推广国产非晶合金带材应用的几个技术关键
浅谈非晶合金变压器特点及推广应用
浅谈非晶合金变压器特点及推广应用摘要:配电变压器作为电力系统中的重要设备之一,一旦投入使用,将不能轻易退出,具有不间断运行的特点,因此,其能耗直接影响电网的运行成本。
传统变压器的能耗较高,损耗占系统总发电量的10%左右,在这绿水青山就是金山银山的新时代,降低变压器能耗刻不容缓。
本文将讨论新型配电变压器——非晶合金变压器的特点及推广应用。
关键词:非晶合金变压器空载损耗;节能环保一、非晶合金变压器概述:变压器是输变电中的损耗大户,在配电网损耗中变压器损耗约占30%-60%,其中空载损耗约占变压器总损耗的50%-80%。
随着节能降耗、落实科学发展观、转变经济增长方式、促进产业结构调整已成为全社会的共识,非晶合金变压器逐渐走到前台。
非晶合金变压器是采用新型导磁材料——非晶合金带材来制作铁心的新型高效节能变压器。
非晶合金变压器的最突出的特点就是空载损耗和空载电流非常小,SH15型非晶变比用硅钢片作为铁心的S9型变压器空载损耗下降70%以上,空载电流下降约80%,是目前节能效果非常好的配电变压器。
是符合国家经委、计委颁布的《中国节能技术大纲》精神的理想电气产品。
该类变压器作为日常照明和工厂动力用,一般低压在0.4KV及以下。
配电变压器容量较小,一般在2500KVA及以下;一次电压也较低,都在35KV及以下。
自1982年美国通用电气公司研制的非晶配电商业投运以来,这二十多年来非晶变已经在国内、国外电网上普遍运行了,可减少CO、SO、NOx等有害气体的排放,它也被称为二十一世纪的“绿色材料”。
二、非晶合金变压器的性能特点:1.铁心的导磁材料采用非晶合金。
由于非晶合金不存在晶体结构并具有软磁特性,磁滞回线的面积很狭窄,磁化功率小,电阻率高,涡流损耗小。
2.由于非晶合金比较脆、饱和磁通密度较低(约1.5T),所以非晶合金铁心的额定磁通密度一般为(1.3—1.4T)比冷轧硅钢片(1.6—1.7T)低。
由于非晶合金带材的厚度为0.02mm~0.03mm,只有硅钢片的1/10左右,非常薄、脆,并且对机械应力很敏感,因此装配时要注意轻拿轻放,避免因为过多的外力而增加产品的空载损耗和噪音。
浅谈非晶合金配电变压器的运用与推广
电企技管与安全
CUANG XIDI YE AN
廑 揲 审
o 0
萋昌 瞽
露簿 0 。 l 0 _
●龙 浩 然
◆ 一 、 述 概
要 由涡流损耗 和磁 滞损耗 组成 , 涡流损 耗与铁芯材料 厚度 成正 比, 与电阻率成
非晶合 金变 压器是用 新 型导磁 材 料——非晶合金制作铁芯的变压器 。非 晶合金主要 以铁 、 、 、 、 等金属 镍 钴 硌 锰 为合 金基础 , 入少量 的硼 、 、 、 加 碳 硅 磷
等 元 素 , 此 具 有 铁 磁 性 良好 、 械 强 因 机
容 量 非 晶合 金 空 载 S 1系列 空载 s 列空 载 I 9系 的低 损 耗 节 能 变 压器 。非 r A 损 耗 k 1 V 损 耗 损 耗 晶 合 金 变 压 器 由 于 损 耗
电 企技管与安全
值 的 损 耗 费用 。
C C+( = A×P+ oB×P ) k
金配电变压器与 s 9系列 、1 系列配电 s1 变压器相 比, 其空载损耗值大大降低 。
l0 6
2 00
l 0 0
l0 2
27 0
3 30
40 0
48 0
求变化较 大 , 各地 区为迎 峰度 夏 常 常 采用 大 容 量 变压器 , 当春 秋季节 负荷 较低时 , 载损耗尤 为突 空 出 ,配 网的线 损率较 高 。 采用 非 晶 合 金变 压 器 可 以较好 的解决这一 问题 ,
63 8 0
l0 0 l5 2
5 0 6 0
7 5 8 5
l0 5 l0 7
2 00 2 40
20 0 25 0
29 0 3 40
块体非晶合金材料的性能、应用及展望
块体非晶合金材料的性能、应用以及展望引言:非晶态合金又称为金属玻璃,具有长程无序、短程有序的亚稳态结构特征。
固态时其原子的三维空间呈拓扑无序排列,并在一定温度范围内这种状态保持相对稳定。
与传统的晶态合金相比,非晶合金具备很多优异的性能,如高强度、高硬度、耐磨和耐腐蚀等,因而引起人们极大的兴趣。
一、非晶合金的发展历程自1960 年加州理工学院的P.Duwez 小组采用液态喷雾淬冷法以106K/s 的冷却速率从液态急冷获得Au-Si 非晶合金以来,人们主要通过提高冷却速度的方法来获得非晶态结构。
