复变函数经典例题
复变函数经典例题

第一章例题例1.1试问函数二-把」平面上的下列曲线分别变成].;平面上的何种曲线?(1)以原点为心,2为半径,在第一象项里的圆弧;(2)倾角二的直线;(3)双曲线''■='。
解设Z = x + =r(cosfi + ι SiIl θ)7= y + jv = Λ(cos<p +JSin φ),则R = r2jφ = 2θ因此(1)在口平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。
2π φ ~—(2)在口平面上对应的图形为:射线J 。
2 2 2 2 2(3)因,故;"r ?'',在F平面上对应的图形为:直线金松“。
例1.2设」「在点[连续,且在点的某以邻域内恒不为0.证因在点勺连续,则能〉0,站〉0,只要k-2ol<^,就有∣⅛)√(¾)∣<≡∖X nE . --------- > 0特别,取- ,则由上面的不等式得∣∕(z)∣>l∕(z o)∣-^ = M>0因此,f②在匚邻域内就恒不为0。
例1.3设/⑵ 4C ri)(3≠o)试证一在原点无极限,从而在原点不连续。
证令变点匚—…:弓仁门 1 F ,则而沿第一象限的平分角线 故「匚在原点无确定的极限,从而在原点不连续。
第二章例题例2.1 北)= 匚在二平面上处处不可微 证易知该函数在二平面上处处连续。
但Δ/ _ z+∆z -z _ ∆z∆z ∆z ∆z零时,其极限为一1。
故匚处处不可微。
证因UaJ )二倆,呛J ) = C I 。
故但/(⅛) - /(0) _ λj⅛j∆z ⅛ + i∆y从而(沿正实轴。
一 H )当I: 「时,极限不存在。
因二取实数趋于O 时,起极限为1 ,二取纯虚数而趋于例2.2在了 — 1满足定理 2.1的条件,但在_ I.不可微。
M (ΔJ 7O)-⅛(O,O) = 0 = v∕0,0)(O f O) =Ii(Q i Ly)-Ii(Ofi) Ay在二■ I时无极限,这是因让亠一丄 7'沿射线八—7:' J随二;■.2例2.3讨论/⑵=IZ I的解析性解因•,故UJ = 2扎- 2y f V r=VJ =O要使C-K条件成立,必有2x = 0,2I y = 0,故只在一I可微,从而,处处不解析。
复变函数考试试题及参考答案

复变函数考试试题及参考答案下面是十道复变函数考试试题(一)的参考试题及答案:1.计算下列复数的幂函数:$z=1+i$,$n=3$。
答案:$(1+i)^3=-2+2i$。
2.计算下列复数的幂函数:$z=-2+i$,$n=4$。
答案:$(-2+i)^4=7-24i$。
3.求解方程:$z^2+4z+5=0$。
答案:可以使用求根公式求解,$(z+2)^2+1=0$,得到两个解:$z_1=-2+i$和$z_2=-2-i$。
4. 计算下列复数的极坐标形式:$z = 3e^{i \pi/6}$。
答案:$z = 3\cos(\pi/6) + 3i\sin(\pi/6) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$。
5.计算下列复数的共轭复数:$z=2-i$。
答案:$z^*=2+i$。
6. 将下列复数表示为共轭形式:$z = 4e^{i \pi/3}$。
答案:$z = 4\cos(\pi/3) + 4i\sin(\pi/3) = 4(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 2 + 2\sqrt{3}i$。
7.计算下列复数的实部和虚部:$z=3+2i$。
答案:实部为3,虚部为28.计算下列复数的模长:$z=-4+3i$。
答案:$,z, = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$。
9.求复数的幂函数:$z=-1-i$,$n=2$。
答案:$(-1-i)^2=1-2i-1=-2i$。
10. 求复数的幂函数:$z = \sqrt{3} + i$, $n = 3$。
答案:$(\sqrt{3} + i)^3 = -2\sqrt{3} + 2i$。
复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。
复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
《复变函数》考试试题与答案各种总结.docx

---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。
复变函数期末试题及答案

复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。
答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。
答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。
完整版)复变函数测试题及答案

