0708概率论与数理统计试题B答桉暨南大学慨率论期末考试试卷
概率论与数理统计2007—2008学年第一学期期末考试试卷及参考答案与评分标准
2007-2008学年第一学期期末考试试卷考试科目:概率论与数理统计 得 分:学生所在系: _________ 姓名 ______________ 学 号:______________________(考期:2008年1月22日,闭卷,可用计算器)一、 (15分)一串0,1数字(独立同分布)组成的序列中1的概率p 代表了某种有用的 信息,由于某种原因需要对其保密。
现对该串数字进行随机加密,对序列中的每一个数字抛 一枚硬币(每次正面出现的概率为〃),若抛出的为正面,则原序列的数字不变,若抛出的 为反面,则原序列中相应的数字由工变成1-工(即0变成1, 1变成0)。
加密后的序列可 以公布,其中1的概率p*可以估计出来。
若知道〃的值,就可以从加密后的序列中的1的频 率为〃*计算出原序列的p,所以〃称为“密钥”。
(1) 现己知p = 0.7 ,如果“密钥” "=0.4,试求p ;(2) 试说明为什么均匀硬币(7 = 0.5)不适合用来加密。
二、 (15 分)设随机变量 X 满足:| X |< 1, P (X = -1) = 1/8, P (X = 1) = 1/4 ,而且, X 在(-1, 1)内任一子区间上取值的概率与该子区间的长度成正比。
试求:(1) X 的概率分布函数F (x ) = P (X < x );(2)X 取负值的概率; (3) X 的数学期望项X )。
三、(20分)二维随机变量(X,F )的密度函数为:(1)试求系数A = ? ; (2) X 与Y 是否独立?(3)试求Z = X + Y 的密度函数心(z );(4) 试求W (X|X + y = l)of(x, y)=(而-(35)3 > 0, > > 0)其他四、(20分)设样本(X“X2,・・・,X〃)抽自正态总体X ~N(", 1),々为未知参数(1)试求0 = P(X>2)的极大似然估计0"(结果可用(D(.)的形式表示);(2)写出日的(1一。
2007级概率统计(理工类)考试试卷A答案
暨 南 大 学 考 试 试 卷上分位数(除填空题外,其它题用到的分位数请详细列明)0025002582306, 92262..().().,t t == 00500581859, 91833..().().t t ==20.025(8)17.532χ=, 20.025(9)19.022=χ, 20.975(8) 2.18=χ, 20.975(9) 2.7=χ 108413().Φ= ,1645095(.).Φ=,1960975(.).Φ=, 2509938(.).Φ=得分 评阅人二、选择题(共8小题,每小题2分,共16分)答案填写在右表1. 设随机变量X 服从正态分布2(,) N μσ,则随着标准差σ的增大,概率{}P X μσ-<如何变化( C )(A) 单调增大; (B) 单调减少; (C) 保持不变; (D) 增减不定。
2. 离散型随机变量X 的概率分布为()kP X k A λ== (1,2,k =)的充要条教 师 填写 2008 - 2009 学年度第__二_ 学期课程名称:__概率论与数理统计(理工类)_ 授课教师姓名:_____刘中学______考试时间:____2009__年 7_月__15__日课程类别必修[√ ] 选修[ ]考试方式开卷[ ] 闭卷[√ ] 试卷类别(A ,B,…) [ A ] 共 7 页考 生 填 写学院(校) 专业 班(级)姓名 学号 内招[ ] 外招[ ]题 号 一 二 三 四 五 六 七 八 九 十 总 分得 分题 号1 2 3 4 5 6 7 8 答 案 C A D A C B B A 得 分件是( A )。
