(完整word版)高一函数定义域基础练习题
高一数学函数习题练习题以及答案
一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,务实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满意2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、推断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
(完整word版)求函数定义域和值域方法和典型题归纳,推荐文档
<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。
则称f:为A 到B 的一个函数。
2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。
由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。
3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。
(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。
4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。
(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。
(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。
二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。
(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。
③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。
完整版)高一数学函数经典习题及答案
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
《高数学必修》函数的概念定义域值域练习题含答案
函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x2.函数y =1-x 2+x 2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1. 3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。
高一数学函数经典练习题(含答案详细)
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一必修一定义域练习题
高一必修一定义域练习题一、基础题1. 求函数f(x) = √(x 1)的定义域。
2. 求函数g(x) = 1/(x^2 4)的定义域。
3. 求函数h(x) = (x + 2)/(x^2 9)的定义域。
4. 求函数k(x) = |x 3|的定义域。
5. 求函数m(x) = log₂(x 2)的定义域。
二、提高题1. 求函数f(x) = √(4 x^2)的定义域。
2. 求函数g(x) = √(x^2 5x + 6)的定义域。
3. 求函数h(x) = 1/√(x^2 3x + 2)的定义域。
4. 求函数k(x) = (x 1)^2/(x^2 2x)的定义域。
5. 求函数m(x) = log₃(x^2 4x + 3)的定义域。
三、综合题1. 已知函数f(x) = √(3x 2)/(x^2 5x + 6),求其定义域。
2. 已知函数g(x) = (x + 1)/(√(x^2 2x 3)),求其定义域。
3. 已知函数h(x) = log₄(√(x^2 6x + 9)),求其定义域。
4. 已知函数k(x) = √(4 x^2) + 1/(x 2),求其定义域。
5. 已知函数m(x) = √(x^2 5x + 6) log₂(x 3),求其定义域。
四、应用题1. 一个正方形的边长是x厘米,如果边长增加2厘米,面积增加20平方厘米,求x的取值范围。
2. 某企业的成本函数为C(x) = 3x^2 2x + 10,其中x为生产的产品数量,求C(x)的定义域。
3. 一辆汽车以每小时x公里的速度行驶,行驶了t小时后,其油耗量为y升,已知油耗量与速度的关系为y = x^2/20,求x的取值范围。
4. 某商品的价格为p元,需求量q与价格p的关系为q = 100 p,求该商品的需求量q的定义域。
5. 一个等腰三角形的底边长为2x厘米,腰长为x厘米,求x的取值范围。
五、拓展题1. 求函数f(x) = √(x^3 x^2 6x)的定义域。
高一数学函数的定义域值域练习题
