电喷发动机燃油供给与喷射控制 EFI fuel delivery & injection control

合集下载

汽油电喷EFI

汽油电喷EFI

定义电子控制汽油喷射式发动机1、什么是电子控制汽油喷射式发动机?汽油喷射是利用喷油器在低压下(250~350kPa)将汽油以雾状喷入进气总管、进气道或气缸内,然后和空气混合形成可燃混合气。

电子控制汽油喷射系统(Electronic Fuel Injection,简称EFI,电喷系统)利用系统中的各传感器将监测到的发动机运行状态的参数(如空气流量、发动机转速、进气压力、进气温度、冷却液温度、排气中氧的含量等)转换成电信号,输入到发动机控制器(ECU,又称电控单元)中,控制器根据这些信号,计算出喷油器(喷油器的结构为电磁阀,通电时电磁阀开启喷油,通电时间的长短就决定了其喷油量的多少)的通电时间,并接通喷油器电路,使喷油器喷油,从而对喷油器的喷油时刻、喷油量进行精确的控制。

ECU还可根据各传感器输送来的信号对发动机的点火提前角进行精确控制。

2、电喷发动机的优点!与化油器式发动机相比,电控汽油喷射发动机的优点主要是:1)实现了对发动机混合气空燃比和点火提前角的精确控制,特别是在过渡工况下能进行瞬时精确控制,使发动机无论在什么工况下都能处在最佳状态下运转。

2)混合气的制备是将汽油喷到进气道内获得的,从根本上解决了各缸间混合气浓度分配不均匀的问题。

3)在进气管中不要求气流有较高的流速,因而其截面较大,且没有喉管,故进气阻力较小;同时不需对进气管中的混合气进行预热,进气温度较低。

这都使得进气量有所增大。

4)由于进气温度较低,燃烧时不易发生爆燃,故可采用较高的压缩比。

由于以上这些优点,电控汽油喷射发动机与化油器式发动机相比。

其功率可以提高5%~10%,有效燃油消耗率可降低5%~15%,有害气体的排放量可减少20%左右,可达到当前所执行的排放法规的要求。

与此同时,整个供油系统都在汽油泵提供的压力下处于密封状态,因此在环境温度升高或气压较低时不会因大量汽油在油管内蒸发而产生气阻。

喷油时汽油的雾化质量是由喷油压力和喷油器特性决定的,与发动机转速无关,因此在发动机冷起动时汽油仍能保持良好的雾化,发动机具有良好的冷起动性。

发动机电控燃油喷射系统概述

发动机电控燃油喷射系统概述
52
二、燃油供给系统的工作原理
燃油供给系统的工作原理是:燃油泵安装于燃油箱内,通电后 将燃油加压到0.5Mpa左右,再通过供油总管分配到各喷油器;在输 油管上装有燃油压力调节器,能将燃油压力自动调节到比进气歧管 的压力高 284 kPa的恒定压力,多余的燃油通过回油管回流到燃油箱 。
三、燃料供给系统拆检注意事项
46
47
48
49
50
51
第一章 燃油供给装置
一、 燃油供给系统组成 1UZ-FE型发动机燃油供给装置的布置如图2-1所
示,它主要由燃油泵、燃油滤清器、燃油压力调节器 、燃油压力脉动衰减器、喷油器、冷起动喷油器和温 度—时间开关(1992年前车型)、供油总管和燃油箱 等组成。
燃油供给系统的组成
(2)间歇喷射(脉冲喷射)--喷油频率与发动机转速同步,喷 油量只取决于喷油器的开启时间(喷油脉冲宽度)。
可细分①同时喷射:在发动机运行期间,各缸喷油器同 时开启同时关闭。(每个工作循环可喷射两次或一次)
行喷射。
②顺序喷射:喷油器按发动机的工作顺序依次进
③分组喷射:将喷油器按发动机每工作循环分成 若干组交替进行喷射。
8
电控汽油喷射系统在各方面显示出来的优越性, 使之在70年代末80年代初得到迅速发展。1976 年至1984年间,各国生产的轿车中采用电控汽 油喷射的数量,德国由8%增长到42%; 日本 由3%增长到18%,至1987年增长到46%;美 国1976年电控汽油喷射系统尚未应用在轿车上, 至1984年已增长到39%,1985年迅速增长到60 %,1988年高达90%。
稳压箱
空气阀
进气压力 传感气
发动机
发动机
32
(1) 节气门-速度方式

电子控制燃油喷射系统

电子控制燃油喷射系统

3.电控燃油喷射系统(EFI)的现状和未来
• 1)、电子控制燃油喷射从单点式发展到多点式,到汽油直接喷射技术。 • 汽油直接喷射技术是用喷油量控制动力输出。在日本三菱、丰田和日产的一些发动机 上应用。欧洲的一些汽车公司如德国大众、法国雷诺等也在发展之中。可以说,电控 燃油直喷式发动机将成为21世纪汽车发动机的主流。 • 2)、汽油机点火和管理系统 电子控制的无触点点火系统。 • 3)、汽油机的可变气门定时和升程系统(TEC系统) 以本田为代表。 • 4)、柴油机的高压共轨喷射和可预喷的泵喷嘴技术 将少部分燃油预先喷进气缸, 这样便大幅度降低了燃烧噪声,甚至可以与汽油机相媲美。 • 在欧洲,截止到2000年,已经有近30%的轿车采用柴油机作动力,100公里仅耗油3 升。 • 5)、喷嘴截面可调的增压器 欧美的柴油机约95%都采用废气涡轮增压,但是增压 器自身的质量使加速响应和低速性能受到影响,造成低速扭矩下降、排烟增加。使用 变截面喷嘴技术,低速时减少喷嘴截面减小排气阻力,从而使发动机的扭矩特性得到 大幅度提高,废气排放品质也相应得到改善。 • 6)、废气再循环技术 • 7)推广发动机燃料向多样化发展成为可能 • (1)醇类作为燃料主要有乙醇和甲醇。甲醇由煤和天然气生产。 • (2)天然气 主要成分是甲烷,作为车用燃料是完全可以的。 5 • (3)植物油 主要是菜子油。 • (4)人造汽油和柴油 由煤转化为汽油和柴油。
• 世界上领先的电子控制燃油喷射系统为5气门技术、可变配气相位和可变进 气管技术 ,以本田为代表。
3
2.电子控制燃油喷射系统(EFI)的优点
• 1)电子控制燃油喷射系统在进气系统中,没有象化油器供油那样 有喉管部位,其能充分利用吸入空气的惯性增压,使进气压力损失 小,降低进气的温度,提高了发动机的充气系数,增大充气量。 • 2)由于进气的温度较底,使得震爆燃烧得到了有效控制,可以采 用较高的压缩比,以提高发动机的效率。 • 3)对混合气体的空燃比和点火提前角进行精确控制,特别是对过 渡工况,例如起动喷油和加速加浓控制等,是发动机在任何工况下 都处于最佳工作状态。 • 4)可采用多点汽油喷射系统,混合气能均匀地分配到各个气缸, 各个气缸的做功能力均匀一致,发动机运转更加平稳。 • 5)燃油喷射系统配以高能电火装置,发动机变可以燃用稀薄的气 体。 • 6)减速断油功能,亦能降低排放,节省燃油。 • 电子控制燃油喷射装置的缺点就是成本比高,故障时以修复,但是 与它的运行经济性和环保性相比,这些缺点是可以忽略的。再者, 4 电子控制燃油喷射装置只是较好地解决了汽油的的控制和燃烧更合 理和更优化,使排放状况得到改善。在气缸的排气口与消声器之间 安装一个三元催化器净化装置,使CO和HC被氧化成H2O和CO2,

