量子力学-第二章-定态薛定谔方程汇总.
第二章薛定谔方程
单值条件
有界条件
其中A、B、k 均为常数,A、B由边界条件确定。 边界条件: (0) A 0 (a ) B sin ka 0 连续条件
B 0 (若B=0,则势阱内无粒子)
sin ka 0
n ( x ) B sin x a
ka n
n 1,2,3, n 叫量子数
2 2 能量算符 (哈密顿算符) H U 2m
ˆ 本征方程 H n En n
当粒子处在 n 态时,则实验测量该粒子有确定的能量 En。 ˆ n 称为能量算符 H 的本征态,En 为与其对应的本征值。
叠加原理:薛定谔方程是线性微分方程,如果 1,2,3,…,n 是体系的可能状态 (解),那其线性叠加态也是体系 的一个可能状态。
薛定谔方程
§2.2 无限深方势阱中的粒子 (Particle in infinite square-well otential)
一、无限深一维方势阱 粒子在力场中的势能函数为:
U
U
0 xa
x 0, x a
U 0 U
U 0
0
a
x
粒子处于束缚态:在阱内势能为零,粒子不受力的 作用;在边界处,势能突然增加到无限大,粒子受 到无限大的斥力。粒子被限制在 0< x < a 的范围内, 不可能到此范围外。
第二章 薛定谔方程(4学时)
(Schrö dinger Equation)
§2.1 薛定谔得出的波动方程 §2.2 无限深方势阱中的粒子
§2.3 势 垒 穿 透
§2.4 谐
量子力学体系
振
子
总 结
§2.1 薛定谔得出的波动方程
(Wave equation of Schrö dinger ) 一、波函数
量子力学第二章总结
第二章1.波函数/平面波:(1)频率和波长都不随时间变化的波叫平面波。
(2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。
在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子.3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。
由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。
(2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。
4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|25.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。
故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。
7.归一化: C ∫∞|Φ(x,y,z,t)|2d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ½Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2故把(1)式改写成 ∫∞|Ψ(r , t)|2d τ=1 把Φ换成Ψ的步骤称为归一化。
2 第二章 薛定谔方程
第二章薛定谔方程(4学时)§2.1 薛定谔得出的波动方程§2.2 无限深方势阱中的粒子§2.3 势垒穿透§2.4 谐振子§2.1 薛定谔得出的波动方程在§1.5中我们已说明,微观粒子的状态用波函数ψ描述,波动性和粒子性的关系为:波的强度正比于粒子到达的概率.具体来说,若ψ(r,t)为波函数,d V为空间r点附近的体积元,则t时刻在此体积元内发现粒子的概率正比于|ψ(r,t)|2d V.|ψ(r,t)|2叫做相对概率密度.波函数一般是空间坐标和时间的复函数由于波函数ψ的概率解释,ψ可以相差一个任意常数因子,即ψ和Aψ代表相同的状态.其中A为任意复常数.这是因为将ψ换为Aψ,空间各点的相对概率没有变化.这一点与经典力学有本质区别,在经典力学中,代表波动的函数如果增大A倍,表示振幅增大了A倍,它代表的是另一个振动状态.正因为波函数可以相差一个任意常数,使ψ满足以下归一化条件:1ψd2=⎰V例如,如果ϕ是一个未归一化的波函数,则可令ψ=Aϕ,由归一化条件12222=ϕ=ϕ=ψ⎰⎰⎰dV A dV A dV得到:⎰ϕ=dVA 21, ψ=ϕϕ⎰dV21这样得到的波函数ψ已经满足归一化条件,我们就说ψ已归一,并用它代替ϕ来描述状态.设ψ(r,t )是归一化波函数,则|ψ(r,t )|2d V 的物理意义为t 时刻在r 点附近d V 体积元内发现粒子的概率.|ψ(r,t )|2称为概率密度.由于概率必须单值,有界,连续,所以要求ψ单值,有界,连续.这称为波函数的标准条件,它在决定波函数时起着重要作用. 在经典力学中,粒子的运动满足牛顿定律,它给出了粒子的运动状态随时间的变化规律.上节我们已说明,微观粒子的运动状态用波函数描述.波函数ψ是时间和空间的函数:ψ=ψ(x,y,z,t ).所谓微观粒子的运动规律,也就是描述状态的波函数ψ随时间的变化规律,即ψ所满足的方程,它在量子力学中的地位就相当于经典力学中牛顿方程的地位.这样的方程肯定不能从经典物理学导出,因为经典物理学根本没有涉及微观粒子的波粒二象性.波函数满足的方程由薛定谔首先找到,它的一般形式是包含时间和空间变量的微分方程.叫做薛定谔方程,在一维情形下,其一般形式为:),()],(2[),(222t x t x U xm t x t i ψ+∂∂-=ψ∂∂ 式中U (x ,t )为粒子的势函数。
量子力学第二章小结.