高一数学《函数的定义域值域》练习题8.(2004.湖北理)已知)(,11)11(22x f xx x x f 则+-=+-的解析式可取为 ( C ) A .21xx+ B .212xx+-C .212x x+ D .21xx+-9.(2004.湖北理)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a的值为( B )A .41B .21C .2D .4 13.(2004. 重庆理)函数y =( D )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1]18.(2004.湖南理)设函数,2)2(),0()4(.0,2,0,0,)(2-=-=-⎩⎨⎧>≤≤++=f f f x x x c bx x x f 若则关于x的方程x x f =)(解的个数为( C ) A .1B .2C .3D .420、(2004. 人教版理科)函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2Y --B 、)2,1()1,2(Y --C 、[)(]2,11,2Y --D 、)2,1()1,2(Y --28、(2004. 人教版理科)设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )A 、(][]10,02,Y -∞-B 、(][]1,02,Y -∞-C 、(][]10,12,Y -∞-D 、[)[]10,10,2Y -9.(2006年陕西卷)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(C )(A )7,6,1,4 (B )6,4,1,7 (C )4,6,1,7 (D )1,6,4,73.(2006年安徽卷)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5ff =__________。
(完整word版)函数定义域试题与答案
一、选择题(共6小题)1、在函数中,自变量x的取值范围是()A、x≠0B、x≤﹣2C、x≥﹣3且x≠0D、x≤2且x≠02、函数的定义域是()A、x≠2B、x≥﹣2C、x≠﹣2D、x≠03、(2006•黄石)函数y=的自变量x的取值范围是()A、x≥﹣2B、x≥﹣2且x≠﹣1C、x≠﹣1D、x>﹣14、(2010•苏州)在函数y=中,自变量x取值范围是()A、x>1B、x<﹣1C、x≠﹣1D、x≠15、(2008•乐山)函数的自变量x的取值范围为()A、x≥﹣2B、x>﹣2且x≠2C、x≥0且≠2D、x≥﹣2且x≠26、能使有意义的x的取值范围是()A、x>﹣2B、x≥﹣2C、x>0D、x≥﹣2且x≠0二、填空题(共6小题)7、(2011•黑龙江)函数y=中,自变量x的取值范围是_________.8、(2007•黄石)函数的自变量取值范围是_________.9、求使代数式有意义的x的整数值_________.10、函数y=+(x﹣1)0自变量的取值范围是_________.11、函数y=中,自变量x的取值范围是_________.12、写出一个y关于x的函数关系式,使自变量x的取值范围是x≥2且x≠3,则这个函数关系式可以是_________.答案与评分标准一、选择题(共6小题)1、在函数中,自变量x的取值范围是()A、x≠0B、x≤﹣2C、x≥﹣3且x≠0D、x≤2且x≠0考点:函数自变量的取值范围。
专题:常规题型。
分析:根据被开方数x+3大于等于0,分母x不等于0,列式求解即可.解答:解:根据题意得,,解得x≥﹣3,且x≠0.故选C.点评:本题主要考查了函数自变量的取值范围,被开方数大于等于0,分母不等于0列式求解即可,是基础题,比较简单.2、函数的定义域是()A、x≠2B、x≥﹣2C、x≠﹣2D、x≠0考点:函数自变量的取值范围;二次根式有意义的条件。
专题:计算题。
分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.解答:解:根据题意得:x+2≥0,解得x≥﹣2.故选B.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3、(2006•黄石)函数y=的自变量x的取值范围是()A、x≥﹣2B、x≥﹣2且x≠﹣1C、x≠﹣1D、x>﹣1考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件。
函数定义域、值域、对应关系(知识点+例题+习题)word版