彩色图解汽油机电子控制燃油喷射系统

彩色图解汽油机电子控制燃油喷射系统

彩色图解汽油机电子控制燃油喷射系统
电子控制燃油喷射系统(EFI)简称为“电控燃油喷射系统”“电喷系统”,是以电控单元为控制中心,并利用安装在发动机上的各种传感器测出发动机的各种运行参数,再按照电脑中预存的控制程序精确地控制喷油器的喷油量,使发动机在各种工况下都能获得最佳空燃比的可燃混合气。

电子燃油喷射系统组成
电子燃油喷射系统结构
主要部件
■ 喷油器
多点喷射系统的喷油器位于进气口处(下图)。

喷油器的作用是接受ECU送来的喷油脉冲信号,精确地控制燃油
喷射量。

喷油器结构▲
■空气流量计
空气流量计将吸入的空气流量转换成电信号送至电控单元(ECU),作为决定喷油的基本信号之一,是用来测定吸入发动机的空气流量的传感器。

翼片式空气流量计▲
汽油缸内直喷系统
汽油缸内直喷是将喷油嘴安装在燃烧室内,将汽油直接喷注在气
缸燃烧室内,空气则通过进气门进入燃烧室与汽油混合成混合气被点燃做功,这种形式与直喷式柴油机相似(下图)。

目前一般汽油发动机上所用的汽油电控喷射系统,是将汽油喷入进气歧管或进气管道中,与空气混合成混合气后再通过进气门进入气缸燃烧室内被点燃做功。

汽油缸内直喷系统示意图▲
■ 典型汽油缸内直喷系统原理
下图所示为汽油缸内直喷系统采用两个油泵,油箱内的低压电动泵和由凸轮轴驱动的高压油泵。

典型汽油缸内直喷系统原理▲
■ 汽油缸内直喷系统结构主要部件。

汽车发动机电控技术

汽车发动机电控技术
二、电控技术对发动机性能的影响
3)电子控制式(EFI型)
组成:空气供给系统、燃油供给系、控制系统
电喷发动机的工作原理及组成
一、进气系统流程图
空气滤清器
空气流量计
进气歧管压力传感器
节气门位置传感器
进气管
怠速空气控制阀
发动机
空气滤清器
节气门位置传感器
怠速空气控制阀
进气管
发动机
D型
L型
燃油系统
燃油泵的控制
(4/5)
开路 继电器
EFI继电器
燃油泵
IG
ST
点火 开关
FC
E1
STA
NE
NE信号
发动机ECU
微处理器
GSFC
GSW
空气囊中央传感器总成
3. 燃油泵关闭系统 有些汽车有这样的机械装置,在遇到下述情况时,燃油泵控制系统能使燃油泵停止运转,以保证安全。 当空气囊充气胀开时
汽车发动机电控技术
一、发动机上常用的电控系统有: 电控燃油喷射系统EFI、 电控点火系统ESA、 怠速控制系统ISC、 排放控制系统、 增压控制系统、 自我诊断与报警系统、 失效保护系统和应急备用系统。
提高发动机的动力性; 提高发动机的燃油经济性; 降低排放污染; 改善发动机的加速和减速性能; 改善发动机的起动性能; 发动机故障发生率大大降低。
喷油时间控制
各种矫正
(2/11)

2. 预热加浓
校正期间 的喷油量


冷却液温度(C)

0
发动机ECU在冷机时,因为此时燃油不容易雾化,所以,燃油的喷射量就需增加。 从而达到较好的行车性。 最大校正量是常温下的两倍。
维修提示: 如果温度传感器失灵时,可考虑这是引起发动机的行车性较差的原因之一。

电控汽油喷射系统(EFI)简介

电控汽油喷射系统(EFI)简介

进气支管绝对压力传感器 1-过滤器;2-混合集成电路; 3-压力转换
元件;4-滤清器 节气门位置传
感器
节气门位置传感器用来检测 节气门开度。

它安装在节气门 体上,通过节气门轴与节气门 联动。

节气门位置传感器将节 气门开度转换成电信号输送 到ECU ECU 根据节气门不同 的开度决定控制方式和对喷 油时间进行修正。

电控汽油喷 射系统中使用的节气门位置 传感器有线性输出型节气门 位置传感器和开关量输出型 节气门位置传感器等。

线性输出型节气门位
导入新 课
讲授新 课
学生按要 求进行实 践训练
进r 血营刨
线性输出型节气门位置传感。

电控燃油喷射系统名词解释

电控燃油喷射系统名词解释

电控燃油喷射系统名词解释摘要:一、电控燃油喷射系统的概念与原理二、电控燃油喷射系统的主要组成部分三、电控燃油喷射系统的工作过程四、电控燃油喷射系统的优点与缺点五、如何正确使用和维护电控燃油喷射系统正文:电控燃油喷射系统(Electronic Fuel Injection,简称EFI)是一种通过电子技术实现燃油精确喷射的技术,广泛应用于汽车、摩托车等内燃机领域。