(A )1(1)A λ-=+且0A >; (B )1A λ=-且01λ<<; (C )1A λ=-且1λ<; (D )0A >且01λ<<. 3. 已知()0.5P A =,()0.4P B =,()0.6P AB =,则()P A B =(D )(A) 0.2 ; (B) 0.45; (C) 0.6 ; (D) 0.75。
概率论与数理统计期末试卷及答案(最新12)(推荐文档)
概率论与数理统计期末试卷及答案一、是非题(共7分,每题1分)1.设A ,B ,C 为随机事件,则A 与C B A ⋃⋃是互不相容的. ( ) 2.)(x F 是正态随机变量的分布函数,则)(1)(x F x F -≠-. ( ) 3.若随机变量X 与Y 独立,它们取1与1-的概率均为5.0,则Y X =. ( )4.等边三角形域上二维均匀分布的边缘分布仍是均匀分布. ( ) 5. 样本均值的平方2X 不是总体期望平方2μ的无偏估计. ( ) 6.在给定的置信度α-1下,被估参数的置信区间不一定惟一. ( ) 7.在参数的假设检验中,拒绝域的形式是根据备择假设1H 而确定的. ( )二、选择题(15分,每题3分)(1)设A B ⊂,则下面正确的等式是 。
(a))(1)(A P AB P -=; (b))()()(A P B P A B P -=-; (c))()|(B P A B P =; (d))()|(A P B A P =(2)离散型随机变量X 的概率分布为kA k X P λ==)(( ,2,1=k )的充要条件是 。
(a)1)1(-+=A λ且0>A ; (b)λ-=1A 且10<<λ; (c)11-=-λA 且1<λ; (d)0>A 且10<<λ.(3)设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D .(a)A ; (b)A 1.0; (c)A 2.0; (d)A 10.(4)设),,,(21n X X X 为总体)1,0(~N X 的一个样本,X 为样本均值,2S 为样本方差,则有 。
(a))1,0(~N X ; (b))1,0(~N X n ; (c))1(~/-n t S X ; (d))1,1(~/)1(2221--∑=n F XX n ni i.(5)设),,,(21n X X X 为总体),(2σμN (μ已知)的一个样本,X 为样本均值,则在总体方差2σ的下列估计量中,为无偏估计量的是 。
(完整版),概率论与数理统计期末试卷及答案B,推荐文档
A. P( A B) P( A) P(B) B. P( AB) P( A)P(B)
C. A B
D. P( A B) P( A)
14.设总体 X : N (, 2 ) , , 2 未知,且 0 , X1, X 2, , X n 是来自总体的容量为 n 的样本,则 2 的矩法估计量为( )
姓名
班级
第3页 共6页
‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线
‥‥‥‥‥‥‥‥‥‥‥‥‥
28.设总体 X 的均值为 E( X ) ,方差 D( X ) 2 ,证明:
(1)样本均值
X
1 n
n i 1
Xi
是总体均值
的无偏估计.
(2)样本方差
二、判断题(本大题共 5 小题,每小题 2 分,共 10 分)
D.4
判断正误,正确代码为 A,错误代码为 B,请将正确的答案代码涂在答题卡相 应的题号下。
16.若 A, B 相互独立,则 A, B 未必相互独立.