二、函数的定义域、值域和解析式1.常见函数的定义域和值域:2.函数的定义域的求法函数的定义域就是使得整个函数关系式有意义的实数的全体构成的集合. (1)求定义域注意事项:★①分式分母不为0; ②偶次根式的被开方数大于等于0;③零次幂底数不为0; ④对数的真数大于0; ⑤tan x 中,{|,}2x x k k ππ≠+∈Z ; ⑥实际问题对自变量的限制;⑦若函数由几个式子构成,定义域要满足各式都有意义(取交集).(2)抽象函数的定义域:①定义域是x的取值范围★②括号内范围等同★3.函数值域的求法对于函数(),y f x x A =∈,与x 的值相对应的y 值叫做函数值.函数值的集合{()|}f x x A ∈叫函数的值域.(1)观察法:从自变量x 的范围出发,推出()y f x =的取值范围.(2)二次函数在区间上的值域:画出简图,找到对称轴和对应取值区间来求值域.(3)换元法:通过对函数解析式进行适当换元,通常把无理函数转化为有理函数,换元后应先确定新元的取值范围.(4)分离常数法:将形如ax by cx d+=+的有理分式转化为“反比例函数”的形式a k y c cx d =++,确定函数值域为{|}ay y c≠.(5)判别式法:把函数转化为关于x 的二次方程,通过方程有实根,判别式0∆≥,从而求得原函数的值域.(6)单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.4.求函数解析式(1)配凑法:已知某区间上的解析式,求其他区间上的解析式,将待求变量转化到已知区间上,利用函数满足等量关系间接获得其解析式.(2)换元法:已知(())()f h x g x =求()f x 时,往往可设()h x t =,从中解出x ,带入()g x 进行换元,求出()f t 的解析式,再将t 替换为x 即可,注意新元t 的取值范围.(3)待定系数法:若已知函数类型(如一次函数、二次函数等),根据函数类型设出函数解析式,根据题设条件,列出方程组,解出待定系数即可.(4)解方程组法:已知关于()f x 与1()f x(或()f x -)的表达式,可根据已知条件再构造出另一个方程,构成方程组求出()f x .练习题:答案解析:答案:153()888xf xx=+-29解析:()2()31f x f x x--=-…………①用x-替换x得()2()31f x f x x--=--……②两式联立解得()1f x x=+.答案:A数学浪子整理制作,侵权必究。
高一数学函数的定义域与值域试题答案及解析
高一数学函数的定义域与值域试题答案及解析1.已知函数的定义域为,的定义域为,则A.B.C.D.【答案】D【解析】函数的定义域M=,的定义域为N=;则【考点】函数的定义域2.函数的值域是()A.[0,12]B.[-,12]C.[-,12]D.[,12]【答案】B.【解析】因为函数,所以,当时,;当时,;所以函数的值域为.故应选B.【考点】二次函数的性质.3.已知函数的定义域为,则函数的定义域为()A.(-,-1)B.(-1,-)C.(-5,-3)D.(-2,-)【答案】B.【解析】因为函数的定义域为,即,所以,所以函数的定义域为,所以,即,所以函数的定义域为.故选B.【考点】函数的定义域及其求法.4.已知函数在时取得最大值4.(1)求的最小正周期;(2)求的解析式;(3)若,求的值域.【答案】(1);(2);(3).【解析】(1)直接利用正弦函数的周期公式,求f(x)的最小正周期;(2)利用函数的最值求出A,通过函数经过的特殊点,求出φ,然后求f(x)的解析式;(3)通过,求出相位的范围,利用正弦函数的值域直接求f(x)的值域..试题解析:解:(1),(3)时,的值域为【考点】1.由y=Asin(ωx+φ)的部分图象确定其解析式;2.三角函数的周期性及其求法.5.函数的定义域是 ( )A.B.C.D.【答案】D【解析】要使函数式有意义,则.【考点】本题考查函数的定义域即使函数式有意义的自变量的取值范围.6. (1)求不等式的解集:.(2)求函数的定义域:.【答案】(1);(2).【解析】(1)首先将首项系数化为正数,然后分解因式,进而可求得不等式的解集;(2)首先根据根式要有意义建立不等式,然后通过解分式不等式可求得结果.试题解析:(1)∵,∴,∴,∴或,∴原不等式的解集为.(2)要使函数有意义,须,解得或,∴函数的定义域是.【考点】1.一元二次不等式的解法;2.函数定义域.7.函数的定义域是.【答案】【解析】要是此函数有意义,所以有,所以定义域为【考点】(1)函数定义域的求法,(2)偶次根号下被开方数大于等于0,对数中真数大于08.计算:(2)已知函数,求它的定义域和值域。
定义域练习题及解答
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载定义域练习题及解答地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容函数的定义域练习题一、知识要点:1.函数的定义域问题常从以下几方面考虑:①分式的分母不等于0;②偶次根式的被开方数非负;③对数式的真数大于零,底数大于零且不等于1;④指数为0时,底数不等于0.2.已知的定义域,求的定义域;已知的定义域,求的定义域.二、例题分析:1.求下列函数的定义域:①;②;③;④2.若函数的定义域为求的定义域.3.当为何值时,函数的定义域是一切实数?三、练习:1.下列各题中表示同一函数的是()A. B.C. D.2.设函数则()A. B. C. D.3.若函数则()A. 1B. 3C. 15D.304.若函数是这两个函数中的最小者,则()A. 2B. 1C.D. 