由于受到高的临界冷却速率的限制,只能获得低维的非晶材料(非晶粉、丝、薄带等),这在很大程度上限制了非晶的应用,特别是阻碍了对其力学、物理等性能的研究。
20 世纪80 年代末90 年代初,日本东北大学(Tohoku University)的T.Masumoto 和A.Inoue 等人发现了具有极低临界冷却速率的多元合金系列,如Mg-TM-Ln,Ln-AI-TM,Zr-AI-TM,Hf-AITM ,Ti-Zr-TM(Ln 为铡系元素,TM 为过渡族元素)。
1993 年W.L.Johnson 等人发现了具有临界冷却速率低达1K/s 的Zr 基大块非晶合金。
经过二十多年的发展,非晶从只有几个微米到现在的厘米级别,现在已经有6 个体系(锆基: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Zr55Al10Ni5Cu30;铂基:Pd40Cu30Ni10P20;钇基:Y36Sc20Al24Co20;钯基:Pt57.5Cu14.7Ni5.3P22.5;镁基:Mg54Cu26.5Ag8.5Gd11)临界尺度达到了20mm。
对非晶态的大量研究表明,非晶合金中不存在晶界、位错、层错等晶体缺陷,非晶合金具有传统的晶态金属所不具有的诸多优良性能,如良好的机械、物理、化学性能以及磁性能。
鉴于大块非晶合金优良的力学、化学及物理性能以及在电子、机械、化工、国防等方面具有广泛的应用前景,大块非晶合金的研制就具有重要的技术和经济价值,是一个具有广阔发展前景的研究领域。
全球第二大非晶合金带材生产商毛利率可能高达100%
全球第二大非晶合金带材生产商毛利率可能高达100%全球第二大非晶合金带材生产商―安泰科技非晶带材毛利率可能高达100%非晶带材技术壁垒非常高,目前全世界仍仅有安泰科技和日本日立金属能够生产。
安泰科技高管透露,公司4万吨非晶带材项目将在今年3月底全部建成投产,将成为全球第二大非晶合金带材生产商,2010年非晶带材销售计划为1.2万吨以上,成本在1.5 万元/吨以下,销售价格为2.8-3.1万元/吨,也就是说毛利率可能高达100%。
安泰科技从事非晶材料的研制已经有20年时间,安泰科技目前还处在追赶者的地位,但所幸的是安泰科技在追赶者中遥遥领先,因为除了日立金属和安泰科技外,世界上基本上没有第三家公司可以批量生产非晶带材的技术和工艺。
按照安泰科技刚刚开始的扩产计划,未来三年内,非晶产能也将扩展到5万吨。
一旦产能能够顺利扩展沫来非晶材料市场将只属于日立金属和安泰科技两家所有。
对于非晶带材市场来说,中国需求一直被压抑着。
非晶变压器的推广一直处于缓慢迈步状况。
市场普遍认为,此前非晶带材全球仅有日立金属一家供应商,处于产业战略的考虑,在国内厂商实现量产之前,国内的需求一直被压抑。
截止08年底的数据显示,OECD组织已经有超过15%的配电变压器更换为非晶合金变压器,而同期国内市场仅仅1%实现了更换。
市场前景可见一斑。
显然,随着安泰科技非晶带材的量产,国内长期压抑的需求将得以释放。
目前,非晶带材的热试已经成功,2010年产量3.5万-4 万吨,公司目前积极扩充产能,到2011年产能将达到10万吨,发改委之所以没有出台扶持策,主要就是因为公司前期没有量产,随着公司4万吨项目的推进,发改委有望出台策强推公司产品。
目前非晶产品的完全成本在1.3万元/吨,随着产量上去,成本有望进一步降低到1.2万元/吨以下。
简单测算下,如果2009年产能可以达到3.5万吨,按照3万元/吨的销售价格,考虑所得税和销售费用率,每吨利润1.4万元,非晶带材项目明年利润可贡献4.5-5亿。
非晶合金材料发展趋势及启示
非晶合金材料发展趋势及启示摘要:金属材料的发展与人类文明和进步息息相关。
非晶合金材料是一类原子结构长程无序,具有独特优异性能的新型金属材料。
近年来,非晶合金材料的研发、相关科学问题的研究、在高新技术领域的应用得到快速发展,并对金属材料的设计和研发、结构材料、绿色节能材料、磁性材料、催化材料、信息材料等领域产生深刻的影响。
为此,文章在回顾非晶合金材料研究和研发历史过程的基础上,分析了当前其学科的前沿科学问题、发展方向,以及我国在该领域发展的问题、机遇和挑战,并提出相应的启示和建议,以期为加快新金属材料的发展,特别是在高新技术领域的应用提供管窥之见。
金属材料与人类万年文明发展史息息相关,金属材料的开发和使用,往往成为划分人类不同文明时代的里程碑,如青铜时代、铁器时代、钢铁时代等。
每次金属材料的发展都会极大地推动人类社会文明和生产力的巨大进步。
