等比数列(PPT)
合集下载
人教版数学必修五2.4《等比数列》课件 (共17张PPT)
是
三、等比中项
如果在 a 与 b 中间插入一个数 G ,使 a, G, b 成等比数列, 那么称这个数 G 为 a 与 b 的等比中项.
2 G ab . a , b 即 G ab ( 同号)或
(1)只有两个同号的非零常数才有等比中项, G ab 0
2
(2)等比中项有两个值, G ab
(3)在等比数列中,若 m n p q ,则 am an a p aq .
四、等比数列的性质
(4)若 {an } , {bn } 均为等比数列,则 {an bn } , {k an } (k 0) ,
1 1 { } 仍为等比数列,公比分别为 q1 q2 , q1 , . an q1
32
a15 例 7、在等比数列 {an } 中, a5 a11 3, a3 a13 4 ,则 ( C ) a5
(A) 3
1 (B) 3
1 (C) 3 或 3
1 (D) 3 或 3
例 8、等差数列 an 中, d 0 ,且 a1 , a3 , a9 成等比数列,
a1 a3 a9 求 的值. a2 a4 a10
an 数列的公比,公比通常用字母 q 表示 q 0 ,即 q (q 0) . an 1
(4) 0 q 1 时,当 a1 0 , {an } 递减; a1 0 , {an } 递增;
q 1 时,当 a1 0 , {an } 递增; a1 0 , {an } 递减;
类比思想
an am
an am qnm
例 1、在等比数列 {an } 中
1 (1) a1 , q 3 ,求 a5 . 2
(2) a7 512 , q 2 ,求 a1 .
等比数列PPT教学课件
He can play football, play table tennis, ride a bike and speak English.
What can’t Tony do?
He can’t swim . He can’t speak Chinese.
Listen and repeat
Betty can play the piano. Tony can play table tennis.
Name:
Can Can’t
Play basketball
Play football Play table tennis Play tennis
-Can you cook? -Yes, I can./ No, I can’t.
Play the piano
Ride a bike
Ride a horse
讲解范例
2. 利用等比数列的性质解题. 例3.等比数列{an}中, (1) 已知a2=4,a5= ,求通项公式; (2) 已知a3a4a5=8,求a2a3a4a5a6的值.
讲解范例
3. 如何证明所给数列是否为等比数列.
例4.
设{an}是等差数列,
bn
( 1 )an 2
,
已知
b1
b2
b3
21 8 , b1b2b3
课后作业
《学案》P.48双基训练.
湖南省长沙市一中卫星远程学校
Module 2 Me,my parents and my friends
Unit 1 I can speak English
Introduce yourself:
My name is …. I’m a …. I’m from …. I’m … years old. My favourite sport is ….
What can’t Tony do?
He can’t swim . He can’t speak Chinese.
Listen and repeat
Betty can play the piano. Tony can play table tennis.
Name:
Can Can’t
Play basketball
Play football Play table tennis Play tennis
-Can you cook? -Yes, I can./ No, I can’t.
Play the piano
Ride a bike
Ride a horse
讲解范例
2. 利用等比数列的性质解题. 例3.等比数列{an}中, (1) 已知a2=4,a5= ,求通项公式; (2) 已知a3a4a5=8,求a2a3a4a5a6的值.
讲解范例
3. 如何证明所给数列是否为等比数列.
例4.
设{an}是等差数列,
bn
( 1 )an 2
,
已知
b1
b2
b3
21 8 , b1b2b3
课后作业
《学案》P.48双基训练.
湖南省长沙市一中卫星远程学校
Module 2 Me,my parents and my friends
Unit 1 I can speak English
Introduce yourself:
My name is …. I’m a …. I’m from …. I’m … years old. My favourite sport is ….
