多工况脱硝一体化余热锅炉设计

多工况脱硝一体化余热锅炉设计
多工况脱硝一体化余热锅炉设计

多工况脱硝一体化余热锅炉设计

催化裂化装置余热锅炉设计复杂,适应工况多,环保要求高,其排放的氮氧化物会对环境产生不利影响。在某项目220万吨/年催化裂解装置中,采用了一种多工况脱硝一体化余热锅炉设计。锅炉结构紧凑,对于烟气温度控制准确合理,工况适应性强,保证了脱硝系统在催化装置不同工况下的稳定运行。

标签:催化余热锅炉;SCR;多工况;烟气温度控制

近年来,随着国家绿色发展理念的提出,对炼厂中余热锅炉的排放指标提出了更高的要求。目前,随着国家对环保要求的日趋严格,部分地区更是对国家颁布的《火电厂大气污染排放标准》(GB13223-2011)的排放限值进行升级,余热锅炉增设脱硫脱硝措施已经势在必行。文章只就余热锅炉的脱硝技术进行讨论,介绍了对某石化厂催化裂化装置的余热锅炉的多种工况进行了详细计算,根据计算结果引入了烟气分流的理念,通过调节烟气量控制脱硝装置的入口温度,适应多种生产工况,达到了节能减排的目的。

1 烟气脱硝技术简介[1]及技术选择

烟气脱硝技术是一种在燃料基本燃烧完毕后通过还原剂把烟气中的NOx还原成N2和H2O的一种技术。通用的烟气脱硝技术包括选择性催化还原脱硝技术(SCR)和选择性非催化还原脱硝技术(SNCR)。

1.1 选择性催化还原脱硝技术(SCR)

SCR其原理是在一定的温度和催化剂作用下,还原剂有选择地把烟气中的NOx还原为无毒无污染的N2和H2O。SCR脱硝技术是目前世界上应用最多,最为成熟有效的一种烟气脱硝技术,反应温度一般在300~420℃之间,脱硝效率可达90%,催化剂使用寿命一般为3年。

1.2 选择性非催化还原脱硝技术(SNCR)

SNCR脱硝技术是把含有HNx基的还原剂(如尿素)喷入炉膛温度为800~1100℃的区域,该还原剂迅速热分解成NH3,并与烟气中的NOx进行反应,生成N2,该方法以炉膛为反应器,可通过对锅炉进行改造实现。SNCR工艺的NOx 脱除效率主要取决于反应温度,NH3与NOx的化学计量比、混合程度、反应时间等,通常设计合理的SNCR工艺能达到30%~70%的脱硝效率。SNCR技术具有一次性投资少,运行成本低等特点。

本项目的余热锅炉,正常工况时,入口高温烟气温度为540℃,经过方案比选,脱硝技术选用SCR工艺。

催化剂是SCR烟气脱硝的核心部件,性能直接影响整体脱硝效果。而烟气

最新大容量锅炉变工况运行研究49465404

大容量锅炉变工况运行研究49465404

大容量锅炉变工况运行研究 摘要 大容量锅炉变工况运行研究是一个重要的课题,热力计算是变工况研究的基础。对于大容量锅炉机组,若采用我国以前的传统计算方法,会出现计算数据和实际运行数据有较大误差的情况。本文以辐射换热理论为基础,建立了新的大容量锅炉传热模型,并采用了新的热力计算标准对本课题选取的机组进行计算。新的分区段传热模型,将燃烧区域按实际运行时燃烧器的投运方式细分,并计算出燃烧器区域的温度分布和沿炉膛高度方向上的温度分布。辐射式过热器和屏式过热器的计算新方法更符合实际运行规律。本课题以现有的锅炉和传热学理论为基础,以实际运行数据为依据,对计算结果进行比较、分析,为大容量锅炉变工况运行提供了参考。 关键词:锅炉、变工况运行、传热模型

ABSTRACT Variant operation research of the high-capacity boiler is an important subject, and the heat calculation is the foundation of variant wok condition research. If we use old calculation ways to analyze the high-capacity boiler, there will be remarkable inaccuracy between calculation results and real operational data. This paper based the radiant theory establishes a new model of the high-capacity boiler heat transfer . And the new criterion of heat calculation is used to the selected unit. The new fragment model subdivides the combustor zone across the operation. So the temperature along the furnace are obtained. Radiant and platen super heater’s new method are more agree with the practice law. The paper is based on boiler knowledge and heat transfer theory and depends on practical operation data. The analysis on calculation results can provide reference for operation of the high-capacity boiler. KEY WORDS: boiler, variant operation, heat transfer model

冷冻脱硝工艺简介

冷冻脱硝工艺简介-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1、技术原理 冷冻法是物理方法,将含硫酸根的盐水冷冻降温,硫酸根将以芒硝的形式结晶析出。当盐水中硫酸根质量浓度小于25g/L时,该法受到成本限制。硝分离单元是通过冷冻结晶使富硝盐水中的硫酸根以芒硝(Na2SO4·10H2O)的形式从淡盐水中分离出来。 利用冷冻法将富硝盐水中的硫酸根结晶分离是目前国内较为先进的脱硝方法,但该法的应用逐渐暴露出冷冻设备易堵塞等问题。我公司针对上述问题进行了一系列的自主研发和工艺改进,已研发出一套新型脱硝技术方案,并已向国家专利局提出了国家发明专利申请。 2、工艺流程简介 图冷冻脱硝工艺流程框图 富硝盐水首先进入预冷换热器进行预冷,预冷后温度可降至15~20℃。预冷后的富硝盐水进入兑卤槽,与兑卤槽循环液均匀混合,稳定降温至-5℃左右。兑卤槽循环液是通过兑卤循环泵泵至冷冻换热器获取冷量,冷冻换热器的冷源为冷冻机组的制冷剂。 兑卤槽在循环换热过程中因温度下降会有芒硝晶体析出并沉降,根据晶体析出情况定期泵至沉硝槽,在沉硝槽中晶体进一步长大。含大量芒硝晶体的浆