非晶合金是近几十年来通过现代冶金新技术——快速凝固技术和熵调控理念——抑制合金熔体原子的结晶,保持和调控熔体无序结构特征而得到的一类新型金属材料,也称金属玻璃,或液态金属。
这种材料是通过调制材料结构“序”或“熵”这一全新途径和理念而合成的,兼具玻璃、金属、固体、液体等物质特性的新金属材料;其颠覆了传统金属材料从成分和缺陷出发设计和制备的思路(图1),突破金属材料原子结构有序的固有概念,把金属材料的强度、韧性、弹性、抗腐蚀、抗辐照等性能指标提升到前所未有的高度,改变了古老金属结构材料的面貌。
非晶、高熵等无序合金在基础研究和技术应用中已表现出重要意义和战略价值,在能源、信息、环保节能、航空航天、医疗卫生和国防等高新技术领域发挥着愈加重要作用。
无序合金领域的基础研究将继续推动材料科技革命和对材料行为的更深入理解,并能产生新的材料设备和系统。
图1非晶合金等无序材料探索途径和传统晶态材料探索途径的比较1非晶合金材料的研发态势及进展1.1非晶合金研发态势非晶合金材料的研发出现过4次高峰,已研发出铁、铜、锆和稀土基等近百种非晶合金体系。
非晶带材行业分析
非晶带材行业分析非晶带材是一种新兴的材料,在电子、光学、能源等领域具有广泛的应用前景。
非晶带材行业在中国的发展也非常迅速,下面对其行业进行分析。
首先,非晶带材市场需求量大。
随着科技的不断进步和人们生活水平的提高,对高性能材料的需求不断增长。
非晶带材作为一种具有优异物理、化学性能的材料,被广泛应用于电子、光学、能源等领域,其中电工领域对非晶带材的需求量最大。
电工领域主要包括变压器、传感器、电感器等电子元器件制造,以及电动汽车、风电、光伏等新能源产业。
这些行业的快速发展推动了非晶带材的市场需求持续增长。
其次,非晶带材具有技术门槛高。
非晶带材的制备技术相对较为复杂,需要采用特殊的制备工艺,如快速凝固技术、溅射法等。
此外,非晶带材制备过程中需要严格控制工艺参数,以获得高质量的产品。
这就要求企业必须具备较高的技术实力和设备水平才能进入该行业,形成技术壁垒。
目前,国内非晶带材行业中,技术实力雄厚的企业较为集中,市场竞争程度相对较高。
再次,非晶带材行业发展前景广阔。
随着新能源产业的快速发展,特别是电动汽车、风电、光伏等领域的快速崛起,对高性能电子材料的需求越来越大,非晶带材正是这些领域的理想材料之一。
比如,在电动汽车领域,非晶带材被应用于电机和电池的制造,可以提高电机的性能和电池的能量密度。
在风电和光伏领域,非晶带材可以用于制造高效的变压器和电感器,提高能源转换效率。
因此,非晶带材行业具有较大的发展空间。
最后,非晶带材行业面临着一些挑战。
一方面,国内非晶带材行业的竞争激烈,市场供应过剩的现象比较严重,价格竞争激烈。
另一方面,非晶带材的生产成本相对较高,这限制了其在一些领域的应用推广。
此外,非晶带材的制备工艺和设备投入较大,企业在进入该行业时需要承担较高的技术和资金风险。
综上所述,非晶带材行业作为一种新兴的材料行业,具有市场需求量大、技术门槛高和未来发展前景广阔等特点。
尽管面临一些挑战,但随着新能源产业的快速发展,非晶带材行业仍然具备较大的发展潜力,有望在未来取得更大的突破。
铁基非晶合金带材
铁基非晶合金带材铁基非晶合金带材是一种新型的材料,它具有优异的力学性能和化学稳定性,被广泛应用于电子、航空、航天等领域。
本文将从铁基非晶合金带材的特点、制备工艺、应用领域等方面进行介绍。
一、铁基非晶合金带材的特点铁基非晶合金带材是一种由铁、镍、铬、钼等元素组成的非晶合金材料,其特点主要有以下几点:1.高强度:铁基非晶合金带材的强度比传统的钢材高出数倍,可以承受更大的载荷。
2.高韧性:铁基非晶合金带材的韧性比传统的钢材高出数倍,可以在受到冲击或挤压时不易断裂。
3.高温稳定性:铁基非晶合金带材在高温下也能保持其力学性能和化学稳定性,不易发生变形或氧化。
4.良好的耐腐蚀性:铁基非晶合金带材具有良好的耐腐蚀性,可以在酸、碱等恶劣环境下使用。
二、铁基非晶合金带材的制备工艺铁基非晶合金带材的制备工艺主要有两种:熔融法和快速凝固法。
1.熔融法:将铁、镍、铬、钼等元素按一定比例混合后,加热至高温状态,使其熔化后冷却成带材状。
这种方法制备的铁基非晶合金带材成本较高,但可以制备出较大尺寸的带材。
2.快速凝固法:将铁、镍、铬、钼等元素按一定比例混合后,通过快速冷却的方式制备出非晶合金带材。
这种方法制备的铁基非晶合金带材成本较低,但尺寸较小。
三、铁基非晶合金带材的应用领域铁基非晶合金带材的应用领域非常广泛,主要包括以下几个方面:1.电子领域:铁基非晶合金带材可以用于制造高性能的电子元器件,如磁芯、变压器等。