等比数列课件ppt
02
等比数列的通项公式
等比数列的通项公式推导
01
02
03
定义等比数列
等比数列是一个序列,其 中任意两个相邻项的比值 都相等。
推导通项公式
假设等比数列的首项为 $a_1$,公比为$r$,则第 $n$项$a_n$的通项公式 为$a_n = a_1 times r^{(n-1)}$。
证明通项公式
通过数学归纳法或迭代法 证明通项公式的正确性。
等比数列课件
• 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列的应用 • 习题与解答
01
等比数列的定义与性质
等比数列的定义
总结词
等比数列是一种特殊的数列,其 中任意两个相邻项之间的比值都 相等。
详细描述
等比数列中,任意两个相邻项的 商是常数,这个常数被称为公比 。在等比数列中,每一项都是前 一项与公比的乘积。
举例说明
通过具体的例子来解释等比数列求和公式的推导过程。
等比数列求和公式的应用
解决实际问题
等比数列求和公式在解决实际问题中有着广泛的应用,如金融、工程、物理等 领域。
举例说明
通过具体的例子来展示等比数列求和公式的应用。
等比数列求和公式的变体
等差数列与等比数列的关系
01
等差数列和等比数列是两种不同的数列,但它们之间存在一定
01
第三组数列是等比数列,因为相 邻两项的比值都是1/2。
02
第四组数列也是等比数列,因为 相邻两项的比值都是1/2。
习题二:等比数列的通项公式
01
题目:已知等比数列的首项为 a,公比为q,求第n项的通项
公式。
02
答案与解析
等比数列公开课课件PPT
等比数列的应用
在数学中的应用
数学建模
等比数列是数学建模中常用的数 学工具,可以用来描述和解决各 种数学问题,如数列求和、数列
极限等。
金融计算
等比数列在金融领域的应用广泛, 如复利计算、贷款还款等,通过等 比数列的公式可以快速准确地计算 出结果。
统计学
在统计学中,等比数列常被用来描 述和预测数据分布,如人口增长、 股票价格波动等。
使用等比数列求和公式可 以大大简化计算过程,提 高计算效率。
推广到其他数列
等比数列求和公式的应用 不仅限于等比数列,还可 以推广到其他类型的数列。
实例解析
实例一
求1,2,4,8,16,...的前n项和。
实例二
求1,3,9,27,81,...的前n项和。
实例三
求2,4,8,16,...的前n项和。
05
通过观察数列1,4,16,64,...可以发现相邻两项的比值分别
为4,4,4,...,所以公比q = 4。
答案2
03
这四项分别为1/3, 2/3, 4/3, 8/3。
答案与解析
• 解析2:已知等比数列的公比为2,前四项和为1,设第一项为a, 则第二项为2a,第三项为4a,第四项为8a。根据等比数列前n 项和公式S_n = a * (q^n - 1) / (q - 1),代入n=4, q=2, S_4=1,解得a = 1/3。因此这四项分别为1/3, 2/3, 4/3, 8/3。
等比数列公开课课件
• 引言 • 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列的应用 • 习题与解答
01
引言
主题简介
定义
等比数列是一种常见的数列,其中任意两个相邻 项之间的比值是常数。
在数学中的应用
数学建模
等比数列是数学建模中常用的数 学工具,可以用来描述和解决各 种数学问题,如数列求和、数列
极限等。
金融计算
等比数列在金融领域的应用广泛, 如复利计算、贷款还款等,通过等 比数列的公式可以快速准确地计算 出结果。
统计学
在统计学中,等比数列常被用来描 述和预测数据分布,如人口增长、 股票价格波动等。
使用等比数列求和公式可 以大大简化计算过程,提 高计算效率。
推广到其他数列
等比数列求和公式的应用 不仅限于等比数列,还可 以推广到其他类型的数列。
实例解析
实例一
求1,2,4,8,16,...的前n项和。
实例二
求1,3,9,27,81,...的前n项和。
实例三
求2,4,8,16,...的前n项和。
05
通过观察数列1,4,16,64,...可以发现相邻两项的比值分别
为4,4,4,...,所以公比q = 4。
答案2
03
这四项分别为1/3, 2/3, 4/3, 8/3。
答案与解析
• 解析2:已知等比数列的公比为2,前四项和为1,设第一项为a, 则第二项为2a,第三项为4a,第四项为8a。根据等比数列前n 项和公式S_n = a * (q^n - 1) / (q - 1),代入n=4, q=2, S_4=1,解得a = 1/3。因此这四项分别为1/3, 2/3, 4/3, 8/3。
等比数列公开课课件
• 引言 • 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列的应用 • 习题与解答
01
引言
主题简介
定义
等比数列是一种常见的数列,其中任意两个相邻 项之间的比值是常数。
等比数列的概念PPT优秀课件
(3) (4) (5) (6)
公比 q=2 递增数列 公比 q=3 递增数列
1 , x , x , x , x , ( x 0 )
234
公比 d= x
1 公比 q= 递减数列 2
1 1 1 1 , , , , 2 4 8 16
5,5,5,5,5,5,… 1,-1,1,-1,1,…
公比 q=1 非零常数列 公 比q= -1 摆动数列
为0.
