中国光纤通信技术的现状及未来.

合集下载

光纤通信系统技术的发展挑战与机遇

光纤通信系统技术的发展挑战与机遇

光纤通信系统技术的发展挑战与机遇1. 技术更新换代的压力随着信息通信技术的不断更新换代,光纤通信系统技术也面临着更新换代的压力。

新的通信技术不断涌现,光纤通信系统如果不能及时更新自己的技术和设备,就会面临被淘汰的危险。

2. 安全性和隐私保护问题随着网络犯罪的不断增加,光纤通信系统技术在传输安全性和隐私保护方面面临着巨大挑战。

传统的加密技术已经不能满足当今的安全需求,因此急需新的安全技术来保护光纤通信系统的安全性和隐私。

3. 成本控制和节能减排光纤通信系统技术的发展还面临着成本控制和节能减排的挑战。

在资源有限的情况下,如何降低通信设备的制造成本,降低运行成本,同时实现节能减排,是光纤通信系统技术发展中亟需解决的问题。

1. 科技创新带来的机遇随着信息通信技术的飞速发展,各种科技创新也为光纤通信系统技术带来了巨大的机遇。

新材料、新器件、新技术的不断涌现,为光纤通信系统技术的进一步发展提供了坚实的基础。

2. 产业需求带来的机遇随着数字化和信息化的不断深入,产业对通信技术的需求也越来越高。

光纤通信系统技术能够满足高速、大容量、低延迟的通信需求,因此在各种产业中都有巨大的应用空间,为光纤通信系统技术的发展提供了广阔前景。

3. 政策支持带来的机遇随着政府对信息通信技术产业的重视,各级政府纷纷出台了关于光纤通信系统技术发展的支持政策,为光纤通信系统技术的发展提供了良好的政策环境和市场环境。

在光纤通信系统技术的发展中,我们必须充分认识到其所面临的挑战,同时也要善于抓住机遇。

只有在克服种种困难,利用各种机遇的光纤通信系统技术才能够迎来更加美好的明天。

希望我们能够团结一致,共同努力,为光纤通信系统技术的发展贡献自己的一份力量。

光纤通信的发展现状和未来

光纤通信的发展现状和未来

光纤通信的发展现状和未来光纤通信是一种利用光纤传输数据的通信技术,它的发展给人们的生活带来了极大的便利性,也在许多领域发挥着不可替代的作用。

光纤通信的发展历经了数十年的演进和创新,现在已经成为了信息传输领域的主流技术之一。

在未来,光纤通信还将继续发挥着重要作用,并不断创新,适应不断发展的社会需求。

光纤通信技术的发展现状可以从多个方面来进行描述。

在通信速度方面,光纤通信的带宽可以支持更大容量的数据传输,能够满足人们对高速网络的需求。

在通信距离方面,光纤通信可以覆盖更广泛的范围,无需中继设备来加强信号,因此更适用于长距离的通信传输。

在通信质量方面,光纤通信的信号传输更加稳定,能够避免电磁干扰和信号衰减,保证了数据传输的准确性和可靠性。

在通信成本方面,随着技术的进步和成本的降低,光纤通信的使用成本也在不断下降,使得更多的人可以享受到高速、稳定、低成本的网络服务。

未来光纤通信技术的发展方向可以从以下几个方面来进行展望。

在通信速度方面,当前的光纤通信已经可以支持很大的数据传输速度,但是随着虚拟现实、增强现实等新兴应用的兴起,对带宽的需求将会越来越大,因此未来光纤通信还可以继续提升传输速度,以适应更多样化的通信需求。