完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。
(完整版)复变函数试题及答案

-5四123456五1一二三四2、、、、、、、、5、、、填(1611-计求将计计求设证使单判计B计证空e算函函算算将函明符选断算i1算明题n)9积数数积实单数:合题题题2题题(解,2分分积位在D条(((,((每不析fff2分圆件每每每z7每每小存zzz函CC3e小小小小小在题在zL数CIxz0=2题题题2题题区解的z221zzd1k402y321域2析z零226,共(Di分1k6a7,点分分分=1iD形0,x分z分80z且是zd,,,2,5内,c映,视))1满doC孤本共共共A±1解射iL答zs:足立质,2在…1析成题2134在的6的,x006C),z单情:2C所分分分(证,位a况f9有1i)))i y明圆的可23孤2711n:去)酌01C1立+w函52心情,1z奇iy数的邻给8点41D直域21的(2i,1线内n1f,分包9u,段分展zA式括,1,成也f0线15共洛在2性01n9朗)A变D21z0级处换内分数2的解1n)w留(析,数并nL指z1出,2 收敛)的域函数____________________________________________________________________________________________________________ f z
1 解: C 的参数方程为: z=i+t, 0 t 1 dz=dt
x
y
ix 2
dz =
1
t
1
it 2 dt =
1
i
C
0
23
2 解: z 1为 f z 一阶极点
z 1 为 f z 二阶极点
2
2k
1, 2 ) , 4 ei ln 2 e 4
(k=0, 1, 2 )
5
i , 6 0, 7
(完整)复变函数经典例题

第一章例题例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线?(1)以原点为心,2为半径,在第一象项里的圆弧;(2)倾角的直线;(3)双曲线.解设,则因此(1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周.(2)在平面上对应的图形为:射线。
(3)因,故,在平面上对应的图形为:直线。
例1。
2 设在点连续,且,则在点的某以邻域内恒不为0。
证因在点连续,则,只要,就有特别,取,则由上面的不等式得因此,在邻域内就恒不为0。
例1。
3设试证在原点无极限,从而在原点不连续.证令变点,则从而(沿正实轴)而沿第一象限的平分角线,时,。
故在原点无确定的极限,从而在原点不连续。
第二章例题例2.1 在平面上处处不可微证易知该函数在平面上处处连续.但当时,极限不存在。
因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1.故处处不可微。
例 2.2 函数在满足定理2。
1的条件,但在不可微。
证因。
故但在时无极限,这是因让沿射线随而趋于零,即知上式趋于一个与有关的值。
例2。
3 讨论的解析性解因, 故要使条件成立,必有,故只在可微,从而,处处不解析.例2。
4讨论的可微性和解析性解因,故要使条件成立,必有,故只在直线上可微,从而,处处不解析。
例2.5讨论的可微性和解析性,并求。
解因, 而在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。
且。
例2。
6 设确定在从原点起沿负实轴割破了的平面上且,试求之值。
解设,则由代入得解得:,从而。
例2。
7 设则且的主值为.例2。
8 考查下列二函数有哪些支点(a)(b)解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即从而故的终值较初值增加了一个因子,发生了变化,可见0是的支点。
同理1 也是其支点。
任何异于0,1的有限点都不可能是支点。
因若设是含但不含0,1的简单闭曲线,则故的终值较初值增加了一个因子,未发生变化。
复变函数经典习题及答案

于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C
•
O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6
(完整版)《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一)一、 判断题(20分):1.若f (z)在z 0的某个邻域内可导,则函数f(z )在z 0解析. ( )2.有界整函数必在整个复平面为常数。
( ) 3。
若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6。
若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( ) 7。
若)(lim 0z f z z →存在且有限,则z 0是函数f (z)的可去奇点. ( )8。
若函数f (z )在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠。
( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z )在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数。
( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2。
=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________。
5。
幂级数0n n nz ∞=∑的收敛半径为__________。
6.若函数f (z )在整个平面上处处解析,则称它是__________。
7。
若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8。
=)0,(Re n zz e s ________,其中n 为自然数。
9. zz sin 的孤立奇点为________ .10。
复变函数14套题目和答案

