幂的乘方练习题及答案
幂的乘方与积的乘方试题精选(四)附答案
幂的乘方与积的乘方试题精选(四)一.填空题(共30小题)1.计算:[(﹣x)3]2×(x2)3=_________.2.若2×8n×16n=222,则n=_________.3.若a x=2,a y=3,则a2x+y=_________.4.当n为奇数时,=_________.5.计算:22005×0.52004=_________.6.﹣a2•(a2)2=_________.7.若n为正整数,且x2n=3,则(3x3n)2的值为_________.8.若3m=6,9n=2,则32m+2n=_________.9.已知,那么a2x=_________.10.计算:﹣[﹣(﹣1)2]2014=_________.11.如果(a x b y)3=a9b12,那么x=_________,y=_________.12.已知m x=1,m y=2,则m x+2y=_________.13.若a m=3,a n=5,则a2m+n=_________.14.若,则x=_________;若78=m,87=n,则5656=_________.(用含m,n的代数式表示)15.若x5•(x m)3=x11,则m=_________.16.若(xy)n=6,x n=2,则y n=_________.17.48×(0.25)9=_________.18.已知正整数a,b满足()a()b=4,则a﹣b=_________.19.312与96的大小关系是_________.20.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为_________.21.0.24×0.44×12.54=_________.22.计算:(0.125)2006(﹣8)2007(﹣1)2005=_________.23.计算:(1)(0.25)2×43=_________.24.已知:212=a6=4b,则﹣ab=_________.25.计算:①(a2)3=_________;②22009×(﹣0.5)2009=_________.26.若4x=2x+1,则x=_________.27.计算:=_________.28.若23k﹣1=32,则k的值为_________.29.(﹣)2013×(﹣2)2014=_________.30.若x,y均为正整数,且2x•8•4y=256,则x+y的值为_________.幂的乘方与积的乘方试题精选(四)参考答案与试题解析一.填空题(共30小题)1.计算:[(﹣x)3]2×(x2)3=x12.考点:同底数幂的乘法;幂的乘方与积的乘方.分析:先算乘方,再算乘法.注意先确定符号.解答:解:[(﹣x)3]2×(x2)3=x6•x6=x12.故应填x12.点评:本题考查乘方与乘法相结合.应先算乘方,再算乘法,要用到乘方法则:幂的乘方,底数不变,指数相乘.同底数幂的乘法法则:底数不变,指数相加.需注意负数的偶次幂是正数.2.若2×8n×16n=222,则n=3.考点:同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘法法则计算,再根据指数相等列式求解即可.解答:解:∵2×8n×16n=2×23n×24n=21+7n=222;∴1+7n=22,解得n=3.故填3.点评:本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数不变指数相加.3.若a x=2,a y=3,则a2x+y=12.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和同底数幂的乘法法则计算即可.解答:解:∵a x=2,a y=3,∴a2x+y=a2x•a y,=(a x)2•a y,=4×3,=12.点评:本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数不变指数相加.4.当n为奇数时,=﹣1.考点:幂的乘方与积的乘方.分析:根据积的乘方运算的性质的逆用计算即可.解答:解:∵n为奇数,∴===﹣1.故答案为﹣1.点评:本题考查了积的乘方的性质,熟练掌握运算性质并灵活运用是解题的关键.5.计算:22005×0.52004=2.考点:幂的乘方与积的乘方.分析:根据积的乘方性质的逆用,都写成2004次方,求解即可.解答:解:22005×0.52004,=2×22004×0.52004,=2×(2×0.5)2004,=2×1,=2.点评:本题考查了积的乘方的性质,转化为同指数的幂相乘是利用性质解决本题的关键.6.﹣a2•(a2)2=﹣a6.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方,底数不变指数相乘,同底数幂相乘,底数不变指数相加计算即可.解答:解:﹣a2•(a2)2,=﹣a2•a4,=﹣a6.点评:此题主要考查同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.7.若n为正整数,且x2n=3,则(3x3n)2的值为243.考点:幂的乘方与积的乘方.分析:根据幂的乘方与积的乘方运算规则,可将所求的式子展开,然后将x2n=3整体代入求解.解答:解:(3x3n)2=9x3×2n=9(x2n)3=9×33=243.点评:本题考查了幂的乘方与积的乘方的性质,熟练掌握运算性质是解答此题的关键;幂的乘方,底数不变指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.8.若3m=6,9n=2,则32m+2n=72.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:将原式分解为32m•32n后逆用幂的运算性质即可进行运算.解答:解:32m+2n=(3m)2•(32)n=62×2=36×2=72,故答案为72.点评:本题考查了同底数幂的除法与幂的乘方与积的乘方的知识,比较简单,属于基础题.9.已知,那么a2x=.考点:幂的乘方与积的乘方.分析:逆用幂的乘方的运算性质将a2x转化为(a x)2后代入即可求得其值.解答:解:∵,∴a2x=(a x)2=()2=,故答案为:.点评:本题考查了幂的乘方与积的乘方的知识,解题的关键是熟练的掌握运算性质并能正确的逆用性质.10.计算:﹣[﹣(﹣1)2]2014=﹣1.考点:幂的乘方与积的乘方.分析:运用幂的乘方及积的乘方法则计算.解答:解:﹣[﹣(﹣1)2]2014=﹣(﹣1)2014=﹣1故答案为:﹣1.点评:本题主要考查幂的乘方及积的乘方,解题的关键是注意符号.11.如果(a x b y)3=a9b12,那么x=3,y=4.考点:幂的乘方与积的乘方.分析:先运用幂的乘方化简,再利用相同底数的指数相等求解.解答:解:∵(a x b y)3=a9b12,∴a3x b3y=a9b12,∴3x=9,3y=12,∴x=3,y=4,故答案为:3,4.点评:本题主要考查了幂的乘方与积的乘方,解题的关键是利用相同底数的指数相等.12.已知m x=1,m y=2,则m x+2y=4.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先求出(m y)2=22=4,再利用m x+2y=m x•(m y)2求解.解答:解:∵m y=2,∴(m y)2=22=4,∵m x=1,∴m x+2y=m x•(m y)2=1×4=4故答案为:4.点评:本题考查了积的乘方的性质,熟记运算性质并理清指数的变化是解题的关键.13.若a m=3,a n=5,则a2m+n=45.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:把a2m+n化为(a m)2•a n,再利用a m=3,a n=5计算求解.解答:解:∵a m=3,a n=5,∴a2m+n=(a m)2•a n=9×5=45,故答案为:45.点评:本题主要考查了同底数幂的乘法及幂的乘方与积的乘方,解题的关键是把a2m+n化为(a m)2•a n求解.14.若,则x=﹣2;若78=m,87=n,则5656=m7•n8.(用含m,n的代数式表示)考点:幂的乘方与积的乘方.分析:运用幂的乘方与积的乘方法则求解即可.解答:解:若,则x=﹣2;若78=m,87=n,则5656=(7×8)56=(78)7×(87)8=m7•n8.故答案为:﹣2,m7•n8.点评:本题主要考查了幂的乘方与积的乘方,解题的关键是把5656化为(78)7×(87)8求解.15.若x5•(x m)3=x11,则m=6.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先运用幂的乘方与同底数幂的乘法,再根据指数相等求解.解答:解:∵x5•(x m)3=x11,∴x5+m=x11,∴5+m=11,∴m=6.故答案为:6.点评:本题主要考查了幂的乘方与同底数幂的乘法,解题的关键是根据指数相等求解.16.若(xy)n=6,x n=2,则y n=3.