在通信安全方面,随着网络安全问题的日益严峻,光纤通信需要进一步加强对数据的加密和保护,以确保用户的信息不被窃取或篡改。

在通信智能化方面,未来的光纤通信将更加智能化,能够实现对网络的自我管理和优化,提供更加个性化的服务。

在通信设备的小型化和便携化方面,未来光纤通信设备将会更加小巧轻便,使得用户可以随时随地使用高速网络服务。

在未来的光纤通信发展中,还有一些潜在的挑战需要克服。

首先是光纤的成本问题,目前光纤通信的建设和维护费用都比较高昂,需要不断降低成本,以推动光纤通信技术在更多领域的应用。

其次是光纤通信设备的普及问题,目前光纤通信设备并没有得到足够的普及,需要进一步推动光纤设备的普及,使得更多的用户可以享受到光纤通信带来的便利。

光纤通信发展现状

光纤通信发展现状

光纤通信发展现状光纤通信技术是一种基于光纤传输和调制解调技术的高速数据传输方式。

光纤通信发展至今已经取得了重大突破和进展,成为现代信息通信领域的重要组成部分。

以下是光纤通信发展的现状:1. 高速传输能力:随着科技的发展,光纤通信的传输速率不断提高。

目前,最常见的光纤通信标准是千兆位速率(Gigabit Ethernet),同时还有10G、40G和100G等速率标准的应用。

这种高速传输能力使得大量数据的传输更加快捷和高效。

2. 长距离传输:光纤通信具有较低的传输损耗,使得信号能够在较长的距离内传输而不会衰减。

传统的铜线通信在长距离传输时会受到信号衰减和干扰的问题,而光纤通信能够有效地克服这些问题,实现了更长距离的数据传输。

3. 大带宽容量:光纤通信的带宽容量远高于传统的铜线通信。

光纤的宽带特性使得同时传输多个信号变得更加容易,可以满足各种大容量数据的传输需求。

无论是音频、视频还是其他形式的大容量数据,光纤通信都能够提供稳定且高质量的传输。

4. 抗干扰性能:由于光纤通信是基于光信号传输的,不受电磁干扰的影响。

这使得光纤通信能够在有电磁干扰的环境中工作,如高压电线附近或工业设备周围。

相比之下,传统的铜线通信则容易受到干扰而导致传输质量下降。

5. 发展前景:光纤通信技术在未来的发展前景广阔。

随着互联网的普及和数字化社会的快速发展,人们对快速、稳定和高效的数据传输需求不断增加。

光纤通信作为一种高速、高带宽、抗干扰性强的通信技术,将在通信领域持续发挥重要作用。

总之,光纤通信已经取得了显著的发展,成为现代通信领域不可或缺的一部分。

随着技术的进一步成熟和应用的不断拓展,光纤通信将继续展示其强大的传输能力和潜力,为人们的信息交流和数据传输提供更好的服务。

我国光纤通信的发展现状及前景

我国光纤通信的发展现状及前景
好 的 发 展 前 景 。从 发 展 趋 势 上 看 , 成 一 个 真 正 的 、 WDM 技 术 形 以 与 光 交 换 技 术 为 主 的 光 网 络 层 , 立 纯 粹 的 全 光 网 络 , 除 电 光 建 消
瓶 颈 已成 为 未来 光 通 信 发 展 的必 然 趋 势 , 是 未来 信息 网 络 的 核 更 心 , 是 通 信技 术 发 展 的 最 高 级 别 , 是 理 想 级 别 。 也 更
光 化 , 息 始 终 以光 的 形 式 进 行 传 输 与 交 换 , 换 机 对 用 户 信 息 信 交 的处 理 不 再 按 比特 进 行 , 是 根 据 其 波 长来 决 定 路 由 。 而
目前 , 全光 网 络 的 发 展 仍 处 于初 期 阶 段 , 它 已 显 示 出 了 良 但
3 全 光 网络 。未 来 的高 速 通 信 网将 是 全 光 网 。全 光 网是 光 纤 、
通 信 技 术 发 展 的 最 高 阶 段 , 是 理 想 阶段 。传 统 的 光 网 络 实 现 了 也 节 点 间 的 全 光 化 , 在 网 络 结 点 处 仍 采 用 电 器 件 , 制 了 目前 通 但 限 信 网干 线 总 容 量 的 进 一 步 提 高 , 因此 真 正 的全 光 网 已 成 为 一 个 非 常 重 要 的课 题 。 全 光 网络 以光 节 点 代 替 电 节 点 , 点之 间 也 是 全 节
子 通 信 就 是 利用 光 孤 子 作 为 载 体 实 现 长距 离 无 畸 变 的 通 信 , 零 在 目前 , 纤 通 信 技 术 得 到 了 充 足 的 发 展 , 技 术 不 断 涌 现 , 光 新 这 误 码 的 情 况 下 信 息 传 递 可 达 万 里 之 遥 。 光 孤 子 技 术 未来 的 前 景 是 : 传 输 速 度 方 面 采 用 超 长距 离 的 在 大 幅提 高 了通 信 能 力 , 并使 光纤 通 信 的应 用 范 围 不 断 扩大 。 高 速 通 信 , 域 和 频 域 的超 短 脉 冲 控 制 技 术 以及 超 短 脉 冲 的产 生 时 和 应 用 技 术 使 现 行 速 率 1 ̄ 0 bt 提 高到 10 bt 0 2 G is / 0 G is以上 ; 在增 / l普 通 单 模 光 纤 是 最 常 用 的 一 种 光 纤 。随 着 光 通 信 系 统 的 发 、 大 传 输 距 离 方 面 采 用 重 定 时 、 形 、 生 技 术 和 减 少 A E, 整 再 S 光学 滤 展 , 中 继 距 离 和 单 一 波 长 信 道 容 量 增 大 , .5 . 光纤 的性 能 还 光 G6 2A 波 使 传 输距 离 提 高 到 1 0 0 k 以上 ;在 高性 能 E F 0o0m D A方 面 是 获 有 可能 进 一 步 优 化 , 现 在 1 5 r 区 的 低 衰 减 系 数 没 有 得 到 充 表 5 0i m

光纤通信传输技术应用和发展趋势

光纤通信传输技术应用和发展趋势

光纤通信传输技术应用和发展趋势光纤通信传输技术是一种通过光纤传输信息的通信技术,其信号传输速率和容量远远超过了传统的电信号传输技术。

随着信息时代的高速发展,光纤通信传输技术在各个领域的应用也越来越广泛。

本文将从应用和发展趋势两个角度进行分析。

其次,光纤通信传输技术的发展趋势。

随着人们对通信速度和传输容量要求的增加,光纤通信传输技术也在不断创新和发展。

以下是几个光纤通信传输技术发展的趋势:1.高速传输:随着云计算、物联网、5G等新兴技术的兴起,对通信速度和传输容量的要求越来越高。

光纤通信传输技术将不断提高传输速率,预计在不久的将来,将实现TB级别的传输速率。

2.大容量传输:随着高清视频、虚拟现实、增强现实等信息形式的出现,对传输容量的要求也越来越大。

光纤通信传输技术将不断提高带宽,以满足大容量传输的需求。

3.无源光网络:无源光网络是一种无源光纤通信传输技术,它不需要能耗较高的光放大器等设备,可以降低通信系统的能耗。

未来的光纤通信传输技术将更加注重能耗问题,提高系统的能效。

4.光纤传感技术:光纤通信传输技术在其他领域的应用也逐渐展开,例如光纤传感技术。

光纤传感技术通过光纤传输信号,实现对温度、压力、湿度等物理量的监测,具有高精度、高灵敏度等特点。

综上所述,光纤通信传输技术在应用和发展上具有广阔的前景。

随着技术的不断进步和创新,光纤通信传输技术将进一步提高传输速率和容量,满足不断增长的通信需求。

另外,光纤通信传输技术在其他领域的应用也将得到拓展,为智能交通、智能家居、医疗健康等领域的发展提供支撑。

光纤通信技术发展的现状及前景分析

光纤通信技术发展的现状及前景分析

光纤通信技术发展的现状及前景分析摘要:科学技术的发展是时代使然,也极大地推动了其他领域共同进步。

通信领域也不外如是,随着各种新型技术的演化,光纤通信技术终于问世,这一技术是将光纤作为信号传输的媒介,相较于其他通信形势优势更为巨大,现已在我国得到了广泛应用。

下面就对光纤通信技术发展的现状及前景进行一番探讨。

关键词:光纤通信;特点;发展现状;前景分析引言:当前,世界各国都已步入了信息时代,在这样的背景下,最先了解最新信息的人无疑会在竞争中占据更大优势。

为此,我国大部分地区都已安装了光缆线路,以此来进行信息传播,而光纤通信技术也在不断的实践中越发完善,为我国通信能力的提升奠定了坚实基础,也极大地方便了人们工作与生活。