相较于传统的化油器,电控燃油喷射系统具有更高的燃油利用率、更低的排放污染和更佳的性能表现。

一、电控燃油喷射系统的概念与原理电控燃油喷射系统通过发动机控制单元(ECU)对燃油喷射量、喷射时机和喷射速度进行实时控制,以实现最佳燃烧效果。

系统主要由发动机控制单元、燃油泵、喷油器、空气流量计、氧传感器等组成。

二、电控燃油喷射系统的主要组成部分1.发动机控制单元(ECU):负责接收各种传感器信号,计算燃油喷射量,并向喷油器发出指令。

2.燃油泵:将燃油从油箱输送到发动机燃烧室。

3.喷油器:根据ECU的指令,将燃油以雾化形式喷射到进气道或燃烧室内。

4.空气流量计:监测进入发动机的空气质量,为ECU提供燃油喷射的参考依据。

5.氧传感器:检测排气中的氧含量,反馈给ECU,用于调整燃油喷射量和点火时机。

三、电控燃油喷射系统的工作过程1.发动机启动:ECU根据曲轴位置传感器信号,控制喷油器喷射燃油。

2.怠速控制:ECU根据空气流量计和氧传感器信号,调整燃油喷射量,保持发动机稳定运转。

3.加速响应:ECU收到加速踏板信号,增加燃油喷射量,使发动机输出功率提高。

4.负载变化响应:ECU根据氧传感器信号,实时调整燃油喷射量,保持燃烧室内燃油与空气的混合比例。

四、电控燃油喷射系统的优点与缺点优点:1.提高燃油利用率,降低油耗。

2.减少排放污染,环保性能好。

3.发动机性能稳定,驾驶舒适度提高。

4.易于实现发动机的智能化控制。

缺点:1.系统复杂,维修成本相对较高。

2.对燃油品质要求较高,否则容易导致喷油器堵塞。

说明电控燃油喷射系统的控制功能

说明电控燃油喷射系统的控制功能

说明电控燃油喷射系统的控制功能1. 引擎的“聪明助手”首先,电控燃油喷射系统(简称EFI)就像是引擎的“聪明助手”,负责精确控制燃油的喷射。

想象一下,这系统就像是一个高智商的“厨师”,它根据引擎的需求,调配合适的“调料”——也就是燃油。

举个简单的例子,车子刚启动的时候,需要更多的燃油来帮助引擎顺利启动。

EFI系统就像是在厨房里对着锅一边搅拌一边加料,确保燃油喷射量刚刚好,既不会过多浪费,也不会不足影响车子的表现。

2. 追踪“引擎健康”2.1 实时调整然后,这个系统可是能时刻追踪引擎的“健康状况”。

它会根据引擎的温度、转速、负荷等各种信息,实时调整燃油的喷射量。

就像一个细心的医生,通过不断监测病人的生命体征,随时调整治疗方案,保证车子在各种驾驶条件下都能有最佳的表现。

2.2 节能省油说到节能,这系统也是个“大力士”。

它通过精确控制燃油喷射量,确保燃油的燃烧效率最高,达到省油的效果。

你可以把它当成一个精打细算的理财师,精打细算每一分钱的开支,让车主的钱包也能松一口气。

与传统的喷油方式相比,这系统在节能减排方面可是相当出色的,让你不仅开车轻松,还能环保一点。

3. 提升驾驶体验3.1 平稳驾驶再来聊聊驾驶的感觉。

电控燃油喷射系统让你的驾驶变得更加平稳、舒适。

你可以想象,当你加油时,车子不会像之前那样忽然猛地一冲,而是像一只温顺的小猫,稳稳地加速。

这种平稳的驾驶体验,让你每一次出行都能舒心不少。

3.2 减少故障最后,这系统还能大大减少引擎的故障概率。

它的精准控制不仅让车子表现更好,还能降低引擎的磨损,延长使用寿命。

就像一个精密的时钟,运行得非常平稳而且持久,这样你就不用经常跑维修店,省下了不少麻烦。

总之,电控燃油喷射系统真是汽车里的“超级英雄”,从精确控制燃油喷射到提升驾驶体验,再到节能减排,它无所不包,无所不能。

希望你对这个小小的“魔法师”有了更清楚的了解,不妨多多留意它带来的变化,你会发现驾车的乐趣更多了。

电子控制燃油喷射系统(EFI)与缸内直喷技术(FSI)

电子控制燃油喷射系统(EFI)与缸内直喷技术(FSI)

• FSI有两种供油模式,即分层注油和均匀注油模式。 发动机低速或中速运转时采用分层注油模式。此时节气门 为半开状态。这种分层注油方式可充分提高发动机的经济 性,因为在转速较低、负荷较小时除了火花塞周围需要形 成浓度较高的油气混合物外,燃烧室的其它地方只需空气 含量较高的混合气即可,而FSI使其与理想状态非常近; 当发动机高速运转时,节气门完全开启,大量空气高速进 入汽缸与汽油均匀混合。从而促进燃油充分燃烧,提高发 动机的动力输出。 • 电脑不断的根据发动机的工作状况改变注油模式,始终保 持最适宜的供油方式。燃油的充分利用不仅提高了燃油的 利用效率和发动机的输出而且改善了排放。
• 1.燃油供给系统 • 由油箱,电动燃油泵,燃油滤清器,燃油 分配管,油压调节器(调压器),喷油器 (喷嘴)等组成
油压调节器作用:稳定喷油压力, 油压调节器作用:稳定喷油压力,使它与进气歧管 的压力差保持恒定水龙头喷水压力决定因素:
• 喷水时间 • 喷水压力 • 水龙头阀门开度
功用:供给喷油器一定压力的燃油, 功用:供给喷油器一定压力的燃油,喷油器则根据电 脑指令喷油。 脑指令喷油。
• 汽油机稀薄技术的前提是发动机采用缸内 直喷技术 • 所谓稀薄燃烧技术即空燃比远远大于14.7的 稀薄混合气仍能顺利点燃.通过精确控制, 使混合气的形成集中在火花塞附近区域, 在这一小区域空燃比达到14.7,点燃后产生 局部燃烧,继而向整个燃烧室扩散.
• 空燃比 • 可燃混合气中空气质量与燃油质量之比为 空燃比 • 14.7为理想混合气,即1KG汽油完全燃烧所 需空气质量 • 小于14.7为浓混合气,大于14.7为稀混合气
efi进气压力传感器本田车用进气压力传感器mapefi磁电式曲轴位置传感器cpsefi光电式曲轴位置传感器cpsefi霍耳式曲轴位置传感器cpsefi水温传感器ect或ctsefi氧传感器osecuecu根据空气流量计信号和发动机转速信号确定基本喷油时间在根据其他传感器对喷油时间进行修正并按最后确定的总喷油时间向喷油器喷油空气流量计或进气管绝对压力传感器发动机转速传感器其他传感器基本喷油量修正喷油量喷油器电控燃油喷射efi系统的基本原理缸内直喷技术又叫燃料分层喷射技术英文缩写fsi简单讲就是将高压燃油直接喷入汽缸内部先进的缸内直喷式汽油发动机采用类似于柴油发动机的供油技术fsi有两种供油模式即分层注油和均匀注油模式

SEFI(顺序电子多点喷射)和EFI(电子控制式燃油喷射装置)的区别

SEFI(顺序电子多点喷射)和EFI(电子控制式燃油喷射装置)的区别

SEFI(顺序电子多点喷射)和EFI(电子控制式燃油喷射装置)的区别SEFI(顺序电子多点喷射),按照气缸点火顺序进行燃油喷射。

比如说4缸的就按照1-3-4-2 的顺序将燃油喷射到各缸的进气歧管里面。

控制精度更高,更省油。

燃油混合也比较充分,对降低有害物的排放也有好处。

容易达到国家规定的欧3排放标准。

EFI(电子控制式燃油喷射装置),是根据曲轴每转一圈,所有喷油器同时喷油,曲轴转两圈发动机经过1个工作循环,活塞往返2次;每次喷油时间仅为所需时间的一半,所以在一个循环中,需要两次喷油。