宽度为a的一维无限深方势阱
势能分布为
0, 0 x a U x , x 0, x a
体系的能量为
2 2n2 En 2 a 2 (n 1, 2, 3,)
2 n n a sin a x, 0 x a, x 0, x a. 0,
式中
i p r 1 (r ) p e 3/ 2 ( 2)
i p r (r , t )e dxdydz
1 C ( p, t ) ( 2)3 / 2
(r ) * ( r , t )dxdydz p
在一维情况下,
1 ( x, t ) ( 2)1 / 2
1 C ( p, t ) ( 2)1 / 2
C ( p, t ) e
i p x
dp
( x, t )e
i p x
dx
展开系数C(p,t)实际上就是以动量为变量的波函数。
§2.3 薛定谔方程
2 2
2 k3 2E / 2
透射系数
D D0 e
2 2 (U 0 E ) a
透射系数随势垒的加宽(增大a)或加高(增大U0) 而减小。
对于任意形状的势垒:
贯穿势垒U(x)的透射系数应等于所有这些方形 势垒的透射系数之积,即
2
D D0 e
其中
a
b
2 (U ( x ) E )dx
U ( a) U (b) E
2
dxdydz 1
波函数的标准条件:单值、连续、有限。
对于归一化波函数Ψ: 几率密度
量子力学概论第2章 定态薛定谔方程
子的基态),从而我们可以反复应用升阶算 符生成激发态,20 每升一步增加能量ћω ψn(x)=An(a+)nψ0(x),和En=n+12ћω, (2.61)
例题2.4 求出谐振子的第一激发态。 解:利用式2.61
ψ1(x)=A1a+ψ0=A12ћmω-ћddx+mωxmωπћ1/4emω2ћx2=A1mωπћ1/42mωћxe-mω2ћx2.(2.62)
我们可以直接用“手算”对它进行归一化:
∫ψ12dx=A12mωπћ2mωћ∫+∞-∞x2e-mωћx2dx=A12, 恰好,A1=1。 我们不想用这种方法去计算ψ50(那需要应用升阶算符
(式2.5)称为定态(time-independent)薛定谔方程; 如果不指定V(x)我们将无法继续求它的解。
Ψ(x,t)=∑∞n=1cnψn(x)e-iEnt/ћ=∑∞n=1cnΨn(x, t).(2.17)
尽管分离解自身是定态解,
Ψn(x,t)=ψn(x)e-iEnt/ћ,(2.18)
即,概率和期望值都不依赖时间,但是需要强调的 是,一般解(式2.17)并不具备这个性质;因为不同 的定态具有不同的能量,在计算Ψ2的时候,含时指 数因子不能相互抵消
f(x)=∑∞n=1cnψn(x)=2a∑∞n=1cnsinnπax.(2.32)
例题2.2 在一维无限深方势阱中运动的粒子,其初始波函数 是Ψ(x,0)=Ax(a-x), (0≤x≤a),A是常数(如图2.3)。设在势阱外 Ψ=0。求Ψ(x,t)。
解:首先需要归一化波函数Ψ(x,0)求出A 1=∫a0Ψ(x,0)2dx=A2∫a0x2(a-x)2dx=A2a530, 所以A=30a5. 第n项的系数(式2.37)是 cn=2a∫a0sinnπax30a5x(a-x)dx
七个薛定谔方程
七个薛定谔方程薛定谔方程是量子力学中描述粒子行为的基本方程。
一般情况下,薛定谔方程可以写成如下的形式:1. 定态薛定谔方程(Stationary Schrödinger Equation):iħ∂Ψ/∂t = HΨ其中,ħ是约化普朗克常数,Ψ是波函数,t是时间,H是哈密顿算符。
2. 非定态薛定谔方程(Time-dependent Schrödinger Equation):iħ∂Ψ/∂t = HΨ其中,Ψ是波函数,t是时间,H是哈密顿算符。
3. 薛定谔方程的波函数形式(Schrödinger Equation in Wave Function Form):iħ∂Ψ/∂t = -ħ²/2m ∇²Ψ + VΨ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,∇²是拉普拉斯算符,V是势能函数。
4. 薛定谔方程的路径积分形式(Path Integral Form of Schrödinger Equation):Ψ(x,t) = ∫ Dx exp(iS[x]/ħ)Ψ(x₀,0)其中,Ψ(x,t)是波函数,S[x]是作用量,x₀是初始位置,Dx是路径积分测度。
5. 一维薛定谔方程(One-Dimensional Schrödinger Equation):iħ∂Ψ/∂t = -ħ²/2m ∂²Ψ/∂x² + V(x)Ψ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,x是位置,V(x)是势能函数。
6. 三维薛定谔方程(Three-Dimensional Schrödinger Equation):iħ∂Ψ/∂t = -ħ²/2m ∇²Ψ + V(r)Ψ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,r是位置矢量,∇²是拉普拉斯算符,V(r)是势能函数。
量子物理第二章-薛定谔方程ppt课件.ppt
P2 Ψ 2
2 2Ψ
2m
x 2
i Ψ t
E
Ek
P2 2m
一维自由粒子的 含时薛定谔方程
2、一维势场 U (x,t) 中运动粒子薛定谔方程
E
Ek
U
(x,t)
P2 2m
U
(x,t)
Ψ t
i
EΨ
2Ψ x 2
P2 2
Ψ
Ψ t
i
[
P2 2m
U
(x,
t)]Ψ
2
2m
2Ψ x2
P2 Ψ 2m
2 2m
0
波函数本身无直观物理意义,只有模的平方反映粒子出 现的概率,在这一点上不同于机械波,电磁波!