料随后送至离心机进行离心分离,得到产品芒硝。沉硝槽的上清液只含少量的硫酸根离子(出槽淡盐水硫酸钠浓度为6~10 g/L,出槽淡盐水脱硝后返回前端),溢流收集于冷盐水储槽,经预冷换热器回收冷量后回流至淡盐水储槽进一步处理。 冷冻脱硝的吨水直接运行成本(电以0.65元计)约为30~40元。 3、技术特点 本系统工艺设计的主要技术特点如下: (1)采用逐级降温、三段沉硝,能很好地解决硝分离单元芒硝结晶堵塞严重的问题,冷冻效率高。富硝盐水在浓缩液储罐进行一次沉硝,并根据氯化钠和硫酸钠在水中的互溶度合理设定预冷温度,从而避免预冷换热器的堵塞。二次沉硝发生在兑卤槽,温度降至-(5~7)℃左右,冷冻换热器换热温差小,兑卤循环液流速大,从而有效避免了冷冻换热器的堵塞。三次沉硝发生在沉硝槽,温度在-(7~8)℃左右,沉降的晶体固液比高,有利于离心分离。 (2)换热网络合理,有利于节省能耗。沉硝槽溢流冷盐水用作预冷换热器的热源,既回收了热量(或冷量),同时也减轻了返回化盐工序后对系统工艺温度的影响。 (3)运行管理方便,工艺运转自动化程度高,设备维护简单。

脱硝设计

电厂锅炉烟气脱除NO 的选择性催化还原法 x (SCR)的计算与应用 摘要 我国是世界上主要的煤炭生产和消费国,也是以煤炭为主要一次能源的国家。据统计,原煤在我国一次能源构成中所占比例约为70%,而用于发电的煤炭约占煤炭消费量的50%。NOx的排放是形成酸雨和破坏大气中臭氧层的重要原因之一。据估算:1990年我国NOx的排放量约为910万吨,2007年我国的NOx排放量为1643.4万吨,其中近70%来自于煤炭的直接燃烧,而以燃煤为主的电力生产是NOx排放的主要来源。鉴于随着我国经济的发展,能源消耗量将继续增加,导致NOx排放量也将不断增加,如不加强控制NOx的排放量,将对我国大气环境造成严重的污染。 所谓NO x,是对烟气中的有害氮氧化物的总称,包括NO,NO2和少量的N2O,其中主要是NO,大约占NO x的95%以上。烟气脱硝脱硝方法主要有选择性催化还原法(SCR)、选择性非催化还原法(SNCR)、低氮燃烧技术,其中最成熟、应用最广泛的选择性催化还原法(SCR)通常用氨做为还原剂,喷入到从锅炉出来的烟气中,并加入特定的催化剂,使之在一定的环境温度下与烟气中的NO x进行反应,而不发生与氧气的反应,最后将NO x还原为无害的氮气和水排出。 本文主要是对脱硝系统工艺的选择,并对脱硝的几个关键问题进行分析。脱硝系统的研究包括NOx的生成机理,口前电厂的主流脱硝技术比较及SCR反应器的布置,对其进行SCR物质平衡计算等。关键问题主要是脱硝工艺的选择,脱硝催化剂的选择,脱硝还原剂的制各方法及主要设计参数的选取。本文在充分研究脱硝工艺各环节之后,通过技术和经济性比较,形成一整套可实施的工程方案,并应用于某发电厂600MW机组烟气脱硝工程中,即达到了脱硝效率,减少了氮氧化物排放,又节约投资,并保证了机组的安全可靠运行,具有 良好的经济效益和社会效益。 关键词: 电站锅炉,烟气,选择性催化还原(SCR),NO x

燃煤锅炉烟气的脱硫工艺设计详解

大气污染控制工程课程设计 设计题目:15t/h燃煤锅炉烟气的脱硫工艺设计姓名: 学号: 年级: 系部:食品工程学院 专业:环境工程 指导教师: 完成时间:

目录 1设计任务及基本资料 (2) 1.115t/h燃煤锅炉烟气的脱硫工艺设计 (2) 1.2课程设计基本资料 (2) 2设计方案 (3) 2.1物料衡算 (3) 2.2工艺方案的比较和选择 (4) 2.3除硫效率 (7) 2.4除硫设备的论证 (7) 2.5工艺方案 (7) 3工艺计算 (9) 3.1冷却塔 (9) 3.2吸收塔 (10) 3.3换热器 (12) 3.4泵和风机的选型计算 (13) 4附图...................................................................................................................... - 1 -5结论...................................................................................................................... - 2 -

1设计任务及基本资料 1.115t/h燃煤锅炉烟气的脱硫工艺设计 1.2课程设计基本资料 1.2.1课程设计目的 大气污染控制工程课程设计是配合大气污染控制工程专业课程而单独设立的设计性实践课程。教学目的和任务是使学生在学习专业技术基础和主要专业课程的基础上,学习和掌握环境工程领域内主要设备设计的基本知识和方法,培养学生综合运用所学的环境工程领域的基础理论、基本技能和专业知识分析问题和解决工程设计问题的能力,培养学生调查研究,查阅技术文献、资料、手册,进行工程设计计算、图纸绘制及编写技术文件的基本能力。1.2.2设计要求 设计思想与方法正确;态度端正科学;能正确运用所学的理论知识;能解决实际问题,具备专业基本工程素质;具备正确获取信息和综合处理信息的能力;文字和语言表达正确、流畅;刻苦钻研、不断创新;按时按量独立完成;图文工整、规范,设计计算准确合理。整体设计方案要重点突出其先进性、科学性、合理性和实用性。 1.2.3课程设计参数和依据 1. 设计规模 锅炉蒸发量15t/h 2. 设计原始资料 (1)煤的工业分析如下表(质量比,含N量不计): (3)锅炉热效率:75% (4)空气过剩系数:1.3 (5)水的蒸发热:2570.8KJ/Kg (6)烟尘的排放因子:30% (7)烟气温度:473K (8)烟气密度:1.18kg/m3 (9)烟气粘度:2.4×10-5 pa·s (10)尘粒密度:2250kg/m3 (11)烟气其他性质按空气计算 (12)烟气中烟尘颗粒粒径分布