相比“顺序电子多点喷射”,控制相对简单,油耗较高,有害物的排放也相对较高,要达到欧3排放标准还需要一些其他的附属电路丰田的发动机丰田发动机以高性能、环保为特色。

采用了DOHC结构和VVT-i系统,提高发动机动力并减少污染尾气排放。

DOHC和VVT-i都属于丰田的AZ系列发动机,现在广汽丰田也自己成立专门的发动机公司。

长安福特的发动机福克斯采用了Duratec HE发动机,该发动机具有以下优点:1.铝合金材料,和同排量发动机相比重量减轻18%2.反置式设计(前进后排),并加大进气门与排气门角度,大大提高发动机效率。

3.舍弃一般车种使用的皮带传动,采用精钢链条,传动更准确、可靠性更高,同时终身免更换。

4.将火花塞位置向中心调整,让进出气阀门座更快冷却,燃烧效率更高。

5.独特的废气循环系统将燃烧不完全的气体导入进气歧管再度利用,减少废气同时节能。

6.蝴蝶阀由发动机电脑控制模块控制,能更有效地调节燃油汽缸的速率和旋转角度。

7.32位电脑精确控制直接点火,让点火时间更精确,动力更强劲。

8.SEFI程序式多点燃油喷射系统,依照点火顺序,精确控制喷油,动力强劲、精准省油。

东风本田的发动机和广汽一样,东风本田也有自己的发动机研发公司。

第八代雅阁发动机是本田ACCORD车型五年一次的大换型产品,由2.0L i-VTEC(Intelligent Variable Valve Timing And Lift Electronic Control智能可变气门正时及升程控制系统)、SOHC (Single Overhead Camshaft单顶置凸轮轴)发动机;2.4L i-VTEC、DOHC(Double Overhead Camshaft双顶置凸轮轴)发动机和3.5L i-VTEC、VCM(Variable Cylinder Management System 可变汽缸管理系统)、SOHC发动机组成。

电控汽油喷射系统

电控汽油喷射系统

根据发动机转速和负荷,通过查询预 先标定的MAP图来确定基本喷油量。
根据发动机工况和燃油性质,优化喷 油时刻,提高燃烧效率。
闭环控制
利用氧传感器检测排气中的氧含量, 对喷油量进行实时修正,以实现空燃 比的精确控制。
点火提前角控制策略
基本点火提前角确定
01
根据发动机转速和负荷,通过查询MAP图或计算得到基本点火
ቤተ መጻሕፍቲ ባይዱ
发动机启动困难
首先检查点火系统是否正 常,然后检查燃油压力是 否足够,最后清洗喷油嘴 和进气歧管。
发动机怠速不稳
先检查空气滤清器是否堵 塞,再检查节气门位置传 感器是否正常,最后调整 怠速控制阀。
发动机加速无力
检查燃油滤清器是否堵塞 ,清洗喷油嘴和进气歧管 ,检查点火系统是否正常 。
使用注意事项和误区提示
在驾驶员踩下油门踏板时 ,迅速增加进气量和喷油 量,使发动机转速快速提 升到目标值。
怠速熄火控制
在发动机长时间处于怠速 状态且驾驶员未踩下油门 踏板时,自动切断燃油供 应以降低油耗和排放。
排放控制策略
1 2 3
三元催化转化器控制
通过精确控制空燃比,使排气中的CO、HC和 NOx在三元催化转化器中得到充分转化和降低。
氧传感器闭环控制
利用氧传感器实时监测排气中的氧含量,对喷油 量进行精确调整,确保三元催化转化器的高效工 作。
蒸发排放控制系统
通过活性炭罐吸附油箱和化油器中的汽油蒸气, 并在适当时候将其送入发动机燃烧,降低蒸发排 放对环境的影响。
04
故障诊断与排除方法
常见故障类型及原因
发动机无法启动或启动困难
可能原因包括点火系统故障、燃油系统压力 不足、喷油器堵塞等。

EFI电子控制汽油喷射系统结构、原理、检修

EFI电子控制汽油喷射系统结构、原理、检修

进气 压缩 作功 排气 作功 进气 压缩 排气 进气
4 作功 2 压缩 喷油器
图5 四缸机的顺序喷射
当第二缸在排气上止 点时:第二缸喷油 ECU +B(12V)
气缸
演示
演示
曲轴转角
180° 360° 540° 720° 1 进气 压缩 作功 排气
3 排气
凸轮轴位置传感器 或曲轴位置传感器
进气 压缩 作功 排气 作功 进气 压缩 排气 进气
第二节与化油器装置相比EFI电子控制汽油喷射 系统的优点
1、各缸混合气分配均匀。 2、发动机在任何转速和负荷下均可获得精确浓度的混合气。 3、加速性能好,精确计算喷油量。 4、起动性能好,且发动机起动时间短(冷起动、低温补偿)。 5、减速时停止供油,当节气门关闭而发动机转速超过预定转速时,喷油器 停止供油。 6、充气效率高、动力性能好,发动机功率可提高10%。 7、压缩比提高(由于雾化质量好、不需要进气预热,从而使进气温度降低、 有利于提高压缩比)。 8、可以实现稀薄燃烧,节省燃油5—20%。 9、有利于采用增压技术。 10、可以改善排放、降低噪音。
ECU
+B(12V)
气缸
曲轴转角
180° 360° 540° 1 进气 压缩 作功 排气
5排气 进气
凸轮轴位置传感器 或曲轴位置传感器
压缩 作功 排
3功 排气
进气 压缩 作功
6 作功 排气 进气 压缩 2 压缩 作功 排气 进气 压 4进 压缩 喷油器
图4 分组喷射 作功 排气 进气
当第一缸在排气上止 点时:第一缸喷油 ECU +B(12V)
ECU
+B(12V)
气缸
曲轴转角
180° 360° 540° 720° 1 进气 压缩 作功 排气

电控燃油喷射系统(EFI)图解分析

电控燃油喷射系统(EFI)图解分析

电控燃油喷射系统(EFI)图解EFI的优点:1、在任何情况下都能获得精确的空燃比2、混合气的各缸分配均匀性好3、采用EFI的汽车加速性能好4、充气效率高5、良好的启动性能和减速减油或断油EFI的工作原理:电控汽油喷射系统主要由下列四部分组成:进气系统供油系统控制系统点火系统如下图:无请空赏和片1、进气系统如下图:2、供油系统主要由油压调节器、喷油器和喷油泵组成。

供油系统的工作原理图:喷油泵工作原理燃油泵装在油箱内,涡轮泵由电机驱动。

当泵内油压超过一定值时,燃油顶开单向阀向油路供油。

当油路堵塞时,卸压阀开启,泄出的燃油返回油箱。

如下图:喷油器工作原理:喷油器是电磁式的。

当喷油器不工作时,针阀在回位弹簧作用下将喷油孔封住。

当ECU的喷油控制信号将喷油器的电磁线圈与电源回路接通时,针阀才在电磁力的吸引下克服弹簧压力、摩擦力和自身重量,从静止位置往上升起,燃油喷出。

多点喷油系统中喷油器通过绝缘垫圈安装在进气歧管或进气道附近的缸盖上,并用输油管将其固定。

多点喷油系统每缸有一个喷油器。

英文称为 multi point injection .简称为MPI。

如下图:喷油器单点喷油系统的喷油器安装在节气门体上,各缸共用一个喷油器。

英文为single point injection. 简称为SPI。

如下图:油压调节器工作原理油压力调节器的功能是调节喷油压力。

喷油器喷出的油量是用改变喷油信号持续时间来进行控制的。

由于进气歧管内真空度是随发动机工况而变化的,即使喷油信号的持续时间和喷油压力保持不变,工况变化时喷油量也会发生少量的变化,为了得到精确的喷油量,必须使油压A和进气歧管真空度B的总和保持不变。