2、玻恩(M..Born)的波函数统计解释:
概率密度: w Ψ (r,t) 2 ΨΨ*
单位体积内粒子出现的概率! 3、波函数满足的条件
1、单值: 在一个地方出现只有一种可能性; 2、连续:概率不会在某处发生突变; 3、有限 4、粒子在整个空间出现的总概率等于 1
(x) Asin(kx ) ( a x a)
(2)确定常数 A、
2
2
由波函数连续性, 边界条件 (-a/2) = 0 (a/2) = 0
Asin( ka 2 ) 0 ka 2 l1
Asin( ka 2 ) 0
2 (l1 l2) l
ka 2 l2 l
2
1)当 l 0 时 o Asin kx ——奇函数。 2)当 l 1 时 e Acos kx ——偶函数。
3. 薛定谔方程是对时间的一阶偏微分方程, 因此波动形式 解要求在方程中必须有虚数因子 i,波函数是复函数。
4. 只有动量确定的自由粒子才能用平面波的描写。
量子物理 第二章 薛定谔方程
v v Ψ ( r , t ) = ψ ( r ) f (t )
ih df 1 ⎡ h2 2 v ⎤ (1) ⇒ = − ⎢− ∇ + U ( r ) ⎥ψ = E f dt ψ ⎣ 2μ ⎦
(2)
⎡ h2 2 v ⎤ v v ∇ + U ( r ) ⎥ψ ( r ) = Eψ ( r ) ⎢− ⎣ 2μ ⎦
当
A≠0 B=0 nπ αn =
2a
,有
sin αa = 0
(6)
(n为偶数) ,有
当
A=0 B≠0
nπ αn = 2a
cos αa = 0
(7)
(n为奇数)
(6)和(7)两式统一写成
nπ αn = , 2a
n = 1,2,3, L
(8)
22
2.3 一维无限深势阱 The infinite potential well
(3)
10
2.2 定态薛定谔方程 Time independent Schrödinger equation
df ih = Ef (t ) dt
(4) (2) 令 则 (4)
i − Et h
⇒
f (t ) = Ce
(5)
i − Et h
v ⇒ Ψ ( r , t ) = ψ ( r )e
(6)
ω = E/ h E =hω
9
2.2 定态薛定谔方程 Time independent Schrödinger equation
1.定态,定态波函数 v ∂Ψ(r , t ) ⎡ h 2 2 v ⎤ v = ⎢− ∇ + U (r , t )⎥ Ψ(r , t ) ih ∂t ⎣ 2μ ⎦ 若
(1)
量子力学-薛定谔方程
30
2.3 一维运动的一般分析
31
一、 一维势场中粒子能量本征态的一般性质 1、定态
2、简并 如果系统的能级是分立的,即 E En,若对 同一个能级,有两个及其以上的本征函数与 其对应,则称这个能级是简并的。
5
2 物理意义: 对实物粒子的波动性有两种解释
(1)第一种解释,认为粒子波就是粒子 的某种实际结构,即将粒子看成是三维 空间中连续分布的一种物质波包。波包 的大小即粒子的大小,波包的群速度即 粒子的运动速度。粒子的干涉和衍射等 波动性都源于这种波包结构。
6
能量和动量的关系为, E p2 / 2m
d
dt WV
S
J dS,
WV 是在体积V内发现粒子的总几率,而
S
J dS
穿过封闭曲面S向外的总通量。所以
J 是“几率流密度”,而上式表现了几率守恒。
几率守恒也就是粒子数守恒。 27
三 定态Schrodinger方程
若
U
(r
)
与时间无关,则Schrodinger方程
A
12
说明:
1 即使要求波函数是归一化的,它仍有一个 位相因子的不确定性(相位不确定性)。
例如:常数 c ei ,则 (x, y, z)
和 c (x, y, z) 对粒子在点(x,y,z)附近
出现概率的描述是相同的。
2 有些波函数不能(有限地)归一,如平面 波。
13
五、对波函数的要求
E p
i
量子物理第二章薛定谔方程(20211023)(有补充)
第27章薛定谔方程·德布洛意关于物质波的概念传到苏黎世后,薛定谔作了一个关于物质波的报告,报告后,德拜(P.Debye)评论说:有了波,就应有一个波动方程。
几个月后,薛定谔果然提出了一个波方程,这就是后来在量子力学中著名的薛定谔方程。
·薛定谔方程是量子力学的动力学方程,象牛顿方程一样,不能从更基本的方程推导出来;它是否正确,只能由实验检验。
§1 薛定谔方程的建立(一种方法)一.薛定谔方程1.一维薛定谔方程·一维自由运动粒子无势场,不受力,动量不变。