1 光纤通信技术特点光纤通信系统包含多种元器件,如光发信机、光缆等,且激光是光纤通信技术中所使用的主要光波形式,这也令该技术与金属电缆通信方式有着极大不同。

概括来说,光纤通信技术特点包含以下几点:①由于光纤通信技术以光纤为信息承载载体,因此具备传输距离远、信息容量大、传输速度快、传输损耗小等特点。

②光纤本身质量轻,这就决定了其在运输及铺设方面更具优势。

③光纤通信技术对电磁干扰具备较强的抵抗能力,能够防止信息丢失与失真。

④光纤通信具备较高的保密性与安全性,能够避免信息被窃取。

⑤光缆能够在多种环境中使用,不仅使用寿命长,对环境也较为友好,且制造光纤的综合成本较低。

2 光纤通信技术发展现状2.1多模和单模两种类型改革开放之后,我国经济取得了辉煌成就,人民生活水平也随之水涨船高。

而在步入信息时代之后,对数据传输不仅要求更高,需求量也与日俱增。

目前,我国光纤通信电缆有单模与多模之分,相对来说,单模光纤建造成本更高,对于数据的传输更具多样化,在长距离的光纤传输场景中更为适用。

而多模光纤则大多应用于短程、中程的通讯工程中。

2.2核心干线随着我国光纤通信技术的发展,传统骨架结构已越来越不适用,分立光纤形式问世后,逐步取得了广泛应用。

光纤通信的发展现状和未来

光纤通信的发展现状和未来

光纤通信的发展现状和未来光纤通信是一种利用光纤传输信息的通信技术,它具有高传输速度、大带宽、低功耗和抗干扰性能强等优点。

随着信息化时代的到来,光纤通信技术得到了广泛的应用,并在不断取得新的突破。

本文将就光纤通信的发展现状和未来进行探讨。

光纤通信的发展现状光纤通信技术自出现以来,就备受关注并得到了广泛的应用。

光纤通信已经成为了现代信息技术的重要组成部分。

在互联网、移动通信和广播电视等领域,光纤通信技术都发挥着不可替代的作用。

随着光纤通信技术的不断发展,其传输速度越来越快,带宽也越来越大。

目前,光纤通信的传输速度已经可以达到数百 Gbps,而且还在不断提升。

光纤通信技术在安全性方面也有了长足的进步。

由于光纤传输的是光信号,而非电信号,因此它具有很高的抗窃听和抗干扰能力。

光纤通信技术在节能环保方面也具有很大的优势。

相比于传统的铜线传输技术,光纤通信技术的能耗更低,对环境的影响也更小。

光纤通信的未来未来,随着信息技术的不断发展,光纤通信技术也将迎来新的发展机遇和挑战。

光纤通信技术将继续提升其传输速度和带宽。

当前,随着数据信息量的不断增加,人们对高速、大带宽的需求也越来越大。

光纤通信技术在不断研究新的材料和新的技术,以提升其传输速度和带宽。

光纤通信技术将更好地结合人工智能、大数据等新兴技术。

随着人工智能和大数据技术的快速发展,人们对通信技术的要求也越来越高。

光纤通信技术需要更好地结合人工智能、大数据等新兴技术,以满足人们对通信技术的需求。

光纤通信技术将更好地服务于社会发展的需求。

当前,光纤通信技术已经在互联网、移动通信、广播电视等领域得到了广泛应用。

未来,光纤通信技术还将更好地服务于物联网、智能城市、智能制造等新兴领域的发展需求。

光纤通信技术还将更加注重环保和可持续发展。

当前,环保和可持续发展已经成为全球关注的重要议题之一。

未来光纤通信技术将更加注重其在节能、环保方面的优势,并不断提升自身的可持续发展能力。

光纤现状及其发展

光纤现状及其发展

光纤通信的现状及其发展光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。

光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。

目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。

光纤通信的发展依赖于光纤通信技术的进步。

近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。

下面简单描述我国光纤光缆发展的现状:1.1 普通光纤普通单模光纤是最常用的一种光纤。

随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。

符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。

1.2 核心网光缆我国已在主干线(包括国家主干线、省内主干线和区内主干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。