考点:幂的乘方与积的乘方.分析:运用积的乘方法则,把(xy)n=6化为x n•y n=6再代入x n=2运算.解答:解:∵(xy)n=6,∴x n•y n=6,∵x n=2,∴y n=6÷2=3,故答案为:3.点评:本题主要考查了幂的乘方与积的乘方,解题的关键是把(xy)n=6化为x n•y n=6运算.17.48×(0.25)9=.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:运用幂的乘方与积的乘方与同底数幂的乘法的法则计算.解答:解:48×(0.25)9=×=.故答案为:.点评:本题主要考查了幂的乘方与积的乘方与同底数幂的乘法,解题的关键是熟记法则.18.已知正整数a,b满足()a()b=4,则a﹣b=﹣2.考点:幂的乘方与积的乘方.分析:先化简()a()b=4得,运用与的指数相同得出结果.解答:解:()a()b==•2a•=4,∴a=2,2a=b,∴a=2,b=4,∴a﹣b=2﹣4=﹣2,故答案为:﹣2.点评:本题主要考查了幂的乘方与积的乘方.解题的关键是根据法则把()a()b=化为•2a•.19.312与96的大小关系是312=96.考点:幂的乘方与积的乘方.分析:把96变成(32)6,推出96=312,即可得出答案.解答:解:∵96=(32)6=312,∴312=96,故答案为:312=96.点评:本题考查了幂的乘方和积的乘方的应用,解此题的思路是把底数变成相同的数,也可以变第一个式子,即312=(32)6=96.20.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为y=4(x+1)2+1.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:将4m变形,转化为关于2m的形式,然后再代入整理即可解答:解:∵4m+1=22m×4=(2m)2×4,x=2m﹣1,∴2m=x+1,∵y=1+4m+1,∴y=4(x+1)2+1,故答案为:y=4(x+1)2+1.点评:本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.21.0.24×0.44×12.54=1.考点:幂的乘方与积的乘方.分析:利用积的乘方的逆运算可知.解答:解:0.24×0.44×12.54,=(0.2×0.4×12.5)4,=14,=1.点评:本题主要考查积的乘方,等于把积的每个因式分别乘方,再把所得的幂相乘,熟练掌握性质并灵活运用是解题的关键.22.计算:(0.125)2006(﹣8)2007(﹣1)2005=8.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据积的乘方的逆运算.解答:解:(0.125)2006(﹣8)2007(﹣1)2005,=[0.125×(﹣8)]2006×(﹣8)×(﹣1),=8.故填8.点评:本题主要考查了幂的乘方和积的乘方运算.幂的乘方法则:底数不变指数相乘.积的乘方法则:等于把积的每个因式分别乘方,再把所得的幂相乘.解题关键是灵活运用积的乘方法则,看出0.125和8互为倒数.23.计算:(1)(0.25)2×43=4.考点:幂的乘方与积的乘方.分析:先转化为同底数的幂相乘,再利用积的乘方的性质的逆用计算即可.解答:解:(0.25)2×43,=(0.25×4)2×4,=1×4,=4.故填4.点评:本题主要考查积的乘方的性质,熟练掌握性质并灵活运用是解题的关键.24.已知:212=a6=4b,则﹣ab=2.考点:幂的乘方与积的乘方.分析:把212化成46,然后根据底数相等,指数相等求出a,b的值.再代入求出﹣ab的值.解答:解:由于212=46,∵212=a6=4b,则a=4,b=6.代入﹣ab=26﹣24=2.点评:本题考查了幂的乘方的性质的逆用,先求出a、b的值是解题的关键.25.计算:①(a2)3=a6;②22009×(﹣0.5)2009=﹣1.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:①根据幂的乘方,底数不变,指数相乘计算;②根据积的乘方的性质的逆用,求解即可.解答:解:①(a2)3=a6;②22009×(﹣0.5)2009,=(﹣2×0.5)2009,=(﹣1)2009,=﹣1.点评:本题主要考查了幂的乘方、积的乘方的性质,熟练掌握运算性质并灵活运用是解题的关键.26.若4x=2x+1,则x=1.考点:幂的乘方与积的乘方.分析:先把4x化成底数是2的形式,再让指数相同列出方程求解即可.解答:解:4x=(22)x=22x,根据题意得到22x=2x+1,∴2x=x+1,解得:x=1.点评:本题考查了幂的乘方的性质,逆用性质是解题的关键.27.计算:=﹣1.考点:幂的乘方与积的乘方.分析:根据积的乘方的逆运用得出[()×2]5,先算括号,再算乘方.解答:解:=[(﹣)×2]5=(﹣1)5=﹣1,故答案为:﹣1.点评:本题考查了幂的乘方和积的乘方,注意:a m×b m=(ab)m.28.若23k﹣1=32,则k的值为2.考点:幂的乘方与积的乘方.分析:把原式得出23k﹣1=25,推出3k﹣1=5,求出即可.解答:解:∵23k﹣1=32,∴23k﹣1=25,∴3k﹣1=5,∴k=2.故答案为:2.点评:本题考查了幂的乘方和解一元一次方程,关键是化成底数相同的幂,根据底数相同即可得出指数相等.29.(﹣)2013×(﹣2)2014=﹣2.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:运用幂的乘方与积的乘方和同底数幂的乘法法则计算.解答:解:(﹣)2013×(﹣2)2014=×(﹣2)=﹣2;故答案为:﹣2.点评:本题主要考查了幂的乘方与积的乘方和同底数幂的乘法,解题的关键是运用积的乘方化简运算.30.若x,y均为正整数,且2x•8•4y=256,则x+y的值为3或4.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先把2x•8•4y化为2x+2y+3,256化为28,得出x+2y+3=8,即x+2y=5,因为x,y均为正整数,求出x,y,再求了出x+y.解答:解:∵2x•8•4y=2x2y+3,28=256,∴x+2y+3=8,即x+2y=5∵x,y均为正整数,∴或∴x+y=3或4,故答案为:3或4.点评:本题主要考查了幂的乘方,同底数幂的乘法,解题的关键是化为相同底数的幂求解.。
幂的乘方与积的乘方练习题含答案
幂的乘方与积的乘方 练习题一、判断题1.(xy )3=xy 3 ( )2.(2xy )3=6x 3y 3 ( )3.(-3a 3)2=9a 6 ( )4.(32x )3=38x 3( ) 5.(a 4b )4=a 16b( ) 二、填空题1.-(x 2)3=______,(-x 2)3=______;2.(-21xy 2)2=_______;3.81x 2y 10=( )2;4.(x 3)2·x 5=_____;5.(a 3)n =(a n )x (n 、x 是正整数),则x =_____.三、选择题1.计算(a 3)2的结果是( ).A .a 6B .a 5C .a 8D .a 92.计算(-x 2)3的结果是( ).A .-x 5B .x 5C .-x 6D .x 63.运算(a 2·a n )m =a 2m ·a mn ,根据是( ).A .积的乘方B .幂的乘方C .先根据积的乘方再根据幂的乘方D.以上答案都不对4.-a n=(-a)n(a≠0)成立的条件是( ).A.n是奇数B.n是偶数C.n是整数D.n是正整数5.下列计算(a m)3·a n正确的是( ).A.a m+n B.a3m+nC.a3(m+n)D.a3mn四、解答题1.已知:84×43=2x,求x.2.如下图,一个正方体棱长是3×102mm,它的体积是多少mm?3.选做题4πr3计算出地球的体积是数学课上教师与同学们一起利用球的体积公式V=39.05×1011(km3),接着教师问道:“太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢?”同学们立即计算起来,不一会好多同学都举手表示做完了,小丁的答案是9.05×1013(km3),小新的答案是9.05×1015(km3),小明的答案是9.05×1017(km3),那么这三位同学谁的答案正确呢?请同学们讨论,并将你的正确做法写出来.参考答案一、判断题1.×2.×3.√4.×5.×二、填空题1.-x6,-x61x2y42.43.9xy54.x115.3三、选择题1.A2.C3.C4.A5.B四、解答题1.(23)4×(22)3=2x∴212×26=2x,∴218=2x∴x=182.(3×102)3=33×(102)3=27×106=2.7×107 3.小明的对,略.。
人教版八年级数学上册《幂的运算》专项练习题-附含答案
人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。