等比数列、等差数列定义比较
等比数列:如果一个数列从第2项起,每一项与它 的前一项的比等于同一个常数(指与n无关的数), 这个数列就叫做等比数列,这个常数叫做等比数 列的公比,公比通常用字母q表示。 等差数列:如果一个数列从第2项起,每一项与它的 前一项的差等于同一个常数,那么这个数列就叫 做等差数列.这个常数叫做等差数列的公差,公差通 常用字母d来表示.
讨论
已知等比数列 (1) 首项
a n
a1
: 能不能是零?
Why? 不能!!!
(2)公比q能不能是零?
Why? 不能!!!
等比中项
观察如下的两个数之间,插入一个什么数后者三个数就会成 为一个等比数列: (1)1,±3 , 9 (3)-12, ±6 ,-3 (2)-1, ±2 ,-4 (4)1,±1 ,1
如果在a与b中间插入一个数G,使a,G,b成等比数列, 那么G叫做a与b的等比中项。
G ab G ab
2
等比中项与等差中项比较
G ab G ab
2
ab A 2
现给出等差中项的性质 1、在等差数列中,从第二项起,每 一项是相邻两项的等差中项。 2、在等差数列中,数列中的某一项 是与它“等距离”的两项的等差中 项。 你能类比中项的性质吗?可以用数学 式子表示吗?
公比 q=2 递增数列 公比 q=3 递增数列
1 , x , x , x , x , ( x 0 )
234
公比 d= x
1 公比 q= 递减数列 2
1 1 1 1 , , , , 2 4 8 16
5,5,5,5,5,5,… 1,-1,1,-1,1,…
公比 q=1 非零常数列 公 比q= -1 摆动数列
为0.
等比数列、等差数列定义比较
等比数列:如果一个数列从第2项起,每一项与它 的前一项的比等于同一个常数(指与n无关的数), 这个数列就叫做等比数列,这个常数叫做等比数 列的公比,公比通常用字母q表示。 等差数列:如果一个数列从第2项起,每一项与它的 前一项的差等于同一个常数,那么这个数列就叫 做等差数列.这个常数叫做等差数列的公差,公差通 常用字母d来表示.
讨论
已知等比数列 (1) 首项
a n
a1
: 能不能是零?
Why? 不能!!!
(2)公比q能不能是零?
Why? 不能!!!
等比中项
观察如下的两个数之间,插入一个什么数后者三个数就会成 为一个等比数列: (1)1,±3 , 9 (3)-12, ±6 ,-3 (2)-1, ±2 ,-4 (4)1,±1 ,1
如果在a与b中间插入一个数G,使a,G,b成等比数列, 那么G叫做a与b的等比中项。
G ab G ab
2
等比中项与等差中项比较
G ab G ab
2
ab A 2
现给出等差中项的性质 1、在等差数列中,从第二项起,每 一项是相邻两项的等差中项。 2、在等差数列中,数列中的某一项 是与它“等距离”的两项的等差中 项。 你能类比中项的性质吗?可以用数学 式子表示吗?
等比数列-课件ppt
(4an1 4an ) 2an1 2an1 4an 2
an1 2an
an1 2an
∴数列{bn}是公比为2的等比数列,首项为a2-2a1. ∵S2=a1+a2=4a1+2, ∴a2=5.∴b1=a2-2a1=3.
返回首页
(2)由(1)知bn=3·2n-1=an+1-2an,
∴
an1 2n1
返回首页
1.等比数列的定义
一般地,如果一个数列从 第2项 起,每一项与它
的前一项 的比等于 同一 常数,那么这个数列叫做等
比数列,这个常数叫做等比数列的 公比 ,公比通常
用字母 q(q≠0) 表示.
其数学表达式为:
an+1 an
= q(q为常数)或
an = q a n-1
(q为常数)(n≥2),常用定义判断或证明一个数列是等
返回首页
设等比数列{an}的公比q<1,前n项和为Sn.已知 a3=2,S4=5S2,求{an}的通项公式.