锅炉原理课程设计

课程设计报告 ( –年度第学期) 名称:锅炉课程设计 题目:WGZ670/140-Ⅱ型锅炉 变工况热力计算 院系:能源与动力工程学院班级: 学号: 学生姓名: 同组人员: 指导教师: 设计周数:两周 成绩: 日期:

《锅炉原理》课程设计 任务书 一、目的与要求 1.目的 锅炉课程设计是《锅炉原理》课程的重要教学环节。通过课程设计可以达到如下目的: 1)使学生对锅炉原理课程的知识得以巩固、充实和提高; 2)掌握锅炉机组的热力计算方法,并学会使用热力计算标准和具有综合考虑机组设计 与布置的初步能力; 3)培养学生查阅资料、合理选择和分析数据的能力,提高学生运算、制图等基本技能; 4)培养学生对工程技术问题的严肃认真和负责的态度。 2.要求 1)熟悉所设计锅炉的结构和特点,包括主要工况参数、烟气流程、蒸汽流程等; 2)掌握锅炉热力计算方法,如烟气焓的计算、炉膛热力计算、对流受热面热力计算等; 3)各个计算环节要达到相应误差要求,如排烟温度校核、对流受热面传热量校核等; 4)计算过程合理、结果可信; 5)提交的报告格式规范,有条理。 二、主要内容 按照本组选定的工况参数(煤种、负荷、冷空气温度),结合《锅炉课程设计相关资料》中提供的结构等数据,完成WGZ670/140-2型锅炉的变工况热力计算。 序号设计(实验)内容完成时间备注 1 熟悉设计要求和锅炉的结构 2 完成烟气焓的计算、炉膛计算 3 完成各对流受热面计算 4 提交报告并答辩 四、设计成果要求 学生须提交热力设计计算书,正文格式为宋体,五号字,行间距为21,图表、公式及其标注清楚,数据可靠。 五、考核方式 提交报告并以组为单位进行答辩。 学生姓名(签名): 指导教师(签名):

锅炉脱硝改造工程技术要求

腾龙特种树脂(厦门)有限公司3×220 t/h锅炉烟气脱硝工程 技术要求 腾龙特种树脂(厦门)有限公司 2013年10月

一、概述 项目概况 腾龙特种树脂(厦门)有限公司成立于2002年4月,已建成3台220 t/h循环流化床锅炉,一台100MW抽汽式汽轮发电机组。根据福建省及厦门市十二五期间对氮氧化物减排的整体部署和要求,拟对上述3台锅炉进行脱硝改造。 本脱硝工程采用EPC总承包方式建造,本工程包括烟气脱硝装置从设计开始到质保期结束为止所涉及到的所有工作,包括但不仅仅限于工程的工艺系统设计、设备选择、采购、运输及储存、制造及安装、土建建(构)筑物的设计、施工、调试、试验及检查、试运行、考核验收、消缺、培训和最终交付投产,并能满足锅炉正常连续运行需要,通过环保部门验收合格后提供一年内设备易损易耗备件。 在签订总承包合同之后,发包方保留对本技术要求提出补充要求和修改权利,承包方应允诺予以配合。如提出修改,具体项目和条件由双方商定。 主要设备及参数 表1锅炉设计参数

脱硝技术指标要求: 1.3.1 锅炉50%~100%BMCR负荷范围内,脱硝后NOx排放浓度:﹤200mg/Nm3; 1.3.2 氨逃逸量:﹤8mg/Nm3; 1.3.3 锅炉脱硝验收期间将按NOx初始浓度为480毫克/立方米进行排放达标核算验收; 1.3.4脱硝设施投运后锅炉热效率影响:﹤%; 1.3.5 脱硝装置投运后烟气阻力增加﹤300Pa; 说明:

1)脱硝效率定义为 脱硝率=C1-C2 ×100% C1 式中: C1——脱硝系统运行时脱硝入口处烟气中NO X 含量(mg/Nm3)。 C2——脱硝系统运行时脱硝出口处烟气中NO X 含量(mg/Nm3)。 2)氨的逃逸率是指在脱硝装置出口的氨的浓度。 标准与规范 1.4.1 设计规范及要求 投标方提供规范、规程和标准为下列规范、规程和标准的最新版本,但不仅限于此: GB8978-1996 《污水综合排放标准》 GB50187-93 《工业企业总平面设计规范》 DL5028-93 《电力工程制图标准》 SDGJ34-83 《电力勘测设计制图统一规定:综合部分(试行)》 DL5000-2000 《火力发电厂设计技术规程》 DL/T5121-2000 《火力发电厂烟风煤粉管道设计技术规程》 YB9070-92 《压力容器技术管理规定》 GBl50-98 《钢制压力容器》 DL5022-93 《火力发电厂土建结构设计技术规定》 GB4272-92 《设备及管道保温技术通则》 DL/T776-2001 《火力发电厂保温材料技术条件》 DL/T5072-2007 《火力发电厂保温油漆设计规程》 GBZ1-2002 《工业企业设计卫生标准》 DL/T5054-96 《火力发电厂汽水管道设计技术规定》 SDGJ6-90 《火力发电厂汽水管道应力计算技术规定》 GBJ16-1987(2002)《建筑设计防火规范》