(
)
17.设样本空间 {1, 2 , 3 , 4 },事件 A {1, 2 , 3 } ,则
X1 2
X2 4
X3 4
,
ˆ2
X1 3
X2 3
X3 3
证明:(1)ˆ1, ˆ2 都是总体 X 的均值 的无偏估计;
(2)比较ˆ1, ˆ2 哪个更有效. 一、单项选择题(本大题共 15 小题,每小题 2 分,共 30 分)
1.A
2.A
3.A
4.B
5.B
6.B
7.D
8.B
9.B
10.B
11.D
12.A
《概率论与数理统计》期末考试试题及答案
专业、班级:姓名:学号:
题号
一
二
三
四
五
六
七
八
九
十
十一
十二
总成绩
得分
一、单项选择题(每题3分共18分)
1.D 2.A 3.B 4.A5.A6.B
(1)
(2)设随机变量X其概率分布为 X -1 0 1 2
P 0.2 0.3 0.1 0.4
则 ( )。
(A)0.6(B)1(C)0 (D)
(3)
设事件 与 同时发生必导致事件 发生,则下列结论正确的是()
(A) (B)
(C) (D)
(4)
(5)设 为正态总体 的一个简单随机样本,其中
未知,则()是一个统计量。
(A) (B)
(C) (D)
(6)设样本 来自总体 未知。统计假设
为 则所用统计量为()
(A) (B)
(C) (D)
2、填空题(每空3分共15分)
解:因为 ,所以
(1)根据边缘概率与联合概率之间的关系得出
-1 0 1
0
1
0
0
0
………….4分
(2)因为
所以与 不相互独立
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
解:用 表示第 户居民的用电量,则
………2分
则1000户居民的用电量为 ,由独立同分布中心极限定理
………3分
= ………4分
……….6分
概率论及数理统计期末试卷习题及标准答案.doc
概率论及数理统计期末试卷习题及标准答案.doc概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50 个球,其中20 个红球, 30 个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为3/5。
2、设 P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么P( A U B )2/3。
3、若随机变量X 的概率密度为 f ( x ) Ax 2 , 1 x 1, 那么A=3/2。
4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/,其它区域都是 0,那么P( X2Y 21 )1/2。
25、掷 n 枚骰子,记所得点数之和为X,则 EX = 。
6、若 X, Y, Z 两两不相关,且DX=DY=DZ=2,则 D(X+Y+Z) = 6 。
7、若随机变量X1 , X 2 ,L , X n相互独立且同分布于标准正态分布N(0,1) ,那么它们的平方和 X 12 X 22 L X n2 服从的分布是2 ( n) 。
8、设n A是 n 次相互独立的试验中事件A 发生的次数,p是事件 A 在每次试验中发生的概率,则对任意的n Ap | } =0 。
0 ,lim {|n n9 、设总体X : N ( , 2 ),其中 2 已知,样本为X 1 , X 2 ,L , X n,设 H 0 :0 ,H 1 :X 0z 。
0 ,则拒绝域为n10、设总体 X 服从区间 [1, a] 上的均匀分布,其中 a 是未知参数。
若有一个来自这个总体的样本 2, , , , , 那么参数 a 的极大似然估计值$2.7 。
a = max{ x1 , x2 ,L , x n }二、选择题1、设10 张奖券只有一张中奖,现有10 个人排队依次抽奖,则下列结论正确的是( A )(A)每个人中奖的概率相同;( B)第一个人比第十个人中奖的概率大;(C)第一个人没有中奖,而第二个人中奖的概率是1/9 ;(D)每个人是否中奖是相互独立的2、设随机变量 X 与 Y 相互独立,且X : N (1, 2 ) ,Y : N ( 2 ,2),则X Y 服从的分布是( B )(A)N ( 1 2 , 2 ) ;(B)N ( 1 2 ,2 2 ) ;(C)N ( 1 2 , 2 ) ;(D)N ( 1 2 , 2 2 ) 3、设事件A、 B 互斥,且P ( A) 