【解析】由题设知a1≠0,Sn=
,
则
a1q2=2,
①
a1(1- q4 ) 5 a1(1- q 2 )
②
1-q
1-q
由②得1-q4=5(1-q2),(q2-4)(q2-1)=0,
a1(1- qn ) 1- q
返回首页
1 1 1
1
n2
2
2
1 1 n1 1 2
1 1 2
1
2
1
1
n1
3 2
5
2
1
n1
3 3 2
当n=1时,
5 3
2 3
1 2
n1
=1=a1,
等比数列ppt
练习:设等比数列 an 的前n项和为 Sn,若S3+S6=2S9,求数列的公比q.
例4.已知数列an ,Sn是它的前n项和,且 Sn1 4an 2(n N ),a1 1. (1)设 bn an1 2an (n N ) ,求证bn 是 等比数列;
3.设元技巧: 三数成等比数列:
a 2 ,a,aq或a,aq,aq q
四数成等比数列
a a 3 2 3 , , aq , aq 或 a , aq , aq , aq 3 q q
1 求公比 q . ana ,求 n . 求 . 1 2
1 已知 a a 36 , a a 18 , 3 6 4 7 2 已知q a2 a8 36 , a3 15(1 a7 15, 3 2, S 2),
等比数列
主要知识
定义: a 通项:
n 1
an
q(常数)(n N )
*
an a1 q
n 1
n N
*
推广:
a nm n anq am q q n q 1 Sn 1 q na q 1 1
中项: 若a、b、c成等比数列,则b为a与c 的等比中项(或几何中项)。 此时: b2=a· c
即:b ac
简单性质
1 m n p q, 则am an ap aq
(2) S n , S 2n S n , S3n S 2n ,
组成公比为
q
n
的等比数列 。
n
Sn A q A 数列an 是等比数列
2.解决等比数列问题的常见思维方法
1、方程的思想:在5个量a1,q,n,an,
等比数列的概念及基本运算ppt课件
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
点评:(1)解决等比数列问题,关键是抓住首项 a1 和 公比 q,求解时,要注意方程思想的运用.
(2)运用等比数列求和公式时,要注意公比 q 是否为 1.当 n 较小时,直接利用前 n 项和的意义展开,不仅可避 开公比 q 的讨论,还可使求解过程简捷.
q3=-2, 所以a1=1,
或q3=-12, a1=-8.
所以 a1+a10=a1(1+q9)=-7.
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
a111--qq10=10, (2)(方法一)设公比为 q,则a111--qq20=30, 得 1+q10=3,所以 q10=2. 所以 S30=a111--qq30=a111--qq10(1+q10+q20) =10(1+2+22)=70. (方法二)因为 S10,S20-S10,S30-S20 仍成等比数列, 又 S10=10,S20=30, 所以 S30-30=30-10102=40,所以 S30=70. 答案:(1)D (2)70
A.8
B.9
C.10
D.11
解:因为 a5a7=a62,a7a9=a82, 所以 a5a7+2a6a8+a7a9=a62+2a6a8+a28=(a6+a8)2=100.又 an> 0,所以 a6+a8=10.
答案:C
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
2.(2015·新课标卷Ⅱ)已知等比数列{an}满足 a1=3,a1+a3
等比数列(53张PPT)
⇐把an+1=2an+1变形为an+1+1=2(an+1)
人教A版· 数学· 必修5
进入导航
第二章 2.4 第1课时
系列丛书
[解]
(1)∵an+1=2an+1,
∴an+1+1=2(an+1). an+1+1 ∴ =2. an+1 ∴{an+1}是首项为a1+1=2,公比为2的等比数列. (2)由(1)知an+1=(a1+1)qn-1=2· 2n-1=2n, ∴an=2n-1.
Байду номын сангаас
人教A版· 数学· 必修5
进入导航
第二章 2.4 第1课时
系列丛书
[点评]
证明一个数列是等比数列的常用方法.
an+1 an (1)定义法: a =q(常数)或 =q(常数)(n≥2)⇔{an} a n n -1 为等比数列. (2)等比中项法:a 等比数列. (3)通项法:an=a1qn-1(其中a1,q为非零常数,n∈N+) ⇔{an}为等比数列.
n-1 a q 通项公式是an= 1 .
3.等比中项 (1)如果三个数x,G,y组成 等比数列 ,则G叫做x和y的 等比中项.
2 G (2)如果G是x和y的等比中项,那么 =xy,即G=± xy .
人教A版· 数学· 必修5
进入导航
第二章 2.4 第1课时
系列丛书
思考感悟
1.如何理解等比数列的定义?