幂的乘方与积的乘方-练习题(含答案)
)幂的乘方与积的乘方 练习题一、判断题1.(xy )3=xy 3 ( )2.(2xy )3=6x 3y 3( ) 3.(-3a 3)2=9a 6 ( )4.(32x )3=38x 3( )5.(a 4b )4=a 16b ( )`二、填空题1.-(x 2)3=______,(-x 2)3=______;2.(-21xy 2)2=_______;3.81x 2y 10=( )2;4.(x 3)2·x 5=_____;5.(a 3)n =(a n )x (n 、x 是正整数),则x =_____.三、选择题。
1.计算(a 3)2的结果是( ).A .a 6B .a 5C .a 8D .a 92.计算(-x 2)3的结果是( ).A .-x 5B .x 5C .-x 6D .x 63.运算(a 2·a n )m =a 2m ·a mn ,根据是( ).A .积的乘方B.幂的乘方C.先根据积的乘方再根据幂的乘方"D.以上答案都不对4.-a n=(-a)n(a≠0)成立的条件是( ).A.n是奇数 B.n是偶数C.n是整数 D.n是正整数5.下列计算(a m)3·a n正确的是( ).A.a m+n B.a3m+nC.a3(m+n) D.a3mn,四、解答题1.已知:84×43=2x,求x.2.如下图,一个正方体棱长是3×102mm,它的体积是多少mm\3.选做题4πr3计算出地球的数学课上老师与同学们一起利用球的体积公式V=3体积是×1011(km3),接着老师问道:“太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢”同学们立即计算起来,不一会好多同学都举手表示做完了,小丁的答案是×1013(km3),小新的答案是×1015(km3),小明的答案是×1017(km3),那么这三位同学谁的答案正确呢请同学们讨论,并将你的正确做法写出来.(—$参考答案一、判断题1.×2.×3.√4.×5.×)二、填空题1.-x6,-x61x2y42.43.9xy54.x115.3三、选择题1.A-2.C3.C4.A5.B四、解答题1.(23)4×(22)3=2x∴212×26=2x,∴218=2x∴x=182.(3×102)3=33×(102)3=27×106=×107 3.小明的对,略.。
幂的乘方与积的乘方练习题及答案
幂的乘方与积的乘方练习题及答案第1课时幂的乘方基础题1.计算(a2)3的结果是()A.a5 B.a6 C.a8 D.3a22.下列式子的化简结果不是a8的是()A.a6·a2 B.(a4)2 C.(a2)4 D.(a4)43.下列各式计算正确的是()A.(x3)3=x6 B.a6·a4=a24C.[(-x)3]3=(-x)9 D.-(a2)5=a104.下列运算正确的是()A.a2+a2=a4 B.a5-a3=a2 C.a2·a2=2a2 D.(a5)2=a105.填空:( )2=( )3=( )4=a12.6.已知x n=2,则x3n=____.7.已知10a=5,那么100a的值是()A.25 B.50 C.250 D.5008.若3x+4y-5=0,则8x·16y的值是()A.64 B.8 C.16 D.329.下列各式与x3n+2相等的是()A.(x3)n+2 B.(x n+2)3C.x2·(x3)n D.x3·x n+x210.计算(-p)8·[(-p)2]3·[(-p)3]2的结果是()A.-p20 B.p20 C.-p18 D.p1811.若26=a2=4b,则a b等于()A.43 B.82 C.83 D.4812.若 2a=3,2b=4,则23a+2b等于()A.7 B.12 C.432 D.10813.若3×9m×27m=321,则m的值是()A.3 B.4 C.5 D.614.若a4n=3,那么(a3n)4=____.15.若5m=2,5n=3,则53m+2n+1=_______.16.填空:(1)(-a3)2·(-a)3=________;(2)[(x-y)3]5·[(y-x)7]2=_______;(3)a3·(a3)2-2·(a3)3=____________.精选题17.计算:(1)(-x)3·(x3)2·(-x)4=_________.(2)x n-1·(x n+2)2·x2·(x2n-1)3=_______.(3)2(x3)2·x2-3(x2)4+5x2·x6=_____.(4)[(a-b)3]2-2(a-b)3·(b-a)3=.18.若x2n=5,且n为整数,求(x3n)2-5(x2)2n的值.19.已知10m=2,10n=3,求103m+2n的值.20.(1)已知2x+5y-3=0,求4x·32y的值;(2)已知273×94=3x,求x的值.21.已知A=355,B=444,C=533,试比较A,B,C的大小.第2课时积的乘方基础题1.计算(x3)2的结果是()A.x5 B.x6 C.x8 D.x92.下列计算错误的是()A.a2·a=a3 B.(ab)2=a2b2C.(a2)3=a5 D.-a+2a=a3.计算(x2y)3的结果是()A.x5y B.x6y C.x2y3 D.x6y3 4.计算(-3a2)2的结果是()A.3a4 B.-3a4 C.9a4 D.-9a45.计算(-0.25)2010×42010的结果()A.-1 B.1 C.0.25 D.44020 6.-(a3)4=_____.7.若x3m=2,则x9m=_____.8.[(-x)2] n·[-(x3)n]=______.9.若a2n=3,则(2a3n)2=____.10.计算:(1)(a4)3+m (2)(-4xy2)211.计算: (x-y)3·(y-x)2·(x-y)4.12.计算(1)(-0.25)11×411 (2)(-0.125)200×8201精选题13.若x m·x2m =2,求 x9m 的值14.若x m =2,求 x4m 的值15已知:644×83=2x,求x.16.计算:(-2x2y3)+8(x2)2·(-x)2·(-y)3.17.某养鸡场需定制一批棱长为3×102毫米的正方体鸡蛋包装箱(包装箱的厚度忽略不计),求一个这样的包装箱的容积.(结果用科学记数法表示)1.2 幂的乘方与积的乘方第1课时幂的乘方1 B2 D3 C4 D 5. a6,a4,a3 6. 8 7. A 8 .D 9 .C 10. B 11. C 12. C 13.B 14. 2715. 36016. (1) -a9 (2) (x-y)29 (3) -a917. (1) 解:原式=x13(2) 解:原式=a9n+2(3) 解:原式=4x8(4) 解:原式=3(a-b)618. 解:原式=x6n-5x4n=(x2n)3-5(x2n)2=53-5×52=019. 解:103m+2n=(10m)3·(10n)2=23×32=7220. (1) 解:由2x+5y-3=0得2x+5y=3,所以4x·32y=22x·25y=22x+5y=23=8(2) 解:x=1721. 解:因为A=355=(35)11=24311;B=444=(44)11=25611;C=533=(53)11=12511,所以B>A>C第2课时积的乘方1.B 2.C 3.D 4.C 5.B6.-a127.8 8.-x5n9.10810.a12+4m,16x2y4 11.(x-y)9 12.-1,813.解:x m·x2m=x3m=2,∵x9m =(x3m)3,∴x9m的值为814.解:x m =2,∵x4m=(x m)4,∴x4m的值为1615.∵644×83=(26)4×(23)3=224×29=233∵644×83=2x,∴233=2x,∴x=33.16.-16x6y3.17.(3×102)3=33(102)3=27×106=2.7×107(立方毫米).答:一个这样的包装箱的容积是2.7×107立方毫米.。
人教版八年级上《14.1.2幂的乘方》课文练习含答案(含答案)
14.1.2幂的乘方课前预习要点感知(a m)n=________(m,n都是正整数).即幂的乘方,底数________,指数________.预习练习1-1(钦州中考)计算(a3)2的结果是( )A.a9B.a6C.a5D.a1-2在下列各式的括号内,应填入b4的是( )A.b12=()8B.b12=()6C.b12=()3D.b12=()2当堂训练知识点1直接运用幂的乘方计算1.计算:(1)(102)8; (2)(-a3)5;(3)(x m)2; (4)-(x2)m.知识点2幂的乘方法则的拓展2.已知:10m=3,10n=2,求103m,102n和103m+2n的值.课后作业3.如果(9n)2=312,那么n的值是( )A.4 B.3 C.2 D.14.如果1284×83=2n,那么n=________.5.计算:(1)5(a3)4-13(a6)2;(2)x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x+y)3]6+[(x+y)9]2.挑战自我6.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.参考答案要点感知a mn不变相乘预习练习1-1B1-2 C当堂训练1.(1)原式=102×8=1016.(2)原式=(-a)3×5=(-a)15=-a15.(3)原式=x m×2=x2m.(4)原式=-x2×m=-x2m. 2.103m=(10m)3=33=27;102n=(10n)2=22=4;103m+2n=103m×102n =27×4=108.课后作业3.B 4.37 5.(1)原式=5a12-13a12=-8a12.(2)原式=-x16+5x16-x16=3x16.(3)原式=(x+y)18+(x+y)18=2(x +y)18.挑战自我6.(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.。