G.653光纤虽然在我国曾经采用过,但今后不会再发展。

G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。

主干线光缆中采用分立的光纤,不采用光纤带。

主干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。

1.3 接入网光缆接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。

特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。

接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。

低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。

光纤通信技术发展现状

光纤通信技术发展现状

光纤通信技术发展现状
光纤通信技术是利用光纤作为传输介质进行信息传输的技术。

相比传统的电信号传输方式,光纤通信技术具有传输速度快、带宽大、信号损耗小等优势,因此在现代通信领域得到广泛应用。

随着科技的不断进步,光纤通信技术也在不断发展。

首先是传输速率的提升。

早期的光纤通信技术仅能达到几Mbps的速率,而现在已经发展到了数百Gbps甚至数Tbps的传输速率。


得益于光纤材料的改进以及光纤通信设备的更新换代。

其次是带宽的扩展。

随着互联网的普及,人们对带宽的需求也越来越高。

现在的光纤通信技术可以实现数十兆甚至数百兆的宽带访问,满足了人们对高速宽带的需求。

另外,光纤通信技术的信号传输距离也不断扩大。

早期的光纤通信技术在信号传输距离上受到了限制,而现在已经可以实现数百公里乃至数千公里的远距离传输。

这得益于光纤材料的改进以及光纤放大器等设备的引入。

此外,光纤通信技术在网络安全性方面的发展也值得关注。

传统的电信号传输方式存在着被窃听或干扰的风险,而光纤通信技术则具有较高的安全性,难以被窃听或干扰。

因此,在一些对信息安全有较高要求的领域,如军事、金融等,光纤通信技术得到了广泛应用。

总之,光纤通信技术作为现代通信领域的重要技术之一,已经
取得了显著的进展。

随着科技的不断发展,光纤通信技术的速度、带宽、传输距离等方面都得到了显著提升,为人们的通信活动提供了更好的服务。

未来,随着科技的进一步创新,相信光纤通信技术还将继续取得新的突破,为人们的通信需求提供更加高效、安全的解决方案。

现代通信技术的发展现状及发展方向

现代通信技术的发展现状及发展方向

现代通信技术的发展现状及发展方向引言概述:随着科技的不断进步,现代通信技术在过去几十年间取得了巨大的发展。

从最初的电话通信到如今的移动互联网,通信技术已经成为人们生活中不可或缺的一部分。

本文将从五个方面详细阐述现代通信技术的发展现状及未来发展方向。

一、无线通信技术的发展现状及未来方向1.1 4G技术的发展:4G技术的推出使得移动通信速度大幅提升,用户可以更快地下载和上传数据。

同时,4G技术也支持更多的设备连接,为物联网的发展奠定了基础。

1.2 5G技术的前景:5G技术是未来通信技术的重要发展方向。

它将进一步提高通信速度和容量,实现更低的延迟和更稳定的连接,为人们提供更好的通信体验。

1.3 6G技术的研究:虽然5G技术还未完全普及,但已经有一些研究机构开始探索6G技术的可能性。

6G技术有望进一步提升通信速度和容量,实现更多智能设备的互联互通。

二、光纤通信技术的发展现状及未来方向2.1 光纤通信的优势:光纤通信具有大带宽、低损耗和高速度的优势,已经成为主要的通信传输媒介。

光纤通信技术的快速发展使得人们可以更快地传输数据和信息。

2.2 光纤通信技术的改进:为了满足日益增长的通信需求,光纤通信技术不断进行改进。

例如,采用多核光纤技术可以进一步提高传输速度和容量。

2.3 光无线通信技术的研究:光无线通信技术是未来的发展方向之一。

通过将光纤和无线通信技术相结合,可以实现更快速的宽带接入和更广覆盖的通信网络。

三、云计算与大数据技术的发展现状及未来方向3.1 云计算的应用:云计算技术已经广泛应用于各个领域,例如在线存储、数据分析和人工智能。

云计算提供了强大的计算和存储能力,为各种应用提供了支持。

3.2 大数据的挑战与机遇:大数据技术的发展使得人们可以处理和分析海量数据,从中获取有价值的信息。

然而,大数据也带来了数据隐私和安全等方面的挑战。

3.3 云边协同技术的研究:为了更好地支持大数据的处理和分析,云边协同技术成为了研究的热点。

光纤通信技术的研究现状与应用前景

光纤通信技术的研究现状与应用前景

光纤通信技术的研究现状与应用前景光纤通信技术是现代通信领域的重要分支之一,它利用光纤传输光信号来进行信息传输,具有高速率、大带宽、低损耗等优势,因此被广泛应用于电信、电视、互联网等领域。

随着科技的不断进步,光纤通信技术也在不断发展。

本文将就光纤通信技术的研究现状和应用前景进行探讨。

一、光纤通信技术的研究现状目前光纤通信技术的研究主要集中在以下几个方面:1. 高速率传输技术高速率传输技术是光纤通信技术的重要研究方向。

为了提高光通信的传输速率,研究人员开发了一系列高速率光通信技术。

例如,WDM技术(波分复用技术)可以将不同波长的光信号合并在一起传输,从而提高传输带宽;光纤光放大器技术则可以减少信号传输中的信号衰减,提高传输距离和速率;码分多址技术则可以将多个低速率的信号组合在一起,然后使用编码技术进行传输。

2. 高精度定位技术高精度定位技术是光纤通信技术的另一个重要方向。

该技术可以利用光纤传输光信号,来实现高精度的定位功能。

例如,高精度定位技术可以用于精确测量地震波的传播速度和方向,以便更好地预测地震。

3. 深海光缆技术深海光缆技术是光纤通信技术发展的另一个重要方向。

深海光缆技术可以用于海底传输光信号,以解决海底油气勘探、海底监测和海底资源开发等问题。

深海光缆技术的研究主要包括海底光缆材料研究、光缆布置和维护等方面。

二、光纤通信技术的应用前景光纤通信技术具有高速率、大带宽、低损耗等优点,因此被广泛应用于电信、电视、互联网等领域。

光纤通信技术的应用前景非常广阔,以下是一些具有代表性的应用领域:1. 电信领域光纤通信技术已经成为电信领域的标准传输技术,其在传输速率、信号质量等方面远远超过其他传输技术,例如DSL、ADSL和ISDN。

目前,光纤通信技术已普及至城市和乡村,成为人们日常通信的主要方式。

2. 互联网领域随着网络技术的发展,互联网对于人们的日常生活越来越重要。

而光纤通信技术的高速率和大带宽正是互联网发展所迫切需要的。

光纤通信技术现状及发展趋势论文

光纤通信技术现状及发展趋势论文

光纤通信技术现状及发展趋势摘要:光纤通信技术在我国已有近30年的发展历史。

光纤通信技术因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内外人士青睬,市场潜力巨大。

近年来,光纤通信技术已渗入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。

本文在回顾光纤通信技术发展历程的基础上,全面介绍了光纤通信技术的现状,指出光纤通信技术的发展趋势是超高速度、超大容量和超长距离传输。

关键词:光纤通信技术历程现状发展趋势全光网络一、光纤通信技术的发展历程1966年,美籍华人高锟博士和霍克哈姆发表的论文中预言了低损耗的光纤能够应用于通信领域,迈出了光纤通信技术的第一步。

从那以后,光纤便被应用于通信中,并引起了业界人士的重视。

1970年8月,美国康宁公司率先研制成功损耗为20db/km的光纤,开启了通信的新时代——光纤通信时代。

20多年来,光纤的发展取得了很大的进步:1977年9月,研制出960m长、衰减为20db/km的光纤。

1979年,研制出多模长波光纤,衰减为ldb/km。

1983年,研制出c.652非色散位移单模光纤,常规单模光纤开始用于商业活动。

1985年,研制出g.653色散位移单模光纤,并开始投入生产并产业化。

1986年,英国南安普敦大学研制出掺铒光纤放大器(edfa)。

1988年,朗讯公司研制出“工作波长扩展的光纤(低水峰光纤)。

1993年,g.655非零色散光纤问世。

1995年,美国康宁公司研制出c.655非零色散、位移光纤(大有效面积光纤)。

优于传统的电通信的是,光纤通信是技术以高频 (1014hz数量级)的光波作为载波,以光纤为传输介质的通信技术。

近年来,光纤通信技术得到了长足的发展,新技术不断涌现,光纤通信的性能不断得到提升。

光纤通信系统的传输容量从 1980年到2000年这20年间增加了近一万倍,传输速度在过去的10年中大约提高了100倍。

光纤通信的发展现状和未来

光纤通信的发展现状和未来

光纤通信的发展现状和未来光纤通信是一种以光纤为传输介质的通信方式,具有高速率、大带宽、抗干扰等特点,是现代通信网络的重要组成部分。

随着互联网的飞速发展,光纤通信在信息传输和通信领域的地位越来越重要。

本文将从光纤通信的发展、现状和未来进行分析。

1. 光纤通信产生的背景与历史:20世纪60年代末期,激光器技术的发展让人们在光纤中传输信息的想法成为可能,随后在20世纪70年代,激光器技术、光纤材料技术以及光电子元件技术的逐步成熟,使得光纤通信逐步步入实用阶段,随着数字通信技术的发展,光纤通信技术迅速壮大与发展。

2. 光纤通信的技术发展进程:光的传输速度非常快,经过多年的探索和研究,科学家们逐渐掌握了光传输的核心技术,如波分复用技术、光放大器及其控制技术、光纤传输技术、解调技术等。

这些技术的广泛应用和应用前景的广阔,让光纤通信成为了一种主流的信息技术。

3. 光纤通信的应用领域:光纤通信已广泛应用于电信、电视、计算机等领域。

在电信领域,光纤通信被用于长距离传输电话、移动通信、数据传输等;在电视领域,由于光纤通信传输的信号质量更好,每个用户的信号不再干扰,使得高清电视内容得以传输;在计算机领域,光纤通信可以实现大数据传输、云计算和远程存储等功能。