∴数列{an}是等比数列.
人教A版· 数学· 必修5
进入导航
第二章 2.4 第1课时
系列丛书
[错因分析] 忽略了由Sn求an需n≥2,除此之外,还要 保证从第二项起每一项与它的前一项的比都等于同一非零 常数.
人教A版· 数学· 必修5
进入导航
等比数列复习ppt课件
A.63
B.64
C.127
D.128
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
解析:由 a1=1,a5=16,得 q4=aa51=16,q=2,S7= a111--qq7=127.
解析:对等比数列{an}有 S2、S4-S2、S6-S4 成等比数 列,
∵S2=6,S4-S2=30-6=24, ∴S6-S4=2642=96,S6=S4+96=126.
答案:126
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
答案:34
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
要点点拨
1.常数列与等差数列、等比数列的关系 常数列都是等差数列,但不一定是等比数列,只有当常 数列各项不为零时,才是等比数列.
5.设等比数列{an}的前 n 项和为 Sn,若 S6∶S3=1∶2, 则 S9∶S3=________.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
解析:法一:∵S6∶S3=1∶2, ∴{an}的公比 q≠1. 由a111--qq6÷a111--qq3=12, 得 q3=-12, ∴SS93=11--qq39=34.
第三节 等比数列
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
数列等比数列等比数列的概念及通项公式ppt
电路设计
在电路设计中,电阻、电容、电感等元件的参数 可以用等比数列表示。
计算机领域的应用
数据压缩
在数据压缩过程中,等比数列可以用来表示重复的数据模式,从 而减少数据的大小。
加密算法
在加密算法中,等比数列可以用来生成密钥序列,提高加密的安 全性。
图像处理
在图像处理中,等比数列可以用来表示像素值的变化情况,从而 实现图像的缩放和平移等操作。
等比数列的特性
等比数列的每一项都是前一项 的常数倍。
在等比数列中,常数被称为公 比(ratio),通常用字母 q 表示
。
如果第一项为 a1,公比为 q, 那么第 n 项 an = a1 × q^(n-
1)。
等比数列的应用
1
等比数列在金融领域的应用:如复利计算、投 资回报等。
2
等比数列在物理和工程领域的应用:如放射性 衰变、电路中的电阻等。
05
等比数列的拓展知识
等比数列与等差数列的关联
等比数列和等差数列是两种常见的数列类型,它们之 间存在一定的关联。
如果一个等差数列的公差为0,那么它就变成了一个等 比数列,其中每一项都等于前一项乘以1。
等差数列的每一项与其前一项的差是一个常数,而等 比数列的每一项与其前一项的比值是一个常数。
在等比数列中,如果存在一项为0,那么这个等比数列 就变成了一个有有限项的等差数列。
应用场景
变形的通项公式可以用于解决一些特定的问题,例如求解等 比数列的前n项和,或者在密码学中生成伪随机数等。
03
等比数列的求和公式
等比数列求和公式的推导
定义初始项和公比
通常设等比数列的初始项为 a1,公比为r。
推导求和公式
等比数列的求和公式可以通过错 位相减法推导得到,即利用等比 数列的通项公式和求和公式之间 的迭代关系进行推导。
在电路设计中,电阻、电容、电感等元件的参数 可以用等比数列表示。
计算机领域的应用
数据压缩
在数据压缩过程中,等比数列可以用来表示重复的数据模式,从 而减少数据的大小。
加密算法
在加密算法中,等比数列可以用来生成密钥序列,提高加密的安 全性。
图像处理
在图像处理中,等比数列可以用来表示像素值的变化情况,从而 实现图像的缩放和平移等操作。
等比数列的特性
等比数列的每一项都是前一项 的常数倍。
在等比数列中,常数被称为公 比(ratio),通常用字母 q 表示
。
如果第一项为 a1,公比为 q, 那么第 n 项 an = a1 × q^(n-
1)。
等比数列的应用
1
等比数列在金融领域的应用:如复利计算、投 资回报等。
2
等比数列在物理和工程领域的应用:如放射性 衰变、电路中的电阻等。
05
等比数列的拓展知识
等比数列与等差数列的关联
等比数列和等差数列是两种常见的数列类型,它们之 间存在一定的关联。
如果一个等差数列的公差为0,那么它就变成了一个等 比数列,其中每一项都等于前一项乘以1。