幂乘方专项练习50题
幂的乘方专项练习50 题(有答案 )知识点:1.若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数 _______.2.计算:( 1)( 7 ) =_______;( 2)7 ×7 =_______;( 3)( x5)2=_______;( 4)x5· x2=________;(5) [(- 7)4] 5=_______;(6) [ (- 7)5] 4=________.3.你能说明下边每一步计算的原因吗将它们填在括号里.( 1) y·( y2)3=y· y6()=y7()( 2) 2( a2)6-( a3)4=2a12- a12()=a12()专项练习:(1) [ ( a+b)2] 4=(2)-(y4)5=(3)( y2a+1)2(4)[(-5)3]4-(54)3(5)( a-b )[ ( a- b)2 ] 5(6)(- a2)5· a- a11(7)( x6)2+x10· x2+2[ (- x)3 ] 4(8)(- x5)2=_______,(- x2)5=________, [(- x)2] 5=______.(9)( a5)3(10)(a n-2)3(11)(43)3(12)(- x3)5(13)[(-x)2]3(14)[(x-y)3]4(15) (a 4 )2 (a2 ) 3______________(16)( 16)(a3 )2( a)3__________ __ ;(17)(x 4 )5( x 5 ) 4___________ ,(18)(a m 1 ) 3( a 2 ) 1 m_______________(19)3(x2)2( x2 ) 4( x 5 ) 2 (x 2 )2 __________ _________(20)若x n 3 ,则 x3n(21) x·( x2)3(22)( x m)n·(x n)m(23)( y4)5-( y5)4(24)( m3)4+m10m2 +m·m3·m8(25) [( a- b)n ] 2 [ ( b- a)n-1] 2(26)若 2k=83,则 k=______.(27)( m3)4+m 10m2-m·m3·m8(28) 5( a3)4-13(a6)2 =(29)7x4·x5·( -x)7+5( x4)4-( x8)2(30)[ ( x+y)3 ]6 +[( x+y)9]2(31)[ ( b-3a)2] n+1·[( 3a-b)2n+1] 3(n 为正整数)(32)x3·( x n)5=x13,则 n=_______.(33)( x3)4+( x4)3=________,( a3)2·( a2)3=_________.m2m=2,求 x 9m(34)若 x·x(35)若 a2n=3,求( a3n)4(36)已知 a m =2,a n=3,求 a2m+3n(37)若 644 3x,求 x 的值。
幂的乘方专项练习50题(有答案过程)
幂的乘方专项练习50题(有答案过程)(1)[(a+b)²]⁴= (2)-( y⁴) ⁵=(3)(y²ᵃ⁺¹)²(4) [(- 5) ³]⁴-( 5⁴) ³(5) ( a—b) [(a—b) ²]⁵(6)(−a²)⁵a−a¹¹(7)(x⁶)²+x¹⁰x²+2[(−x)³]⁴(8) (一×⁵)²= (一ײ)⁵= ,[(一×)²]⁵=(9) (a⁵)³(10)(aⁿ⁻²)³(11)(4³)³(12 )(—׳)⁵(13)[(一×)²]³(14)[(x—y)³]⁴(15)(a⁴)²(a²)³(16)(16)(a³)²(a)³=;,(17)(x4)5(x5)4¯(18)(a m1)3(a2)1m¯(19)3(×)(×)2(×)=512 #212(20)若 xⁿ3,则x³ⁿ(21 )×?()³(22)(xᵐ)ⁿ?()ᵐ(23 )(y⁴) ⁵-( y⁵)⁴(24)(m³)⁴+m¹⁰m²+m?m³?n⁸(25) [(a-b) "]²[(b- a) ⁿ⁻¹]²(26)若2ᵏ=8³,贝 Uk= r(27)(m³)⁴+m¹⁰m²−m?m³(28) 5( a³) ⁴-13 (a⁶) ²=(29) 7×⁴?⁵x? -X) ⁷+5(x⁴) ⁴-(x³) ²(30) [- x+y) ³]⁶+[- x+y) ⁹]²为正整数) (32)x³?Xⁿ)⁵=X¹³,贝U n= r(34) 若xᵐ−²X=2求x⁹ᵐ(35) 若a²ⁿ=3,求-a³ⁿ)⁴(36) 已知aᵐ=2,aⁿ=3,求a²ᵐ⁺³ⁿ(37) 若644X83=2X,求 x的值。
(完整版)幂的乘方练习题
14.1.1同底数幂的乘法一、填空题1、=⋅53x x ;=⋅⋅32a a a ;=⋅2x x n ;=⋅53x x =⋅4x ⋅x = ;2、=⋅-32)(x x ;=-⋅-32)()(a a ;3、=⋅10104 ;=⨯⨯32333 ;4、⋅2x =6x ;⋅-)(2y =5y ;5、=⋅++312n n x x ;=-⋅-43)()(a b a b ;6、=-⋅--n n y x y x 212)()(7.ax=9,ay=81,则ax+y 等于二、计算;1、34a a a ⋅⋅2、()()()53222---3、231010100⨯⨯4、()()()352a a a -⋅-⋅--5、254242423a a a a a a a ⋅-⋅⋅+⋅6、()()m m 2224⨯⨯三、选择题1、333+m x 可以写成( )A 、13=m xB 、33x x m +C 、13+⨯m x xD 、33x x m ⨯2、3,2==n m a a ,则m n a + =( )A 、5B 、6C 、8D 、9四、已知n 为正整数,试计算 ()()()a a a n n -⨯-⨯-++2312五、判断(正确的打“√”,错误的打“×”)(1) x3·x5=x15 ( ) (2) x·x3=x3 ( )(3) x3+x5=x8 ( ) (4)x2·x2=2x4 ( )(5)(-x)2 · (-x)3 = (-x)5= -x5 ( ) (6)a3·a2 - a2·a3 = 0 ( )(7)a3·b5=(ab)8 ( ) (8) y7+y7=y14 ( )1.2幂的乘方一、判断题1、()52323x x x ==+ ( )2、()7632a a a a a =⋅=-⨯ ( )3、()93232x x x == ( )4、9333)(--=m m x x( )5、532)()()(y x x y y x --=-⋅- ( )二、填空题:1、,__________])2[(32=-___________)2(32=-;2、______________)()(3224=-⋅a a ,____________)()(323=-⋅-a a ;3、___________)()(4554=-+-x x ,_______________)()(1231=⋅-++m m a a ;4、___________________)()()()(322254222x x x x ⋅-⋅;5、若 3=n x , 则=n x 3________.三、选择题1、122)(--n x 等于( )A 、14-n xB 、14--n xC 、24-n xD 、24--n x2、21)(--n a 等于( )A 、22-n aB 、22--n aC 、12-n aD 、22--n a3、13+n y 可写成( )A 、13)(+n yB 、13)(+n yC 、n y y 3⋅D 、1)(+n n y4、2)()(m m m a a ⋅不等于( )A 、m m a )(2+B 、m m a a )(2⋅C 、22m m a +D 、m m m a a )()(13-⋅四、若162,273==y x ,求:y x +的值。
北师大版七年级下册 幂的乘方专项练习50题(有答案过程)