1. 技术成熟度:通过不断的技术创新和扩容升级,目前光纤通信的技术成熟度已经达到了极高的水平,发展速度依然处于快速增长状态。

在大规模应用时,光纤通信表现出出色的抗干扰性和稳定性,因此它被广泛使用于各行各业。

2. 发展速度:随着互联网、大数据、物联网等产业的不断发展,光纤通信的应用需求不断增加,其发展速度十分迅猛。

目前,全球光纤通信的市场规模正在以高速度增长,预计2025年全球光纤通信市场规模将超过5万亿美元。

3. 未来应用前景:未来,随着各个领域的智能化发展,对于网络传输的快速数据传输和高质量传输的要求也会越来越高,而光纤通信在这方面是十分优秀的选择。

光纤通信的未来应用前景十分广阔,将在各行各业中发挥着越来越重要的角色。

光纤通信技术的现状与未来发展趋势

光纤通信技术的现状与未来发展趋势

光纤通信技术的现状与未来发展趋势近年来,随着科技的不断发展,光纤通信技术已经获得了广泛的应用。

它是一种利用光信号来传输数据的技术,其速度比传统的铜线传输要快得多。

本文将探讨光纤通信技术的现状与未来发展趋势。

一、光纤通信技术的现状光纤通信技术的历史可以追溯到20世纪60年代。

自从20世纪80年代以来,光纤通信技术在全球范围内得到了广泛的应用。

目前,光纤网络已经成为了人们生活、工作中不可或缺的一部分。

在许多领域,光纤通信技术已经取代了传统的通信方式。

光纤传输速度快、信号质量高、抗干扰性强,这使得光纤通信技术在大规模的数据传输、高清视频、网络电视和多媒体等领域越来越得到应用。

二、光纤通信技术的未来发展趋势1、5G网络的发展随着5G网络的推出,光纤通信技术也将迎来新的发展机遇。

5G网络需要更高速度的传输,并且需要更大的带宽,因此光纤网络将是5G网络的关键组成部分。

在未来的5G网络中,光纤网络将为人们提供更快速、更可靠的网络连接。

2、卫星通信技术的应用随着人们对于全球互联的需求越来越高,卫星通信技术成为了光纤通信技术的重要补充。

相较于光纤通信技术,卫星通信技术可以更好地应对资源富裕、环境恶劣的地区。

卫星通信技术的应用,使得光纤通信技术的覆盖面积更广,为人们的生活提供了更加便利的网络服务。

3、纤维光源技术的发展随着人们对于网络速度和质量的要求不断提高,纤维光源技术的研究也越来越受到人们的关注。

纤维光源技术是光纤通信技术中非常重要的一个分支,纤维光源的标准化和可靠性将会对整个光纤网络的稳定性产生很大的影响。

纤维光源技术的研究,将为光纤通信技术的未来发展提供坚实的基础。

结论总的来说,光纤通信技术是一种新型的通信方式,它具有传输速度快、信号质量高、抗干扰性强等优点,可以满足人们日益增长的通信需求。

未来,随着5G网络的发展、卫星通信技术的应用、纤维光源技术的发展,光纤通信技术也将会迎来更广阔的发展空间。

光纤传输技术的研究现状及未来发展

光纤传输技术的研究现状及未来发展

光纤传输技术的研究现状及未来发展光纤传输技术是指利用光纤作为通信载体进行信息传输的技术。

相比于传统的铜线传输技术,光纤传输技术具有更高的带宽、更可靠的信号传输和更远的传输距离等优点。

目前,光纤传输技术已经成为现代通信网络的基石。

下面将从光纤传输技术的现状和未来发展两个方面进行探讨。

一、光纤传输技术的现状目前,光纤传输技术已经基本实现了全球化的应用。

光纤通信网络已经构成了全球范围内的互联网骨干网和通信运营商的基础网络。

在光纤传输技术的应用领域中,除了传统的通信领域,如电信、互联网、手机网络等,光纤通信技术还应用于多个领域,如医疗、能源、电力、安防等。

在光纤传输技术的研究方面,目前主要关注的方向有以下几个:1.提高光纤传输的带宽随着互联网的发展,人们对带宽的要求越来越高,目前已经出现了多个1Tbps级别的光纤通信系统。