复变函数14套题目和答案《复变函数论》试题库《复变函数》考试试题(一)一、判断题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析.()2.有界整函数必在整个复平面为常数.()3.若收敛,则与都收敛.()4.若f(z)在区域D内解析,且,则(常数).()5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()6.若z0是的m阶零点,则z0是1/的m阶极点.()7.若存在且有限,则z0是函数f(z)的可去奇点.()8.若函数f(z)在是区域D内的单叶函数,则.()9.若f(z)在区域D内解析, 则对D内任一简单闭曲线C.()10.若函数f(z)在区域D内的某个圆内恒等于常数,则f(z)在区域D内恒等于常数.()二.填空题(20分)1.__________.(为自然数)2._________.3.函数的周期为___________.4.设,则的孤立奇点有__________.5.幂级数的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若,则______________.8.________,其中n为自然数.9.的孤立奇点为________.10.若是的极点,则.三.计算题(40分):1.设,求在内的罗朗展式.2.3.设,其中,试求4.求复数的实部与虚部.四.证明题.(20分)1.函数在区域内解析.证明:如果在内为常数,那么它在内为常数.2.试证: 在割去线段的平面内能分出两个单值解析分支, 并求出支割线上岸取正值的那支在的值.《复变函数》考试试题(二)1、判断题.(20分)1.若函数在D内连续,则u(x,y)与v(x,y)都在D内连续.()2.cos z 与sin z在复平面内有界.()3.若函数f(z)在z0解析,则f(z)在z0连续.()4.有界整函数必为常数.()5.如z0是函数f(z)的本性奇点,则一定不存在.()6.若函数f(z)在z0可导,则f(z)在z0解析.()7.若f(z)在区域D内解析, 则对D内任一简单闭曲线C.()8.若数列收敛,则与都收敛.()9.若f(z)在区域D内解析,则|f(z)|也在D内解析.()10.存在一个在零点解析的函数f(z)使且.()二.填空题.(20分)1.设,则 2.设,则________.3._________.(为自然数)4.幂级数的收敛半径为__________.5.若z0是f(z)的m阶零点且m>0,则z0是的_____零点.6.函数ez的周期为__________.7.方程在单位圆内的零点个数为________.8.设,则的孤立奇点有_________.9.函数的不解析点之集为________.10..三.计算题.(40分)1.求函数的幂级数展开式.2.在复平面上取上半虚轴作割线.试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点处的值.3.计算积分:,积分路径为(1)单位圆()的右半圆.4.求.四.证明题.(20分)1.设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是在D内解析.2.试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一.判断题.(20分).1.cos z与sin z的周期均为.()2.若f(z)在z0处满足柯西-黎曼条件, 则f(z)在z0解析.()3.若函数f(z)在z0处解析,则f(z)在z0连续.()4.若数列收敛,则与都收敛.()5.若函数f(z)是区域D内解析且在D内的某个圆内恒为常数,则数f(z)在区域D内为常数.()6.若函数f(z)在z0解析,则f(z)在z0的某个邻域内可导.()7.如果函数f(z)在上解析,且,则.()8.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()9.若z0是的m阶零点, 则z0是1/的m阶极点.()10.若是的可去奇点,则.()二.填空题.(20分)1.设,则f(z)的定义域为___________.2.函数ez的周期为_________.3.若,则__________.4.___________.5._________.(为自然数)6.幂级数的收敛半径为__________.7.设,则f(z)的孤立奇点有__________.8.设,则.9.若是的极点,则.10..三.计算题.(40分)1.将函数在圆环域内展为Laurent级数.2.试求幂级数的收敛半径.3.算下列积分:,其中是.4.求在|z|<1内根的个数.四.证明题.(20分)1.函数在区域内解析.证明:如果在内为常数,那么它在内为常数.2.设是一整函数,并且假定存在着一个正整数n,以及两个正数R及M,使得当时,证明是一个至多n次的多项式或一常数。
复变函数例题