2.航空航天领域:铁基非晶合金带材可以用于制造高强度、高韧性的航空航天材料,如飞机结构件、发动机叶片等。
3.汽车领域:铁基非晶合金带材可以用于制造汽车零部件,如发动机缸套、减震器等。
4.医疗领域:铁基非晶合金带材可以用于制造医疗器械,如手术刀片、牙科器械等。
总之,铁基非晶合金带材是一种具有广泛应用前景的新型材料,其优异的力学性能和化学稳定性使其在各个领域都有着重要的应用价值。
非晶纳米晶合金材料的工艺技术、产业化和应用
非晶纳米晶合金材料的工艺技术、产业化和应用张甫飞(宝钢集团特钢技术中心,上海 200940)摘要:介绍了国内外利用快淬技术制备非晶纳米晶合金材料的产业现状以及这一领域材料工艺技术的研究开发动态和非晶纳米晶材料的应用情况。
关键词:非晶纳米晶材料;工艺;性能;产业化;应用Application, Industrialization and Technology of Amorphous & Nanocrystalline AlloyZHANG Fu-feiBaoSteel Special Steel Technical Center, Shanghai 200940, ChinaAbstract: The current industrial situation of amorphous & nanocrystalline alloy made by rapidly quenching technology is introduced, including the recent research, development and application inthis field.Key words: amorphous & nanocrystalline; process; properties; industrialization; application自从1960年Duwez教授等人发明液态金属快淬技术制取Au-Si非晶合金和1966年发明Fe-P-C 非晶软磁合金以来,美国、日本、德国、前苏联和中国等相继开展了非晶合金的研究工作,并在20世纪70~80年代形成非晶合金研究开发的第一次热潮。
由于非晶合金制备工艺简单独特、材料性能优异等显著优点,应用范围不断扩大,四十多年来一直是冶金和材料领域的研究热点之一。
尤其在1988年日本Yashizawa教授等人在非晶化的基础上发明了纳米晶合金,从而开创了软磁材料的新纪元,大大促进了非晶材料制备设备、工艺技术的发展和材料开发应用,推动了非晶纳米晶产业的发展[1~3, 8]。
非晶合金的结构特性及应用
非晶合金的结构特性及应用随着科技的不断发展,人们对新材料的需求不断提高。
非晶合金作为一种新兴材料,因其独特的结构特性而备受青睐。
本文将介绍非晶合金的结构特性以及其应用领域。
一、非晶合金的结构特性非晶合金,是一种不具有晶体结构的金属材料,与晶态金属材料不同,其结构不具有周期性,呈现出玻璃或胶体的非晶态结构。
非晶合金的制备需要高速冷却技术,即快速制冷。
在制冷过程中,金属原子没有充分时间来排列成有序的晶体结构,形成了玻璃态的非晶态结构。
与晶态结构的金属材料相比,非晶态结构的金属材料具有如下特点:1. 高硬度和高强度由于非晶态结构材料不存在晶界,其内部结构实际上比晶体更加致密,这使得非晶态材料具有更高的硬度和强度。
为此,非晶合金在制造超导磁体仪器、飞行器构件和生物科技领域中的应用具有明显的优势。
2. 高磁导率和低磁滞损耗非晶合金的导磁率比一般的晶体结构金属高达25倍以上。
同时,其低磁滞损耗也为非常低,这一特性使得其在电力行业中被广泛应用于电感器和电动机中。
3. 耐腐蚀性好非晶合金中不同元素的非晶态结构互相加强,相互作用,从而产生一种抗氧化、耐腐蚀的效应,这使得其在耐腐蚀领域中有广泛的应用。
二、非晶合金的应用1. 电子领域非晶合金在电子领域中的应用主要体现在电子器件和电动工具方面。
晶体管中需要使用金属氧化物半导体材料,而非晶合金材料通常用来制造各种电动工具,例如切割剪刀和手动工具。
2. 汽车制造在汽车制造领域,非晶合金材料被广泛用于制造喷油器、人造骨头支架和减震器。
这样做不仅可以提高汽车发动机的燃油效率,而且可以减轻汽车重量,提高汽车的吸震性,从而降低车辆的噪声和振动。
3. 生物医疗领域非晶合金在医疗领域的应用主要是制造人工骨头支架,这可以帮助骨折患者更快地恢复骨骼的稳定性。