如下图:3、控制系统控制系统由传感器、执行器和电子控制单元三部分组成如下图:传感器传感器是感知信息的部件,负责向ECU提供发动机和汽车运行状况。

如下图:ECUECU的功用是采集和处理各种传感器的输入信号,根据发动机工作的要求(喷油脉宽、点火提前角等),进行控制决策的运算,并输出相应的控制信号。

电控燃油喷射系统1

电控燃油喷射系统1

电控燃油喷射系统一、电控燃油喷射系统(EFI)的产生传统的化油器不能满足现代汽车对发动机高经济性、低污染的要求。

人们开始研究怎样同时解决汽车排气净化和节油的两大问题。

从60年代初开始,人们首先对点火系统进行改造,采用无触点电子点火装置。

它克服了传统的触点式点火装置的缺陷,提高了点火能量,在节油和排气净化方面都有较大改善。

但是,由于分电器中的运动部件会产生磨损,一旦驱动部件松旷就会影响点火正时,失去无触点电子点火的优点。

而且由于仍采用机械式点火提前装置,不能实现点火特性的多维调节。

今天,发动机应该控制的项目有:点火时刻、空燃比、排气再循环(EGR)和怠速速度等。

目的在于获得高功率、大扭矩、低油耗、清净的排气以及行驶稳定性。

电子控制是使上述项目得到最佳调节的最好方法,从60年代后半期开始,随着半导体技术的高速发展,尤其是微型计算机的出现导致电控燃油喷射系统的产生,使汽车发动机进入一个电于控制的新时代。

1967年,德国Bosch公司研制成D型电子控制汽油喷射系统,随后又开发了L型电子控制喷射系统,后来这些技术被不断改进、完善。

到1979年,发动机电子控制技术己达到相当高的程度。

电控燃油喷射系统(Electronic fuel injection简称EFI)就是用计算机控制燃油供应量的装置。

电控燃油喷射系统中的计算机综合各种不同传感器送来的信息作出判断,控制喷油器以一定的压力,正确迅速地把燃油喷射到发动机进气歧管里,与吸入的空气混合后,进入发动机气缸,配合电于控制点火在最佳时刻点燃可燃混合气。

二、电控燃油喷射系统的优点电控燃油喷射系统与传统的化油器装置相比具有以下优点:1、发动机且起动时间短。

通常设有冷起动喷油器,故可改善低温起动性能,起动发动机的时间只是传统化油器的50%。

力性强。

采用EFI后,发动机的进气可不必预热,可以吸入密度较大的冷空气,同时进气歧管阻力减小,所以充气系数提高。

热效率和充气系数的提高,使发动机的输出功率提高,其功率可增人5%~10%,扭力可增大7%。

燃油供给与调控系统—电喷控制系统(内燃机车柴油机课件)

燃油供给与调控系统—电喷控制系统(内燃机车柴油机课件)
• EMDEC系统工作原理 • EMDEC系统的主要元件——
电喷控制单元ECM:电喷盒(发送盒/接收盒) 电源:74V→ 24V→ECM 接口模块:司控器← →ECM 传感器:系统传感器/性能传感器/保护传感器 线束(电缆):EMDEC系统个硬件间的连接与通信
调速器控制喷油系统原理框图 控制杠杆系统
第十一讲 电喷控制系统
• 16V265H型柴油机的供油控制 • GEVO16型柴油机的供油控制 • R12V280ZJ型柴油机的供油控制
电子控制喷油系统原理框图 电控喷油泵 (电磁阀)
传感器
电喷控制单元ECU
执行机构
感知控制参数的变化
用来计算处理控制参数的运算程序
16V265H型柴油机的供油控制
机械喷油泵
调控传动箱
(联量的调节 感知曲轴转速变化
补充:调速器控制喷油系统

第17讲 EFI 电控燃油喷射系统

第17讲 EFI  电控燃油喷射系统

调压器 喷油器
节气门
节气门体 位置传感器
(2)多点燃油喷射系统
多点燃油喷射系统根据喷油器的安装位置又可分为进气 道喷射(PFI) 和缸内喷射(GDI)。
①进气道喷射(PFI)
在每一个气缸的
进气门前安装一个喷
气门
油器,喷油器喷射出
燃油后,在进气门附
近与空气混合形成可
燃混合气,这种喷射
系统能较好地保证各
电子燃油喷射系统
7.2.3 EFI系统的分类
按点燃油喷射系统
(1)单点燃油喷射 系统
单点燃油喷射 系统是在节气门体 上安装一个或两个 喷油器,向进气歧 管中喷射燃油形成 可燃混合气。这种 燃油喷射系统对混 合气的控制精度比 较低,各个气缸混 合气的均匀性也较 差,现已很少使用
分组喷射
——将各气缸的喷油器分成几组,同一组喷油器同时喷 油或断油。
喷油
0 180 360 540
进压作排 气缩功气 排进压作 气气缩功 作排进压 功气气缩 压作排进 缩功气气
喷油
顺序喷射
——喷油器由电脑分别控制,按发动机各气缸的工作顺
序喷油。
喷油
0 180 360 540
进压作排
1气 缩 功 气
供油系统组件---燃油压力调节器
➢ 作用:使燃油分配管的压力与进气歧管之间的压力差保持恒定,使喷油器的 喷油量唯一地取决于喷油器的开启时间。 ➢ 组成:主要由阀片、膜片、膜片弹簧和外壳组成
供油系统组件---燃油压力调节器
➢ 原理:发动机工作 时,燃油压力调节器 膜片上方承受的压力 为弹簧压力和进气管 内气体的压力之和, 膜片下方承受的压力 为燃油压力,当压力 相等时,膜片处于平 衡位置不动。当进气 管内气体压力下降时 ,膜片向上移动,回 油阀开度增大,回油 量增多,使输油管内 燃油压力也下降;反 之,进气管内气体压 力升高时,燃油的压力 也升高。

电控燃油喷射系统工作原理

电控燃油喷射系统工作原理

电控燃油喷射系统工作原理
电控燃油喷射系统(Electronic Fuel Injection System,简称EFI 系统)是一种利用计算机控制引擎燃油喷射量和喷射时机的燃油供给系统。