无最大值5.设则的值为()A. B. C. D.6.已知定义域为的函数满足且>0,若则()A. 2B.4C.D.二、填空题7.设函数则实数的取值范围是 .8..函数的定义域 .9.已知函数则10.已知函数且有唯一解,则函数的解析式为11.若函数的定义域为,则的定义域为.三、解答题12.求下列函数的定义域:①;②;③;④;⑤13.解下列各题:①已知函数的定义域为,求的定义域.②已知函数的定义域为,求函数的定义域.③若的定义域为,求的定义域.④已知函数的定义域是求<≤的定义域.14.如图,有一块半椭圆形钢板,其长半轴长为短半轴长为.计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上.记,梯形面积为.(1)求面积以为自变量的函数式,并写出其定义域;(2)求面积的最大值.解(1)依题意,以AB的中点O为原点建立直角坐标系O-xy(如图),则点C的横坐标为x,点C的纵坐标y满足方程(y≥0),解得y=2 (0<x<r).S=(2x+2r)·2=2(x+r)·,其定义域为{x|0<x<r}.(2)记f(x)=4(x+r)2(r2-x2),0<x<r,则f′(x)=8(x+r)2(r-2x).令f′(x)=0,得x=r.因为当0<x<时,f′(x)>0;当<x<r时,f′(x)<0,所以f(r)是f(x)的最大值.因此,当x=r时,S也取得最大值,最大值为.。
高一数学求函数定义域专项训练(含解析)
求函数定义域专项训练(含解析)一、求定义域(共23题;共51分)1.(2020高一上·江西月考)函数的定义域为()A. B. C. D.2.(2020高二上·北京月考)函数的定义域是()A. B. C. D.3.(2020高一上·台州期末)函数的定义域是()A. B. C. D.4.(2020高一上·安庆期中)函数的定义域是()A. B. C. D.5.(2020高一上·江苏月考)函数的定义域是()A. [-1,+∞)B. [1,+∞)C. [-1,1]D. (1,+∞)6.(2020高一上·徐州期中)函数的定义域是()A. B. C. D.7.(2020高一上·吉安月考)函数y= 的定义域为()A. (-∞,1]B. (-∞,0)∪(0,1)C. (-∞,0)∪(0,1]D. [1,+∞)8.(2020高一上·晋州月考)函数的定义域是()A. B. C. D.9.(2020高一上·曲靖月考)函数的定义域是()A. [ ,1]B. [ ,+∞]C. (,0)∪(0,1]D. (,0)∪(0,1)10.(2020高一上·吕梁期中)函数y=+的定义域为()A. B. C. D.11.(2020高一上·黄石月考)函数的定义域为()A. B. C. D.12.(2020高一上·黄陵期中)函数的定义域为()A. B. C. D. 且13.(2020高一上·宿州期中)函数的定义域是()A. B. C. D.14.(2020高一上·重庆月考)函数f(x)= 的定义域是()A. B. C. D.15.(2020高一上·苏州期中)函数的定义域是()A. B. C. D.16.(2020高一上·麻城期中)函数的定义域为()A. 或B.C.D.17.(2020高一上·遵义期中)函数的定义域为()A. B.C. 且D. 且18.(2020高一上·成都月考)函数的定义域为()A. B. C. D.19.(2020高一上·胶州期中)若函数的定义域为集合,则()A. B. C. D.20.(2020高一上·南通月考)函数的定义域为________.21.(2020高三上·北京期中)函数的定义域是________.22.(2020高一上·上海月考)函数的定义域为________.23.(2020高一上·江西月考)求下列函数的定义域(1)(2)答案解析部分一、求定义域1.【答案】D【解析】【解答】对于函数,由,解得,因此,函数的定义域为,故答案为:D.【分析】利用偶次根式函数求定义域的方法,从而求出函数的定义域。
(word完整版)高中函数典型例题
§1.2.1 函数的概念¤知识要点:1. 设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=()f x,x A∈.其中,x叫自变量,x的取值范围A叫作定义域,与x的值对应的y值叫函数值,函数值的集合{()|}f x x A∈叫值域.2. 设a、b是两个实数,且a<b,则:{x|a≤x≤b}=[a,b] 叫闭区间; {x|a<x<b}=(a,b) 叫开区间;{x|a≤x<b}=[,)a b, {x|a<x≤b}=(,]a b,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a>=+∞,{|}[,)x x a a≥=+∞,{|}(,)x x b b<=-∞,{|}(,]x x b b≤=-∞,(,)R=-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域:(1)121yx=+-;(2)y=.