幂的乘方专项练习50题(有答案)知识点:1.若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数_______.2.计算:(1)(75)4=_______;(2)75×74=_______;(3)(x5)2=_______;(4)x5·x2=________;(5)[(-7)4] 5=_______;(6)[(-7)5] 4=________.3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1)y·(y2)3=y·y6()=y7()(2)2(a2)6-(a3)4=2a12-a12()=a12()专项练习:(1)[(a+b)2] 4= (2)-(y4)5=(3)(y2a+1)2(4)[(-5)3] 4-(54)3(5)(a-b)[(a-b)2] 5(6)(-a2)5·a-a11(7)(x6)2+x10·x2+2[(-x)3] 4(8)(-x5)2=_______,(-x2)5=________,[(-x)2] 5=______.(9)(a5)3(10)(a n-2)3(11)(43)3(12)(-x 3)5 (13)[(-x )2] 3 (14)[(x -y )3] 4(15) ______________)()(3224=-⋅a a (16)(16);____________)()(323=-⋅-a a (17),___________)()(4554=-+-x x (18)_______________)()(1231=⋅-++m m a a(19)___________________)()()()(322254222x x x x ⋅-⋅(20)若 , 则3=n x =nx3(21)x·(x 2)3(22)(x m )n ·(x n )m (23)(y 4)5-(y 5)4 (24)(m 3)4+m 10m 2+m·m 3·m 8(25)[(a -b )n ] 2 [(b -a )n -1] 2(26)若2k =83,则k=______.(27)(m 3)4+m 10m 2-m·m 3·m 8 (28)5(a 3)4-13(a 6)2 =(29)7x 4·x 5·(-x )7+5(x 4)4-(x 8)2 (30)[(x+y )3]6+[(x+y )9]2(31)[(b-3a )2]n+1·[(3a-b )2n+1]3(n 为正整数)(32)x 3·(x n )5=x 13,则n=_______.(33)(x 3)4+(x 4)3=________,(a 3)2·(a 2)3=_________.(34)若x m ·x 2m =2,求x 9m(35)若a2n=3,求(a3n)4(36)已知a m=2,a n=3,求a2m+3n(37)若644×83=2x,求x的值。
幂的乘方专项练习50题(有答案过程)汇编
幕的乘方专项练习50题(有答案)知识点:1若m、n均为正整数,则(a m) n= _________ ,即幕的乘方,底数2•计算:(1)(75)4= ________ ;(2)75X 74= _______ ;(3) (x5) 2= _______ ;(4) x5• x2= ______ ;4 5 5 4(5)_____________ [ (-7) ] = ____________________ ;(6) [ (-7) ] = ________________ 3•你能说明下面每一步计算的理由吗?将它们填在括号里.(1) y • (y2) 36=y • y7=y(2) 2 (a2) 6-( a3)c 12 12 /=2a —a (12 =a专项练习:(5) (a-b) [ (a-b) 2] 5(6) (- a2) 5• a-a11(7) (x6) 2+x10• x2+2[ (-x) 3] 45 2(8) (-x)=,(-x2) 5= ,[(-x) 2](9) (a5) 3(10) (a n-2) 3(11) (43) 3,指数_______(1) [(a+b) 2] 4= 4、5(2) — ( y)(3) / 2a+1、 2(y )3 4(4) [ (- 5)]-(54)(12) (-x3) 5(13) [ (-x) 2] 3(14) [ (x —y) 3] 4(15) (a4)2(—a2)3二____________________(16) (16) (_a3)2(-a)3二 ___________________ ;(17) (_x4)5(—x5)4二______________ ,(18) (_a m1)3(a2)1m = ______________________(19) 3(x2)2(x2)4—(x5)2(x2)2________________________(20)若x n=3 , 3n(21) x •( x2) 3 (22 ) (X。
幂的乘方与积的乘方练习题及答案
幂的乘方与积的乘方练习题及答案一、选择题1. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 10 3. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a4. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( ) A. c =2b −1 B. c =a +bC. b =a +1D. c =ab5. 下列运算错误的是( )A.B. (x 2y 4)3=x 6y 12C. (−x)2·(x 3y)2=x 8y 2D.6. 下列各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 7. 下列运算正确的是( )A. a 2⋅a 3=a 6B. (−a 2)3=−a 5C. a 10÷a 9=a(a ≠0)D. (−bc)4÷(−bc)2=−b 2c 2 8. 下列运算正确的是( )A. x 2+x 3=x 5B. (−2a 2)3=−8a 6C. x 2⋅x 3=x 6D. x 6÷x 2=x 39. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 310. 已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A. a >b >cB. a >c >bC. c >b >aD. b >c >a 11. 下列运算中,正确的是( )A. 3x 3⋅2x 2=6x 6B. (−x 2y)2=x 4yC. (2x 2)3=6x 6D. x 5÷12x =2x 4 12. 下列运算正确的是( )A. a 3⋅a 3=2a 6B. a 3+a 3=2a 6C. (a 3)2=a 6D. a 6⋅a 2=a 3 13. 已知32m =8n ,则m 、n 满足的关系正确的是( ) A. 4m =n B. 5m =3n C. 3m =5n D. m =4n 14. 化简(2x)2的结果是( )A. x 4B. 2x 2C. 4x 2D. 4x 15. 已知5x =3,5y =2,则52x−3y =( )A. 34 B. 1 C. 23 D. 98 16. 计算3y 3⋅(−y 2)2⋅(−2y)3的结果是( )A. −24y 10B. −6y 10C. −18y 10D. 54y 1017.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 1218.计算(−513)3×(−135)2所得结果为()A. 1B. −1C. −513D. −13519.计算(−x3y)2的结果是()A. −x5yB. x6yC. −x3y2D. x6y220.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy二、计算题21.计算: (1)(−a3)4⋅(−a)3(2)(−x6)−(−3x3)2+8[−(−x)3]2(3)(m2n)3⋅(−m4n)+(−mn)2三、解答题22.已知272=a6=9b,求2a2+2ab的值.23.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析1.【答案】C【解析】【分析】本题主要考查幂的乘方与积的乘方,掌握幂的乘方与积的乘方的运算法则是解题的关键. 将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得出答案. 【解答】解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.故选C . 2.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘. 直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可. 【解答】解:(−a 5)2+(−a 2)5 =a 10−a 10 =0. 故选A . 3.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握a mn =(a n )m .根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可. 【解答】解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 故选C . 4.