将文件存储在文件系统数据结构中,以便可以对文件进行索引、搜索、读写等操作,而且需要管理文件的大小、时间等信息,并且要有相应的策略来实现文件的迁移、复制、删除等操作。
三、文件系统管理访问
文件系统管理访问是指在文件系统中,可以进行访问控制,即对不同的用户设置不同的访问权限,以便控制不同的用户访问、编辑和删除文件,而且还可以设置文件的权限,如只读、可写、可执行等。
实现一个简单的文件系统,需要实现上述三大部分的功能,一般的文件系统实现方式是使用操作系统提供的系统调用接口以及其他工具,例如通用的文件驱动、API等,来实现上述功能。
操作系统课程设计文件系统
操作系统课程设计:文件系统一、引言文件系统是操作系统中的一个重要组成部分,负责管理计算机存储设备上的文件和目录。
一个高效可靠的文件系统对于操作系统和用户来说都至关重要。
在操作系统课程中,设计一个文件系统是一项重要的任务,可以帮助学生深入了解文件系统的原理和实现细节。
本文档将介绍一个简单的文件系统设计,旨在帮助初学者理解文件系统的基本概念和工作原理。
我们将首先介绍文件系统的基本概念,然后讨论文件系统的设计思路和关键组成部分。
最后,我们将讨论如何实现和测试文件系统。
二、文件系统的基本概念文件系统是操作系统提供的一种存储管理机制,用于将文件组织成有层次的结构并提供对文件的访问和管理。
在一个文件系统中,文件被组织成目录(或文件夹)的层次结构,用户可以使用文件路径来访问文件和目录。
文件系统通常提供以下功能: - 文件和目录的创建、删除和重命名 - 文件和目录的读取和写入 - 文件和目录的权限管理 - 文件的共享和保护 - 文件的存储管理三、设计思路在设计文件系统时,需要考虑以下几个关键方面:1. 文件系统的组织结构文件系统可以采用不同的组织结构,常见的包括层次结构、网络结构和日志结构。
在设计文件系统时,需要根据具体需求选择合适的结构。
2. 文件和目录的管理文件系统需要提供对文件和目录的管理功能,包括创建、删除、重命名和移动等操作。
此外,还需要支持文件和目录的权限管理,确保只有授权用户可以进行相应操作。
3. 文件的存储管理文件系统需要负责将文件存储在磁盘或其他存储设备上,并提供高效的读写操作。
存储管理的关键是如何将文件划分为适当大小的块并将它们存储在存储设备上。
4. 文件的共享和保护文件系统需要支持文件的共享和保护。
共享可以使多个用户同时访问同一文件,保护则确保只有合法用户可以进行读写操作。
四、文件系统的关键组成部分一个典型的文件系统通常由以下几个关键组成部分构成:1. 文件控制块(FCB)文件控制块是文件系统中一个重要的数据结构,用于记录文件的相关信息,包括文件名、大小、权限和存储位置等。
操作系统原理_实验报告
一、实验目的1. 理解操作系统基本原理,包括进程管理、内存管理、文件系统等。
2. 掌握操作系统的基本命令和操作方法。
3. 通过实验加深对操作系统原理的理解和掌握。
二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:Eclipse三、实验内容本次实验主要分为以下几个部分:1. 进程管理实验2. 内存管理实验3. 文件系统实验四、实验步骤及结果1. 进程管理实验实验步骤:- 使用C语言编写一个简单的进程管理程序,实现进程的创建、调度、同步和通信等功能。
- 编写代码实现进程的创建,通过调用系统调用创建新的进程。
- 实现进程的调度,采用轮转法进行进程调度。
- 实现进程同步,使用信号量实现进程的互斥和同步。
- 实现进程通信,使用管道实现进程间的通信。
实验结果:- 成功创建多个进程,并实现了进程的调度。
- 实现了进程的互斥和同步,保证了进程的正确执行。
- 实现了进程间的通信,提高了进程的效率。
2. 内存管理实验实验步骤:- 使用C语言编写一个简单的内存管理程序,实现内存的分配、释放和回收等功能。
- 实现内存的分配,采用分页存储管理方式。
- 实现内存的释放,通过调用系统调用释放已分配的内存。