此外,非晶合金还可以用于制造耐腐蚀的齿科设备、人造心脏瓣膜,以及高强度锁骨、脊柱和肋骨钢板等。
总之,随着科技不断的发展,非晶合金材料应用领域的范围不断扩大。
非晶合金的应用领域
非晶合金的应用领域引言非晶合金是一种具有无定形结构的材料,具有许多优异的性质,例如高强度、高硬度、优异的磁性能等。
这些特性使得非晶合金在许多领域得到了广泛应用。
本文将探讨非晶合金在不同应用领域中的具体应用情况。
电子领域1. 电子元件非晶合金具有优异的导电性能和磁性能,因此在电子元件中有广泛的应用。
例如,非晶合金可以用于制造高性能的电感器、变压器和电感元件。
此外,非晶合金还可以用于制造高精度的电阻器和电容器,用于提高电子元件的性能和稳定性。
2. 磁性材料非晶合金具有优异的软磁性能,因此在磁性材料中有重要的应用。
非晶合金可以用于制造高性能的磁芯、传感器和电动机等。
非晶合金的高磁导率和低磁滞损耗使得磁性材料具有更高的效率和更小的尺寸。
3. 电池技术非晶合金在电池技术中也有广泛的应用。
非晶合金可以用于制造高性能的电池电极材料,提高电池的能量密度和循环寿命。
此外,非晶合金还可以用于制造电池的隔膜材料,提高电池的安全性和稳定性。
机械领域1. 制造业非晶合金在制造业中有重要的应用。
由于非晶合金具有高硬度和高强度,可以用于制造高性能的刀具、模具和零件等。
非晶合金的高耐磨性和高耐腐蚀性使得制造业的产品更加耐用和可靠。
2. 航空航天非晶合金在航空航天领域中也有广泛的应用。
由于非晶合金具有优异的力学性能和耐高温性能,可以用于制造航空发动机的叶片、涡轮和喷嘴等关键部件。
此外,非晶合金还可以用于制造航天器的结构材料,提高航天器的性能和可靠性。
3. 汽车工业非晶合金在汽车工业中有重要的应用。
由于非晶合金具有高强度和优异的韧性,可以用于制造汽车的车身结构和发动机零件等。
非晶合金的高耐磨性和低摩擦系数使得汽车的零部件更加耐用和节能。
医疗领域1. 医疗器械非晶合金在医疗器械中有广泛的应用。
由于非晶合金具有优异的生物相容性和耐腐蚀性,可以用于制造医疗器械,如手术器械、植入物和诊断设备等。
非晶合金的高强度和高硬度还可以提高医疗器械的使用寿命和可靠性。
非晶合金的发展与应用
非晶合金的发展与应用学校:班级:学号:姓名:指导教师:日期:目录目录 2一、非晶合金简介 2二、非晶合金的发展历史 2三、非晶形成的控制因素 33.1 非晶形成的热力学因素 33.2非晶形成的动力学因素33.3非晶形成的结构学因素3四、大块非晶合金制备方法 34.1液相急冷法 34.2气相沉积法 44.3化学溶液反应法 44.4固相反应法 4五、非晶合金制备工艺技术 45.1铜模吸铸法 55.2粉末冶金技术55.3熔体水淬法 55.4压铸法 55.5非晶条带直接复合爆炸焊接55.6定向凝固铸造法 55.7磁悬浮熔炼铜模冷却法55.8固态反应5六、非晶合金性能 66.1大块非晶合金的机械性能 66.2非晶合金优秀的耐蚀性6七、非晶合金应用实例 6八、参考文献7一、非晶合金简介非晶态合金又称金属玻璃,具有短程有序、长程无序的亚稳态结构特征。
固态时其原子的三维空间呈拓扑无序排列,并在一定温度范围内这种状态保持相对稳定。
与晶态合金相比,非晶合金具备许多优异性能,如高硬度、高强度、高电阻、耐蚀及耐磨等。
块体非晶合金材料的迅速发展,为材料科研工作者和工业界研究开发高性能的功能材料和结构材料提供了十分重要的机会和巨大的开拓空间。
二、非晶合金的发展历史1959年,美国加州理工大学Duwez在研究晶体结构和化合价完全不同的两个元素能否形成固溶体时,偶然发现了Au70-Si30 非晶合金。
1969年陈鹤寿等将含有贵金属元素Pd的具有较高非晶形成能力的合金(Pd-Au-Si,Pd-Ag-Si等),通过B2O3反复除杂精炼,得到了直径1mm的球状非晶合金样品。
1989年日木东北大学的Inoue等通过水淬法和铜模铸造法制备出毫米级的La-AI-Ni大块非晶合金,随后Zr基非晶合金体系也相继问世。
20世纪90年代以来,人们在大块非晶合金制备方而取得了突破性进展。
Inoue等成功地制备了Mg-Y-(Cu, Ni), La-AI-Ni-Cu, Zr-AI-Ni-Cu等非晶形成能力很高,直径为1一10 mm的棒,条状大块非晶态合金。
非晶合金材料的应用和发展
非晶合金材料的应用和发展非晶合金又称金属玻璃,是指在原子尺度上长程无序、短程有序排列的一类合金材料。
其微观结构与传统晶态合金不同,内部并不存在晶粒和晶界。