解:(1)由210x+-≠,解得1x≠-且3x≠-,所以原函数定义域为(,3)(3,1)(1,)-∞----+∞U U.(2)由3020x-≥⎧⎪≠,解得3x≥且9x≠,所以原函数定义域为[3,9)(9,)+∞U.【例2】已知函数1(1xf xx-=+. 求:(1)(2)f的值;(2)()f x的表达式解:(1)由121xx-=+,解得13x=-,所以1(2)3f=-.(2)设11xtx-=+,解得11txt-=+,所以1()1tf tt-=+,即1()1xf xx-=+.点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例3】已知函数22(),1xf x x Rx=∈+.(1)求1()(f x fx+的值;(2)计算:111(1)(2)(3)(4)()(()234f f f f f f f++++++.解:(1)由2222222221111()(1111111x x xxf x fx x x x xx++=+=+==+++++.(2)原式11117(1)((2)(((3)(((4)(323422f f f f f f f=++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.§1.2.2 函数的表示法¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f . ¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <.所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩(,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞, ∴ f (0)=32. 又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右: 点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.§1.3.1 函数的单调性¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1x f x x =-在区间(0,1)上的单调性.解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数. 【例2】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.【例3】已知31()2x f x x +=+,指出()f x 的单调区间.解:∵ 3(2)55()322x f x x x +--==+++,∴ 把5()g x x-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,得到()f x 的图象,如图所示.由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.§1.3.1 函数最大(小)值¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a -=++后,当0a >时,函数取最小值为244ac b a-;当0a <时,函数取最大值244ac b a-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =时,min 2112y =+-=,函数的最小值为2.点评:形如y ax b cx d =+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令1x t -=,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2bx a=-,即1x =-.画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.。
(word完整版)高一数学必修一函数专题
高一数学必修一函数专题(教师版)一.函数的奇偶性.(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称•(2)确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):①定义法;f(x) f( x) 0②利用函数奇偶性定义的等价形式:f( x) 1( f(x) 0).f (x)③图像法:奇函数的图象关于原点对称;偶函数的图象关于y轴对称.(3)函数奇偶性的性质:①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反•②若f (x)为偶函数,贝U f( x) f (x) f (| x |).③若奇函数f(x)定义域中含有0,则必有f(0) 0.④奇函数的图象关于原点对称;偶函数的图象关于y轴对称.二.函数的单调性1. 