· 一维自由运动粒子的波函数(前已讲)由此有· 再利用 可得此即 一维自由运动粒子(无势场)的薛定谔方程·推广到若粒子在势场U (x , t ) 中运动由 有 ∂ψ∂ x = ( )P ψi h∂2ψ ∂ x 2 P 2h 2= -( ) ψ P 22m E = P 22m E = +U (x , t )∂ t= i h ( ) ψ (x , t )h 22m - ( ) ψ (x , t ) ∂x 2∂ ∂2一维薛定谔方程 式中 ψ =ψ (x , t )是粒子在势场U = U (x , t ) 中运动的波函数·和经典关系相比较,只要把再作用到波函数 ψ (x , t ) 上,即可得到 上述方程。
P 22m E = +U (x , t )2.三维薛定谔方程式由一维方程推广可得三维薛定谔方程式· 拉普拉斯算符(三维薛定谔方程式在球坐标下的形式请见 教材B 版p332)·当 U (r , t) = 0时,方程的解, 即三维自由运动粒子的波函数∂2 ∂x 2 ∂2 ∂y 2 ∇2≡ + + ∂2 ∂z 2·波函数的叠加原理薛定谔方程是ψ的线性微分方程;若ψ1、ψ2是方程的解,则c1ψ1 + c2ψ2也是方程的解。
(c1、c2是常数)★E.Schrodinger & P.A.M.Dirac 荣获1933年Nobel Prize (for the discovery of new productive forms of atomic theory)薛定谔(1887-1961)奥地利人创立量子力学二.定态薛定谔方程 1.一维定态薛定谔方程 若粒子在恒定势场U = U (x ) 中运动(含常数势场U = U 0 )薛定谔方程式可用分离变量法求解。
量子力学
E
∗
= E
即E为实数
3. ψ n 与 ψ m 相互正交 正交的定义: 正交的定义:如果两函数 , ∫ 积分是对变量变化的全部区域进行, 积分是对变量变化的全部区域进行 则称 Ψ与 Ψ 2相互正交 1 对于不同能级, 对于不同能级,E m ≠ E n ,相应的 ψ m ,ψ n 满足正交关系 r 3 ∗ r ∫ ψ m (r )ψ n (r )d r = 0
恒等式,令两边都等于常数 恒等式,令两边都等于常数E
ih df 1 h2 ψ = [− ∇ 2ψ + U ( r )ψ ] = E ψ f dt 2µ
ih df 1 h2 ψ = [− ∇ 2ψ + U ( r )ψ ] = E f dt 2µ ψ iE − t 1 iE df ih 第一式: 第一式: = Ef f df = − h d t ( 2 ) 解出:f (t ) = Ae h dt h2 2 ˆ Hψ = Eψ (3) 第二式: 第二式: [− 2µ ∇ + U (r)]ψ = Eψ
Ψ1和 Ψ 2满足
Ψ1* Ψ 2 dV = 0
4. 正交归一条件 克朗内克符号 综合归一化条件和正交性条件
δ mn
1, = 0, m=n m≠n
∫ψ
∗ m
r r (r )ψ ( r ) n d 3 r = δ mn
ψ p = Aei( p⋅r −Et) / h = Aeip⋅r / he−iEt/ h
带入(1)得 带入( 把方程两边除以 ψ (r) f (t )
∂f h2 ih ψ = − f ∇ 2ψ + Uf ψ ∂t 2µ
ih df 1 h2 ψ = [− ∇ 2ψ + U ( r )ψ ] ψ f dt 2µ
量子力学chapter2-薛定谔方程解析
12
§2 态叠加原理
(一)态叠加原理
微观粒子具有波动性,会产生衍射图样。而干 涉和衍射的本质在于波的叠加性,即可相加性, 两个相加波的干涉的结果产生衍射。因此,同 光学中波的叠加原理一样,量子力学中也存在 波叠加原理。因为量子力学中的波,即波函数 决定体系的状态,称波函数为状态波函数,所 以量子力学的波叠加原理称为态叠加原理。
|Ψ(r,t)|2 的意义是代表电子在 t 时刻出现在 r 点附近几率的大小, 确切的说,|Ψ(r,t)|2 Δx Δy Δz 表示在 t 时刻,在 r 点处,体 积元ΔxΔyΔz中找到粒子的概率。波函数在空间某点的强度(振幅绝 对值的平方)和在这点找到粒子的概率成比例,
Ψ(r,t)
概率波
8
(三)波函数的性质
= |C1 Ψ1|2+ |C2Ψ2|2 + [C1*C2Ψ1*Ψ2 + C1C2*Ψ1Ψ2*]
电子穿过狭缝 1出现在P点
题,以后再予以讨论。