【答案】D【解析】【分析】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a 、b 、c 之间的关系. 【解答】解:∵22b−1=102÷2=50=2c , ∴2b −1=c ,故A 正确; ∵2a =5,2b =10,∴2a ×2b =2a+b =5×10=50, ∵2c =50,∴a +b =c ,故B 正确; ∵2a+1=5×2=10=2b , ∴a +1=b ,故C 正确;∴错误的为D.故选D.5.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.【解答】解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.6.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.7.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2⋅a3=a5,故A错误;B、(−a2)3=−a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(−bc)4÷(−bc)2=b2c2,故D错误;故选C.8.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:A.不是同类项,不能合并,故选项错误;B.正确;C.x2⋅x3=x5,故选项错误;D.x6÷x2=x4,故选项错误.故选B.9.【答案】A【解析】【分析】本题考查了积的乘方和幂的乘方,属于基础题.积的乘方等于积中各个因式分别乘方,然后再将所得的幂相乘,解答此题根据积的乘方的法则计算即可.【解答】解:(x2y)3=(x2)3y3=x6y3.故选A.10.【答案】C【解析】解:∵a=96=(32)6=312,b=314,c=275=(33)5=315,∴a<b<c,故选:C.根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)分别计算得出即可.此题主要考查了幂的乘方计算,熟练掌握运算法则是解题关键.11.【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.此题主要考查了整式的除法,幂的乘方与积的乘方,以及单项式乘单项式,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.12.【答案】C【解析】【分析】此题主要考查了同底数幂的乘法,幂的乘方,合并同类项等知识,正确掌握运算法则是解题关键.分别利用同底数幂的乘法运算法则,幂的乘方运算法则,合并同类项法则对各选项进行运算,即可判断结果.【解答】解:A.a3·a3=a3+3=a6,故此选项错误;B.a3+a3=2a3,故此选项错误;C.(a3)2=a 2×3=a6,故此选项正确;D.a6·a2=a6+2=a8,故此选项错误.故选C.13.【答案】B【解析】解:∵32m=8n,∴(25)m=(23)n,∴25m=23n,∴5m=3n.故选:B.直接利用幂的乘方运算法则将原式变形,进而得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.【答案】C【解析】解:(2x)2=4x2,故选:C.利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.此题主要考查了积的乘方,关键是掌握计算法则.15.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】A【解析】【分析】此题考查了积的乘方和幂的乘方以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=3y3×y4×(−8y3)=−24y10.故选A.17.【答案】C【解析】解:(−2)2015⋅(12)2016=[(−2)2015⋅(12)2015]×12=−12.故选:C.直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18.【答案】C【解析】解:(−513)3×(−135)2=[(−513)×(−135)]2×(−513)=1×(−513)=−513 故选:C . 首先根据积的乘方的运算方法:(ab)n =a n b n ,求出[(−513)×(−135)]2的值是多少;然后用它乘−513,求出计算(−513)3×(−135)2所得结果为多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数). 19.【答案】D【解析】解:(−x 3y)2=x 6y 2. 故选:D .首先利用积的乘方运算法则化简求出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键. 20.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题. 【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .21.【答案】解:(1)原式=a 12⋅(−a 3)=−a 15; (2)原式=−x 6−9x 6+8x 6=−2x 6; (3)原式=−m 10n 4+m 2n 2.【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则计算,合并即可求出值; (3)原式利用幂的乘方与积的乘方运算法则计算即可求出值.此题考查了单项式乘单项式,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.【答案】解:由272=a 6,得36=a 6, ∴a =±3; 由272=9b , 得36=32b , ∴2b =6, 解得b =3;(1)当a =3,b =3时,2a2+2ab=2×32+2×3×3=36.(2)当a=−3,b=3时,2a2+2ab=2×(−3)2+2×(−3)×3=18−18=0.所以2a2+2ab的值为36或0.【解析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.23.【答案】解:(1)∵4m=22m=(2m)2,x=2m+1,∴2m=x−1,∵y=4m+3,∴y=(x−1)2+3,即y=x2−2x+4;(2)把x=4代入y=x2−2x+4=12.【解析】(1)将4m变形,转化为关于2m的形式,然后再代入整理即可;(2)把x=4代入解得即可.本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.。
(完整版)北师大版七年级下册幂的乘方专项练习50题(有答案过程)
幂的乘方专项练习50题(有答案)知识点:1.若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数_______.2.计算:(1)(75)4=_______;(2)75×74=_______;(3)(x5)2=_______;(4)x5·x2=________;(5)[(-7)4] 5=_______;(6)[(-7)5] 4=________.3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1)y·(y2)3=y·y6()=y7()(2)2(a2)6-(a3)4=2a12-a12()=a12()专项练习:(1)[(a+b)2] 4= (2)-(y4)5=(3)(y2a+1)2(4)[(-5)3] 4-(54)3(5)(a-b)[(a-b)2] 5(6)(-a2)5·a-a11(7)(x6)2+x10·x2+2[(-x)3] 4(8)(-x5)2=_______,(-x2)5=________,[(-x)2] 5=______.(9)(a5)3(10)(a n-2)3(11)(43)3(12)(-x 3)5 (13)[(-x )2] 3 (14)[(x -y )3]4(15)______________)()(3224=-⋅a a(16)(16)____________)()(323=-⋅-a a ;(17)___________)()(4554=-+-x x ,(18)_______________)()(1231=⋅-++m m a a(19)___________________)()()()(322254222x x x x ⋅-⋅(20)若 3=n x , 则=n x3(21)x·(x 2)3(22)(x m )n ·(x n )m(23)(y 4)5-(y 5)4(24)(m 3)4+m 10m 2+m·m 3·m 8(25)[(a -b )n ] 2 [(b -a )n -1] 2(26)若2k =83,则k=______.(27)(m 3)4+m 10m 2-m·m 3·m 8(28)5(a 3)4-13(a 6)2 =(29)7x 4·x 5·(-x )7+5(x 4)4-(x 8)2(30)[(x+y )3]6+[(x+y )9]2(31)[(b-3a )2]n+1·[(3a-b )2n+1]3(n 为正整数)(32)x 3·(x n )5=x 13,则n=_______.(33)(x 3)4+(x 4)3=________,(a 3)2·(a 2)3=_________.(34)若x m ·x 2m =2,求x 9m(35)若a2n=3,求(a3n)4(36)已知a m=2,a n=3,求a2m+3n(37)若644×83=2x,求x的值。