例1:已知正三角形的两个顶点为,求三角形的另一个顶点。
解例2:即例3:(1)连接z1 和z2两点的线段的参数方程为(2)过两点 z1 和z2的直线L的参数方程为(3)z1、z2,z3 三点共线得充要条件为例4:证明:若|z1|=|z2|=|z3|=1,z1+z2+z3=0, 则z1,z2,z3是内接于单11,z=22z i=+33121()iz z z z eπ-=-1(1)()i=+=3z=3z'=38-)sin(cos283ππi+=-32sin32(cos283ππππkik+++=-2,1,0=k213123183===⎪⎩⎪⎨⎧--+=-kkkii)10(),(121≤≤-+=tzztzz)(),(121+∞<<-∞-+=tzztzz)(t,1213为一非零实数tzzzz=--位圆|z|=1的一个正三角形的三顶点。
证明:由于所以 z1,z2,z3 位于单位圆上。
又 得即同理可以得到 得证例5:考察下列方程(或不等式)在平面上所描绘的几何图形。
(1) 该方程表示到点2i 和-2距离相等的点的轨迹,所以方程表示的曲线就是连接点2i 和-2的线段的垂直平分线,它的方程为y = -x 。
(2) 设 z = x+ iy, (3)表示实轴方向与由点i 到 z 的向量之间交角的主值,因此满足方程的点的全体是自 i 点出发且与实轴正向夹角为45度的一条半射线。
(不包括 i 点),1321===z z z 0321=++z z z ,321z z z -=+13321==-=+z z z z ))((12121221z z z z z z ++=+=122122212121||||))((z z z z z z z z z z +++=++=11221-=+z z zz ))((2121221z z z z z z --=-12212221||||z z z z z z --+=3)1(2=--=321=-z z .31332=-=-z z z z 22+=-z i z 4)Im(=+z i 4))1(Im()Im(=-+=+y i x z i 3-=y 4)arg(π=-i z )arg(i z -(4)例6: 指出不等式中点z 范围。
(精品)《复变函数》习题及答案

第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。
( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。
( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。
( )4、cos z 与sin z 在复平面内有界。
( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。
( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。
( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。
( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。
( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。
( ) 12、有界整函数必为常数。
( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。
( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。
( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。
( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。
( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。
( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。
( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。
复变函数练习题

复变函数练习题1. 求下列复变函数的导数:a) $f(z) = z^3 - 2z^2 + 4z - 3$b) $g(z) = e^z \sin(z)$c) $h(z) = \frac{1}{z^2+1}$2. 计算下列复变函数的积分:a) $\int_C (3z^2 - 2\bar{z}) \, dz$,其中 $C$ 是由圆 $|z|=2$ 给出的路径。
b) $\int_C \cos(z) \, dz$,其中 $C$ 是由直线段 $z=1$ 到 $z=i$ 给出的路径。
c) $\int_C \frac{1}{z^2-4} \, dz$,其中 $C$ 是由两个阶梯型路径组成的,从 $z=-2$ 到 $z=-1$,然后从 $z=-1$ 到 $z=2$。
3. 求下列复变函数的奇点,并判断其类型(可去奇点、极点或本性奇点):a) $f(z) = \frac{1}{z^2+1}$b) $g(z) = \frac{\sin(z)}{z}$c) $h(z) = \frac{1}{\sqrt{z+2}}$4. 计算下列复变函数的Laurent级数展开:a) $f(z) = \frac{1}{z^2(z-1)}$b) $g(z) = \frac{e^z}{z^3}$c) $h(z) = \frac{1}{(z^2-1)^2}$5. 利用残数定理计算下列积分:a) $\int_C \frac{e^z}{z(z-1)^3} \, dz$,其中 $C$ 是由圆 $|z|=2$ 给出的路径。
b) $\int_C \frac{\ln(z)}{z(z+1)} \, dz$,其中 $C$ 是由圆 $|z-1|=1$ 给出的路径。
c) $\int_C \frac{1}{e^z-1} \, dz$,其中 $C$ 是由直线段 $z=-\pi$ 到$z=\pi$ 给出的路径。
以上是关于复变函数练习题的内容,通过解答这些问题,可以加深对复变函数的理解。
复变函数试题及答案