0 , P( B ) 0 ,则下列式子成立的是( D )( A)P( A | B )P( A) ;(B)P( B | A)0 ;( C)P( A | B ) P( B) ;( D)P( B | A) 0 ;4、设随机变量 X 与 Y 独立同分布, P(X= -1) = P(Y= -1) =1/2 ,P(X= 1) = P(Y= 1) =1/2 ,则下列成立的是( A )( A)P( X Y ) 1 / 2 ;( B)P( X Y ) 1 ;( C)P( X Y 0) 1/ 4 ;( D)P( XY 1) 1/ 4 ;5、有 10 张奖券,其中8 张 2 元, 2 张 5 元。
暨南大学概率论与数理统计标准答案
暨南大学概率论与数理统计标准答案暨南大学考试试卷一、填空题(共5小题,每小题3分,共15分)1.某班共有30名学生,其中3名来自北京。
今从班上任选2名学生去参观展览,其中恰有1名学生来自北京的概率为27/145 。
2.一批产品的废品率为0.1,从中重复抽取m 件进行检查,这m 件产品中至少有1件废品的概率为1(0.9)m -。
3.设连续型随机变量2,01~()0,x x x ξ?<<= 1/4 。
4.设二元随机变量(,)ξη的联合概率密度函数为(),0,1(,)0,x y ce x y x y ?-+?<<=??其他,则c =12(1)e ---。
5.设随机变量ξ服从正态分布()N 24,3,则ξ的期望E ξ= 4 ,方差D ξ= 9 。
二、单选题(共5小题,每小题3分,共15分。
请把正确答案填在题后的括号内)1.设A 、B 、C 为三个事件,则事件“A 、B 、C 中恰有两个发生”可表示为( (c) )。
(a) AB AC BC ++; (b) A B C ++; (c) ABC ABC ABC ++; (d) ABC 2.已知随机变量ξ具有如下分布律1230.1p k j ξ?? ???,且2() 5.3E ξ=,则j =( (a) )。
(a) 0.5; (b) 0.2; (c) 0; (d) 0.1 3.设随机变量ξ服从二项分布(100,0.1)B ,则ξ的期望E ξ和方差D ξ分别为( (b) )。
(a) E ξ=10,D ξ=0.09;(b) E ξ=10,D ξ=9;(c) E ξ=90,D ξ=10;(d) E ξ=1,D ξ=34.设随机变量ξ服从指数分布,其概率密度函数为22,0()0,0x e x x x ?-?>=?≤?,则ξ的期望E ξ=( (c) )。
(a) 4; (b) 2; (c)12; (d) 145.设123,μμμ和为总体期望值μ的三个无偏估计量,且1213,D D D D μμμμ<<,则以下结论( (d) )成立。
《概率论与数理统计》期末考试试题及答案
《概率论与数理统计》期末考试试题及答案一、选择题(每题5分,共25分)1. 设随机变量X的分布函数为F(x),以下哪个选项是正确的?A. F(x)是单调递增的函数B. F(x)是单调递减的函数C. F(x)是连续的函数D. F(x)是可导的函数答案:A2. 设随机变量X和Y相互独立,以下哪个选项是正确的?A. X和Y的协方差为0B. X和Y的相关系数为0C. X和Y的联合分布等于X和Y的边缘分布的乘积D. X和Y的方差相等答案:C3. 设随机变量X服从参数为λ的泊松分布,以下哪个选项是正确的?A. E(X) = λB. D(X) = λC. E(X) = λ²D. D(X) = λ²答案:A4. 在假设检验中,以下哪个选项是正确的?A. 显著性水平α越大,拒绝原假设的证据越充分B. 显著性水平α越小,接受原假设的证据越充分C. 显著性水平α越大,接受原假设的证据越充分D. 显著性水平α越小,拒绝原假设的证据越充分答案:D5. 以下哪个选项不是统计量的定义?A. 不含未知参数的随机变量B. 含未知参数的随机变量C. 不含样本数据的随机变量D. 含样本数据的随机变量答案:B二、填空题(每题5分,共25分)6. 设随机变量X和Y的方差分别为DX和DY,协方差为Cov(X,Y),则X和Y的相关系数ρ的公式为______。
答案:ρ = Cov(X,Y) / √(DX × DY)7. 设随机变量X服从标准正态分布,则X的数学期望E(X) = ______,方差D(X) = ______。
答案:E(X) = 0,D(X) = 18. 设总体X的方差为σ²,样本容量为n,样本方差为s²,则样本方差的期望E(s²) = ______。