然而,这些系统的带宽依然难以满足未来互联网的需求。

因此,提高光纤传输的带宽仍然是当前的热点研究方向。

2.提高光纤传输的距离光纤传输的距离是由多种因素决定的,如光纤本身的损耗、光放大器的性能以及光衰减等。

因此,目前的研究主要集中于提高光纤传输的距离和信号质量,以实现更远距离的光纤传输。

3.提高光纤传输的可靠性经过长时间的使用和环境的影响,光纤传输中会出现一些问题,如损坏、信号干扰等。

因此,提高光纤传输的可靠性也是当前研究的重点方向之一。

二、光纤传输技术的未来发展光纤传输技术拥有广阔的未来发展前景。

在未来的研究中,光纤传输技术有望在以下几个方面得到进一步的发展:1.5G和6G的出现4G和5G网络的发展使得人们对传输速度和带宽的要求越来越高。

在未来几年内,5G网络将会逐渐成为主流。

但是,随着人们对数据传输速度和带宽的需求不断增加,5G网络的瓶颈也将很快出现。

因此,5G网络的后继产品6G网络将成为下一个研究热点。

在6G网络中,光纤传输技术将会扮演着至关重要的角色。

2.光纤传输技术在医疗领域的应用光纤传输技术的高可靠性和高带宽特性,使得它在医疗领域的应用前景极为广阔。

光纤通信技术的发展前景

光纤通信技术的发展前景

光纤通信技术的发展前景随着社会的不断发展和科技的不断进步,通信技术的发展也日新月异。

在现代通信中,光纤通信技术已经成为了互联网时代的重要组成部分。

在这样一个高速发展的背景下,光纤通信技术的未来发展前景也备受人们的关注。

一、光纤通信技术的优势在广泛应用的通信技术中,光纤通信技术有着比其他传输媒介更为优越的特点。

首先,光纤通信技术具有带宽大、传输距离远的优势。

相较于传统的铜线传输,光纤传输的带宽更宽,传输距离更远,能够满足更广泛的应用需求。

其次,光纤通信技术具有信号传输速度快、抗干扰能力强的特点。

由于光纤通信传输信号是通过光传输的,信号传输速度极快,能够满足高清视频、高速数据传输等需求。

此外,光纤通信也能够有效抵御日常生活中的干扰因素,保障通信的稳定性。

第三,光纤通信技术具有安全保密性高的特点。

与传统的无线通信不同,光纤通信需要使用专门的光纤来进行传输,除此之外,光纤本身也具备良好的防篡改能力,因此在通信的保密性上有着独特的优势。

二、光纤通信技术的应用前景随着光纤通信技术的不断发展,它在各个领域的应用也越来越广泛。

下面,我们来看一下光纤通信技术在几个重要领域的应用前景。

1、智能交通领域在智能交通领域中,光纤通信技术能够通过高速、稳定的传输链路,实现城市交通的智能化管理和优化。

通过在交通信号灯、路灯、摄像头等设施上部署光纤,实现城市交通设施的实时数据监测和远程控制,为城市交通的智能化管理提供了技术支持。

2、医疗保健领域在医疗健康领域,光纤通信技术也有着非常广泛的应用。

通过光纤的高速传输能够实现医学大数据的实时收集和处理,医生通过传输链路能够实现对远程医疗的患者进行实时咨询和治疗。

此外,光纤通信技术还能够应用于医学检测和成像领域,提高效率,改善质量,降低医疗费用。

3、智慧城市领域在智慧城市领域,光纤通信技术在信息采集、数据传输、设备管理等层面都有着广泛应用。

光纤传输能够实现城市设施信息的实时收集和传输,通过数据采集软件实现对应用数据的综合管理和分析,为城市建设、管理提供优质的技术支持。

光纤通信技术的现状与未来

光纤通信技术的现状与未来

光纤通信技术的现状与未来随着互联网的普及及信息化时代的到来,越来越多的人们开始关注网络通信技术的发展。

而在所有网络通信技术中,光纤通信技术是最具前途的一种技术。

光纤通信技术是一种高速、高效、高质量、高容量的数据传输技术,其应用范围十分广泛,可以支持大量的多媒体、数据和各种信息交流。

本文将从现状和未来两个方面对光纤通信技术进行探讨。

一、光纤通信技术的现状在我们谈论未来之前,我们必须先看一下现在的光纤通信技术所处的状态。

随着光纤通信技术的迅猛发展,它已经成为了现今互联网时代的重要支柱。

当今的互联网通信网基本上是由光纤构成,光纤通信能够提供很高的质量、容量和速度,以满足人们的通信需求。

光纤通信技术采用了光纤作为信息传输媒介,通过光的传输,使得数据在光纤中以高速传输,以此实现高速、高效和高质量的数据传输。

现阶段,光纤通信应用最广泛的领域是互联网和通信领域。

1. 光纤通信在互联网领域的应用随着互联网的不断发展,现在越来越多的人们开始使用网络以及各种在线服务。

相比于以前的电话、短信等通信方式,网络通信各方面的成本都更加经济、便捷。

而光纤通信技术在互联网领域的应用是不可少的。

光纤通信技术的高速和高能效使得数据在互联网中的传输更加迅速、安全和稳定。

同时,光纤通信技术还可以提供更高的网络带宽,以便人们更快、更高效地使用互联网。

2. 光纤通信在通信领域的应用除了互联网领域外,光纤通信技术在通信领域也发挥着重要的作用。

相比于传统的铜线电缆通信方式,光纤通信技术具有更高的传输速度、更大的信息容量和更低的失真和噪声,所以光纤通信的应用领域也越来越广泛。

现在,越来越多的国家正在推广光纤通信技术,其中中国的光纤通信技术发展趋势更是迅猛,甚至成为了全球光纤通信产业的领导者。

二、光纤通信技术的未来发展在探讨光纤通信技术的未来发展之前,我们需要先了解当前光纤通信技术面临的一些挑战。

一方面,光纤通信技术需要应对越来越大的数据流量和不断增加的带宽需求。

光纤通信技术的特点及发展趋势

光纤通信技术的特点及发展趋势

光纤通信技术的特点及发展趋势光纤通信技术是一种利用光纤传输数据信息的技术,其具有高速、稳定、可靠等特点。

随着技术的发展和应用的普及,光纤通信技术已经成为现代通信领域中最为重要的通信方式之一。

本文将就光纤通信技术的特点以及未来发展趋势进行探讨。

一、光纤通信技术的特点1、传输速度快:相比传统的电缆传输方式,光纤通信在传输速度上具有明显的优势,可以实现数十兆甚至数百兆的传输速度,甚至可以达到TB/S级别的数据传输速度。

2、带宽大:光纤通信传输介质本身就拥有广阔的带宽,可以满足大量数据信息的传输需求,使得网络通信更加畅通。

3、信号传输距离远:光纤通信传输信号使用的是激光光信号,在传输过程中能够保持信号形状和强度,能够在长距离内传输信息信号。

4、低耗能:由于光纤的传输过程中几乎没有能量损耗,所以能够有效地减少能源的消耗,从而实现节能环保的通信方式。

5、抗干扰性能高:光纤通信传输信号是使用光的波长来进行传输,光的波长所受到的电磁干扰相对较小,因此能够有效地抵御外界干扰。

二、光纤通信技术的发展趋势1、超高速光通信技术:为了满足人们对于高速、高带宽的数据传输需求,科学家们正在研究和开发更加高效的光纤通信技术,如:光子晶体光纤、光重复频率梳等,以实现超高速通信。

2、光纤网络智能化:随着物联网和云计算技术的快速普及,网络通信对设备智能化和互联性的要求越来越高,光纤网络智能化将成为未来网络通信的一个重要趋势。

3、光纤通信与人工智能技术相结合:人工智能技术的快速发展和应用,将会对光纤通信技术的升级和改进产生重要影响,未来光纤通信与人工智能技术的结合将带来更多的应用场景和发展机遇。

4、全球化网络互联:随着世界各地网络通信基础设施的逐渐完善,未来将会出现全球化的网络互联,使得全球各地的信息、资源和技术得以相互传输和共享,光纤通信技术将在这一趋势中扮演重要角色。

总之,光纤通信技术的特点和未来发展趋势充满机遇,其将会成为未来通信领域中不可或缺的技术之一。

光纤通信技术的突破与未来发展趋势

光纤通信技术的突破与未来发展趋势

光纤通信技术的突破与未来发展趋势随着信息技术的快速发展,通信技术也在不断进步。

光纤通信作为一种高速、大容量传输数据的新型通信技术,已经得到广泛应用。

近年来,光纤通信技术取得了一系列的突破,推动了通信技术的发展,未来也有着广阔的发展前景。

光纤通信技术的突破光纤通信技术已经成为当前通信技术中最重要的一种,其传输距离远、传输速度快、安全性高,传输容量也较大。

随着技术的不断进步,光纤通信技术的性能也不断提升。

在光纤通信技术的发展历程中,以下几个方面是值得关注和探讨的突破:1. 提高光纤的传输速度和容量:随着光纤的直径变小和纯度的提高,光纤通信传输速度和容量也随之提高。