函数单调性的定义:(1)如果函数f x对区间D内的任意x-! ,x2,当x1 x2时都有f % f x2,则f x在D内是增函数;当x1 x2时都有f为f x2,则f x在D内是减函数.(2)设函数y f (x)在某区间D内可导,若f X 0,则y f (x)在D内是增函数;若f x 0,则y f (x)在D内是减函数.2•单调性的定义的等价形式:(1)设x1 ,x2 a,b,那么匚勺——^-x^ 0 f x在a,b上是增函数;x1 x2(2) --------------------------------------- 设x1 ,x2 a,b,那么f x2 0 f x 在a,b 上是减函数;x1 x23.证明或判断函数单调性的方法:(1) 定义法:设元作差变形判断符号给出结论•其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘积、平方和等形式,再结合变量的范围,假设的两个变量的大小关系及不等式的性质作出判断;⑵复合函数单调性的判断方法:即“同增异减”法,即内层函数和外层函数的单调性相同,则复合函数为增函数;若相反,则复合函数为减函数•解决问题的关键是区分好内外层函数,掌握常用基本函数的单调性;(3)图象法:利用数形结合思想,画出函数的草图,直接得到函数的单调性;(4)导数法:利用导函数的正负来确定原函数的单调性,是最常用的方法.(5)利用常用结论判断:①奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;②互为反函数的两个函数具有相同的单调性;③在公共定义域内,增函数f(x)增函数g(x)是增函数;减函数f(x)减函数g(x)是减函数;增函数f (x)减函数g(x)是增函数;减函数f (x)增函数g(x)是减函数;④复合函数法:复合函数单调性的特点是同增异减,特别提醒:求单调区间时,勿忘定义域,三.函数的周期性.(1)类比“三角函数图像”得:①若y f (x)图像有两条对称轴x a,x b(a b),则y f (x)必是周期函数,且一周期为T 2|a b| ;②若y f (x)图像有两个对称中心A(a,O), B(b,O)(a b),则y f(x)是周期函数,且一周期为T 2|a b| ;③如果函数y f (x)的图像有一个对称中心A(a,O)和一条对称轴x b(a b),则函数y f(x)必是周期函数,且一周期为T 4|a b| ;(2)由周期函数的定义“函数f(x)满足f x f a x (a 0),则f(x)是周期为a的周期函数”得:函数f (x)满足 f x f a x,则f(x)是周期为2a的周期函数。
新高一微积分定义域习题(基础版)
新高一微积分定义域习题(基础版)以下是一些关于定义域的微积分题,适合高一学生复微积分的基础知识。
每个问题后面都有答案供参考。
1. 问题:求函数 $f(x) = \frac{1}{x}$ 的定义域。
答案:函数 $f(x) = \frac{1}{x}$ 在实数范围内定义,但是不能取 $x=0$,因为分母不能为零。
所以定义域为 $x \in \mathbb{R}, x \neq 0$。
2. 问题:求函数 $g(x) = \sqrt{x}$ 的定义域。
答案:函数 $g(x) = \sqrt{x}$ 的定义域是所有使得表达式$\sqrt{x}$ 有意义的实数 $x$ 的集合。
由于不能对负数开平方根,所以定义域为 $x \in \mathbb{R}, x \geq 0$。
3. 问题:求函数 $h(x) = \log(x)$ 的定义域。
答案:函数 $h(x) = \log(x)$ 的定义域是所有使得表达式$\log(x)$ 有意义的实数 $x$ 的集合。
由于对数函数的底数不能为零或负数,所以定义域为 $x \in \mathbb{R}, x > 0$。
4. 问题:求函数 $k(x) = \frac{1}{\sqrt{x-3}}$ 的定义域。
答案:函数 $k(x) = \frac{1}{\sqrt{x-3}}$ 在实数范围内定义,但是由于分母中出现了开平方根,所以要求$x-3 > 0$,即$x > 3$。
因此定义域为 $x \in \mathbb{R}, x > 3$。
这些题目涉及到微积分中常见函数的定义域求解。
通过理解定义域的概念以及各种函数的性质,可以帮助学生更好地掌握微积分的基础知识。
以上所述,希望对你有所帮助。
如有任何疑问,请随时向我提问。
高一数学函数的定义域与值域试题