复变函数试题及答案一、选择题(每题4分,共40分)1. 下列哪个函数在全平面上是解析的?A. f(z) = |z|^2B. f(z) = e^zC. f(z) = ln(z)D. f(z) = 1/z答案:B2. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
下列哪个条件是解析函数的充分必要条件?A. u满足柯西-黎曼方程B. v满足柯西-黎曼方程C. u和v满足柯西-黎曼方程D. u和v的一阶偏导数满足柯西-黎曼方程答案:C3. 设f(z) = u(r, θ)是解析函数,其中r和θ是极坐标系下的变量。
下列哪个条件是解析函数的充分必要条件?A. u满足极坐标下的柯西-黎曼方程B. f(z)在全平面上是解析的C. f(z)在圆心附近是解析的D. f(z)在正实轴上是解析的答案:A4. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
若u和v满足柯西-黎曼方程,则A. f(z)在全平面上是解析的B. f(z)在实轴上是解析的C. f(z)在虚轴上是解析的D. f(z)在解析的那部分上满足柯西-黎曼方程答案:A5. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
若f(z)在实轴上是解析的,则A. u(x, y)在全平面上是解析的B. v(x, y)在全平面上是解析的C. u(x, y)和v(x, y)满足柯西-黎曼方程D. u(x, y)和v(x, y)处处可微分答案:C二、填空题(每空5分,共30分)1. 若f(z) = x^2 - y^2 + 2xyi是解析函数,则它的共轭函数为________。
答案:f*(z) = x^2 - y^2 - 2xyi2. 设f(z) = u(x, y)是解析函数,且满足柯西-黎曼方程的实部形式,则函数f(z)可表示为f(z) = ________。
复变函数的积分例题及解析

复变函数的积分例题及解析例题1:计算复变函数 f(z) = z^3 的积分∮ γ f(z) dz,其中γ为以原点为圆心、半径为R的逆时针方向正向的圆周。
解析:根据复变函数的积分定义,可以将复变函数积分转化为对参数t的实函数积分。
即∮ γ f(z) dz = ∫ f(γ(t)) γ'(t) dt。
对于本题中的γ(t) = Rcos(t) + iRsin(t),γ'(t) = -Rsin(t) + iRcos(t)。
因此:∮ γ f(z) dz = ∫ [Rcos(t) + iRsin(t)]^3 [-Rsin(t) +iRcos(t)] dt= ∫[(R^3cos^3(t) + 3Rcos^2(t)iRsin(t) +3Rcos(t)i^2R^2sin^2(t) + i^3R^3sin^3(t))(-Rsin(t) + iRcos(t))]dt= ∫[-R^4cos^3(t)sin(t) - 3R^2cos^2(t)sin^2(t) +3R^2cos(t)sin^3(t) - iR^4cos(t)sin^3(t) + iR^2cos(t)sin^2(t) - iRsin^4(t) + R^4cos^4(t) + 3R^2cos^3(t)sin^2(t) -3R^2cos(t)sin^4(t) + iR^4cos^3(t)sin(t) - iR^2cos^3(t)sin(t) +iR^4cos(t)sin^3(t)] dt= ∫[-4R^4cos^3(t)sin(t) - 3R^2cos^2(t)sin^2(t) +6R^2cos(t)sin^3(t) - 3R^2cos(t)sin^4(t) + R^4cos^4(t) +6R^2cos^3(t)sin^2(t) + i(R^4cos(t)sin^3(t) - R^2cos(t)sin^2(t) + R^4cos^3(t)sin(t) - R^2cos^3(t)sin(t))] dt对上式分别对t进行积分,积分得到:∮ γ f(z) dz = ∫[-4R^4cos^3(t)sin(t)] dt -∫[3R^2cos^2(t)sin^2(t)] dt + ∫[6R^2cos(t)sin^3(t)] dt -∫[3R^2cos(t)sin^4(t)] dt + ∫[R^4cos^4(t)] dt +∫[6R^2cos^3(t)sin^2(t)] dt + i[∫(R^4cos(t)sin^3(t)) dt -∫(R^2cos(t)sin^2(t)) dt + ∫(R^4cos^3(t)sin(t)) dt -∫(R^2cos^3(t)sin(t)) dt]=0-0+0-0+π*R^4/2+0+i[0-0+0-0]=π*R^4/2因此,复变函数f(z)=z^3在以原点为圆心、半径为R的逆时针方向正向的圆周上的积分值为π*R^4/2例题2:计算复变函数 f(z) = e^z 的积分∮ γ f(z) dz,其中γ为沿单位圆的逆时针方向正向的圆周。
大学数学复变函数练习题及答案