幂的乘方专项练习50题
幂的乘方专项练习50题知识点:1.若m 、n 均为正整数,则(a m )n =_____,即幂的乘方,底数_____,指数_______.2.计算:(1)(75)4=_______; (2)75×74=_______;(3)(x 5)2=_______; (4)x 5·x 2=________;(5)[(-7)4] 5=_______; (6)[(-7)5] 4=________.3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1)y ·(y 2)3=y ·y 6 ( )=y 7 ( )(2)2(a 2)6-(a 3)4=2a 12-a 12 ( )=a 12 ( ) 专项练习:(1)[(a+b )2] 4= (2)-(y 4)5=(3)(y 2a+1)2 (4)[(-5)3] 4-(54)3(5)(a -b )[(a -b )2] 5(6)(-a 2)5·a -a 11(7)(x 6)2+x 10·x 2+2[(-x )3] 4(8)(-x 5)2=_______,(-x 2)5=________,[(-x )2] 5=______.(9)(a 5)3 (10)(a n -2)3 (11)(43)3 (12)(-x 3)5 (13)[(-x )2] 3 (14)[(x -y )3]4 (15)______________)()(3224=-⋅a a (16)____________)()(323=-⋅-a a ;(17)___________)()(4554=-+-x x , (18)_______________)()(1231=⋅-++m m a a(19)___________________)()()()(322254222x x x x ⋅-⋅(20)若 3=n x , 则=n x3(21)x·(x 2)3(22)(x m )n ·(x n )m(23)(y 4)5-(y 5)4(24)(m3)4+m10m2+m·m3·m8(25)[(a-b)n] 2 [(b-a)n-1] 2(26)若2k=83,则k=______.(27)(m3)4+m10m2-m·m3·m8(28)5(a3)4-13(a6)2 =(29)7x4·x5·(-x)7+5(x4)4-(x8)2(30)[(x+y)3]6+[(x+y)9]2(31)[(b-3a)2]n+1·[(3a-b)2n+1]3(n为正整数)(32)x3·(x n)5=x13,则n=_______.(33)(x3)4+(x4)3=________,(a3)2·(a2)3=_________.(34)若x m·x2m=2,求x9m(35)若a2n=3,求(a3n)4(36)已知a m=2,a n=3,求a2m+3n(37)若644×83=2x,求x的值。
幂的乘方专项练习50题(有答案)
幂的乘方专项练习50题知识点:1.若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数_______.2.计算:(1)(75)4=_______;(2)75×74=_______;(3)(x5)2=_______;(4)x5·x2=________;(5)[(-7)4] 5=_______;(6)[(-7)5] 4=________.3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1)y·(y2)3=y·y6()=y7()(2)2(a2)6-(a3)4=2a12-a12()=a12()专项练习:(1)[(a+b)2] 4= (2)-(y4)5=(3)(y2a+1)2(4)[(-5)3] 4-(54)3(5)(a-b)[(a-b)2] 5(6)(-a2)5·a-a11(7)(x6)2+x10·x2+2[(-x)3] 4(8)(-x5)2=_______,(-x2)5=________,[(-x)2] 5=______.(9)(a5)3(10)(a n-2)3(11)(43)3(12)(-x3)5(13)[(-x)2] 3(14)[(x-y)3] 4(15)______________)()(3224=-⋅a a (16)____________)()(323=-⋅-a a ;(17)___________)()(4554=-+-x x , (18)_______________)()(1231=⋅-++m m a a(19)___________________)()()()(322254222x x x x ⋅-⋅(20)若 3=n x , 则=n x3 (21)x·(x 2)3(22)(x m )n ·(x n )m(23)(y 4)5-(y 5)4(24)(m 3)4+m 10m 2+m·m 3·m 8(25)[(a -b )n ] 2 [(b -a )n -1] 2(26)若2k =83,则k=______.(27)(m 3)4+m 10m 2-m·m 3·m 8(28)5(a 3)4-13(a 6)2 =(29)7x 4·x 5·(-x )7+5(x 4)4-(x 8)2(30)[(x+y )3]6+[(x+y )9]2(31)[(b-3a )2]n+1·[(3a-b )2n+1]3(n 为正整数)(32)x 3·(x n )5=x 13,则n=_______.(33)(x 3)4+(x 4)3=________,(a 3)2·(a 2)3=_________.(34)若x m ·x 2m =2,求x 9m(35)若a 2n =3,求(a 3n )4(36)已知a m=2,a n=3,求a2m+3n(37)若644×83=2x,求x的值。
幂的乘方与积的乘方练习题含答案
幂的乘方与积的乘方练习题含答案Updated by Jack on December 25,2020 at 10:00 am幂的乘方与积的乘方 练习题一、判断题1.(xy )3=xy 3 ( )2.(2xy )3=6x 3y 3 ( )3.(-3a 3)2=9a 6 ( )4.(32x )3=38x 3 ( )5.(a 4b )4=a 16b ( )二、填空题1.-(x 2)3=______,(-x 2)3=______;2.(-21xy 2)2=_______; 3.81x 2y 10=( )2;4.(x 3)2·x 5=_____;5.(a 3)n =(a n )x (n 、x 是正整数),则x =_____.三、选择题1.计算(a 3)2的结果是( ).A .a 6B .a 5C .a 8D .a 92.计算(-x 2)3的结果是( ).A .-x 5B .x 5C .-x 6D .x 63.运算(a 2·a n )m =a 2m ·a mn ,根据是( ).A .积的乘方B.幂的乘方C.先根据积的乘方再根据幂的乘方D.以上答案都不对4.-a n=(-a)n(a≠0)成立的条件是( ).A.n是奇数 B.n是偶数C.n是整数 D.n是正整数5.下列计算(a m)3·a n正确的是( ).A.a m+n B.a3m+nC.a3(m+n) D.a3mn四、解答题1.已知:84×43=2x,求x.2.如下图,一个正方体棱长是3×102mm,它的体积是多少mm3.选做题4πr3计算出地球的数学课上老师与同学们一起利用球的体积公式V=3体积是×1011(km3),接着老师问道:“太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢”同学们立即计算起来,不一会好多同学都举手表示做完了,小丁的答案是×1013(km3),小新的答案是×1015(km3),小明的答案是×1017(km3),那么这三位同学谁的答案正确呢?请同学们讨论,并将你的正确做法写出来.参考答案一、判断题1.×2.×3.√4.×5.×二、填空题1.-x6,-x61x2y42.43.9xy54.x115.3三、选择题1.A2.C3.C4.A5.B四、解答题1.(23)4×(22)3=2x∴212×26=2x,∴218=2x∴x=182.(3×102)3=33×(102)3=27×106=×107 3.小明的对,略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂的乘方练习题及答案
2.计算:
4=_______;75×74=_______;
2=_______;x5·x2=________;
[4]=_______; [5]=________.