- 实现内存的回收,回收未被使用的内存。
实验结果:- 成功实现了内存的分配、释放和回收。
- 内存分配效率较高,回收内存时能保证内存的连续性。
3. 文件系统实验实验步骤:- 使用C语言编写一个简单的文件系统程序,实现文件的创建、删除、读写等功能。
- 实现文件的创建,通过调用系统调用创建新的文件。
- 实现文件的删除,通过调用系统调用删除文件。
- 实现文件的读写,通过调用系统调用读取和写入文件。
实验结果:- 成功实现了文件的创建、删除、读写等功能。
- 文件读写效率较高,保证了数据的正确性。
五、实验总结通过本次实验,我对操作系统原理有了更深入的理解和掌握。
以下是我对实验的几点总结:1. 操作系统是计算机系统的核心,负责管理和控制计算机资源,提高计算机系统的效率。
操作系统二级文件管理系统结构设计
操作系统二级文件管理系统结构设计二级文件管理系统是一种较为常见的操作系统文件管理结构,主要用于管理计算机中的文件和目录。
该系统结构设计的目标是提供高效、可靠和安全的文件管理功能,使用户能够方便地存储、访问和管理文件。
一、文件系统的基本结构1.文件系统层次结构:二级文件管理系统采用层次结构,由两个层次组成:目录层和文件层。
目录层用于组织、分类和管理文件,文件层用于存储和读取实际文件数据。
2.目录结构设计:目录是文件和子目录的逻辑组织结构,可以有多级嵌套。
目录层次结构可以采用树形结构,根目录是顶级目录,下级目录称为子目录。
每个目录包含目录项,每个目录项包含文件名和文件指针。
3.文件结构设计:文件是存储在磁盘上的一组数据,可以是文本文件、图像文件、音频文件等。
文件层次结构可以采用线性结构,每个文件由文件头、文件数据和文件尾组成。
文件头包含文件属性信息,文件数据是实际的文件内容,文件尾用于标记文件结束。
二、文件系统的实现原理1.文件分配方法:文件分配方法指定了文件在磁盘上的存储方式。
常见的文件分配方法有连续分配、链接分配和索引分配。
连续分配将文件存储在连续的磁盘块上,链接分配使用链表将文件块链接起来,索引分配使用索引表记录文件块的位置。
2.目录操作:目录操作包括创建目录、删除目录、重命名目录、进入目录和返回上级目录等。
其中进入目录操作是进入子目录进行文件管理,返回上级目录是返回到父目录中。
3.文件操作:文件操作包括创建文件、删除文件、读取文件和写入文件等。
创建文件时需要为文件分配存储空间,并在目录中添加文件项;删除文件时需要释放文件占用的存储空间,并在目录中删除文件项;读取文件和写入文件是对文件数据的操作,读取时将文件数据输出到终端,写入时将终端输入的数据写入到文件中。
三、文件系统的实现考虑因素1.效率:文件系统应提供高效的操作方法,包括目录和文件的操作。
目录的层次结构应使查找操作能够在较短的时间内完成,文件的分配方法应尽量减少磁盘碎片和提高文件存取速度。
文件实验报告
昆明理工大学信息工程与自动化学院学生实验报告( 2011 —2012 学年第二学期)一、实验目的用c或c++语言编写和调试一个简单的文件系统,模拟文件管理的基本功能。
从而对各种文件操作命令的实质内容和执行过程有比较深入的了解。
二、实验原理及基本技术路线图(方框原理图)用c模拟实现文件系统的管理;要求设计一个多级目录结构的文件系统,能正确描述文件控制块,采用合理的外存分配方式,能实现基本的目录及文件的操作,包括创建、删除、重命名、复制、移动等功能,并对文件有一定的存取权限控制。