等差数列的每一项与其前一项的差是一个常数,而等 比数列的每一项与其前一项的比值是一个常数。
在等比数列中,如果存在一项为0,那么这个等比数列 就变成了一个有有限项的等差数列。
应用场景
变形的通项公式可以用于解决一些特定的问题,例如求解等 比数列的前n项和,或者在密码学中生成伪随机数等。
03
等比数列的求和公式
等比数列求和公式的推导
定义初始项和公比
通常设等比数列的初始项为 a1,公比为r。
推导求和公式
等比数列的求和公式可以通过错 位相减法推导得到,即利用等比 数列的通项公式和求和公式之间 的迭代关系进行推导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是等比数列,它的公比是q,那么:
a2 a1gq a3 a2 gq a1gq2 a4 a3 gq a1gq3 a5 a4 gq a1gq4
…
an a1 gqn1(a1 gq 0)
由此可知,等比数列 an 的通项公式为:an=a1qn-1
新课学习
应用1:求出下列数列的通项公式:
1. 1,2,4,8,…
6. 1 , 1 , 1 , 1 ,L . 2 4 8 16
新课学习
应用2:应用等比数列的通项公式 例:在等比数列{an}中
小结:
对于通项公式来说,有
a1,q, an 和n四个量, 可以知一求二。
(1)已知a1=6,q=-2,求a3 (2)已知a1=2,q=3,an=162,求n (3)已知a1=2,a3=8,求qFra bibliotek(4)
(5)已知a4=8,a7=1,求a5
(6)已知a3-a2=6,a4-a2 =18 ,求a5
课堂小结
1.理解等比数列及等比中项的定义; 2.掌握等比数列的通项公式. 3.已知等比数列会解决知道n,a1,an,q中
的三个,求另一个的问题.
练习与作业
1、小试卷 2、新坐标第37页阶段3
2. 1 ,1 ,1 ,1 ,1 ,… 2 4 8 16
3. 1 , 20,202 , 203 , … 4. 10 000×1.0198 , 10 000×1.01982 , 10 000×1.01983 ,
10 000×1.01984 ,10 000×1.01985 , … 5. 2,2,2,2, 2 , …
2.4 等比数列
第1课时 等比数列
一、复习提问
1、什么是等差数列? 一般地,如果一个数列从第2项起,每一项与它的前一
项的差等于同一个常数,那么这个数列就叫做等差数列, 这个常数叫做等差数列的公差,公差通常用字母d表示.
1, 3, 5, 7, 9,…;
(1)
3, 0, -3, -6, … ;
(2)
1 10
新课学习
看下列数列找规律
它们的共同特点是?
1. 1,2,4,8,…
2. 1 ,1 ,1 ,1 ,1 ,… 2 4 8 16
3. 1 , 20,202 , 203 , …
从第二项起,每一项与它 的前一项的比都等于同一 个常数.
4. 10 000×1.0198 , 10 000×1.01982 , 10 000×1.01983 , 10 000×1.01984 ,10 000×1.01985 , …
a1 a2 a3 a4
a n1
an q an1
(n 2,n N*)
或 an1 q (n 1, n N*) an
注意:
1.公比是等比数列从第2项起, 每一项与它的前一项的比,不能 颠倒.
2.对于一个给定的等比数列,它 的公比是同一个常数.
新课学习
观察如下的两个数之间,插入一个什么数后,这三个 数就会成为一个等比数列:
5. 2,2,2,2, 2 , …
6. 1 , 1 , 1 , 1 ,L . 2 4 8 16
新课学习
一、等比数列的定义: 一般地,如果一个数列从第2项起,每一项与它的前一项
的比等于同一常数,那么这个数列叫做等比数列.这个常数叫 做等比数列的公比,公比通常用字母q表示 (q≠0).
a2 a3 a4 a5 L an q
,
2 10
,
3 10
,
4 10
,
.
(3)
例如以下数列:
二、生活中的数列
1.细胞分裂:1,2,4,8,… 2.庄子曰:“一尺之棰,日取其半,万世不竭.”
1 ,1 ,1 ,1 ,1 ,… 2 4 8 16
3.计算机病毒:1 , 20,202 , 203 , …
4.复利问题: 10 000×1.0198 , 10 000×1.01982 , 10 000×1.01983 , 10 000×1.01984 ,10 000×1.01985
(1)1,_±__3_,9 (3)-12,±__6_,-3
(2)-1,_±__2_,-4 (4)1,_±__1_,1
二、等比中项: 如果在a与b中间插入一个数G,使a,G,b成等比数列, 那么G叫做a与b的等比中项.