目前,293 Tbit/s的传输容量和岛国-陇海大型光纤通信网络的建立都被认为是光纤通信技术的重要突破。

2. 光纤参数监控技术的重大突破:传统的光纤参数监控方法,需要对光纤进行加工和修理,不仅不经济,而且会对数据传输造成不必要的影响。

近年来,不同的在线光纤传输性能监控方法逐渐变得成熟,这让监控变得更加可行和有用。

3. 光学分时实验的成功:看似平淡无奇的光学分时技术却是光纤通信领域发展的关键之一,其使用知识难度较高,但解决了超过100个信道共用一根光纤的瓶颈,有着非常广泛的应用前景。

光纤通信技术的未来发展趋势未来光纤通信技术的发展主要集中在以下方面:1. 提高光纤传输速度和容量:日益增长的大数据与云服务需求,对光纤传输容量和速度提出了更高的要求。

亟需开发高速率、大容量光纤通信技术,以满足未来信息高速交流的巨大需求。

2. 铜缆替代:铜缆已经成为网络通信线路的一种广泛使用方式,然而,随着集成电路技术的进展,网络安全的重要性日益突出,铜缆传输面临着更多的挑战。

未来,铜缆将大量替换成光纤通信技术,从而获得更高的安全性和更快的通信速度。

3.数字化光纤通信系统:数字化光纤通信系统是未来光纤通信技术的主要方向之一。

它的主要特点是可以实现数据的数字化传输,可以避免受模拟干扰等随机因素的影响,提高数据传输的稳定性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国光纤通信技术的现状及未来光纤通信是我国高新技术中与国际差距较小的领域之一。

光纤通信由于其具有的一系列特点, 使其在传输平台中居于十分重要的地位。

虽然目前移动通信, 甚至卫星移动通信的热浪再现高波,但 Telecom99的展示说明,光纤通信仍然是最主要的传输手段。

在北美,信息量的 80%以上是通过光纤网来传输的。

在我国光纤通信也得到广泛的应用,全国通信网的传输光纤化比例已高达 82%。

光纤通信技术的应用基本达到国际同类水平,自主开发的光纤通信产品也比较接近国际同类产品水平, 但实验室的研究水平还有一定的差距。

本文扼要回顾我国光通信走过的历程, 并从光纤光缆、光器件、光传输设备和系统等几方面介绍光通信的研发、应用现状, 展望光通信在我国的应用前景, 将激励我们为振兴我国光通信民族产业做出更大的贡献。

1 我国光通信历程的回顾我国的光通信起步较早, 70年代初就开始了大气传输光通信的研究,随之又进行光纤和光电器件的研究,自 1977年初,研制出第一根石英光纤起,跨过一道道难关,取得了一个又一个零的突破。

如今回顾起来,所经历的“里程碑”依然历历在目:1977年,第一根短波长 (0. 85mm 阶跃型石英光纤问世,长度为 17m ,衰减系数为300dB/km。

研制出 Si-APD 。

1978年,阶跃光纤的衰减降至 5dB/km。

研制出短波长多模梯度光纤,即 G .651光纤。

研制出 GaAs-LD 。

1979年,研制出多模长波长光纤,衰减为 1dB/km。

建成 5.7km 、 8Mb/s光通信系统试验段。

1980年, 1300nm 窗口衰减降至 0.48dB/km, 1550nm 窗口衰减为 0.29dB/km。

研制出短波长用的 GaAlAs-LD 。

1981年,研制出长波长用的 InGaAsP-LD 和 PIN 探测器。

多模光纤活动连接器进入实用。

研制出 34Mb/s光传输设备。

1982年,研制成功长波长用的激光器组件和探测器组件 (PIN-FET。

研制出光合波分波器、光耦合器、光衰减器、滤光器等无源器件。

研制出 140Mb/s光传输设备。

1984年,武汉、天津 34Mb/s市话中继光传输系统工程建成 (多模。

1985年,研制出 1300nm 单模光纤,衰减达 0.40dB/km。

1986年,研制出动态单纵模激光器。

1988年,全长 245km 的武汉椌V輻沙市 34Mb/s多模光缆通信系统工程通过邮电部鉴定验收。

扬州——高邮 4Mb/s单模光缆通信系统工程通过邮电部鉴定验收。

1989年,汉阳——汉南 40Mb/s单模光传输系统工程通过邮电部鉴定验收。

1990年, 研制出 G .652标准单模光纤, 最小衰减达 0.35dB/km。

到 1992年降至0.26dB/km。

成功地研制出 1550nm 分布反馈激光器 (DFB-LD。

1991年,研制出 G .653色散位移光纤。

最小衰减达 0.22dB/km。

研制出 565Mb/s光传输设备。

合肥——芜湖40Mb/s单模光传输系统工程通过国家鉴定验收。

1992年,研制出掺铒光纤 EDF 。

研制出可调谐 DFB-LD 和泵浦源 LD 。

FC-PC 陶瓷单模光纤活动连接器通过邮电部鉴定。

1993年,在掺铒光纤放大器的研究上取得突破性进展,小信号增益达 25dB 。

上海——无锡65Mb/s单模光传输系统工程通过邮电部鉴定验收。

该工程的建成,在国内外产生了重大影响,对此后“巴统”的解散起到一定的“催化”作用。

1995年,研制出 STM-1、 STM-4 SDH设备。

1996年,研制出 STM-16 SDH设备。

1997年,研制出 G .655非零色散位移光纤。

研制出应变多量子阱 DFB 激光器, STM-1、 STM-4收 /发模块和 STM-16接收模块。

成都——攀枝花 22Mb/s SDH光传输工程通过邮电部鉴定验收;咸宁 622Mb/s SDH双自愈环互连系统工程通过建设部门初验。

1998年, 海口——三亚 5Gb/s光传输系统工程通过邮电部鉴定验收, 该工程全长 322km , 仅在万宁设一个中继站, 海口——万宁的中继距离为 172km , 仅在发送机中使用一个 EDFA 就实现了这一超长中继。