请加上程序功能结构图、流程图、数据结构定义、主要变量的说明、函数的说明等流程图: 主要数据结构界面采用vc6 mfc环境开发#define maxfile 20 //每个用户最多保存20个文件 #define maxuser 10 //假想文件系统最多支持的人数 #define blocksize 32 //虚拟磁盘中物理块为每块32字节#define disksize blocksize*1000 //虚拟磁盘容量为1000*32=32k struct ufd //说明文件项的结构数组 { 节};struct mfd { };struct headblock { };struct block //虚拟磁盘的物理块数据结构 { byte pstack; //堆栈指针short pblock[10]; //块号 pblock[10]是下一个盘块号逻辑地址 char username[10];//主目录用户名 bool isexist; //该用户否存在 ufd ufd[maxfile]; //用户文件数组 ushort nitem;//ufd个数 char filename[15]; char time[16]; //文件建立或修改时间如2003/5/6 12:00 bool isexist;//文件是否存在,删除时标为0bool isshared; //共享标记,共享文件可被其它用户所访问 bool attrread;//文件是否可读 bool attrwrite; //文件是否可写 bool attrexecute; //文件是否可执行htreeitem treenode; //用于树控件显示的结点句柄 ushort filelen; //文件占用字节数 ushort blocknum; //文件占用的物理块数ushort filelink[100];//文件物理块地址数组,每块32字节,限定一个文件最大100*32=3200字union{ };struct fat { };//空闲块成组链接法bool openlist[maxuser][maxfile]; //描述文件是否打开的布尔型数组 fat filefat;//描述文件记录项的fat结构cfile fatio; //负责和vdisk.dat打交道的文件句柄 cstringcurrentuser; //当前登录的用户名int currentid; //前前登录的用户标识号block superblock; //超级块,指示第一个空闲块逻辑号 ushort maxopen;//该用户同时可打开的最大文件数 ushort usernum; //最户数mfd mfd[maxuser]; //最多可支持10个用户 byte block[32]; //一块为32字节 headblock headinfo; };说明:本实验采用模拟文件结构的方法,把记录用户帐号,用户文件和磁盘块的信息用当前目录下的vdisk.dat来记录,可以把vdisk.dat看成是一个虚拟的磁盘,其头部是fat结构,用来记录各个用户和文件信息,紧接着是空闲块成组链接法的数据结构,每块32字节,每组10块,共1000块,也就是说,用户文件数据的总容量是32*1000字节,如果程序当前目录下找不到用于做实验用的vdisk.dat,在登录时程序会提示是否“格式化虚拟磁盘”也就是新建一个vdisk.dat文件,接着,程序会显示“用户管理”的窗口,此时应新建几个帐号用于登录做实验。
操作系统课程设计为LINUX设计一个简单的二级文件系统
操作系统课程设计为LINUX设计一个简单的二级文件系统一.项目概述本课程设计旨在通过设计一个简单的多用户文件系统,加深学生对文件系统内部功能及内部实现的理解,并提高学生的程序设计能力、算法设计质量与程序设计素质。
二.设计题目为LINUX设计一个简单的二级文件系统,要求实现以下命令:Login用户登录、Dir列文件目录、Create创建文件、Delete删除文件、Open打开文件、Close关闭文件、Read读文件、Write写文件。
列目录时需包括文件名、物理地址、保护码和文件长度。
源文件需进行读写保护。
三.开发语言及实现平台或实验环境本课程设计的开发语言为C语言,实现平台为Linux操作系统。
学生需要在规定时间内完成程序的编写和调试,并书写课程设计报告。
四.时间安排1月17日布置课程设计任务,学生需要自行查阅资料并准备程序。
1月18日至1月20日,学生需要在机房上机调试程序,并书写课程设计报告。
1月21日上午,学生需要提交课程设计报告及相关文档。
每位学生应独立完成各自的任务,每天至少在设计室工作半天。