大学数学复变函数练习题及答案1. 解析函数(1)求函数 $f(z)=|z|^2+z^3$ 的实部和虚部。
解:设 $z=x+yi$,其中 $x,y \in \mathbb{R}$,则有$f(z)=|z|^2+z^3=(x^2+y^2)+(x+yi)^3=(x^2+y^2)+(x^3-3xy^2+i(3x^2y-y^3))$则实部为$u(x,y)=x^3-3xy^2+x^2+y^2$,虚部为$v(x,y)=3x^2y-y^3$。
(2)求函数 $f(z)=xe^z$ 的实部和虚部。
解:设 $z=x+yi$,其中 $x,y \in \mathbb{R}$,则有$f(z)=xe^z=x(e^x \cos y + i e^x \sin y)$则实部为 $u(x,y)=x e^x \cos y$,虚部为 $v(x,y)=x e^x \sin y$。
2. 应用题(1)一个圆盘的温度分布表示为 $u(r,\theta)=r^2(1-\cos \theta)$其中 $r$ 表示距离圆心的半径,$\theta$ 表示与 $x$ 轴的夹角。
求圆盘表面的温度分布。
解:由题意可知,圆盘的温度分布是一个解析函数,且满足实部和虚部均为调和函数的条件。
而根据复变函数理论,解析函数的等温线一定是亚纯函数的对数螺旋线。
由此,圆盘表面的温度分布可以表示为$f(z)=|z|^2(1-\cos(\arg(z)))$,其中 $z=re^{i\theta}$。
(2)已知 $f(z)=u(x,y)+iv(x,y)$ 为解析函数,其中 $u(x,y)$ 和$v(x,y)$ 均为连续可微函数。
试证明:当且仅当 $u_x=v_y$ 和 $u_y=-v_x$ 时,$f(z)$ 为调和函数。
证明:设函数 $f(z)=u(x,y)+iv(x,y)$ 为解析函数,则满足柯西-黎曼方程 $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ 和$\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章例题例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线?(1)以原点为心,2为半径,在第一象项里的圆弧;(2)倾角的直线;(3)双曲线。
解设,则因此(1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。
(2)在平面上对应的图形为:射线。
(3)因,故,在平面上对应的图形为:直线。
例1.2设在点连续,且,则在点的某以邻域内恒不为0.证因在点连续,则,只要,就有特别,取,则由上面的不等式得因此,在邻域内就恒不为0。
例1.3设试证在原点无极限,从而在原点不连续。
证令变点,则从而(沿正实轴)而沿第一象限的平分角线,时,。
故在原点无确定的极限,从而在原点不连续。
第二章例题例2.1在平面上处处不可微证易知该函数在平面上处处连续。
但当时,极限不存在。
因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1。
故处处不可微。
例 2.2函数在满足定理2.1的条件,但在不可微。
证因。
故但在时无极限,这是因让沿射线随而趋于零,即知上式趋于一个与有关的值。
例2.3讨论的解析性解因, 故要使条件成立,必有,故只在可微,从而,处处不解析。
例2.4讨论的可微性和解析性解因, 故要使条件成立,必有,故只在直线上可微,从而,处处不解析。
例2.5讨论的可微性和解析性,并求。
解因, 而在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。
且。
例2.6设确定在从原点起沿负实轴割破了的平面上且,试求之值。
解设,则由代入得解得:,从而。
例2.7设则且的主值为。
例2.8考查下列二函数有哪些支点(a)(b)解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即从而故的终值较初值增加了一个因子,发生了变化,可见0是的支点。
同理1 也是其支点。