10
(3)归一化波函数
Ψ(r,t )和CΨ(r,t )所描写状态的相对概率是相同的,这
里的 C 是常数。因为在 t 时刻,空间任意两点 r1 和 r2 处找到粒子的相对概率之比是:
2
2
C(r1 , t ) (r1 , t )
C(r2 , t )
(r2 , t )
可见,Ψ(r,t) 和 CΨ(r,t )描述的是同一概率波,所以波函 数有一常数因子不定性。
C = 1/∫∞|Ψ(r,t)|2dτ
这即是要求描写粒子量子 状态的波函数Ψ必须是
绝对值平方可积的函数。
若 ∫∞|Ψ(r,t)|2dτ∞, 则 C0, 这是没有意义的。
除了个别孤立奇点外,波函数单值,有界,连续
量子力学习题解答-第2章
计算出
反射系数 和透射系数 之和为1.
*习题2.1证明下列三个定理
解:(a)证:假设在定态解把实数 改为复数 ,则
若在 时刻,波函数是归一化的,即
在以后时刻
所以要求在任何时候都有
必须有 ,即 必须为实数。
(b)设 满足定态薛定谔方程
把这个式子取复共轭,注意到 是实的,得到
显然 和 是同一薛定谔方程的解,所以它们的线性叠加
或
也是同一薛定谔方程的解。显然 是实函数,所以一维定态薛定谔方程的解总可以取为实函数。
(c)对
进行空间反演 ,得到
如果势能 是偶函数,则有
因此 和 是同一薛定谔方程的解,所以它们的线性叠加
也是同一薛定谔方程的解。 ,所以当势能是偶函数,定态薛定谔方程的解总可以取为有确定宇称的解。
*习题2.2
解:如果 ,那么 和它的二次导数有同样的符号。如果 是正值,它将一直增加,这与我们 , 的要求不符,导致函数是不可归一化的。如果 是负值,它将一直减少(绝对值在增大),这同样与我们 , 的要求不符,导致函数是不可归一化的。
能量本征函数为
能量本征值为
含时薛定谔方程的一般解为
当 时,
显然对 测量能量,不可能得到 ,因为现在的能量本征态中,没有这个本征值,所以测量能量得到 的几率为零。现在体系基态的能量为 ,所以测量能量得到 的几率是 ,由
代入
(注意在 时刻,体系的能量期待值不是 ,因为体系的哈密顿是频率为 的谐振子哈密顿。)
,
由波函数 的归一性,可以得到系数 的归一性
对 态测量能量只能得到能量本征值,得到 的几率是 ,能量的期待值可由
求出。这种方法与用
方法等价。
2.一维典型例子:
量子力学_第二章_薛定谔方程
(2)量子力学情况 1.t = t0 时刻,已知初态ψ ( r,t0) 且只知道这样一个初 条件,所以,描写粒子状态的波函数所满足的方程只能含ψ 对时间 的一阶导数
2.另一方面,ψ 要满足态叠加原理,即,若ψ 1( r, t ) 和 ψ 2( r, t )是方程的解,那末。 ψ ( r, t)= C1ψ 1( r, t ) + C2ψ 2( r, t ) 也应是该方程的解。这就要求方程应是线性的,也就是说方程 中只能包含ψ , ψ 对时间的一阶导数和对坐标各阶导数的一次 项,不能含它们的平方或开方项
得到了圆满解决。
(二)引进方程的基本考虑 先回顾经典粒子运动方程 (1)经典情况
dr t t 0时刻,已知初态:0 , p0 m r dt
t t 0
2 d r 粒子满足的方程是牛顿方程:F m 2 dt
• 从牛顿方程,人们可以确定以后任何时刻 t 粒子的 状态 r 和 p 。因为初条件知道的是坐标及其对时 间的一阶导数,所以方程是时间的二阶常微分方程
满足上述构造方程 的三个条件
所以
2 2 i t 2
由引出自由粒子波动方程知 若能量关系式 E = p2/2μ
E p 2 p
(3 )
讨论:
写成如下方程形式:
i t
p2 (E ) 0 2
做算符替换(4)即得自由 粒子满足的方程(3)
而原子核对第 i 个电子的 Coulomb 吸引能为:
Ze2 U i (ห้องสมุดไป่ตู้ri ) ri
假定原子核位于坐标原点,无穷远为势能零点。
2
py
2
pz 2 2 2 z
2
(三)
量子力学薛定谔方程及理论(2)
,m是整数
2
x
2m 1 =Bcos 2
a
x
把以上两种情况合并得
n n x =C sin 2a x+a ,C n 2 2 2 E n = 2 8 a
1 , n 0, 1, ,....., x a a
为了确定常系数C,引入归一化条件
态叠加原理