五.具体要求1.课程设计报告应按统一通用格式书写,具体格式要求请在网络上查阅。
2.指导教师和教研室主任(或责任教师)需要在规定时间内签署相应的文件。
设计目的:本设计旨在开发一款能够实现某种功能的程序,为用户提供便利。
设计内容:5.1.该程序将包括两个主要功能:A和B。
A功能将执行某种操作,而B功能将提供用户界面,使其能够轻松地使用A功能。
5.2.此外,该程序还将包括其他辅助功能,例如C和D。
这些功能将提高程序的可用性和实用性。
任务:该程序的主要任务是为用户提供一种方便、高效的解决方案,使其能够更轻松地实现某种目标。
主程序流程图:程序的主要流程将包括以下步骤:用户打开程序,选择所需的功能,程序执行相应的操作,最终将结果返回给用户。
程序设计:6.1.在程序设计方面,我们将采用一种灵活、可扩展的架构,以便能够轻松地添加新的功能和模块。
操作系统文件系统管理
操作系统文件系统管理在计算机的世界里,操作系统就如同一个大管家,负责统筹和协调各种资源,让计算机能够高效、稳定地运行。
而文件系统管理则是这个大管家手中的一项重要任务,它关系到我们如何有效地存储、组织和访问计算机中的文件。
文件系统,简单来说,就是操作系统用于管理文件和目录的一种方法和数据结构。
它就像是一个巨大的图书馆,里面有成千上万的书籍(文件),需要有一套清晰的规则和方法来存放、分类和查找这些书籍。
那么,文件系统是如何工作的呢?当我们在计算机中创建一个文件时,文件系统会为这个文件分配一定的存储空间,并记录下文件的相关信息,比如文件名、文件大小、创建时间、修改时间等等。
同时,它还会将文件放置在合适的目录中,以便我们能够方便地找到它。
常见的文件系统有很多种,比如 FAT32、NTFS、EXT4 等等。
每种文件系统都有其特点和适用场景。
FAT32 是一种比较古老的文件系统,它的兼容性较好,但支持的单个文件大小有限。
NTFS 则是 Windows操作系统中常用的文件系统,它具有更好的安全性和性能,能够支持较大的文件和磁盘分区。
EXT4 则是 Linux 系统中常用的文件系统,它在性能、可靠性和扩展性方面都表现出色。
在文件系统管理中,文件的存储方式是一个关键的问题。
文件可以以连续存储、链式存储或者索引存储等方式存在于磁盘上。
连续存储就像是把一系列文件依次排列在磁盘上,这样读取文件的速度很快,但当文件需要修改或者删除时,可能会产生磁盘碎片。
链式存储则是通过链接指针将文件的各个部分连接起来,这种方式比较灵活,但读取文件时需要沿着指针依次查找,效率相对较低。
索引存储则是通过建立索引表来快速定位文件的位置,能够提高文件的访问效率。
目录结构也是文件系统管理的重要组成部分。
常见的目录结构有单层目录、双层目录和多层目录。
单层目录结构简单,但不便于文件的分类管理。
双层目录则将用户目录和系统目录分开,提高了一定的管理效率。
使用C语言实现简单的操作系统
使用C语言实现简单的操作系统C语言是一种广泛应用的高级编程语言,拥有较高的可移植性和灵活性。
通过使用C语言,我们可以实现各种程序和系统,包括操作系统。
本文将介绍如何使用C语言实现一个简单的操作系统。
操作系统是计算机的核心组成部分,它管理计算机的硬件和软件资源,并提供给用户一个友好、高效的接口。
一个操作系统通常由内核和外壳组成,其中内核负责处理硬件资源的管理,外壳则提供给用户一个可交互的界面。
在实现一个简单的操作系统之前,我们需要了解一些操作系统的基本概念和原理。
首先,操作系统需要能够加载到计算机的内存中,并将控制权交给它,这一般是通过引导扇区(boot sector)来实现的。
引导扇区是位于磁盘的第一个扇区,它包含了一个小程序,负责将操作系统的其他部分加载到内存中。
在引导扇区加载完成后,操作系统的其他部分会被加载到内存中的特定位置。
这些部分包括内核和外壳。
内核是操作系统的核心组件,负责管理硬件资源,如处理器、内存和设备等。
外壳是用户与操作系统交互的接口,它可以提供命令行界面或图形用户界面(GUI)。