任何异于0,1的有限点都不可能是支点。
因若设是含但不含0,1的简单闭曲线,则故的终值较初值增加了一个因子,未发生变化。
最后不是的支点。
因若设含0,1的简单闭曲线,则故的终值较初值增加了一个因子,未发生变化。
(b)可能的支点是0,1,。
设分别是含0但不含1,含1但不含0,和既含0又含1的简单闭曲线,则结果的终值较初值均发生了变化。
故0,1,都是支点,此外别无支点。
例2.9试说明在将平面适当割开后能分出三个解析分支。
并求出在点取负值的那个分支在的值解易知的支点是。
因此,将平面沿正实轴从0到1割开,再沿负实轴割开。
在这样割开后的平面上,能分出三个解析分支。
现取一条从到的有向曲线(不穿过支割线),则于是又由题设,可取。
故得。
(3)关于对数函数的已给单值解析分支,我们可以借助下面的公式来计算它的终值:即其中是一条连接起点和终点且不穿过支割线的简单曲线;是满足条件那一支在起点之值的虚部,是一个确定的值。
例2.10试说明在割去“从-1到的直线段”,“从到1的直线段”与射线“且”的平面内能分出单值解析分支。
并求时等于零的那一支在的值。
解的支点为。
这是因当变点单绕一周时,故的值增加了,的值未改变,从而,的值增加了,从一支变成另一支。
故是支点,同理也都是支点,此外无其它支点。
故在割去“从-1到的直线段”,“从到1的直线段”与射线“且”的平面内能分出单值解析分支。
现设是一条连接起点和终点且不穿过支割线的简单曲线。
则故这就是所要求之值。
例2.11求反正弦。
解例2.12求解。
第三章例题例3.1命表连接点及的任一曲线,试证(1)(2)证(1)因,故,即(2)因,选则得,但我们又可选,则得由定理3.1,可知积分存在,因而的极限存在,且应与及的极限相等,从而应与的极限相等。
今,所以。
注当为闭曲线时,例 3.2(重要的常用例子)这里表示以为心,为半径的圆周。
(注意,积分值与,均无关)。
证的参数方程为:。
故;当为整数且时例3.3试证。
积分路径是连接和的直线段证的参数方程为即沿,连续,且而之长为2 ,故由定理3.2 ,。
例 3.4计算积分其中积分路径为:(1)连接由点到点的直线段;(2)连接由点到点1的直线段及连接由点1到点的直线段所组成的折线。
解(1)连接及的直线段的参数方程为:(),故。
(2)连接与1的直线段的参数方程:。
连接点1与的直线段的参数方程为:,即,故由此例可以看出,积分路径不同,积分结果可以不同。
例3.5计算积分解在单连通区域:内,函数的一个原函数,且在内解析,故由牛顿—莱布尼兹公式有例3.6计算下列积分(1),(2),其中为右半圆周,,,起点为,终点为;(3)那一支。
解(1)因为的支点为,所以它在闭圆上单值解析。
于是由柯西积分定理3.9(2)因为上解析故。
(3)因为的支点为,其单值分支在圆内解析,并连续到边界,所以由柯西积分定理3.9。
例3.7设为围线内部一点,则证以为圆心画圆周,使全含于的内部,则由复围线的柯西积分定理得再由例3.2即得要证明的结论。
例3.8计算积分解因在闭圆上解析,由柯西积分公式得定理3.11的特殊情形,有如下的解析函数的平均值定理。
例3.9设在上解析。
如果存在,使当时而且试证:在圆内至少有一个零点。
证反证法,设在内无零点,而由题设在上也无零点。
于是在闭圆上解析。
由解析函数的平均值定理,又由题设,,从而,矛盾。
故在圆内至少有一个零点。
例3.10计算积分其中是绕一周的围线。
解因为在平面上解析,应用公式(3.5)于,我们得。
例3.11应用刘维尔定理证明代数学基本原理。
在平面上,次多项式至少有一个零点。
证反证法,设在平面上无零点。
由于在平面上是解析的,在平面上也必解析。
下面我们证明在平面上有界。
由于,故存在充分大的正整数,使当时,,又因在闭圆上连续,故可设从而,在平面上于是,在平面上是解析且有界。
由刘维尔定理,必为常数,即必为常数。
这与定理的假设矛盾。
故定理得证。
例3.12如果为一整函数,且有使的实数存在,试证为常数。
证令为整函数。
又在平面上故有界,由刘维尔定理可见是常数,因此也是常数。
例3.13设是整函数,是整数,试证当时,至多是次多项式。
证只须证得对任何的,。
由可知,对任给的,存在,只要时就有。