它的工作原理主要包括以下几个步骤:
1. 燃油供给:燃油经过燃油泵送压力后进入燃油喷射嘴,喷射嘴是由喷油电磁阀控制的。

燃油供给系统还包括燃油滤清器、燃油沉淀器等组件。

2. 空气供给:空气通过空气滤清器进入进气歧管,然后经过节气门进入发动机气缸。

3. 传感器控制:系统中配备了多个传感器,如空气流量传感器、氧气传感器、水温传感器等,用于监测发动机状态和环境参数。

这些传感器将收集的数据发送给控制器进行分析和计算。

4. 控制器计算:控制器是EFI系统中的核心部件,它根据传感器采集到的数据,通过内部的计算算法和存储的映射表,来确定当前的喷油量和喷油时机。

5. 喷油:根据控制器的指令,喷油器打开喷油电磁阀,让精确计算的燃油以适当的喷射时间和喷射量喷入发动机气缸中。

喷油时机和喷射量的精确控制能够提高燃烧效率,减少废气排放。

6. 点火系统:与EFI系统配套使用的还有点火系统,它控制着火花塞的点火时机和点火能量,以确保燃烧正常进行。

通过以上步骤,EFI系统可以实现对引擎燃油喷射量和喷射时机的精确控制,提高燃烧效率,降低废气排放,以及提升发动机的动力性能和燃油经济性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Overview of theFuel Delivery SystemThe fuel delivery system incorporates the following components:1)Fuel tank (with evaporative emissionscontrols)2)Fuel pump3)Fuel pipe and in line filter4)Fuel delivery pipe (fuel rail)5)Pulsation damper (many engines)6)Fuel injectors7)Cold start injector (most engines)8)Fuel pressure regulator9)Fuel return pipeFuel is pumped from the tank by an electric fuel pump, which is controlled by the circuit opening relay. Fuel flows through the fuel filter to the fuel rail (fuel delivery pipe) and up to the pressure regulator where it is held under pressure. The pressure regulator maintains fuel pressure in the rail at a specified value above intake manifold pressure. This maintains a constant pressure drop across the fuel injectors regardless of engine load. Fuel in excess of that consumed by engine operation is returned to the tank by way of the fuel return line. A pulsation damper, mounted to the fuel rail, is used on some engines to absorb pressure variations in the fuel rail due to injectors opening and closing.The fuel injectors, which directly control fuel metering to the intake manifold, are pulsed by the ECU. The ECU completes the injector ground circuit for a calculated amount of time referred to as injection duration or injection pulse width. The ECU determines whichair/fuel ratio the engine runs at based upon engine conditions monitored by input sensors and a program stored in its memory. During cold engine starting, many engines incorporate a cold start injector designed to improve startability below a specified coolant temperature.Fuel Delivery andInjection Control ComponentsFuel PumpsOver the years, Toyota has used two types of electric fuel pumps on EFI systems. The early Conventional EFI system used an externally mounted in-line pump. These roller cell pumps incorporate an integral pressure pulse damper or silencer designed to smooth out pressure pulses and provide quiet operation.Later model production engines utilize an in-tank pump integrated with the fuel sender unit. These turbine pumps operate with less discharge pulsation and run quieter than the in-line variety. In-tank pumps can be serviced by removing the fuel sender unit from the tank. Make sure that the pump coupling hose is in good condition prior to replacing thepump.Both pumps share many features. They are referred to as wet pumps because the electric motor operates immersed in fuel. Passing fuel through the pump motor aids incooling and lubrication.An outlet check valve is incorporated in the discharge outlet to maintain residual or rest pressure when the engine is turned off. This reduces the possibility of vapor-lock andimproves starting characteristics. A pressure relief valve is used to prevent over-pressure and potential fuel leakage in the event that pressure or return lines become restricted.Fuel Pump Electrical Controlsand Circuit Opening RelayCircuit Opening Relay Circuits There are three types of fuel pump control circuits used on Toyota's EFI engines. One type of control, A second type of fuel pump control uses the ECU to control circuit opening relay run winding current. Used on engines equipped with D type EFI and on the 7M-GTE, which uses a Karman vortex air flow meter, this used exclusively with L type injection, utilizes the air flow meter Fc contact to complete the circuit opening relay run winding ground. This is a safety feature which prevents the fuel pump from operating when the engine is not running.safety feature prevents fuel pump operation whenever the ECU fails to see an Ne (engine rpm) signal. Under these conditions, the ECU removes ground from the circuit opening relay run winding.Fuel Pump Speed ControlThe third type of fuel pump control circuit utilizes a two-speed pump electrical circuit. Depending upon engine, the circuit opening relay may be driven by the ECU or by the air flow meter Fc contact. Pump current, however, is supplied either through a current limiting resistor or directly to the pump depending on engine load, rpm and status of the STA signal.When the engine is cranked, or operated at high speed and/or heavy load, the ECU turns off TR1, closing contact A of the Fuel Pump Control Relay. This allows current to flow directly to the fuel pump, causing it to run at high speed.Under all other operating conditions, the ECU turns on TR1, which energizes the Fuel Pump Control Relay. This closes relay contact B and forces current to flow through the resistor, causing the pump to run at low speed. The Fuel Pump Speed Control system is designed to reduce electrical demand and pump wear when fuel demand is low while delivering adequate fuel volume when demand is high.Fuel Pump Test TerminalsTo facilitate testing and allow pump operation independent of the air flow meter or ECU control, all engines utilize a fuel pump test connector.There are two basic types of fuel pump test circuits. Most late model TCCS engines use an Fp test terminal located in the check connector. With the ignition switch on, jumpering +B to the Fp terminal sends current-directly to the fuel pump.Earlier engines use a jumper connector referred to as a 2P fuel pump check connector. This connector, when jumpered, supplies ground for the circuit opening relay run winding, allowing it to operate independently of the air flow meter Fc contact.Fuel FilterThe fuel filter, which is installed between the pump and the fuel rail, removes dirt and contaminants from the fuel before it is delivered to the injectors and pressure regulator.Although it is possible for the fuel filter to become contaminated or even completely clogged, this is an unlikely condition because of the high capacity and quality of Toyota's filter. This filter is considered to be maintenance free and no service interval is recommended for periodic replacement.In the event that this filter becomes restrictive to fuel flow, the engine will suffer from surging, loss of power under load and hard starting problems. If it becomes necessary to replace this filter there are some importantsafety matters to consider. Fuel Delivery Pipe (Fuel Rail)The fuel delivery pipe, commonly referred to as a fuel rail, is designed to hold the injector in place on the intake manifold. Mounted to the fuel delivery pipe are the pulsation damper (when used) and the fuel pressure regulator. The fuel delivery pipe acts as a reservoir for fuel which is held underpressure prior to delivery by the fuel injector.Fuel Pressure RegulatorThe fuel pressure regulator is a diaphragm operated pressure relief valve. To maintain precise fuel metering, the fuel pressure regulator maintains a constant pressure differential across the fuel injector. This means that the pressure in the fuel rail will always be at a constant value above manifold absolute pressure.The specified pressure differential is either 36 PSI (2.55 kg/CM2) or 41 PSI (2.90kg/CM2) depending on engine application.