接下来,我们将使用C语言来实现一个简单的操作系统。
首先,我们需要定义一些数据结构和函数来实现所需的功能。
例如,我们可以定义一个结构体来表示进程(process),其中包含进程的ID、状态、优先级和内存分配等信息。
然后,我们可以编写相应的函数来创建、终止和调度进程。
除了进程管理,我们还需要考虑内存管理、文件系统和设备驱动程序等方面。
对于内存管理,我们可以定义一些函数来管理内存的分配和释放,以及处理内存碎片化问题。
对于文件系统,我们可以定义一些函数来创建、读取和写入文件。
对于设备驱动程序,我们可以编写相应的函数来处理设备的读写和中断等操作。
最后,我们需要编写一个引导扇区程序,将操作系统的其他部分加载到内存中,并将控制权交给操作系统。
引导扇区程序可以使用汇编语言来编写,以便直接控制硬件。
在编写完成所有必要的代码后,我们可以使用相关的编译器将C代码编译成可执行文件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章简单文件系统的实现3.1 设计目的和内容要求1. 设计目的通过具体的文件存储空间的管理、文件的物理结构、目录结构和文件操作的实现,加深对文件系统内部数据结构、功能以及实现过程的理解。
2.内容要求(1)在内存中开辟一个虚拟磁盘空间作为文件存储分区,在其上实现一个简单的基于多级目录的单用户单任务系统中的文件系统。
在退出该文件系统的使用时,应将该虚拟文件系统以一个Windows 文件的方式保存到磁盘上,以便下次可以再将它恢复到内存的虚拟磁盘空间中。
(2)文件存储空间的分配可采用显式链接分配或其他的办法。
(3)空闲磁盘空间的管理可选择位示图或其他的办法。
如果采用位示图来管理文件存储空间,并采用显式链接分配方式,那么可以将位示图合并到FAT中。
(4)文件目录结构采用多级目录结构。
为了简单起见,可以不使用索引结点,其中的每个目录项应包含文件名、物理地址、长度等信息,还可以通过目录项实现对文件的读和写的保护。
(5)要求提供以下操作命令:my_format:对文件存储器进行格式化,即按照文件系统的结构对虚拟磁盘空间进行布局,并在其上创建根目录以及用于管理文件存储空间等的数据结构。
my_mkdir:用于创建子目录。
my_rmdir:用于删除子目录。
my_ls:用于显示目录中的内容。
my_cd:用于更改当前目录。
my_create:用于创建文件。
my_open:用于打开文件。
my_close:用于关闭文件。
my_write:用于写文件。
my_read:用于读文件。
my_rm:用于删除文件。
my_exitsys:用于退出文件系统。
3.学时安排授课2学时,上机9学时。
4.开发平台C或C++均可。
5.思考(1)我们的数据结构中的文件物理地址信息是使用C语言的指针类型、还是整型,为什么?(2)如果引入磁盘索引结点,上述实现过程需要作哪些修改?(3)如果设计的是一个单用户多任务文件系统,则系统需要进行哪些扩充(尤其要考虑读写指针问题)?如果设计的是一个多用户文件系统,则又要进行哪些扩充?3.2 预备知识3.2.1 FAT文件系统介绍1.概述FAT文件系统是微软公司在其早期的操作系统MS-DOS及Windows9x中采用的文件系统,它被设计用来管理小容量的磁盘空间。
FAT文件系统是以他的文件组织方式——文件分配表(file allocation table,FAT)命名的,文件分配表的每个表项中存放某文件的下一个盘块号,而该文件的起始盘块号则保存在它的文件控制块FCB中。
在文件分配表中,一般用FFFF来标识文件的结束;用0000来标识某个逻辑块未被分配,即是空闲块。
为了提高文件系统的可靠性,在逻辑磁盘上通常设置两张文件分配表,它们互为备份。
此外,文件分配表必须存放在逻辑磁盘上的固定位置,而根目录区通常位于FAT2之后,以便操作系统在启动时能够定位所需的文件,其磁盘布局如图3-1所示:引导块FAT1FAT2根目录区数据区图3-1 FAT文件系统磁盘布局上述磁盘布局中,引导块中主要存放了用于描述分区的各种信息,包括逻辑块的大小、文件分配表的大小及位置、根目录的大小及位置等。