独特的材料结构使得该合金具有高比强、大弹性变形能力、强耐腐蚀性、低热膨胀系数、高耐磨性、优异软磁等性能,可广泛应用于电子信息、航空航天、生物医疗等领域,市场需求量大,产业化前景十分广阔。
各个国家都相当重视非晶合金领域的研发工作。
1994年至2018年全球公开专利数量统计,以每五年为一个时间节点,分别对日本、美国、德国和中国的专利申请数量进行了统计。
在过去15年间,全球申请数量呈稳步上升趋势。
日本、美国与德国在此领域起步较早,中国自21世纪初期也开始发力,逐步赶超日本、美国和德国。
目前我国已实现产业化的非晶合金主要以带材的形式呈现,以铁基非晶合金在配电变压器中的应用最为成熟。
我国非晶带材技术与国外基本无差异,带材质量极具竞争力,在配电变压器的应用上节能效果非常明显。
目前国内生产非晶合金的公司主要有安泰科技股份有限公司、青岛云路新能源科技有限公司、东莞宜安科技股份有限公司等。
其中安泰科技股份有限公司、青岛云路先进材料技术股份有限公司等企业主要关注非晶和纳米晶带材的研发生产,而东莞宜安科技股份有限公司是具备大块非晶金属成型能力的企业。
2018年至今国外有多个科研团队在非晶合金制备、结构认知、机理研究等方面取得了新的进展。
为代替昂贵的Pd/Pd-Ag分离膜,美国内华达大学S.Sarker团队开发了Ni-Nb-Zr非晶合金,此材料在200℃~400℃表现出了较高的氢渗透性。
原子探针断层扫描证实该非晶合金内部确实存在相分离,在三元非晶基底上形成了纳米级富Nb和富Zr非晶的复合结构。
基于密度泛函理论(DFT)模拟发现这些局域原子团簇结构多由二十面体组成。
此外,也有些研究团队专注于非晶合金服役性能、变形机理等方面的研究。
2018年10月,日本东北大学SergeyV.Ketov团队研究了低温热循环处理对不同成分的金属玻璃力学性能的影响。
非晶合金的应用领域
非晶合金的应用领域一、前言非晶合金是一种新型材料,具有优异的物理、化学和机械性能,因此在各个领域都有广泛的应用。
本文将从电子、机械、化工等方面介绍非晶合金的应用领域。
二、电子领域1. 磁性材料非晶合金具有高饱和磁感应强度和低磁滞损耗,因此被广泛应用于电子产品中的磁性材料。
例如,它可以用于制造高性能的变压器芯片、电感器和电源变换器等。
2. 传感器非晶合金还可以用于制造传感器。
例如,在温度测量方面,利用非晶合金的热敏特性制造温度传感器;在压力测量方面,利用其磁敏特性制造压力传感器。
3. 存储介质非晶合金还可以作为存储介质使用。
例如,在硬盘中使用非晶合金材料作为读写头部分的导体材料,以提高数据读取速度和稳定性。
三、机械领域1. 刀具材料由于非晶合金具有高硬度、高强度和高耐磨性等特点,因此可以用于制造刀具。
例如,它可以用于制造高速钻头、铣刀和车刀等。
2. 弹性材料非晶合金还可以作为弹性材料使用。
例如,在弹簧领域,由于非晶合金的高弹性模量和长期稳定性,可以制造出高质量的弹簧。
3. 粉末冶金材料非晶合金也可以作为粉末冶金材料使用。
例如,在汽车零部件中使用非晶合金粉末冶金材料制造出轻量化和高强度的零部件。
四、化工领域1. 催化剂载体非晶合金具有大比表面积和良好的稳定性,因此可以用作催化剂载体。
例如,在有机催化反应中使用非晶合金作为催化剂载体,能够提高反应效率和选择性。
2. 氢气存储材料由于非晶合金具有较大的氢气吸附容量和较低的吸附温度,因此被广泛应用于氢气存储材料中。
例如,在氢能源汽车中使用非晶合金作为氢气存储材料,可以提高氢气的存储密度和释放速度。
3. 防腐材料非晶合金还可以用作防腐材料。
例如,在海洋工程领域中,非晶合金可以制造出高性能的防腐涂层,以延长海洋工程设备的使用寿命。
五、总结综上所述,非晶合金是一种具有广泛应用前景的新型材料。
它在电子、机械、化工等领域都有着重要的应用价值。
随着科技的不断进步和发展,相信非晶合金在更多领域中也将得到广泛应用。
非晶合金铁心技术参数(国产安泰带材)-2011-09
非晶合金铁心非晶合金铁心((国产带材国产带材))技术参数
1. 材料材料::安泰科技股份公司1K101-A1非晶合金带材
2. 适用的磁通密度适用的磁通密度::
单相变压器:1.30~1.40特斯拉
三相变压器:1.25~1.35特斯拉
3. 叠片系数叠片系数::不小于86%
4. 铁心空载损耗和励磁功率铁心空载损耗和励磁功率((推荐推荐)):
1) 1.3T ,50Hz 测试条件下,单位空载损耗小于等于0.18W/kg ,单位励磁
功率小于等于0.45VA/kg ;
2) 1.35T ,50Hz 测试条件下,单位空载损耗小于等于0.20W/kg ,单位励磁