G ab
新课学习
三、等比数列的通项公式:
如果一个数列:a1, a2 , a3 , …,an , …,
a2 a1gq a3 a2 gq a1gq2 a4 a3 gq a1gq3 a5 a4 gq a1gq4
…
an a1 gqn1(a1 gq 0)
由此可知,等比数列 an 的通项公式为:an=a1qn-1
新课学习
应用1:求出下列数列的通项公式:
1. 1,2,4,8,…
6. 1 , 1 , 1 , 1 ,L . 2 4 8 16
新课学习
应用2:应用等比数列的通项公式 例:在等比数列{an}中
小结:
对于通项公式来说,有
a1,q, an 和n四个量, 可以知一求二。
(1)已知a1=6,q=-2,求a3 (2)已知a1=2,q=3,an=162,求n (3)已知a1=2,a3=8,求qFra bibliotek(4)
(5)已知a4=8,a7=1,求a5
(6)已知a3-a2=6,a4-a2 =18 ,求a5
课堂小结
1.理解等比数列及等比中项的定义; 2.掌握等比数列的通项公式. 3.已知等比数列会解决知道n,a1,an,q中
的三个,求另一个的问题.
练习与作业
1、小试卷 2、新坐标第37页阶段3
2. 1 ,1 ,1 ,1 ,1 ,… 2 4 8 16
3. 1 , 20,202 , 203 , … 4. 10 000×1.0198 , 10 000×1.01982 , 10 000×1.01983 ,
10 000×1.01984 ,10 000×1.01985 , … 5. 2,2,2,2, 2 , …
2.4 等比数列
第1课时 等比数列
一、复习提问
1、什么是等差数列? 一般地,如果一个数列从第2项起,每一项与它的前一
项的差等于同一个常数,那么这个数列就叫做等差数列, 这个常数叫做等差数列的公差,公差通常用字母d表示.
1, 3, 5, 7, 9,…;
(1)
3, 0, -3, -6, … ;
(2)
1 10
新课学习
看下列数列找规律
它们的共同特点是?
1. 1,2,4,8,…
2. 1 ,1 ,1 ,1 ,1 ,… 2 4 8 16
3. 1 , 20,202 , 203 , …
从第二项起,每一项与它 的前一项的比都等于同一 个常数.
4. 10 000×1.0198 , 10 000×1.01982 , 10 000×1.01983 , 10 000×1.01984 ,10 000×1.01985 , …
a1 a2 a3 a4
a n1
an q an1
(n 2,n N*)
或 an1 q (n 1, n N*) an
注意:
1.公比是等比数列从第2项起, 每一项与它的前一项的比,不能 颠倒.
2.对于一个给定的等比数列,它 的公比是同一个常数.
新课学习
观察如下的两个数之间,插入一个什么数后,这三个 数就会成为一个等比数列:
5. 2,2,2,2, 2 , …
6. 1 , 1 , 1 , 1 ,L . 2 4 8 16
新课学习
一、等比数列的定义: 一般地,如果一个数列从第2项起,每一项与它的前一项
的比等于同一常数,那么这个数列叫做等比数列.这个常数叫 做等比数列的公比,公比通常用字母q表示 (q≠0).
a2 a3 a4 a5 L an q
,
2 10
,
3 10
,
4 10
,
.
(3)
例如以下数列:
二、生活中的数列
1.细胞分裂:1,2,4,8,… 2.庄子曰:“一尺之棰,日取其半,万世不竭.”
1 ,1 ,1 ,1 ,1 ,… 2 4 8 16
3.计算机病毒:1 , 20,202 , 203 , …
4.复利问题: 10 000×1.0198 , 10 000×1.01982 , 10 000×1.01983 , 10 000×1.01984 ,10 000×1.01985
(1)1,_±__3_,9 (3)-12,±__6_,-3
(2)-1,_±__2_,-4 (4)1,_±__1_,1
二、等比中项: 如果在a与b中间插入一个数G,使a,G,b成等比数列, 那么G叫做a与b的等比中项.
G ab
新课学习
三、等比数列的通项公式:
如果一个数列:a1, a2 , a3 , …,an , …,