答案:E(s²) = σ²9. 在假设检验中,原假设和备择假设分别为H₀: μ = μ₀和H₁: μ ≠ μ₀,其中μ为总体均值,μ₀为某一常数。
概率论与数理统计期末考试试卷答案
《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、5 8、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
概率论与数理统计期末考试试卷答案,DOC
∴ p ( x ) 2 x, 0 x 1
0, 其它
同理: p (x )
2y, 0
y
1
………( 3 分)
0, 其它
(2) E
xp ( x)dx
1
2 x2dx
2 同理: E
2
0
3
3
(3) ∵ p( x,y) p ( x) p ( y) ∴ 与 独立
三、应用题 (本大题共 2 小题,每小题 9 分,共 18 分)
A、 E X Y 4 B、 E XY 3 C、 D X Y 12D、 E Y 2 16
12、设随机变量 X 的分布列
则常数 c=
A、0B、1C、 1 D、 1
4
4
13、设 X ~ N ( 0,1) , 又常数 c
X 1 2 3 为:
p 1/ 2
1/ c
4
满足 P X c P X c , 则 c 等于
3
C、 EX
3 , DX
1 D、 EX1 , DX9 Nhomakorabea3
3
10、设 X 服从二项分布 B(n,p), 则有
A、 E(2 X 1) 2np B、 D(2 X 1) 4np (1 p) 1 C、 E(2 X 1) 4np 1D、 D (2 X 1) 4np(1 p) 11、独立随机变量 X , Y ,若 X~N(1,4) ,Y~N(3,16) ,下式中不成立的是
解 : X ~ N (52,1), …… ….2 分
P{50.8 X 53.8}= (53.8 52) (50.8 52)
(1.8) ( 1.2)= 0.9641 1 0.8849….3 分
0.849 …… ….1 分
6
海量资源,欢迎共阅
0708概率论与数理统计试题B答桉暨南大学慨率论期末考试试卷
暨 南 大 学 考 试 试 卷一、填空题(共5小题,每小题2分,共10分)1. 在某一随机试验中,事件A 与B 相互独立,且2.0)(,3.0)(==B P A P 则=)(B A P 0.24 。
2. 设随机变量ξ的密度函数为⎩⎨⎧∈=其它0),0(2)(A x x x ϕ,则常数A = 1 。
3. 设随机变量ξ与η相互独立,且3,2==ηξE E ,则=+-)(ξηηξE 5 。
4. 设n X X X ,,,21 是取自总体),(2σμN 的样本,则当=C 21+n 时,∑=ni i X niC 1是μ的无偏估计。
5. 已知二元随机变量),(ηξ的联合密度函数为⎪⎩⎪⎨⎧≤≤++=.,04,0),sin()12(),(其它;πϕy x y x y x则ξ的边缘概率密度为) 0()84 0 X x x x ππϕ⎧++≤≤⎪=⎨⎪⎩其它或表为1)[c o s c o s ()] 0()44 0 X x x x x ππϕ⎧+-+≤≤⎪=⎨⎪⎩其它。
二、单项选择题(共10小题,每小题2分,共20分)1. 设)(x F 是随机变量ξ的分布函数,则下列结论中正确的是( D )(A ) 1)(0<<x F (B) 0)(≤x F (C ) 1)(≥x F (D) 1)(0≤≤x F2. 某人打靶的命中率为8.0,现独立地射击5次,那么5次射击中命中2次的概率为( D )(A ) 2.08.02⨯ (B) 28.0 (C) 4.08.02⨯ (D) 22350.80.2C ⨯⨯3. 若事件E 与F 互不相容,且6.0)(,3.0)(==F P E P ,则=+)(F E P ( B ) (A) 3.0 (B) 9.0 (C) 18.0 (D) 6.04. 随机变量ξ的密度函数为⎪⎩⎪⎨⎧∈=其它]2,0[21)(x x ϕ,则=ξξE D ( B ) (A) 0 (B)31 (C)41 (D) 15. 设n X X X ,,,21 是总体),(2σμN 的样本,则∑==ni i X n X 11服从( A )分布。
07~08学年一期末考试试题B答案