燃煤锅炉烟气脱硝技术改造

燃煤锅炉烟气脱硝技术改造 发表时间:2018-08-10T15:33:11.200Z 来源:《科技中国》2018年4期作者:崔月 [导读] 摘要:文章针对烟气中主要的氮氧化物和二氧化硫的污染情况进行了分析,结合国家的减排政策,阐述锅炉烟气增加脱硝装置势在必行;对国内几种常用并且有效的烟气脱硝技术进行介绍,例如SCR法、SNCR法以及联合脱硝法等,同时对影响烟气脱硝效果的因素进行简单的分析,最后对燃煤锅炉烟气脱硝技术方案选择提出建议。 摘要:文章针对烟气中主要的氮氧化物和二氧化硫的污染情况进行了分析,结合国家的减排政策,阐述锅炉烟气增加脱硝装置势在必行;对国内几种常用并且有效的烟气脱硝技术进行介绍,例如SCR法、SNCR法以及联合脱硝法等,同时对影响烟气脱硝效果的因素进行简单的分析,最后对燃煤锅炉烟气脱硝技术方案选择提出建议。 关键词:燃煤锅炉;烟气脱硝;技术;改造 1导言 在我国社会与经济不断发展的同时,环境污染问题也变得越来越严重,环保形势变得更加严峻。燃煤锅炉所排放的烟气之中,含有较多的NOx物质,这些污染物质排入大气之后,会造成较为严重的大气污染问题,并且还会导致以氮氧化合物为主的酸雨出现,所以,对于燃煤锅炉脱硝改造工作是一项极为重要的工作。而在我国环保标准不断提升的过程中,所使用的脱硝技术也在不断改进,因此,对燃煤锅炉烟气脱硝技改是极为重要也是十分必要的一项工作。 2燃煤锅炉烟气增加脱硝装置的必要性 随着我国工业经济的快速发展,而随之所带来的环境污染尤其是大气污染问题,将对我们人类的生存和居住环境带来越来越严重的影响。其中危害量最大、影响范围最广的无疑是二氧化硫和氮氧化物。 我国在二氧化硫的减排中已初见成效,而相较于二氧化硫,氮氧化物排放污染日趋严重。因此2011年3月14日,全国人大审议通过的“十二五”规划纲要,提出化学需氧量、二氧化硫分别减少8%,同时将氨氮和氮氧化物首次列入约束性指标体系,要求分别减少10%,氮氧化物已经成为我国减排的重点。 3工艺流程 合成来的稀氨水与冷脱盐水在稀氨水储槽内混合至一定的浓度,由氨水供应泵加压后,送到锅炉氨水喷枪。氨水经压缩空气雾化后进入锅炉与烟气中的氮氧化物进行反应,生成N2和水,从而达到脱硝的目的。 系统一般选用气力式压缩空气作为雾化介质。气力式雾化是通过具有一定动能的高速气体冲击液体,从而达到一定雾化效果的方式。由稀氨水水泵、流量调节、测量模块,喷枪和氨水储槽构成。喷枪采用304不锈钢材料制造,每支喷枪配有气动推进器,实现自动推进和推出喷枪的动作。 4脱硝方案的选择 选取烟气脱硝工艺遵循以下原则:①NOx排放浓度和排放量满足有关环保标准;②技术成熟,运行可靠,有较多业绩,可用率达85%以上;③对煤种类适应性强,并能够适应燃煤含氮量在一定范围内的变化;④尽可能节省建设投资;⑤分布合理,占地面积较小;⑥脱硝剂、水和能源消耗少,运行费用较低;⑦脱硝剂来源可靠,质优价廉;⑧副产物、废水均能得到合理的利用或处置。 SNCR(选择性非催化还原法)和SCR(选择性催化还原法)在大型燃煤电厂获得了较好的商业应用。SCR法和SNCR法的相同点是均采用NH3或尿素作为还原剂,不同点是SCR法反应温度较低,为320~430℃,需使用催化剂(主要成分TiO2,V2O5,WO3),脱硝效率较高,为70%~90%,氨的逃逸浓度低;SNCR法反应温度较高,为850~1250℃,无需使用催化剂,脱硝效率较低25%~60%,氨的逃逸浓度高。 5燃煤锅炉烟气脱硝技术改造 5.1燃烧前脱硝技术 其是在燃煤发生燃烧反应之前通过一定的脱氮工艺之后,将燃煤中氮元素有效的去除,从而确保烟气中含氮量减少,实现烟气脱硝的目标。根据目前的技术工艺而言,此种脱硝方式在实际应用过程中存在的难度相对大,同时所需成本也非常高,因此,该种脱硝技术目前仅仅是脱硝研究的一个方向,其在实际过程中的应用还非常少,有待进一步的研究与实践。 5.2电子束烟气脱硫脱硝法 用电子束对烟气进行照射而同时脱硫脱硝的技术,是近年来发展起来的一种干法烟气脱硫脱硝工艺。我国成都热电厂引进日本先进技术,建成了电子束烟气脱硫脱硝示范装置。 该法的工艺流程为:从电除尘器出来的烟气,在冷却塔中通过喷雾干燥工艺冷却到65~70℃,然后送入反应器。烟气在进入反应器之前要先加入氨气,在反应器中用电子束对烟气进行照射。电子束发生装置是由电压为800kV的直流高压电发生装置和电子加速器组成。电子加速器产生的电子束通过照射孔对反应器内的烟气进行照射时,电子束的高能电子将烟气中的氧和水蒸气的分子激发,使之转化成为氧化能力很强的OH、O和HO2等游离基。这些游离基使烟气中的硫氧化物和氮氧化物很快氧化,产生了中间产物硫酸和硝酸,他们再和预先加入反应器中的氨反应产生微粒状的硫酸铵和硝酸铵。最后,烟气通过另一电除尘器副产品硫酸铵和硝酸铵从烟气中分离出来,由于烟气的温度高于露点,因此在烟气通过烟囱排放到大气之前不需要再加热。该法的特点是,系统简单,可以高效地从烟气中同时脱硫和脱硝,脱硫效率可达95%以上,脱硝效率可达85%以上,脱硫脱硝反应副产品为硫酸铵和硝酸铵化肥,可用于农业生产上。 5.3燃烧中脱硝技术 燃煤燃烧将形成大量的氮氧化合物,因此,要是能够在此阶段之中采用相应的脱硝技术,便能够取得很好的脱硝效果。此时期应用脱硝技术主要为低氮脱硝技术,其关键在于有效降低燃烧过程中产生的NOx物质,通常都能够减少大约30%的NOx物质,从而达到脱硝目的。此阶段所采用的脱硝技术相对来说较为简单,所需成本也非常少,并且相关设备占地面积非常小,因此,在燃煤锅炉脱硝技改过程中应用较为普遍。 5.4选择性非催化还原法(SNCR) 选择性非催化还原SNCR(Selective Non-Catalytic Reduction)脱硝处理工艺,为一种成熟的NOx控制处理技术。SNCR不使用催化剂,又称热力脱硝,此方法是在炉膛高温区850~1050℃下,将氮还原剂(一般是氨或尿素)喷入锅炉炉膛的烟气中,将NOx还原生成氮气和