微观粒子具有波动性,会产生衍射图样。而干涉和衍射的本 质在于波的叠加性,即可相加性,两个相加波的干涉的结果 产生衍射。 因此,同光学中波的叠加原理一样,量子力学 中也存在波叠加原理。因为量子力学中的波,即波函数决定 体系的状态,称波函数为状态波函数,所以量子力学的波叠 加原理称为态叠加原理。
在量子力学中,不可能同时用粒子坐标和动量的 确定值来描述粒子的量子状态,因为粒子具有波 粒二象性,粒子的坐标和动量不可能具有确定值。 波函数描述粒子的状态,波函数的模的平方表示粒 子在空间一点出现的概率。 并且粒子在空间中个点出现的概率总和等于1,另外 要注意要是把波函数乘上一个常数后,所描写的粒 子的状态并不改变
量子力学第二章
• • • • • • • • 波函数的统计解释 态叠加原理 薛定谔方程 粒子流密度和粒子守恒定律 定态薛定谔方程 一维无限深势阱 线性谐振子 势垒贯穿
1、波函数的指数形式:E =E0 e 2
正余弦形式:E =E0 cos t-k r k=
d2 则薛定谔方程可写为 2 ( )+ - 2 ( )=0 d
d2 当 时,有 2 ( )- 2 ( )=0 d 2 2 2 其解的形式为 ( )=Ae +Be 2 , 因为函数有界,所以A 0, ( )=Be 2 , 2 令 ( )=e 2 H ,对 求二阶导数并化简为 d2 d H( ) H( )-2 + -1 H( )=0 2 d d
4.第二章薛定谔方程
2
∂2 ∂2 ∂2 ∇2 = 2 + 2 + 2 ∂x ∂y ∂z
再加上波函数标准条件 单值 有限, 再加上波函数标准条件:单值,有限,连续函数 波函数标准条件 单值, 解出定态波函数 后可得总波函数 总波函数为 解出定态波函数 ψ ( x, y, z)后可得总波函数为:
Ψ( x, y, z, t ) = ψ( x, y, z)e
根据能量和动量关系有 p = 2m k ,而此 E 处 Ek = E 再由 ,
ℏ 2 E= ml 2 2m r
2
式可得这个做圆周运动的粒子的角动量(此角动量 式可得这个做圆周运动的粒子的角动量( 矢量沿z轴方向) 矢量沿z轴方向)为
L = rp = ml ℏ
(2.13) 2.13)
即角动量也量子化了,而且等于 ℏ的整数倍。 角动量也量子化了 的整数倍。
l l
E i 2π t h
1 i(mlϕ+2π Et h) e = (2.11) 2.11) 2π
(2.12) 2.12)
由(2.7)式可得 2.7)
ℏ2 E= ml2 2m 2 r
此式说明,由于 ml 是整数,所以粒子的能量只能 此式说明, 是整数, 取离散的值。这就是说, 取离散的值。这就是说,这个做圆周运动的粒子的 能量“量子化” 在这里, 能量“量子化”了。在这里,能量量子化这一微观 粒子的重要特征很自然地从薛定鄂方程和波函数的 粒子的重要特征很自然地从薛定鄂方程和波函数的 标准条件得出了。 叫做量子数。 标准条件得出了ml 叫做量子数。 。
ℏ2 2 − ∇ ψ + Uψ = Eψ 二、求解定态薛定谔方程 2m 由于势函数不随时间变化,所以属定态解。 由于势函数不随时间变化,所以属定态解。 阱内: 阱内:U = 0,方程为 ,
定态薛定谔方程
2 d 2 [ U ( x)] ( x) E ( x) 2 2 dx
已知
U ( x) 0,
2
x a
2
方程变为 令
d ( x) E ( x) 2 2 dx
2E ( 2 )
1 2
方程变为
d ( x) 2 ( x) 0 2 dx
定态:如果体系处于(3)式所描述的状态时,
具有确定的能量,这种状态叫定态。(3)式叫 定态波函数。
二、定态的性质 1:体系处于定态,其几率分布不随时间变化。
2
(r , t ) (r , t )
* i Et i Et
( r )e ( r )e * (r ) (r )
2 2
1 Y ( y) Ey 2 2 Y ( y) y
2 2
2 1 2 Z ( z) Ez 2 2 Z ( z ) z
式中,E x , E y , Ez 是常数,且有
E Ex E y Ez
由作业题2.3,得一维无限深势阱方程及波函数
n x 2 X ( x) sin( x) a a n y 2 Y ( y) sin( y) b b nz 2 Z ( z) sin( z) c c
2 [ U (r )] (r ) E (r ) 2 解出 (r )
然后得出 (r , t ) (r )e
i Et
2
§2.6 一维无限深势阱
一、波函数 如图,粒子在势场
U
U ( x) 0, U ( x ) ,
中运动。
变化的,要使上式对任意的变量 t , r 都成立,