在平面上任取一点,再取以为心,以为半径的圆周,使圆周全含于其内部。
于是有。
这时对于,必,因而。
由柯西不等式可得因为是任意的,所以。
故至多是次多项式。
例3.14验证是平面上的调和函数,并求以为实部的解析函数,使合。
解因在平面上任一点故在平面上为调和函数。
法一故要合,必,故。
法二先由条件中的一个得,故,再由条件中的另一个得,故因此。
(下同法一)例3.15验证在右半角平面内是调和函数,并求以此为虚部的解析函数。
解于是故在右半平面内,是调和函数。
两端对求导,所以,从而(任意常数),故它在右半平面内单值解析。
第四章例题例4.1考察级数的敛散性。
解因发散,故虽收敛,我们仍断定原级数发散。
例4.2试求下列各幂级数的收敛半径。
(1)解。
(2)。
解因,故。
(3)。
解因,故。
(4)解应当是平方数时,其他情形。
因此,相应有,于是数列{}的聚点是0和1,从而。
例4.3将在展开成幂级数。
解因在内解析,故展开后的幂级数在内收敛。
已经知道:,在时将两式相乘得(按对角线方法)。
例4.4求的展开式。
解因的支点为及,故其指定分支在内单值解析。
,其一般表达式为:当时。
例4.5将及展为的幂级数。
解因,同理。
两式相加除以2得,,两式相减除以得。
例4.6试将函数按的幂展开,并指明其收敛范围。
解例4.7考察函数在原点的性质。
解显然在解析,且。
由,或由知为的三级零点。
例4.8求的全部零点,并指出它们的级。
解在平面上解析。
由得即故,这就是在平面上的全部零点。
显然故都是函数的二级零点。
例4.9设(1)及在区域内解析;(2)在内,试证:在内或。
证若有使。
因在点连续,故由例1.28知,存在的邻域,使在内恒不为零。
而由题设,故必.由唯一性定理(推论4.21)。
例4.10试用最大模原理证明例3.9。
即证:“设在闭圆上解析,如果存在,使当时,而且,则在圆内,至少有一个零点。
”证如果在内,无零点。
而由题设在上,且在上解析。
故在上解析。
此时,且在上,,于是必非常数,在上。
由最大模原理,这就得到矛盾。
第五章例题例5.1将函数在下列三个区域内(1)圆;(2)圆环;(3)圆环内求的罗朗展式。
解:首先(1)在圆内,,因此(2)在圆环内有,,故(3)在圆环内,,故例5.2求在其孤立奇点的去心邻域内的罗朗展式。
解:有两个奇点和。
在的(最大)去心邻域内在的(最大)去心邻域内例5.3在平面上只有奇点。
在其去心邻域内有罗朗展式例5.4只有奇点,在内有例5.5分析在处的状况。
是一个本性奇点,对,可设,即,而。
对,可解方程得无穷多个解则,且当然更有。
例5.6求出(1)(2)的奇点(包括),并确定其类别解:(1)以为可去奇点为一级极点为非孤立奇点(因是的聚点)(2)令,得该函数的所有奇点为,,是一级极点,是非孤立奇点,因是聚点。
至于应是可去奇点,因若令化为是解析点。
即是可去奇点(或解析点)。
例5.7若在内解析,且不恒为零,又若有一列异于但却以为聚点的零点,试证必为的本性奇点。
证:是的孤立奇点,且不能是可去奇点,若不然,令则在内解析且由假设有以为聚点的一列零点。
由零点的孤立性,必恒为0,这题没矛盾。
其次也不能是的奇点,否则有,使当时,这亦与题没矛盾。
故只能是的本性奇点。
第六章例题例6.1计算解:在圆周的内部只有一级极点及二级极点,而由残数定理,得例6.2计算解:只以为一级极点,而。
由残数定理得例6.3计算解:只有一个三级极点,由残数定理得例6.4计算解:只有一个本性奇点在单位圆周内部。
而其罗朗展式为故残数定理推得例6.5计算解:共有七个奇点:,,及。
前6个根均在内部,故而故。
从而此外,可另法求残数:而以为一级极点,故。
例6.7计算解:令,则,当时故。
例6.8解:令则令则绕一周时绕二周,故有两个奇点和故有残数定理得例6.9计算积分解:令,则设,则被积函数只有一个一级极点在围线内部,而有残数定理得:于是故例6.10设,计算积分解:因共有四个一级极点而而在上半平面内只有两个极点及,故例6.11计算解:被积函数为偶函数,故根据定理6.8得于是有例6.12计算积分解:不难验证满足所需条件,且有两个一级极点和。
于是比较两端的实部与虚部,就得。