锅炉专业考试题库(答案)

锅炉专业考试题库 理论部分: —、填空题: 1、振动给煤机主要由与组成。(给煤槽、电磁振动器) 2、粗、细粉分离器的工作原理是依靠旋转产生的进行分离的。(煤粉气流、离心力) 3、轴承轴向间隙的测量可以用和进行。(塞尺、百分表) 4、筒式磨煤机的破碎原理是和。(撞击、挤压) 5、钢球磨煤机筒体直径,则临界转速低。(大) 6、#45钢常用来制作转动机械中的和。(轴、齿轮) 7、轴承一般分为轴承和轴承,轴承主要承受的向和向的载荷。(滚动、滑动、转子、径、轴) 8、滑动轴承常见的故障象征有,,。(轴承温度高、润滑油温度高、振动加剧) 9、一般滑动轴承的轴瓦可能会出现:、、、。(脱皮剥落、轴瓦剥落、过热变色、裂纹或破碎) 10、换热分为三种基本形式,即:、、。(导热、热对流、热辐射) 11、离心式风机按吸风口的数目可分为和两种。(单吸式、双吸式) 12、风机按其工作特点有和两大类。(轴流式、离心式) 13、基本尺寸相同的相互结合的孔与轴公差之间的关系称为。(配合) 14、在液压传动中,凡是把机械能转变成能的装置都称为泵。(压力) 15、机械强度是指金属材料材料在受外力作用时抵抗和的能力。(变形、破坏) 16、有送、引风机的锅炉通风方式是通风。(平衡) 17、基准制分为和两种。(基轴制、基孔制) 18、锅炉停炉后防腐一般可分为和两种。(湿式防腐、干式防腐) 19、锅炉机组额定参数停炉一般分为和。(正常、事故停炉) 20、省煤器用的护铁应弧形,对管子的包复角为。(120°---180°) 21、热弯管子时的加热温度不得超过℃,其最低温度对碳素钢是℃,对合金钢是℃。(1050、700、800)

配联合循环的余热锅炉性能特点

补充 2004年5月4日,摘自焦树建《燃气-蒸汽联合循环》 1.余热锅炉设计时节点温差和接近点温差的选择 节点温差的选择关系到余热功率的效率和投资费用,要加以权衡。 减小节点温差,锅炉效率提高,可以更多的回收热量。但是,投资费用增加,并且锅炉换热面积的增加还会使燃气轮机排气阻力增加,减少燃气轮机的功率,这就会导致联合循环效率有下降的趋势。因此,必须从整个联合循环的效率和经济性两方面加以全面考虑。 当进入余热锅炉的燃气温度随燃气轮机负荷的减少而降低时,接近点温差将随之减少。如果在设计时接近点温差取得过小或未加考虑,则在部分负荷工况下,省煤器内就会发生部分水的汽化,这将导致省煤器管壁过热和故障。另外,接近点温差的选择也关系到省煤器和蒸发器换热面积的设计。这样,必然存在合理的选择接近点温差的问题。 图12.4和12.5给出了当接近点温差选定后,随着节点温差的变化,余热锅炉相对总换热面积、相对排气温度、相对蒸汽产量、相对总投资和相对单位热回收费用的变化规律。这些相对值都是以节点温差选为10℃时的数值作为比较标准。 图12.6给出了余热锅炉的相对总换热面积随接近点温差的变化关系。 图12.7给出了“单压的汽水发生系统”的余热锅炉的当量热效率与节点温差以及相对总换热面积之间的变化关系。 图12.4 的关系 图12.5 相对总投资费用和相对单位 热回收费用随节点温差的变化关系 不言而喻,倘若有意识地增大余热锅炉内燃气侧的流动速度,必然可以因换热效应的强化而使总换热面积有所减小,但是,这个措施却会导致燃气侧流阻损失的增大。图12.8中给出了相对燃气流阻与相对总换热面积之间的变化关系。 通过对上述图12.4至图12.8的分析,我们可以得到以下一些有益的结论: (1)由图12.4可知:当节点温差减小时,余热锅炉的排气温度会下降,燃气的放热量将加大,蒸汽产量会增加,而总的换热面积要增大。计算表明:传热系数基本上是不变的, 但省煤器与蒸发器的对数平均温差将大幅度地减小,致使余热锅炉的总换热面积会增大。余() x s g t f G T A ?=,,5

锅炉汽温调整的方法和注意事项

锅炉汽温调整的方法和注意事项汽温是机、炉安全经济运行所必须监视与调整的主要参数之一,由于影响汽温的因素多,影响过程复杂多变,调节过程惯性大,这就要求汽温调节应勤分析、多观察,树立起超前调节的思想。在机组工况发生变化时,应加强对汽温的监视与调整,分析其影响因素与变化的关系,摸索出汽温调节的一些经验,来指导我们的调整操作。下面,我们对一些典型工况进行分析,并提出一些指导性措施。由于汽温变化的复杂性,大家在应用过程中要结合实际遇到的情况学会灵活变通,不可生搬硬套。 一、机组正常运行中的汽温调节 汽温调节可以分为烟气侧调整、蒸汽侧的调整,烟气侧的调节过程惯性大,通常情况下需要3-5分钟左右温度才会开始变化;而蒸汽侧的调节相对比较灵敏。因此正常运行过程中,应保持减温水调整门具有一定的开度,一般应大于7%;如果减温器已经关完或开度很小时,由于阀门的特性原因它的调节能力减弱,也就是减温水流量变化相对较小,此时应观察同侧另一级减温水流量是否偏大,并及时对其的减温水流量进行重新分配,另外还可以对燃烧进行调整(在炉膛氧量允许时可适当加大风量,或调整风门使火焰中心上移),使汽温回升、减温器开启。如果各级减温器开度均比较大时(若大于60%),