第二章薛定谔方程
第二章薛定谔方程本章介绍:本章将系统介绍波动力学。
波函数统计解释和态叠加原理是量子力学的两个基本假设。
薛定谔方程是波动力学的核心。
在一定的边界条件和初始条件下求解薛定谔方程,可以给出许多能与实验直接比较的结果。
§2.1 波函数的统计解释§2.1.1波动—粒子两重性矛盾的分析按照德布罗意的观点,和每个粒子相联系的都有一个波。
怎样理解粒子性和波动性之间的联系,这是量子力学首先遇到的根本问题。
b5E2RGbCAP2.1.1波动—粒子两重性矛盾的分析能否认为波是由粒子组成?粒子的单缝和双缝实验表明,如减小入射粒子强度,让粒子近似的一个一个从粒子源射出,实验发现,虽然开始时底片上的感光点是无规则的,但只要时间足够长,感光点足够多,底片上仍然会出现衍射条纹。
如果波是由粒子做成,那末,波的干涉、衍射必然依赖于粒子间的相互作用。
这和上述实验结果相矛盾,实际上,单个粒子也具有波动性的。
p1EanqFDPw能否认为粒子是由波组成?比如说,电子是三维空间的物质波包,波包的大小即电子的大小,波包的速度即电子的速度,但物质波包是色散的,即使原来的物质波包很小,但经过一段时间后,也会扩散到很大的空间去,或者形象地说,随着时间的推移,粒子将越来越“胖”,这与实验相矛盾DXDiTa9E3d经典物理对自然界所形成的基本物理图像中有两类物理体系:◆一类是实物粒子◆另一类是相互作用场<波)经典粒子是以同时确定的坐标和动量来描述其运动状态,粒子的运动遵从经典力学规律,在运动过程中具有确定严格的轨道。
粒子的能量,动量在粒子限度的空间小区域集中;当其与其它物理体系作用时,只与粒子所在处附近的粒子相互作用,并遵从能量、动量的单个交换传递过程,其经典物理过程是粒子的碰撞;“定域”是粒子运动的特征。
RTCrpUDGiT经典波动则是以场量<振幅、相位等)来描述其运动状态,遵从经典波动方程,波的能量和动量周期性分布于波所传播的空间而不是集中在空间一点,即波的能量、动量是空间广延的。
2010薛定谔方程(第二章)
由此,按能量-时间的不确定关系式,粒子能量的 不确定度为 E 2( U E )
2t
0
这时,粒子的总能量将为E+ΔE,而其动能的不确 定度为 E k E E U 0 U 0 E
粒子在到达的区域内,其动能的不确定度大于其 名义上的负动能的值。因此,负动能被不确定关 系“掩盖”了,它只是一种观察不到的“虚”动 能。 由于粒子可以进入
式还给出在x=a/2处,ψ≠0,
波函数随x的增大而按指数规律减小。 粒子处于可能的基态和第1,2激发态(U0太 小时,粒子不能被束缚在阱内)的波函数如图中
的实线所示,虚线表示粒子的概率密度分布。
量子力学给出的结果与经典力学给出的不同:
1 处于束缚态的粒子的能量量子化了。 2 在E<U0 的情况下,按经典力学,粒子只能在阱 内(即-a/2<x<a/2)运动,不可进入其能量小于势 能的x>a/2的区域,因为在这一区域粒子的动能 Ek(Ek=E-U0)将为负值。 但是,量子力学理论给出,在其势能大于其总 能量的区域内,粒子仍有一定的概率密度,即粒 子可以进入这一区域。
6 2
a 10
例如 : E1 2( Mev), E2 8( Mev)
例题2:设一个电子处于宽 a 10 m 的无限深势井中, 当电子从第一激发态(n=2)跃迁回基态(n=1)时发射出一个 光子,求此光子波长。 解:由公式:
10
En n
2
2
2 2 2
2me a
0.60510 n ( J ) E2 E1 16 1 2.7410 ( s ) h 0 c 8 1.0910 m 109 A
d • 阱外: [ 2m 2 ]( x ) E( x ) dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代 入
d i f (t ) Ef (t ) dt 2 [ 2 V ] (r ) E (r ) 2
i Et ( r , t ) ( r )e
f (t ) ~ e iEt /
于是:
i Et ( r , t ) ( r )e
此波函数与时间t的关系是正弦型的,其角频率ω=2πE/h。 由de Broglie关系可知: E 就是体系处于波函数Ψ(r,t)所描写 的状态时的能量。也就是说,此时体系能量有确定的值,所以这 种状态称为定态,波函数Ψ(r,t)称为定态波函数。
空间波函数ψ(r)由方程
2 2 [ V ] (r ) E (r ) 2