3.你能说明下面每一步计算的理由吗?将它们填在括号里.
y·3
=y·y
=y7
26-4
=2a12-a12
=a12
专项练习:
[2]=-5=
2[3]-3
[2]
5·a-a11
2+x10·x2+2[3]
=_______,=________,[]=______.
53n-233
52252
[][]
3524
2?3?______________
2?3?____________;
5?4?___________,
3?1?m?_______________
32?4?2?2___________________
若 x?3,则x
n3n?
x·
[3]6+[9]2
[2]n+1·[2n+1]3
3n513x·=x,则n=_______.
34433223+=________,·=_________.
若x·x=2,求xm2m9m3410238
若2=4,27=3
已知:3=2,求3的值.
已知x·x
3=33=7
x 188n?5
3n535n3+5n1 提示:x·=x·x=x=x,∴3+5n=13,n=2.
121234431212123223666+612x a 提示:+=x+x=2x,·=a·a=a=a.
x3m=2, x
49m = ==8=3=729
2n363 a2m+3n3n =a2m12n2n)=aa3n==2×3=108
43333m64×8=×=2
2×2
3m436x=33n×24n=22n7n?1,n+1=2 n=2m3n -+a·b22m3n=2-3+2×3=5
=2x2y?2, 3y=3x- 1
X=2y+y=x+1 解得:x= y=1
=33
m+n)+=9
M=4.x+2x =2×9=18
8.2幂的乘方与积的乘方同步练习
一、填空题
1.计算:?a3?表示.
2.计算:3= .
3.计算:2+3=.
4.计算:2?3?
5.2?43的结果是
A.?x;
B.x;
C.?x;
D.x.
9.下列四个算式中:
①3=a3+3=a6;②[2]2=b2×2×2=b8;③[3]4=12=x12;
④5=y10,正确的算式有
A.0个;B.1个; C.2个;D.3个.
5210.下列各式:①?a??. ).566?3;②a4?3;③3?2;
④a4?3,计算结果为?a的有
A.①和③;
B.①和②;
C.②和③;
D.③和④.
三、解答题 12
第 1 页共页
11.计算:⑴3?an;⑵3?a2
12.计算: ??4;⑶a4?3;⑷?a3a2?.5
⑴?a3?+a8a4;⑵22?2?4?2
⑶??a3a4?;⑷5?4?10?a?5?3.3
13.在下列各式的括号中填入适当的代数式,使等式成立:⑴a6=2;⑵2?
14.计算:比较7与48的大小.
15.已知:2x?3y?4?0,求4x?8y的值.
16.若10
17.已知:9
18.若a?2,b?3,c?4,比较a、b、c的大小.
第页共页54433n?1x2??.4325025?5,10y?3,求102x?3y的值. ?32n?72,求n的值.
参考答案
1.4个a3连乘;
2.x12;
3.2y6;
4.?a12;
5.3.
6.D;
7.C;
8.C;
9.C;10.D.
11.⑴a3m?n;⑵a8;⑶a10;⑷a22.
12.⑴2a12;⑵a14;⑶?a24;⑷?2a20.
13.在下列各式的括号中填入适当的代数式,使等式成立:⑴a3;⑵a2.
14.提示:750=25=4925,可知前者大.
15.解:因为2x?3y?4?0,所以2x?3y?4.
所以4x?8y?22x?23y?22x?3y?24?16.
16.解:因为10x?5,10y?3,
所以102x?3y?102x?103y?2?3?52?33?25?27?675.
17.解:由9n?1?32n?72得
32n?2?32n?72,9?32n?32n?72,8?32n?72,32n?9,所以n?1.
18.解:因为a?
所以a?c?b.
511?3211,b?411?81,c?11311?6411,
第页共页
幂的乘方与积的乘方练习题
一、判断题
1.3=xy3.3=6x3y3.2=9a.3=833
x35.4=a16b
二、填空题
1.-3=______,3=______;.2=_______;.81x2y102;.2·x5=_____;
5.n=x,则x=_____.
三、选择题
1.计算2的结果是.
A.a B.a C.a2.计算3的结果是.
A.-x B.x C.-x63.运算m=a2m·amn,根据是. A.积的乘方 B.幂的乘方
D.a D.x
C.先根据积的乘方再根据幂的乘方 D.以上答案都不对
4.-an=n成立的条件是. A.n是奇数B.n是偶数 C.n 是整数D.n是正整数.下列计算3·an正确的是. A.am+n B.a3m+n C.a3D.a3mn
四、解答题
1.已知:84×43=2x,求x.
2.如下图,一个正方体棱长是3×102mm,它的体积是多少mm?
3.选做题
数学课上老师与同学们一起利用球的体积公式V=πr3计算出地球的体积是9.05×1011,接着老师问道:“太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢?”同学们立即计算起来,不一会好多同学都举手表示做完了,小丁的答案是9.05×1013,小新的答案是9.05×1015,小明的答案是9.05×1017,那么这三位同学谁的答案正确呢?请同学们讨论,并将你的正确做法写出来.
4
3
参考答案
一、判断题 1.×.×.√.×.× 二、填空题 1.-x6,-x6.x2y4.9xy4.x11.三、选择题 1.A.C.C.A.B 四、解答题 1.4×3=2x ∴212×26=2x,∴218=2x ∴x=18
1
4
2.3=33×3=27×106=2.7×103.小明的对,略.。