同时也应从燃烧侧调整,或对炉膛进行吹灰,以达到关小各级减温器,使其具有足够的调节余量。 总之,在机组正常运行时,各级减温后的蒸汽温度在不同工况下是不相同的。应加强对各级减温器后蒸汽温度的监视,并做到心中有数,以便在汽温异常时作为调整的参考。建议在负荷发生变化时应将减温水且为手动调整,避免汽温大幅度波动。 二、变工况时汽温的调节。 变工况时汽温波动大,影响因素众多,值班员应在操作过程中分清主次因素,对症下药,及早动手,提前预防.必要时采取过调手段处理,不可贻误时机,酿成超温事故。变工况时汽温的变化主要是锅炉的燃烧负荷与汽轮机的机械负荷不匹配所造成的。一般情况下,当锅炉的热负荷大于汽轮机的机械负荷时,汽温为上升趋势,两者的差值越大,汽温的上升速度越快。目前机组在投入BLR方式下运行时,机组负荷变化频繁且幅度较大。下面对几种常见情况分析如下: 1、正常加减负荷时的汽温调节。 正常加负荷时,在汽轮机调门开度增加,锅炉压力下降自调系统开始增加燃料量、风量。而汽温的变化要滞后于燃烧侧的热负荷的增加。对于过热器来说,由于蒸发量的增加,对过热汽温有一定的补偿能力,所以过热汽温的变化是滞后与负荷变化速度的(它随着负荷的增加燃料量、蒸汽压力、蒸汽流量的增加而增快的)。也就是说负荷

烟气脱硝方案

烟气脱硝方案 1

20t/h链条锅炉SNCR脱硝工程技术方案 1 概述 1.1 项目概况 近年来,随着中国火电装机容量的急速增长,火电NOx排放量逐年增加,NOx已成为当前中国最主要的大气污染物之一。随着中国对SOx排放控制的加强,NOx对酸雨的影响将逐步赶上甚至超过SOx。 5月16日,环境保护部、国家质量监督检验检疫总局联合发布《锅炉大气污染物排放标准》(GB13271- ),据此标准为控制火电厂的NOx排放,此锅炉执行重点地区燃煤锅炉NOx排放浓度限值,即最终烟气NOx排放浓度<200 mg/Nm3(标态,干基,9%氧)。 本工程为1台20t/h以煤为燃料的链条锅炉,原始NOx排放浓度按450 mg/Nm3,为了满足排放要求,本工程考虑对其进行SNCR脱硝改造。还原剂用20%浓度的氨水设计,脱硝后NOx排放浓度小于200 mg/Nm3,锅炉脱硝效率为56%。 1.2 主要设计原则 (1) 脱硝设计效率满足用户要求。 (2) 采用的脱硝工艺具有技术先进、成熟,设备可靠,性能价格比高,对锅炉工况有较好的适用性。 (3) 脱硝系统能持续稳定运行,系统的启停和正常运行不影响主机组的安全运行。 (4) 脱硝装置的可用率应≥98%,且维护工作量小,不影响电厂的文明生产;脱硝装置设计寿命按30年。

(5) 脱硝工艺的选择应利于电厂的管理和降低运行管理费用。 1.3 推荐设计方案 (1)由于本锅炉炉膛温度较高,拟采用SNCR烟气脱硝技术,锅炉脱硝设计效率为56%。 (2)还原剂为20%氨水。 (3)NH3逃逸量(烟囱出口处测量)控制在8ppm以下。 如有更高的排放要求可在烟道尾部增加催化剂,采用混合法脱硝技术。 2、SNCR法NOx控制机理 在高温没有催化剂的条件下,氨基还原剂(如氨气、氨水、尿素)喷入炉膛,热解生成NH3与其它副产物,在800~1100℃温度窗口,NH3与烟气中的NOx进行选择性非催化还原反应,将NOx还原成N2与H2O。 SNCR脱硝反应对温度条件非常敏感,受制于停留时间、NH3/NO摩尔比(NSR)、混合程度等因素,并对锅炉效率造成一定的影响(一般在 0.2~0.5%)。 (1)反应温度 NH3与NOx反应过程受温度的影响较大:反应温度超过1100℃时,NH3被氧化成NOx,氧化反应起主导;反应温度低于1000℃时,NH3与NOx的还原反应为主,但反应速率降低,易造成未反应的NH3逃逸过高。选择性非催化还原烟气脱硝过程是上述两类反应相互竞争、共同作用的结果,如何选取合适的温度条件是该技术成功应用的关键。 4NH3 + 5O2→ 4NO + 6H2O

SCR烟气脱硝工艺设计方案

SCR烟气脱硝工艺方案 1. 脱硝工艺的简介 有关NO X的控制方法从燃料的生命周期的三个阶段入手,限燃烧前、燃烧中和燃烧后。当前,燃烧前脱硝的研究很少,几乎所有的脱硝都集中在燃烧中和燃烧后的NO X的控制。所以在国际上把燃烧中NO X的所有控制措施统称为一次措施,把燃烧后的NO X控制措施统称为二次措施,又称为烟气脱硝技术。 目前普遍采用的燃烧中NO X控制技术即为低NO X燃烧技术,主要有低NO X燃烧器、空气分级燃烧和燃料分级燃烧。 应用在燃煤电站锅炉上的成熟烟气脱硝技术主要有选择性催化还原技术(Selective Catalytic Reduction,简称SCR)、选择性非催化还原技术(Selective Non-Catalytic Reduction,简称SNCR)以及SNCR/SCR混合烟气脱硝技术。 2 .SCR烟气脱硝技术 近几年来选择性催化还原烟气脱硝技术(SCR)发展较快,在欧洲和日本得到了广泛的应用,目前催化还原烟气脱硝技术是应用***多的技术。 1)SCR脱硝反应 目前世界上流行的SCR工艺主要分为氨法SCR和尿素法SCR两种。此两种法都是利用氨对NO X的还原功能,在催化剂的作用下将NO X(主要是NO)还原为对大气没有多少影响的N2和水。还原剂为NH3,其不同点则是在尿素法SCR中,先利用一种设备将尿素转化为氨之后输送至SCR触媒反应器,它转换的方法为将尿素注入一分解室中,此分解室提供尿素分解所需之混合时间,驻留时间及温度,由此室分解出来之氨基产物即成为SCR的还原剂通过触媒实施化学反应后生成氨及水。尿素分解室中分解成氨的方法有热解法和水解法,主要化学反应方程式为:

锅炉sncr烟气脱硝方案

×××公司 3×10t/h+1×20 t/h水煤浆锅炉及3×5 t/h 链条导热油炉+1×10t/h蒸汽链条炉烟气脱 硝工程 (SNCR法) xxx有限公司 年月

目录 1 概述.............................................. 错误!未指定书签。 1.1 项目概况........................................ 错误!未指定书签。 1.2 主要设计原则.................................... 错误!未指定书签。 1.3 推荐设计方案.................................... 错误!未指定书签。 2 锅炉基本特性...................................... 错误!未指定书签。 3 本项目脱硝方案的选择.............................. 错误!未指定书签。 4 工程设想.......................................... 错误!未指定书签。 4.1 系统概述........................................ 错误!未指定书签。 4.2 工艺装备........................................ 错误!未指定书签。 4.3 电气部分........................................ 错误!未指定书签。 4.4 系统控制........................................ 错误!未指定书签。 4.5 供货范围清单.................................... 错误!未指定书签。 4.6 脱硝系统水、气、电等消耗........................ 错误!未指定书签。 4.7 脱硝系统占地情况................................ 错误!未指定书签。 5 工程实施条件和轮廓进度............................ 错误!未指定书签。

电厂锅炉SCR烟气脱硝系统设计

电厂锅炉SCR烟气脱硝系统设计 发表时间:2016-12-15T16:24:15.933Z 来源:《电力设备》2016年第20期作者:张军 [导读] 随着火电站的发展,所带来环境问题也日益严重,特别是有色雾气的产生。 (兰州西固热电有限责任公司发电部) 摘要:随着环境污染日益加重,我国对环境保护的重视度不断增加,并拟定了一系列的法规。我国的电厂以火电站为主,电厂废气排放是空气环境污染的重要因素,特别是控制氮氧化物的排放是电厂废气治理重要环节。目前主要的控制手段是通过安装烟气脱硝系统,采用选择性催化还原(SCR)来控制烟气中的氮氧化物的含量,本文主要论述了脱硝系统的设计和各种辅助设备的选型。 关键词:脱硝系统;选择性催化还原;系统设计; 0引言 随着火电站的发展,所带来环境问题也日益严重,特别是有色雾气的产生,给人们敲响了警钟。有色雾气产生的主要原因是氮氧化物的超标排放,并与空气发生化学反应所产生的,其中氮氧化物其主要来源是煤炭燃烧。我国电厂70%是火电厂,是主要的氮氧化物的主要排放点,为规范氮氧化物的排放,现国家出台一系列的氮氧化物控制政策,要求所有火电站必须安装脱硝系统。根据脱硝阶段划分脱硝技术可以分为两类:燃烧过程控制和燃烧后烟气脱硝,但大部分脱硝系统都是选择燃烧后烟气脱硝。 1 SCR烟气脱硝系统的原理 SCR烟气脱硝系统是采用选择性催化剂跟烟气中的氮氧化物发生还原反应,将氮氧化物还原成氮气和水。其主要由还原剂喷撒系统、还原反应器、排放管道和管理控制系统等组成。脱硝系统流程如图1所示。脱硝系统一般紧跟锅炉省煤器出口安装,在进入SCR反应器前,先跟催化剂充分混合,然后在一定的温度下在反应器充分发生化学反应。反应温度一般控制在280-390℃为宜,在此温度下主要有以下几种还原反应: 4NO+4NH 3+O 2→4N 2+6H 2O NO+NO 2+2NH 3→2N 2+3H 2O 6NO 2+8NH 3→7N 2+12H 2O 脱硝系统的是选用氨气作为还原剂,氨气的供给方式主要有三种分别是液氨、氨水、尿素,三种方式各有优缺点,其有确定对比如表1。 图1 SCR脱硝系统结构流程图 2 烟道及旁路的设计 烟道是烟气进出脱硝系统的通道,在烟道进出口或弯处通常需要增加导流叶片,辅助烟气流通。烟道材料选择应考虑烟气的温度、酸碱性、材料强度、材料热变形。烟气在整个系统的温度一般在200-600℃,一般选用5-6mm的钢板,在整个系统中必须增加充足的固定和支撑板,防止震动。由于反应器使用催化剂不同,所需的反应温度也不相同,且锅炉在不同功率负荷下产生的烟气温度也不稳定。为保证烟气在进入反应器是的温度,需要在烟气入口前增加旁路设置,用于控制烟气进入系统的温度。还可以更具需求是否增加反应器旁路,来降低能耗提升系统使用寿命,但需要增加先期投资。 3 还原剂混合器设计 烟气脱硝的效果是由烟气是否与还原剂的充分混合成都是决定的,保证该过程的是部件还原剂混合器。目前使用最多的混合器是格栅喷氨,将整个区域分格,在每格内都有催化剂喷射枪,将还原剂与烟气均匀混合。另外为是烟气与还原剂充分混合,需要足够的混合空间。该空间的大小根据整个脱硝系统的大小来设计,太小混合不充分,太大会增加系统能耗和投资,增加成本。烟气脱硝率的控制是通过控制还原剂喷撒量来控制的,一般来说检测烟气中氮氧化物的含量,根据氮氧化物的总量来确定还原剂的使用量。一般还原剂/氮氧化物的比值控制在0.7-1.0之间。 4SCR反应器的设计 SCR反应器是整个脱硝系统的核心,催化剂和氮氧化物在反应器中发生还原反应,其机构由钢制壳体、烟气入口、催化剂布置架、导流装置等。 4.1反应器壳体 SCR反应器的壳体需要考虑到烟气和催化剂混合气体的通过速度、壳体强度、放震动性、隔热性能等,通常采用箱式结构。 4.2催化剂的设计