i [ n ( r ) n ( r ) n ( r ) n ( r )] 2 J n (r )
(3)处于定态时力学量(不显含时间)的期待值是常数
Q( x, p) n* ( x, t ) Q( x,i / x)n ( x, t )dx ( x) Q( x,i / x) n ( x)dx 常量(不随时间变化)
i J n (r , t ) [nn n n ] 2 i [ n e xp( iE n t / ) n e xp( iE n t / ) 2
n e xp( iE n t / ) n e xp( iE n t / )]
第二章 定态薛定鄂方程
(一)定态Schrödinger方程,定态 (二)能量本征值方程 (三)求解定态问题的步骤 (四)定态的性质 (五)如何由定态得到一般解
(一)定态Schrödinger方程,定态
讨论有外场情况下的 Schrödinger 方程:
V(r)与t无关时,可以 分离变量
2 2 i ( r , t ) [ V ( r )]( r , t ) t 2
iEm t /
e e
n m
iEn t /
c
* n
cm ( x ) H m ( x ) dx
* n
iEn t /
e iE e iE
n
mt
/
* * c c n m n ( x ) Em m ( x ) dx * cn cm Em nm 2
e
n m n
令:
( r , t ) ( r ) f ( t )
两边同除 (r ) f (t )
等式两边是相互无 关的物理量,故应 等于与 t, r 无关 的常数
d 2 2 i ( r ) f ( t ) f ( t )[ V ] ( r ) dt 2 2 1 d 1 2 i f (t ) V ] ( r ) E [ f ( t ) dt ( r ) 2
n
其中展开系数由初始条件定
n
n
( x,0) cn n ( x,0) cn n ( x)
n n
由定态波函数的正交归一性
cn * ( x) ( x,0)dx
我们来求处在
( x, t )
*
能量的期待值
H
n
m
( x, t ) H ( x, t ) dx e
n (r , t ) nn
[ n e xp( iEn t / )] [ n e xp( iEn t / )]
n e xp( iEnt / ) n e xp( iEnt / ) n (r ) n (r )
(2)几率流密度与时间无关
* n
推论
x 常量 p 0
4. 能量本征函数是完备的正交归一系 可以证明(以后证明)
* m (r) n (r)dr mn
正交归一性
薛定鄂方程的通解可以用定态波函数的叠加表示为
( x, t ) cn n ( x, t ) cneiE t / n ( x)
和具体的边界条件所确定。
该方程称为定态 Schrödinger 方程。
(二)能量本征值方程
[ 2 V ] E 2
或
ˆ E H
(1)一个算符作用于一个函数上得到一个常数乘以该函数 这与数学物理方法中的本征值方程相同。 数学物理方法中:微分方程 + 边界条件构成本征值问题; (2)量子力学中:波函数要满足三个标准条件,对应数学物 理方法中的边界条件,称为波函数的自然边界条件。 因此,在量子力学中称与上类似的方程为束缚的本征值方程。 常量 E 称为算符 H 的本征值;Ψ称为算符 H 的本征函数。 (3)由上面讨论可知,当体系处于能量算符本征函数所描写 的状态(简称能量本征态)时,粒子能量有确定的数值,这个数 值就是与这个本征函数相应的能量算符的本征值。
(三)求解定态问题的步骤
讨论定态问题就是要求出体系可能有的定态波函数 Ψ(r,t)和在这些态中的能量 E。其具体步骤如下:
2 2 [ V ] ( r ) E ( r ) 2
(1)列出定态 Schrodinger方程 (2)根据波函数三个标准 条件求解能量 E 的 本征值问题,得: (3)写出定态波函数即得 到对应第 n 个本征值 En 的定态波函数
本征值: 本征函数
E1 ,
E2 , ,
En ,
1, 2 , ,
n,
n (r , t ) n (r ) e xp[ iEn t / ]
(4)通过归一化确定归一化系数 Cn
| Cn n (r ) |2 d 1
(四)定态的性质
(1)粒子在空间几率密度分布与时间无关
iEn t /
mt
/
* cn En cn
cn
En
我们在来看 ( x, t ) 的Байду номын сангаас一化