除此之外,用于加载操作系统内核的引导程序也存储在引导块中。
FAT文件系统家族又分为FAT12、FAT16、FAT32三种类型,这里的数字表示文件分配表中每个表项(即簇号)所占的位数,即FAT12中每个表项占1.5个字节(12位),FAT16中每个表项占2个字节(16位),FAT32中每个表项占4个字节(32位)。
由于FAT文件系统是以簇为单位为文件分配磁盘空间的(一个簇是一组连续的扇区,通常包含2n个扇区),因此,FAT32比FAT12和FAT16支持更多的簇数、更小的簇大小和更大的磁盘容量,从而大大提高磁盘空间的利用率。
通常,FAT12适用于小容量磁盘,如软盘;FAT16是MS-DOS的文件系统;FAT32是Windows9x中的主要文件系统,开始支持大容量磁盘。
2.文件控制块FCB为了正确、方便地操作文件,必须设置相应的数据结构用于存放文件的描述和控制信息,常用的数据结构有文件控制块(简称FCB)和索引节点(简称i节点)。
在FAT文件系统中使用文件控制块。
文件与文件控制块一一对应,而文件控制块的有序集合就称为文件目录,即一个文件控制块就是一个文件目录项。
虽然不同文件系统的文件控制块的内容和格式不完全相同,但通常都包括以下三类信息:基本信息、存取控制信息和使用信息。
(1)基本信息。
包括文件名、用户名、文件类型、文件的物理地址、文件长度、文件的逻辑结构和物理结构等。
(2)存取控制信息。
一般分别给出文件主、伙伴用户、一般用户的存取权限。
(3)使用信息。
包括文件的建立日期及时间、上次存取文件的日期及时间、当前的使用信息等。
以MS-DOS(使用FAT16文件系统)为例,它的每个文件控制块包括32个字节,其字节分配情况如图3-2所示:图3-2 MS-DOS的文件控制块其中属性字段占一个字节,它的每一位用来表示该文件是否具有某种属性,如果某一位的值为1,则表示该文件具有该属性。
各位所表示的属性如表3-1所示:表3-1 文件属性对照表位7 6 5 4 3 2 1 0属性保留保留存档子目录卷标系统文件隐藏只读3.根目录区FAT12、FAT16的根目录区是固定区域、固定大小的,位于第二个FAT之后,如图3-1所示,且占据若干连续扇区,其中FAT12占14个扇区,一共224个根目录项;而FAT16占32个扇区,最多保存512个目录项,作为系统区的一部分。
FAT32的根目录是作为文件处理的,采用与子目录文件相同的管理方式,其位置不是固定的,不过一般情况也是位于第二个FAT之后的,其大小可视需要增加,因此根目录下的文件数目不再受最多512个的限制。
3.2.2 几个C语言库函数介绍由于我们的文件系统是建立在内存的虚拟磁盘上的,在退出文件系统的时候必须以一个文件的形式保存到磁盘上;而在启动文件系统的时候必须从磁盘上将该文件读入到内存的虚拟磁盘中。
下面介绍几个可能会用到的C库函数,在使用这些库函数之前必须包含头文件“stdio.h”。
1.打开文件函数fopen()(1)格式:FILE *fopen(const char *filename,const char *mode)(2)功能:按照指定打开方式打开指定文件。
(3)输入参数说明:filename:待打开的文件名,如果不存在就创建该文件。
mode:文件打开方式,常用的有:"r":为读而打开文本文件(不存在则出错)。
"w":为写而打开文本文件(若不存在则创建该文件;反之,则从文件起始位置写,原内容将被覆盖)。
"a":为在文件末尾添加数据而打开文本文件。
(若不存在则创建该文件;反之,在原文件末尾追加)。
"r+":为读和写而打开文本文件。
(读时,从头开始;在写数据时,新数据只覆盖所占的空间,其后不变) 。
"w+":首先建立一个新文件,进行写操作,随后可以从头开始读。
(若文件存在,原内容将全部消失) 。
"a+":功能与"a"相同;只是在文件末尾添加新的数据后,可以从头开始读。