概率论统2007~2008学年第一学期《概率论与数理统计A 》期末试题(B )答案一、简单计算(每个题5分,共25分)1. 设B A ,为两事件,且p A P =)(,)()(AB P B A P =,求)(B P 。
解:由于)(1)()(B A P B A P B A P -== …………2分 而)()()()(AB P B P A P B A P -+= …………2分 所以)()()()(1)()(AB P AB P B P A P B A P B A P =+--== 即1)()(=+B P A P因而p A P B P -=-=1)(1)( …………1分 2。
设随机变量X 的分布律为613121201-i p X ,而53-=X Y ,求Y的分布函数.解:由于613121201-i p X ,所以613121158--i p Y (2)分所以Y 的分布函数为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤--<≤--<=.1,1,15,65,58,21,8,0)(y y y y y F Y…………3分3。
设总体)4,5(~N X 中随机抽取一容量为25的样本,求样本均值X 落在4.2到5.8之间的概率。
解: 由于)4,5(~N X , 所以)254,5(~N X (2)分所以9544.0129772.01)2(2)8.52.4(=-⨯=-Φ=<<X P (3)分4。
设9名足球运动员在比赛前的脉搏(12秒)次数为11 13 12 13 11 12 12 13 11假设脉搏次数X 服从正态分布,12=X , 42=σ,求μ的置信水平为0.95的置信区间。
解:由于12=X , 42=σ,05.0=α,μ的置信区间为),(22nZ X nZ X σσαα+- (3)分即为)3067.13,6933.10(。
…………2分 5。
设总体X 服从泊松分布,1210,,,X X X 是来自X 的样本,求参数λ的矩估计.解: 由于)(~λP X ,所以λ=)(X E而∑==101101i i X X …………2分统计A 试题 班级 姓名 学号 第2 页二、计算题(每题6分,共30分)1. 设离散型随机变量X 的分布函数为 ⎪⎪⎩⎪⎪⎨⎧≥+<≤-<≤--<=.2,,21,32,11,,1,0)(x b a x a x a x x F且21)2(==X P 。
概率论期末考试题及答案pdf
概率论期末考试题及答案pdf一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,则P(X<0)的值为()。
A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),则E(X)的值为()。
A. npB. n(1-p)C. pD. 1答案:A3. 两个随机变量X和Y相互独立,则P(X>1, Y>1)等于()。
A. P(X>1)P(Y>1)B. P(X>1) + P(Y>1)C. P(X>1) - P(Y>1)D. P(X>1) / P(Y>1)答案:A4. 随机变量X服从泊松分布,其参数为λ,则P(X=k)的值为()。
A. λ^k * e^(-λ) / k!B. λ^k * e^(-λ) * k!C. λ^k * e^(-λ) / (k-1)!D. λ^k * e^(-λ) * (k-1)!答案:A5. 随机变量X服从均匀分布U(a, b),则其期望E(X)的值为()。
A. (a+b)/2B. a+bC. 2a-bD. 2b-a答案:A6. 已知随机变量X服从正态分布N(μ, σ^2),则其方差Var(X)的值为()。
A. μB. σ^2C. 1/σ^2D. 1/μ答案:B7. 随机变量X服从指数分布,其参数为λ,则其期望E(X)的值为()。
A. 1/λB. λC. 1D. 0答案:A8. 随机变量X和Y相互独立,且都服从标准正态分布,则P(X+Y<0)的值为()。
A. 0.5B. 0.25C. 0.75D. 0.9答案:A9. 随机变量X服从二项分布B(n, p),则其方差Var(X)的值为()。
A. npB. np(1-p)C. pD. 1-p答案:B10. 随机变量X服从正态分布N(μ, σ^2),若P(X<μ)=0.5,则μ的值为()。