* Maintenance of this pressure differential is accomplished by balancing a spring, assisted by manifold pressure, against a diaphragm which holds a ball valve on itsseat.Pulsation DamperAlthough fuel pressure is maintained at a constant value by the pressure regulator, the pulsing of the injectors causes minorfluctuations in rail pressure. The pulsation damper acts as an accumulator to smooth out these pulsations, ensuring accurate fuel metering.The fuel pulsation damper is not used on all engines but can be used as a fuel pressure quick check on those engines which it is used. Noting the diaphragm, when pressure is present, the bolt head in the center of the diaphragm extends out flush with the top ofthe damper case.Fuel Pressure Up SystemThe fuel pressure up system (FPU) is designed to reduce the possibility of vapor formation in the fuel rail after hot soak and is used on many TCCS engines. It utilizes an ECU controlled Vacuum Switching Valve (VSV) to open an atmospheric bleed into the manifold reference line to the fuel pressure regulator.This solenoid is energized during hot engine cranking and for up to two minutes after the engine starts. The ECU grounds the FPU VSV based on input received from STA and THW signals. Energizing the solenoid bleeds atmospheric pressure into the fuel pressure regulator vacuum chamber increasing fuel rail pressure to its maximum level.On some engines, the ECU also monitors engine load and rpm signals (Vs, PIM and Ne) and energizes the VSV under heavy load and high rpm operation to ensure maximum fuel rail pressure.Fuel Pressure and Volume TestingSafety Tips: Prior to installing a fuel pressure gauge andchecking fuel pressure, residual pressure must be safely relieved to reduce the hazard of fire when the fuel line is opened. It is advisable to have a fire extinguisher whenever opening the fuel system.Common gauge hookup locations are at the fuel rail, fuel filter, or the cold start valve using SST #09268-45012 and #09268-45013-01. Repair manual procedures should always be followed. Whenever a fuel hoseconnection secured with a copper sealing gasket is opened, a new gasket should be used when the hose is re-secured after service.Fuel pressure and volume tests can be divided into six separate areas.The following tests and specifications are general guidelines; consult the repair manual for actual specifications andprocedures.CAUTION: Perform this test only long enough todetermine if pressure rises above minimum specification; risk exists of blowing coupler hose off of pump. This test is only necessary if other pressure tests indicate lower thannormal fuel pressure.Fuel InjectorsThe fuel injector is an electro-mechanical device which meters, atomizes and directs fuel into the intake manifold based on signals from the ECU driver circuit(s). All Toyota engines used in the U.S.A. position the injectors, one per cylinder, directly behind the intake valve. The injectors are installed with an insulator/seal on the manifold end to isolate the injector from heat and to prevent an atmospheric pressure leak into the manifold. The fuel delivery pipe serves tosecure the injector in place. Fuel is sealed on the delivery pipe end by an O-ring andgrommet.To reduce the possibility of vapor lock, which tends to occur during high temperatureoperation, the 3S-GTE and 2TZ-FE engines use a side feed injector. This type of injector seals with an upper and lower O-ring. O-rings and insulators should always be replaced when injectors are removed; theyshould never be re-used.Air Assist SystemTo promote better fuel atomization, the 3VZ-FE engine uses an air assist system which meters air from the Idle Speed Control (ISC) valve directly to the nozzle of the fuel injector. An adaptor for the air assist system is added to a standard two-hole type injector to provide an air distribution gallery. Air is mixed with fuel in the chamber formed by the injector insulator grommet and the lower O-ring.Types Of Injectors In UseToyota currently uses four different types of fuel injectors depending on engine application. These can be broken down into pintle type and hole type (cone valve and ball valve), high resistance and low resistance. Pintle Type Injector - This was the original design used on early Conventional and EFI/ TCCS engines. This injector gets its name from the type of valve used to control fuel atomization and flow. It offers good atomization of fuel but is susceptible to deposit buildup on the pintle valve. Deposits cause restriction to fuel flow promoting lean fuel delivery and altered injector spray pattern.Hole Type Injector - Hole type injectors were introduced on later model EFI/TCCS engines to reduce concerns with injector deposits. The inject.on valve is recessed from the tip of the injector and fuel is delivered through holes drilled in a director plate at the injector tip. The hole type injector offers good fuel atomization while demonstrating better resistance to deposit buildup compared to the pintle design. There are currently three designs of hole type injectors in use, including a side feed injector used on the 3S-GTE and 2TZ-FE engines.High And Low Resistance Injector Windings There are two different types of injector coil windings used depending on the type of drive circuit used and whether or not an external resistor is being used.Low resistance injectors, which typically range between 2 - 3 Ω @ 70'F, are used with an external resistor in a voltage controlled driver circuit. Low resistance injectors are also used without an external resistor in a current controlled driver circuit.High resistance injectors, which typically run about 13.8 Ω @ 70'F, do not require the use of an external resistor in a voltage controlled driver circuit.Injector Driver CircuitsCurrent is supplied to the ECU driver circuits (#10 and #20 in example) through the fuel injectors. Current flows either directly from the ignition switch or from the EFI Main Relay. When the ECU driver circuit turns on, current flows to ground through the injector solenoid coil. The magnetic field created causes the injector to open against spring tension. When the ECU driver circuit turns off, the spring closes the injector valve. There are two common types of driver circuits currently in use on Toyota EFI engines; both of these driver circuits work on the voltage control principle. One uses an external solenoid resistor and a low resistance injector, the other using a high resistance injector without the solenoid resistor. In both cases, the high circuit resistance is required to limit current flow through the injector winding. Without this control of the current flow through the injector, the solenoid coil would overheat, causing injector failure.A third type of driver circuit was used byToyota on overseas models using the 4A-GE engine with D type EFI. Referred to as a current controlled driver circuit, it has never been used by Toyota on vehicles sold in the U.S.A. but is widely used by other auto manufacturers. This type of driver circuit uses a low resistance injector and limits current flow by controlling the gain of thedriver transistor. The advantage to the current controlled driver circuit is the short time period from when the driver transistor goes on to when the injector actually opens. This is a function of the speed with which currentflow reaches its peak.In terms of injection opening time, theexternal resistor voltage controlled circuit is somewhat faster than the voltage controlled high resistance injector circuit. The trend, however, seems to be moving toward use of this latter type of circuit due to its lower cost and reliability. The ECU can compensate for slower opening time by increasing injector pulse width accordingly.Caution: Never apply battery voltage directly across a low resistance injector. This will cause injector damage from solenoid coil overheating. Use the proper SST inspectionwire will ensure proper series resistance.Fuel Injection Patternand Injection TimingFuel injectors can be pulsed in one of four patterns depending on application. These injection patterns are:• Simultaneous• Two groups of two injectors each(four cylinder engines)• Three groups of two injectors each(six cylinder engines)• Independent (sequential)The following chart represents fuel injection grouping and timing patterns.Because injection timing is based on engine rpm, the ECU must receive an rpm signal to operate the injector driver circuits. With Conventional EFI, this signal comes directly from the coil and is identified as IG. With TCCS, the rpm and crankshaft position identification signals come from the Ne and G1 sensors located in the distributor. If these signals are lost, the ECU will not pulse the injectors.Fuel Injection VolumeFuel injection volume determination is based upon the value of input sensor signals. In addition to volume control, the ECU can pulse the injectors either synchronously or non-synchronously with ignition events. Both of these topics will be addressed in Chapter 5, "The Electronic Control System." Common ServiceConcerns and SolutionsInjector Maintenance and Cleaning Although it is not the problem it was back in the early to mid '80s, fuel injector restriction is still an issue