功率小于等于0.60VA/kg ;
3)
客户特殊的性能要求,可另行设计加工; 4) 三相三柱式整体型铁心的空载损耗和励磁功率,需根据铁心情况另行设计
计算。
5. 铁心设计标准铁心设计标准((参见参见下图下图下图))
: 1) 带材宽度:142毫米、170毫米;
2) 窗高(A ):180~2000毫米;公差+3/-0毫米;
3) 窗宽(B ):55~1500毫米;公差+3/-0毫米;
4) 叠厚(C ):0~300毫米;最大值;
5) 接头叠厚(E ):C x 1.11~1.25毫米;
6) 窗口圆角(R ):6.4+/-1.5毫米;
7) 铁心最外层剪切长度:不大于10000毫米;
8) 铁心表面涂层:环氧树脂单面不大于 2毫米;(也可根据客户需要选择也可根据客户需要选择不不
同的涂敷材料同的涂敷材料))
9) 铁心厚度(D ):不大于带材宽度+涂层厚度;
单个铁心示意图
三相三柱式整体型三相三柱式整体型铁心示意图铁心示意图。
非晶合金的发展及应用
先进制导技术
非晶合金的发展概况
二,非晶合金发展历史
非晶的历史当以1960年美国Duwez教授发明用快淬工艺制备非晶态 合金为始.其间,非晶软磁合金的发展大体上经历了两个阶段: 第一个阶段从1967年开始,直到1988年.1984年美国四个变压器 厂家在IEEE会议上展示实用非晶配电变压器则标志着第一阶段达到高 潮,到1989年,美国Allied Signal公司(现被Honeywell公司兼并) 已经具有年产6万吨非晶带材的生产能力,全世界约有100万台非晶配 电变压器投入运行,所用铁基非晶带材几乎全部来源于该公司. 这个阶段以美国为主,除美国之外,日本和德国在非晶合金应用 开发方面也拥有自己的特色,重点是电子和电力电子元件,例如高级 音响磁头,高频电源(含开关电源)用变压器,扼流圈,磁放大器等.
2010-6-7
R c 102~103K.s-1 T 10mm Zr-Al-Ni-Cu R c 102~103K.s-1 D 16mm&30mm Zr55Al10Ni5Cu30 P 50~200MPa D 15mm Ln- &10mm MgL 300mm W 12mm H 10mm Zr-Al-Ni-Cu-Pd
六,块体纳米材料的制备
目前制备块体纳米材料常用的方法是通过大塑性变形使经理尺寸 细化至纳米级,由于这种方法的结果是晶界处残留了很大的内应力, 因此在改善材料某些性能的同时牺牲了别的一些性能.通过合理的退 火工艺,大块非晶合金的基体上能够析出均匀分布的一定大小的纳米 晶粒,这种纳米结构材料也称之为非晶基复合材料,它们可以达到此 非晶合金更为优良的综合性能. 2010-6-7 Hongkang Yao TYUST 先进制导技术
非晶态合金的原理与应用
非晶态合金的原理与应用随着科技的发展,人们对新型材料的需求也越来越高。
在材料科学领域中,非晶态合金因其独特的物理性质和广泛的应用范围而备受关注。
本篇文章将重点介绍非晶态合金的原理和应用,从而深入了解这一新型材料。
一、非晶态合金的概念非晶态合金是由两种或两种以上元素组成,其中至少有一个元素的原子半径比另一个元素的原子半径大得多,在快速冷却的条件下形成的材料。
与晶态合金不同的是,非晶态合金的结构是无序的,没有明显的晶格结构。
这种无序结构使得非晶态合金拥有卓越的力学性能、磁学性能和电学性能,以及高储氢量和高储锂能力等特殊性质。
因此,非晶态合金被广泛应用于诸如制造耐久材料、储氢材料、电子材料、生物医学材料、高强度复合材料等领域。
二、非晶态合金的制备方法快速凝固技术是非晶态合金制备的主流方法之一。
该技术通常采用旋转坩埚法、雨雾法、熔体淬火法、离子束淀积法、激光熔凝法等不同方法,以快速冷却速度将熔融态合金冷却到非晶态。
一些研究人员也采用真空蒸发法、物理气相沉积法和化学气相沉积法等方法制备非晶态合金。
另外,通过机械合金化、溶胶凝胶法、拔丝等方法制备的非晶态合金也不断涌现。
虽然这些方法相对于快速凝固技术没有取得与之相当的成功,但研究人员对其持续关注并不断寻找新制备工艺。
相信在未来的研究中,这些方法也将得到不断完善。
三、非晶态合金的应用领域1.结构材料因为非晶态合金的无序结构在微观上阻碍了其塑性变形、滑移和晶界行为,从而使得非晶态合金的硬度、强度和韧度等性能大幅提升,成为一种理想的高性能结构材料。
非晶态合金制成的齿轮、弹簧、焊接材料等,具有许多优异的机械性能。
2.储氢材料非晶态合金由于其大比表面积和多孔结构,能够吸收更多的氢气分子。