高一数学函数的定义域与值域试题1.函数的定义域为【答案】【解析】要求定义域,即分母大于0,根号下大于等于0;求函数定义域一般有一下几种形式1、整式函数,定义域是一切实数;2、分式函数,定义域是使得分母不等于0的一切实数;3、偶次根式型的函数,使得被开方数大于等于0的一切实数;4、对数函数,使得真数大于0的一切实数;5、指数函数,定义域是一切实数;【考点】函数的定义域2.函数的定义域是()A.B.C.D.【答案】C【解析】由题可知且,可得.【考点】函数的定义域.3.函数的定义域为()A.B.C.D.【答案】C【解析】由题可知且,得或.【考点】本题主要考函数的定义或,一元二次不等式的解法.4.已知函数.(1)判断函数的奇偶性并证明;(2)当时,求函数的值域.【答案】(1)奇函数,(2).【解析】(1)判断函数奇偶性,从两个方面入手,一要判断定义域,若定义域不关于原点对称,则函数就为非奇非偶函数,二在函数定义域关于原点对称前提下,判断与的关系,如只相等,则为偶函数,如只相反,则为奇函数,如既相等又相反,则既为奇函数又为偶函数,如既不相等又不相反,则为非奇非偶函数,本题定义域为R,研究与的关系时需将负指数化为对应正指数的倒数,(2)研究函数的值域,一要看函数解析式的结构,本题是可化为型,二是结合定义域利用函数单调性求值域.试题解析:(1)∵,, 4分∴是奇函数. 5分(2)令,则. 7分∵,∴,∴,∴,所以的值域是. 10分【考点】函数奇偶性,函数值域.5.设表示不超过的最大整数,如,若函数,则函数的值域为 .【答案】【解析】因为,所以所以当时,,,,故当时,,,,故当时,,,,故综上可知的值域为.【考点】1.新定义;2.函数的解析式;3.函数的值域.6.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.7.函数的定义域为A.B.C.D.【答案】C【解析】由题意得,解得,即.【考点】1.函数的定义域;2.根式、对数式的定义.8.若函数()在上的最大值为23,求a的值.【答案】或【解析】利用整体思想令,则,其图像开口向上且对称轴为,所以二次函数在上单调递减,在上是增函数.下面分两种情况讨论:当时,在R上单调递减,当时是的增区间,所以时y取最大值。
高一数学函数的定义域与值域试题答案及解析
高一数学函数的定义域与值域试题答案及解析1.已知(1)若,求x的范围;(2)求的最大值以及此时x的值.【答案】(1)(2),.【解析】(1)根据向量的数量积公式,化简f(x)≥1得cos2x-cosx≤0,从而得到0≤cosx≤1.再由余弦函数的图象与性质解此不等式,即可求出x的范围;(2)由(1)得f(x)=sin2x+cosx,利用同角三角函数的关系化简、配方得f(x)═,由此可得cosx=时,f(x)的最大值为,根据余弦函数的图象与性质,可得相应x的值..试题解析:解:(1),(2)【考点】1.平面向量数量积的运算;2.正弦函数的定义域和值域.2.注:此题选A题考生做①②小题,选B题考生做①③小题.已知函数是定义在R上的奇函数,且当时有.①求的解析式;②(选A题考生做)求的值域;③(选B题考生做)若,求的取值范围.【答案】①;②;③【解析】①当时,,根据可推导出时的解析式。
注意最后将此函数写成分段函数的形式。
②本题属用分离常数项法求函数值域。
当时将按分离常数项法将此函数化为,根据自变量的范围可推导出函数值的范围,因为此函数为奇函数所以值域也对称。
故可得出的值域。
③本题属用单调性“知二求一”解不等式问题。
所以应先判断此函数的单调性。
同②当时将化为,可知在上是增函数,因为为奇函数,所以在上是增函数。
根据单调性得两自变量的不等式,即可求得的取值范围。
试题解析:解:①∵当时有∴当时,∴∴()∴(6分)②∵当时有∴又∵是奇函数∴当时∴(A:13分)③∵当时有∴在上是增函数,又∵是奇函数∴是在上是增函数,(B:13分)∵∴∴【考点】函数的奇偶性及值域,函数的单调性。
考查转化思想。
3.已知函数且的图象经过点.(1)求函数的解析式;(2)设,用函数单调性的定义证明:函数在区间上单调递减;(3)解不等式:.【答案】(1),(2)详见解析,(3)或.【解析】(1)求函数的解析式,只需确定的值即可,由函数且的图象经过点,得,再由得,(2)用函数单调性的定义证明单调性,一设上的任意两个值,二作差,三因式分解确定符号,(3)解不等式,一可代入解析式,转化为解对数不等式,需注意不等号方向及真数大于零隐含条件,二利用函数单调性,去“”,注意定义域.试题解析:(1),解得:∵且∴; 3分(2)设、为上的任意两个值,且,则6分,在区间上单调递减. 8分(3)方法(一):由,解得:,即函数的定义域为; 10分先研究函数在上的单调性.可运用函数单调性的定义证明函数在区间上单调递减,证明过程略.或设、为上的任意两个值,且,由(2)得:,即在区间上单调递减. 12分再利用函数的单调性解不等式:且在上为单调减函数., 13分即,解得:. 15分方法(二): 10分由得:或;由得:,13分. 15分【考点】函数解析式,函数单调性定义,解不等式.4.已知则_ .【答案】7【解析】因为,所以代入,即,因为,所以代入,得,故得.【考点】分段函数及解析式.5.给出以下命题:①若、均为第一象限角,且,且;②若函数的最小正周期是,则;③函数是奇函数;④函数的周期是;⑤函数的值域是.其中正确命题的个数为()A.3B.2C.1D.0【答案】D【解析】对于①来说,取,均为第一象限,而,故;对于②,由三角函数的最小正周期公式;对于③,该函数的定义域为,定义域不关于原点对称,没有奇偶性;对于④,记,若,则有,而,,显然不相等;对于⑤,,而当时,,故函数的值域为;综上可知①②③④⑤均错误,故选D.【考点】1.命题真假的判断;2.三角函数的单调性与最小正周期;3.函数的奇偶性;4.函数的值域.6.函数的定义域为.【答案】【解析】要是此函数有意义,所以有,所以定义域为【考点】(1)函数定义域的求法,(2)偶次根号下被开方数大于等于0,对数中真数大于07.若函数()在上的最大值为23,求a的值.【答案】或【解析】利用整体思想令,则,其图像开口向上且对称轴为,所以二次函数在上单调递减,在上是增函数.下面分两种情况讨论:当时,在R上单调递减,当时是的增区间,所以时y取最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数定义域练习题