which needs to be addressed from both a preventative maintenance and repair viewpoint.The best method of injector maintenance is continuous use of high quality fuels with a level of detergency adequate to keep the injector nozzles clean. It is also prudent to offer injector cleaning service using the Toyota approved injector cleaning system and solvents. This service can be offered whenever the vehicle is in for major service to maintain good engine performance and reduce the possibility of expensive injector replacement due to nozzle build-up.It has been established that engines using hole type injectors tend to have fewer problems with fouling than those with pintle type injectors. It has also been established that use of low quality fuels which lack adequate detergent additives can lead to injectors which become flow restrictive or which develop poor spray patterns. When an injector becomes flow restricted, the volume of fuel delivered for a given injection duration will be reduced. This condition will cause lean driveability problems like stumble, hesitation, backfire and surging, especially during open loop operation.When an injector develops a poor spray pattern, fuel is not atomized and vaporized properly. It is entirely possible that the correct volume of fuel will be delivered to the intake manifold, however, this fuel will enter the cylinder as liquid droplets and will not burn. This condition will cause increased hydrocarbon emissions and lean driveability problems just as if the fuel delivery were lean. The symptoms of poor spray pattern can be very similar to those of flow restricted injectors.When it comes time to diagnose these two problems, the recommended procedure is to remove the injectors from the engine and bench flow test each injector using the following tools. This procedure is covered in detail in the appropriate repair manuals. The following information covers the generaltest procedure.Caution: Do not create sparks near fuel Injector and graduated cylinder. Keep fire extinguisher nearby while performing thistest.Fuel Starvation Under LoadWhen troubleshooting performanceproblems which are related to insufficient fuel delivery, the fuel pickup filter should not be overlooked as one possible source of restriction. Contaminants in fuels can restrict this in tank filter sufficiently to cause engine performance problems. In many cases, the engine will perform normally under light load conditions.The in-line filter, although considered to be a "lifetime" filter, can also cause fuel starvation under load and hard starting if it becomes restricted.The best method of diagnosing suspected fuel starvation which takes place under load conditions is road testing with a fuel pressure monitor safely installed on the vehicle.Injector Installation CautionsIt is very important to use new O-rings and grommets when installing injectors to prevent leakage of fuel and potential airleaks into the manifold. O-rings should belubricated with gasoline during installation and injectors should be checked for smooth rotation once installed to ensure properseating.Finally, many applications use a bi-directional spray pattern which requires precise positioning of the injector in relation to the cylinder head. Use care to followproper procedures outlined in the appropriaterepair manual.Injector PlacementPlacement of injectors by cylinder is not usually necessary; however, starting with the 1991 Tercel 3E-E engine, injectors with two different hole placements are used. The injectors from cylinders number 1 and 3 are not interchangeable with those installed in cylinders number 2 and 4. Always refer to the appropriate repair manual before installing the injectors on the 3E-E or any other engine as this will ensure correct installation. Failure to properly install and position injectors can cause subtle driveability problems which may be difficult to find after the fact.Cold Start Injection SystemTo improve engine starting when coolant temperatures are low, a supplementary injector is installed on many EFI engines. The cold start injection system consists of the following components: 1) Cold Start Injector 2) Start Injector Time Switch 3) ECU (most EFI/TCCS)Cold Start InjectorThe cold start injector is located at some central location in the intake manifold. It is designed to supplement the cranking air/fuel ratio and prime the intake manifold in much the same way as a choke valve does while cranking a carbureted engine.This injector, controlled by the start injector time switch and ECU, sprays a finely atomized mist of fuel while the engine is cranked to improve the speed with which the engine starts. To prevent engine flooding, the injection time is limited by calibration of the start injector time switch and a timer in theECU.Start Injector Time SwitchThe function of the start injector time switch is to control the cold start injector ground circuit and to determine maximum injection duration while cranking. Its bi-metallic switch is heated by both engine coolant and anelectrical heater.When the engine is cranked, current flows from the STA circuit of the ignition switch to the cold start injector. Current also flows to the heater coils of the start injector time switch. When the bi-metallic contact of the start injector time switch is closed, current flows through the STJ circuit to ground,causing the cold start injector to deliver fuel.As the bi-metallic switch is heated by electric current, it opens, causing the STJ circuit to be broken. This prevents the cold start injector from delivering fuel.Heater coils 1 and 2 are wired toaccommodate heater current flow whether ornot the time switch is closed.When the time switch contact is open, current can still flow through Heat Coil 2,thereby preventing the contact from closing in the middle of a cranking cycle.ECU Cold Start Injector ControlOn most TCCS engines, an alternate ground may be supplied to the cold start injector by the ECU at the STJ terminal. Based on signals from the coolant temperaturesensor, the ECU can operate the cold startThe start injector time switch comes in several calibration values. These values determine the maximum temperature and maximum time that the switch will remain closed while the engine is being cranked. Specifications for switch calibration are stamped on the switch. Applicationinformation is available through parts andtechnical service bulletins.injector for up to three seconds regardless of the status of the time switch. Maximumcoolant temperature for ECU control is 113’F (45’C), above which the cold start injector willnot operate from any source.Alternative Method ofCold Cranking EnrichmentSome engines have eliminated use of a cold start injector entirely. Starting with the '91 model year, cold start injectors have been eliminated on the 3E-E and 4A-FE engine. During cranking, the ECU looks at THW and lengthens injector pulse width sufficiently tostart the engine.SummaryIn this chapter you have learned that the fuel delivery system pumps fuel from the tank to the engine where it is delivered by an electronically controlled fuel injector. The fuel pump delivers fuel with enough pressure and volume so the fuel pressure regulator can hold a constant pressuredifferential between intake manifold and fuel rail. Fuel which is delivered to the fuel rail but not injected into the cylinders is returned to the tank through a return pipe.The fuel pump is energized by the circuit opening relay electrical circuit whenever the ignition switch is on and the engine is running or cranking. Depending on fuel demand, some pumps are operated at two speeds by routing current flow through oraround a special current limiting resistor. The fuel pump electrical circuit has a diagnostic monitor built into the underhood check connector for diagnosis and testing.Fuel injectors are electrically controlled by the ECU and are driven individually, in groups, or simultaneously, depending on engineapplication. Current flow through the injector coil is controlled by using a high resistance coil or a separate injector solenoid resistor. To improve cold starting, some engines are equipped with a cold start injector system which is controlled by a start time switch and/or the ECU.Reprinted with permission from Toyota Motor Sale, U.S.A., Inc. from #850 EFI Course Book.。

相关文档
最新文档