烟气脱硝工艺

综述燃煤电厂烟气脱硝技术 摘要:人们对空气质量的要求越来越高,氮氧化物污染引起了人们的广泛注意。废气脱硝工艺一直是研究重点。本文通过对比燃煤电厂的脱硝的各种工艺,选出了最优工艺——SCR技术,本文综述了SCR的原理、国内外研究状况、应用情况及运行费用。通过本文可以使人们更好的了解燃煤电厂脱硝工艺。 关键字:烟气脱硝;低NO X燃烧技术;SCR技术 Summary of coal-fired power plant flue gas denitrification technology Abstract: People on air quality have become increasingly demanding, nitrogen oxide pollution has aroused extensive attention. Exhaust gas denitration process has been a research priority. By contrast coal-fired power plant denitration various processes, optimum process --SCR elected technology, this paper reviews the SCR principle, research status, applications and operating costs. Through this allows people to better understand the coal-fired power plant denitrification process. Key words: Flue gas denitrification ; Low NO X Combustion Technology ;SCR 氮氧化物是大气主要污染物之一。通常所说的氮氧化物有多种不同形式,如N2O、NO、NO2、N2O3和N2O5等,其中NO和NO2所占比例最大,是最重要的大气污染物[1]。NO X排入大气后,通过物理、化学作用,引发一系列的环境问题。对人体健康和生态环境造成威胁[2]。 氮氧化物的产生途径主要有一下几个方面:1.机动车辆排放的尾气2.工业生产过程中产生了氮氧化物3. 燃烧过程产生的氮氧化物。其中燃烧过程产生的氮氧化物包括热力型、瞬时型和燃料型[3]。 机动车排气量较小,排放源流动分散。主要采用机内净化的方法去除氮氧化物[4]。某些工业生产过程也会排出NO X废气,一般来说,它具有成分相对比较单一和气量小的特点,此类废气在治理中多采用湿法,并且尽量将分离出来的NO返回原生产系统,或者形成新的副产品,或者加以无害化处理[5]。在燃烧过程中,控制NO X的排放有两种途径:一种是在锅炉燃烧中控制燃料的燃烧,减少氮氧化物的生成;另一种是对烟气进行处理,消除烟气中的氮氧化物[6]。 交通运输、电力和火电厂排放的NO X占全部排放量的90%以上[7]。电力工业又是燃煤大户。具预测,到2020年,原煤消耗将达到20.5亿~29.0亿吨,燃煤产生的NO X将急剧增加[8]。由于火电厂燃烧所产生的NO X所生成的含量最多且成分较复杂,所以引起了人们的广泛重视。所以本文主要介绍燃煤电站烟气脱硝技术。 1 烟气脱硝工艺比选 烟气脱硝是指从烟气中去除氮氧化物,是世界各国控制氮氧化物污染、防治酸雨危害的主要措施[9]。据火电厂燃煤锅炉调查,一般采用低氮氧化合物燃烧技术(包括低负荷稳燃改造)的锅炉排烟中氮氧化物的浓度为500~900mg/m3,而未采用低氮氧化合物燃烧技术的锅炉排烟中NO X的质量浓度定700~1300mg/m3之间,平均1000g/m3左右。所以在烟气脱硝之前先采用低NO X燃烧技术,减少氮氧化物的产生,为后续处理减轻负担[10]。

火电厂SCR烟气脱硝工艺系统设计

火电厂SCR烟气脱硝工艺系统设计 摘要:目前国内燃煤电厂已投入使用的SCR 脱硝机组大多数采用国外技术,而我国的脱硝工作现在还处于初步阶段,SCR 脱硝技术的工艺设计和运行控制经验相对缺乏,尚未形成一套完整成熟的自主知识产权技术。SCR 脱硝技术工艺设计和运行控制手段的不断完善和优化,对于SCR 技术的应用和推广具有积极的推动作用,也对改善我国大气环境质量有着深远的意义。因此,本文主要对火电厂SCR烟气脱硝工艺系统设计进行了一系列的探讨和论述。 关键词:火电厂,SCR,烟气脱硝,系统设计 一、引言 SCR技术是当前世界上主流的烟气脱硝工艺,自上世纪70年代在日本燃煤电厂开始正式商业应用以来,目前在全世界范围内得到广泛的应用,也是中国烟气脱硝采用最多的技术,特别是近几年SCR烟气脱硝得到大面积的应用。SCR 烟气脱硝技术具有脱硝效率高,成熟可靠,工艺系统简单,虽然投资费用偏高,但是运行十分稳定。然而在进行火电厂SCR烟气脱硝工艺设计的过程中往往存在一些问题,会产生严重的后果。所以加强火电厂SCR烟气脱硝设计探讨及学习是十分有必要的。 二、SCR脱硝工艺介绍 选择性催化还原法(Selective Catalytic Reduction,SCR)工艺是当今世界各国应用最多且最为成熟的工艺。SCR原理是在催化剂作用下,还原剂NH3在300-420℃下将NO和NO2还原成N2,而几乎不发生NH3的氧化反应,从而提高了N2的选择性,减少了NH3的消耗。烟气脱硝SCR工艺根据反应器在烟气系统中的位置主要分为三种类型:高灰型、低灰型和尾部型等。 1、高灰型SCR工艺:脱硝催化剂布置在省煤器和空预器之间,烟气中粉尘浓度和SO2含量高,工作环境相对恶劣,催化剂活性下降较快,需选用低SO2氧化活性、大节距、大体积催化剂,但烟气温度合适(300-400℃),经济性最高,是目前燃煤电厂烟气脱硝的主流布置形式。 2、低灰型SCR工艺:脱硝催化剂位于除尘器和脱硫设施之间,烟气中粉尘浓度低,但SO2含量高,可选用低SO2氧化活性、小节距、中体积催化剂,但为了满足催化剂反应活性温度要求,需相应配置高温除尘系统,目前此项工艺仅在日本有所应用。 3、尾部型SCR工艺:脱硝催化剂位于脱硫设施后,烟气中粉尘浓度和SO2

相关文档
最新文档