1.函数)13lg(13)(2
++-=x x
x x f 的定义域是 ( )
A .(∞-,31-)
B .(31-,31)
C .(31-,1)
D .(31-,∞+) 2. 函数)1lg(11)(++-=x x
x f 的定义域是 ( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)∪(1,+∞) D .R
3. 若函数)
12(log 1)(2+=
x x f ,则)(x f 的定义域为 ( ) A.)0,21(- B.),21(+∞- C.),0()0,21(+∞⋃- D.)2,2
1(- 4
函数y =的定义域为 ( ) A.( 34,1) B(34,∞) C (1,+∞) D. ( 34
,1)∪(1,+∞) 5. 已知()f x =11+x ,则函数(())f f x 的定义域是 ( ) A .{|1}x x ≠- B .{|2}x x ≠- C .{|12}x x x ≠-≠-且 D .{|12}x x x ≠-≠-或
6.
函数=y R ,则k 的取值范围是 ( )
A.09k k ≥≤-或
B.1k ≥
C.91k -≤≤
D. 01k <≤
7.函数23)(x x x f -=的定义域为 ( )
A .[0,32 ]
B .[0,3]
C .[-3,0]
D .(0,3)
8.若函数()f x 的定义域为[,]a b ,且0b a >->,则函数()()()g x f x f x =--的定义域是 ( ) A .[,]a b B .[,]b a -- C .[,]b b - D .[,]a a -
9.设I =R ,已知2()lg(32)f x x x =-+的定义域为F ,函数()lg(1)lg(2)g x x x =-+-的定义域为G ,
那么GU I C F 等于 ( )
A .(2,+∞)
B .(-∞,2)
C .(1,+ ∞)
D .(1,2)U(2,+∞)
10.已知函数)(x f 的定义域为[0,4],求函数)()3(2x f x f y ++=的定义域为 ( )
A .[2,1]--
B .[1,2]
C .[2,1]-
D .[1,2]-
11.若函数()f x 的定义域为[-2,2]
,则函数f 的定义域是 ( )
A .[-4,4]
B .[-2,2]
C . [0,2]
D . [0,4]
12.已知函数1()lg 1x f x x
+=-的定义域为A ,函数()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于 A 、B 的关系中,不正确的为 ( )
A .A ⊇
B B .A ∪B=B
C .A∩B=B
D .B ⊂≠A
13. 函数y =-x 2-3x +4
x
的定义域为 ( ) A .[-4,1] B .[-4,0) C .(0,1] D .[-4,0)∪(0,1]
14. 若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是 ( )
A .a =-1或3
B .a =-1
C .a > 3或a <-1
D .-1 < a < 3
15. 若函数y =f (x )的定义域是[0,2],则函数 g (x )=21
f x x ()-的定义域是 ( ) A. [0,1] B. [0,1) C. [0,1)∪(1,4] D. (0,1)
17. 函数261x
x y --=
的定义域是 . 18.已知函数22(3)1x y ax a x -=--+的定义域是R , 则实数a 的范围是_________________ . 20.求函数的定义域:(1)x x x x x x f +-++-=02
)1(65)(; ((0,1)(1,2][3,)+∞U U )
(2)y =((0,2)(2,3])U (3) y . ((1,2))
21. 设2()lg
2x f x x +=-,求2()()2x f f x
+的定义域为. ((4,1)(1,4)--U )
22、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;
23、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x
+的定义域为 。
24 函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。