另外,上述模式字符串中都可以加一个“b”字符,如rb、wb、ab、rb+、wb+、ab+等组合,字符“b”表示fopen()函数打开的文件为二进制文件,而非纯文字文件。
(4)输出:一个指向FILE类型的指针。
2.关闭文件函数fclose()(1)格式:int fclose(FILE * stream);(2)功能:用来关闭先前fopen()打开的一个文件。
此动作会让缓冲区内的数据写入文件中,并释放系统所提供的文件资源。
(3)输入参数说明:stream:指向要关闭文件的指针,它是先前执行fopen()函数的返回值。
(4)输出:若关闭文件成功则返回0;有错误发生时则返回EOF并把错误代码存到errno。
3.读文件函数fread()(1)格式:size_t fread( void *buffer, size_t size, size_t count, FILE *stream );(2)功能:读二进制文件到内存。
(3)输入参数说明:buffer:用于存放输入数据的缓冲区的首地址;stream:使用fopen()打开的文件的指针,用于指示要读取的文件;size:每个数据块的字节数;count:要读入的数据块的个数;size*count:表示要求读取的字节数。
(4)输出:实际读取的数据块的个数。
4.写文件函数fwrite()(1)格式:size_t fwite(const void *buffer,size_t size,size_t count,FILE *stream);(2)功能:将数据写到二进制文件中。
(3)输入参数说明:buffer:用于存放输出数据的缓冲区的首地址;stream:使用fopen()打开的文件的指针,用于指示要写出的文件;size:每个数据块的字节数;count:要写出的数据块的个数;size*count:表示要求写出的字符数。
(4)输出:实际写出的数据块的个数。
5.判断文件结束函数feof ()(1)格式:int feof(FILE * stream)(2)功能:用来判断是否已读取到文件末尾。
(3)输入参数说明:stream:使用fopen()打开的文件的指针,用于指示要判断的文件。
(4)输出:如果已读到文件尾则返回非零值,其他情况返回0。
6.定位文件函数fseek()(1)格式:int fseek( FILE *stream, long offset, int origin );(2)功能:移动文件读写指针在文件中的位置。
(3)输入参数说明:stream:使用fopen()打开的文件的指针,用于指示要定位读写指针的文件;offset:位移量,以字节为单位;origin:初始位置,有三个常量:SEEK_CUR:读写指针当前位置;SEEK_SET:文件开头;SEEK_END:文件末尾。
当origin值为SEEK_CUR 或SEEK_END时,参数offset可以为负值。
3.3实例系统的设计与实现本实例系统是仿照FAT16文件系统来设计实现的,但根目录没有采用FAT16的固定位置、固定大小的根目录区,而是以根目录文件的形式来实现的,这也是目前主流文件系统对根目录的处理方式。
3.3.1 数据结构设计1.需要包含的头文件(1)#include <stdio.h>(2)#include <malloc.h>(3)#include <string.h>(4)#include <time.h>2.定义的常量(1)#define BLOCKSIZE 1024 磁盘块大小(2)#define SIZE 1024000 虚拟磁盘空间大小(3)#define END 65535 FAT中的文件结束标志(4)#define FREE 0 FAT中盘块空闲标志(5)#define ROOTBLOCKNUM 2 根目录区所占盘块总数(6)#define MAXOPENFILE 10 最多同时打开文件个数3.数据结构(1)文件控制块FCB用于记录文件的描述和控制信息,每个文件设置一个FCB,它也是文件的目录项的内容。