A. 0B. 1C. μD. σ^2答案:C二、填空题(每题4分,共20分)11. 随机变量X服从标准正态分布,若P(X<1.96)=0.975,则P(X>1.96)=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】2007-2008暨南大学概率论试卷B 邱青、张培爱、李全国、吴广庆、刘中学一、填空题(共5小题,每小题2分,共10分)1. 在某一随机试验中,事件A 与B 相互独立,且2.0)(,3.0)(==B P A P 则=)(B A P 0.24 。
2. 设随机变量ξ的密度函数为⎩⎨⎧∈=其它0),0(2)(A x x x ϕ,则常数A = 1 。
3. 设随机变量ξ与η相互独立,且3,2==ηξE E ,则=+-)(ξηηξE 5 。
4. 设n X X X ,,,21 是取自总体),(2σμN 的样本,则当=C2 1+n 时,∑=n i i X niC 1是μ的无偏估计。
5. 已知二元随机变量),(ηξ的联合密度函数为⎪⎩⎪⎨⎧≤≤++=.,04,0),sin()12(),(其它;πϕy x y x y x则ξ的边缘概率密度为) 0()84 0 X x x x ππϕ⎧++≤≤⎪=⎨⎪⎩其它或表为1)[c o s c o s ()] 0()44 0 X x x x x ππϕ⎧+-+≤≤⎪=⎨⎪⎩其它。
二、单项选择题(共10小题,每小题2分,共20分)1. 设)(x F 是随机变量ξ的分布函数,则下列结论中正确的是( D )(A ) 1)(0<<x F (B) 0)(≤x F (C ) 1)(≥x F (D) 1)(0≤≤x F2. 某人打靶的命中率为8.0,现独立地射击5次,那么5次射击中命中2次的概率为( D ) (A ) 2.08.02⨯ (B) 28.0 (C) 4.08.02⨯ (D)22350.80.2C ⨯⨯3. 若事件E 与F 互不相容,且6.0)(,3.0)(==F P E P ,则=+)(F E P ( B ) (A) 3.0 (B) 9.0(C) 18.0 (D) 6.04. 随机变量ξ的密度函数为⎪⎩⎪⎨⎧∈=其它0]2,0[21)(x x ϕ,则=ξξE D ( B ) (A) 0 (B) 31(C) 41 (D) 15. 设n X X X ,,,21 是总体),(2σμN 的样本,则∑==n i i X n X 11服从( A )分布。
(A) ),(2nN σμ (B) ),(2σμN (C) )1,0(N (D) ),(2nn N σμ 6. 设离散型随机变量的概率分布为其分布函数为)(x F ,则=)23(F ( C ) (A) 1.0 (B) 3.0 (C) 6.0 (D) 17.设随机变量ξ服从正态分布)1,0(N ,其密度函数为)(x ϕ,则)0(ϕ等于( B )(A ) 0 (B )π21 (C) 1 (D)21 8. 设随机变量ξ的数学期望μξ=E ,方差2σξ=D ,0≠σ,用切比雪夫不等式估计概率}3|{|σμξ<-P 为( D )(A) 91≤(B) 98≤ (C) 8180≤ (D) 98≥9. 321,,X X X 是取自总体X 的一个样本, α是一个未知参数,以下函数中是统计量的是( C )(A) 321X X X ++α (B)321X X X α (C) 31X X (D) 3221X X X αα++10. 总体X ~)1,(μN ,参数μ未知,321,,X X X 是取自总体X 的一个样本,则μ的四个无偏估计中最有效的是( D )(A) 213132X X + (B) 321412141X X X ++ (C) 316561X X + (D) 321313131X X X ++三、计算题(共4小题,共44分)1. 事件A 与B 相互独立,已知7()()1,()9P A P B a P A B ==-= ,确定a 的值。
(10分) 解:()1()2P B P B a =-=- 2()()()(1)(2)(32)P A B P A P B a a a a ==--=--+ 3分 ()()()()P AB P A P B P A B =+- 27(1)(2)(32)9a a a a ⇒-+-+-+= 7分 220309a a -+= 2927200a a -+=解得 1245,33a a == 10分2. 已知5%的男人和25.0%的女人是色盲,假设男人女人各占一半。
现随机挑选一人。