研制出 OADM 、 OXC 样机。

1999年, 8×2.5Gb/s DWDM系统通过国家验收。

研制出 STM-64 SDH设备。

IP over SDH的建议被 ITU-T 确认。

……中国光通信技术的发展, 经历了许多曲折和困难, 有研发初期“巴统” 的技术封锁, 基础和配套工业设施跟不上, 资金投入的不足, 人才资源缺乏等。

但我国光通信界的同行们为发展自己的民族光通信事业, 克服了重重困难,掌握了光纤、器件、系统等各方面的关键技术,逐渐走进了国际光通信的先进行列。

特别是在主要技术上,都有自己的特色和创新,如 1B1H 的光线路码型、自己特色的网络管理系统、能构成自愈环的 PDH 设备、自行设计的全套 SDH 专用芯片、在线升级的 SDH 设备、通过 LAPS 实现的 IP over SDH等,形成了自己的知识产权,为进一步发展打下了良好的基础。

2、研究开发与应用的现状下面分别从光纤光缆、光电器件/光器件、设备与系统等几个方面介绍光通信在我国研究、开发和应用的现状。

在光纤研制方面, 我们已基本掌握了常规单模和多模光纤的生产技术, 已研制出了色散位移单模光纤 (G. 653光纤、非零色散位移单模光纤 (G. 655光纤、大有效面积非零色散位移单模光纤、色散补偿光纤 (DCF、掺铒光纤、保偏光纤、数据光纤等,并能达到生产水平。

对通信用塑料光纤的制造和特性也进行了深入的研究。

其中以大保实光纤为代表的大有效面积非零色散位移单模光纤已在工程中应用,其主要特性如表 1所示。

国内有多家光缆厂,可大批量生产接入网中用光纤带光缆,一般芯数为 288芯, 最高芯数可达 960芯。

光纤带光缆的结构有层绞式、中心管式、骨架式、无金属型、 ADSS 和 OPGW 等。

虽然光纤光缆的研制仅短短的 20多年,其应用却已相当普遍。

迄今,已敷设光缆长度超过 100万 km ,光缆已敷设到世界屋脊西藏。

生产光缆的厂家有 200多家,每年所用光纤的数量超过 400万 km 。

在实际网络中,无论是核心网还是接入网,目前主要应用的还是 G.652光纤。

在核心网中新建线路已开始采用 G.655光纤,在接入网中已开始应用光纤带光缆。

器件是光通信设备和系统的基础, 目前国内自行开发的光通信设备中, 已采用了最先进的光器件和光电器件。

光电器件的研制在高速激光器、增益开关半导体激光器、量子阱双稳态激光器、掺铒光纤激光器、主动锁模光纤环形孤子激光器、被动锁模光纤环形激光器、光纤光栅激光器、光收发模块、半导体光放大器 (SOA、掺铒光纤放大器(EDFA、增益平坦 EDFA 、高增益低噪声 EDFA 、掺铒光纤均衡放大器、 DFB-LD 与 EA 型外调制器的集成器件、应用于接入网的单纤收发集成器件等方面都有显著进展。

特别是国产的 EDFA 和光收发模块已在国内普遍推广应用。

典型的DWDM 用掺铒光纤放大器的特性参数如表 2所示。

光器件方面常规的光连接器、光隔离器、光准直器、光衰减器 (固定衰减器和可变衰减器、滤光器和光耦合器等已在批量生产,除满足国内市场需求外,已经出口到欧洲, 进入国际市场。

光纤光栅的制作, 以及利用光纤光栅做成各种光器件是目前的热点之一。

我国已研制了光纤光栅波分复用器、光纤光栅分插复用器、光纤光栅色散补偿器等。

此外,在平面光波导器件的研制上也有新的突破, 如聚合物薄膜光波导、极化聚合物光波导、硅基光波导器件、集成光波导器件等。

目前在研制的还有双芯 SC 光纤活动连接器、光纤带光连接器、光环形器、高速光开关、混合集成光开关等。

光传输设备及系统的研制和生产更是形势喜人, STM-1、 STM-4、 STM-16的TM 、 REG 、 ADM 等已经大批量生产,除投入国内市场外,也进入了国际市场。

STM-64已研制成功, 进行了 478.8km 的传输实验。

DWDM 的研制进展很快, 除了4×2.5Gb/s、 8×2.5Gb/s、 16×2.5Gb/s系统的产品已投放市场, 32×2.5Gb/s系统正准备建立试验工程。

8×10Gb/s系统完成了传输实验。

目前正在进行 16×10Gb/s系统的研制。

此外,许多院、所、校还开展了光时分复用 (OTDM方面的研究, 4×2.5Gb/s 的 OTDM 已初见成效, 4×10Gb/s 或 8×10Gb/s的研究也拉开了帷幕。

对光纤CDMA 、光 ATM 交换系统、光孤子传输等的研究也有很大进展。

除 DWDM 的终端设备外, 信息产业部武汉邮电科学研究院已研制出可以上下4个波道的光分插复用器 OADM 。

北京邮电大学、清华大学、上海交通大学等已研制出小型的光交叉设备 OXC 。

除了向高速大容量系统发展之外, 在光接入网的研究方面也投入了很大力量。

目前的研究目标是在尽量使光纤接近用户、综合业务接入、宽带接入、降低成本等方面。

例如带 V5接口的无源光网络 (PON , 带 V5接口的 IDLC 、电信业务与广播电视的综合接入、宽带全业务接入网及降低光接入网的成本等是最主要的课题。

用于接入网的 SDH 设备,如紧凑型 STM-1(单板 STM-1设备已大量投放市场, PON 、 IDLC 等已有产品提供。

目前正在开发综合宽带光接入系统如 ATM-PON 等,为进一步实现 FTTH 打下基础。

我国的核心网光传输已主要采用 2.5Gb/s以上的 SDH 系统。

部分干线采用8×2.5Gb/s DWDM 系统。

为进一步满足未来发展的需要,近两年我国将在长达 3万km 的 18条光缆干线上主要采用 8×2.5Gb/s以上的波分复用技术进行扩容改造。

许多省内干线正在建设 8×2.5Gb/s或 16×2.5Gb/s DWDM系统。

省际干线正在进行4×10Gb/s DWDM(引进设备的试验。

引进的 32×10Gb/s系统也将开始试验。

国产的 8×2.5Gb/s系统已应用于干线工程,如武汉邮电科学研究院的济南 -青岛8×2.5Gb/s DWDM 工程已于 1999年 5月 7日通过终验。

五所的广州 -汕头8×2.5Gb/s也于 2000年初通过终验。

目前已建的 DWDM 系统基本上都是点到点的系统,还没有形成环路, 部分考虑了 SDH 层面上的保护。

相关文档
最新文档