(1)此人恰是色盲患者的概率多大?(2)若随机挑选一人,此人不是色盲患者,问他是男人的概率多大? (12分)解:{}, {}A B ==设 事件男人色盲患者, {}A =则 女人 由已知,11(), (), (|)5%, (|)0.25%22P A P A P B A P B A ==== 2分 (1) 由全概率公式()()(|)()(|)P B P A P B A P A P B A =+11*5%*0.25% 2.625%22=+= 6分(2) 根据题意,即求(|)P A B .()1()97.375%P B P B =-=()()(|)()[1(|)]47.5%P AB P A P B A P A P B A ==-= 9分()47.5%(|)0.4878()97.375%P AB P A B P B === 12分3. 设总体X 的概率密度⎩⎨⎧><≥=-)0(00)(ββϕβx x e x x ,),,,(21n x x x 为从总体X 中取出的一组样本观察值,求参数β的最大似然估计值。
(12分)解:当12,,...,0n x x x >,样本似然函数11()niii nx x ni L eeβββββ=--=∑==∏ 4分对数似然函数1ln ()ln nii L n x βββ==-∑ 1ln ()0ni i d L n x d βββ==-=∑令 10分 11ˆ nii nXx===∑ββ的最大似然估计 12分4. 用热敏电阻测温仪间接测量地热,勘探井底温度,重复测量7次,测定温度(C )为6.113,9.112,5.114,0.112,2.111,4.113,0.112 ,而用某精确办法测定温度为6.112(可看作温度真值),试问用热敏电阻测温仪间接测温有无系统偏差(05.0=α)?(设热敏电阻测温仪测得的温度总体X 服从正态分布),(2σμN 。
(双侧临界值365.2)7(,447.2)6(05.005.0==t t )(10分) 解:1(112113.4111.2112114.5112.9113.6)112.87x =++++++=1.136s === 0.057, 0.05, (1)(6) 2.447n t n t ==-==αα 3分检验假设 01:112.6 :112.6H H =≠μμX T =检验统计量 6分0 2.447H 拒绝域 8分0.466T t =≈的观察值 2.447<接受0H ,认为用热敏电阻测温仪间接测温无系统偏差。
10分 四、综合计算题(共2小题,共26分)1. 设连续型随机变量ξ的分布函数为⎩⎨⎧>≤>+=-)0(00)(λλx x Be A x F x求:(1)常数A 、B 的值;(2)ξξD E , ;(3)}11{<<-ξP 。
(15分)解:(1)()F x 在0x =点连续lim ()(0)x F x F +→= 0A B ⇒+= 2分lim ()1x F x →+∞= 1A ⇒=1B ⇒=- 5分(2)由10()(0)00x e x F x x λλ-⎧->=>⎨≤⎩知 ()e ξλ 7分从而 211,E D ξξλλ== 10分(3){11}(1)(1)P F F ξ-<<=--(1)1F e λ-==- 15分方法二:(2)、(3)也可通过概率密度计算 (2)ξ的概率密度-e 0()()0 0x x f x F x xλλ⎧>'==⎨≤⎩ ()xxE x edx xd eλλξλ∞∞--==-⎰⎰++0110||x x x xee dx e λλλλλ∞-+∞--+∞=-+=-=⎰+0222()xxE x edx x d eλλξλ∞∞--==-⎰⎰++02220|2x x x exe dx λλλ∞-+∞-=-+=⎰+022222211()D E E λλλξξξ=-=-=10分(3){11}()x P f x dx e dx λξλ--<<==⎰⎰11-101|1x ee λλ--=-=- 15分2. 保险公司有10000人投保,每人每年付12元保险费;已知一年内人口死亡率为006.0,若死亡一人,保险公司赔付1000元,求保险公司年利润不少于60000元的概率。
(设0)5(0=-Φ) (11分)解: 10000X 设表示一年内个投保人中的死亡人数. (10000, 0.006)X b 则64.59)(==np X E 4分由拉普拉斯中心极限定理知 保险公司年利润 1200001000Y X =-所求概率{60000}{120000100060000}{60}P Y P X P X ≥=-≥=≤ 7分=}64.596060{0-Φ}64.59600{0-Φ-=5.005.0=- 11分。