因此,非晶态合金被广泛用于储能材料,如制造储氢合金。
3.电子材料随着电子器件中电路元器件的微小化,非晶态合金因具有优异的导电性能、化学稳定性、耐磨性、高温稳定性等优点,正逐渐取代传统材料应用于电子器件中,如制造传感器、电子包装材料、导电高分子薄膜等。
非晶纳米晶合金
非晶纳米晶合金非晶纳米晶合金是一种新兴的材料,具有独特的性质和广泛的应用前景。
本文将介绍非晶纳米晶合金的定义、制备方法、性质以及应用领域等方面的内容。
一、定义非晶纳米晶合金是指由非晶态和纳米晶两种结构相混合而成的材料。
非晶态结构是指材料的原子排列无序,而纳米晶结构是指材料的晶粒尺寸在纳米级别。
非晶纳米晶合金具有非晶态材料的高硬度、高强度以及纳米晶材料的优异导电性和热稳定性等特点。
二、制备方法非晶纳米晶合金的制备方法主要有物理法和化学法两种。
物理法包括溅射法、球磨法和快淬法等,通过控制制备条件可以获得不同成分和形态的非晶纳米晶合金材料。
化学法主要有溶胶-凝胶法、电化学沉积法和化学还原法等,通过选择适当的化学反应体系可以实现非晶纳米晶合金的制备。
三、性质1. 高硬度:非晶纳米晶合金具有非晶态材料的高硬度,这是由于非晶态结构中原子的无序排列造成的。
高硬度使得非晶纳米晶合金在工程领域具有广泛的应用前景。
2. 高强度:非晶纳米晶合金不仅具有高硬度,还具有高强度,这是由于纳米晶结构中晶粒的细小尺寸和较大的晶界能量所导致的。
高强度使得非晶纳米晶合金在制备高性能结构材料方面具有潜力。
3. 优异导电性:非晶纳米晶合金中的纳米晶结构使得材料具有优异的导电性能,这是由于纳米晶结构中晶粒与晶粒之间的电子传输路径较短所导致的。
优异的导电性使得非晶纳米晶合金在电子器件领域具有广泛的应用前景。
4. 热稳定性:非晶纳米晶合金具有较好的热稳定性,这是由于非晶态结构中的无序排列可以抑制材料的晶粒长大。
较好的热稳定性使得非晶纳米晶合金在高温环境下具有良好的应用性能。
四、应用领域非晶纳米晶合金具有广泛的应用前景,主要应用于以下几个领域:1. 结构材料:非晶纳米晶合金具有高硬度和高强度,可以用于制备高性能的结构材料,如航空航天领域的航空发动机叶片和汽车领域的车身结构件等。
2. 电子器件:非晶纳米晶合金具有优异的导电性能,可以用于制备高性能的电子器件,如集成电路和太阳能电池等。
非晶合金在电子行业中的应用
非晶合金在电子行业中的应用随着科技的不断发展,电子行业也迅速进步。
在这一行业中,材料的选择对于产品的性能和性价比有着直接的影响。
近年来,非晶合金作为新型材料受到越来越多的关注和应用。
一、什么是非晶合金非晶合金是一种在快速冷却过程中形成的非晶态金属材料,具有无定形(非结晶)的微观结构。
它的制造过程往往比普通金属材料更为复杂。
其中,非晶化主要通过两种方式实现:一种是快速冷却(约10^6 K/s以上),另一种是沉淀法。
非晶合金具有很多优异的物理、化学和机械性能。
例如,非晶合金比普通金属材料的硬度更高,耐腐蚀性和抗疲劳性也更强。
同时,非晶合金还具有较高的导电性和磁导率,可以应用于电子行业。
二、非晶合金在电子行业中的应用1. 磁记录材料非晶合金的高磁导率和低磁留量使其成为一种重要的磁记录材料。
目前,非晶合金已被广泛应用于计算机硬盘驱动器、磁带以及音像带等储存媒体中。
2. 电子元件非晶合金的高导电性和耐腐蚀性使其成为电子元件的理想选择。
例如,非晶合金可以用于电阻器、电容器、电感器、接头、电子管和场效应管等电子元件的制造。
此外,非晶合金的物理和力学性质也使其成为一种对热冲击、振动和机械冲击具有较高耐久性的材料。
3. 电池非晶合金还可以用于太阳能电池的制造。
某些非晶合金中的元素有很高的吸光度,可以吸收太阳光并将其转化为电能。
同时,非晶合金的稳定性和低成本也使其成为一种备受欢迎的太阳能电池材料。
4. 光学材料非晶合金还可以用于光学材料的制造。
由于非晶合金具有极高的折射率和色散性,可以用于制造透镜及其它光学元件,并被广泛应用于光通信和光纤通信技术中。
三、非晶合金在电子行业中的未来非晶合金作为一种新型材料,具有广阔的应用前景。
随着电子行业的不断进步和发展,非晶合金可以在更多的领域中发挥其优异的性能。
例如,在制造集成电路中使用非晶合金将有助于提高电路的速度和稳定性,并且可以减少功耗和热量产生。
此外,非晶合金的高强度和超高温稳定性还有望用于航空航天、汽车制造和医疗器械等领域。
非晶材料的应用
非晶材料的应用非晶材料是一种新兴的材料,由于其独特的物理、化学性质以及微结构,正在得到广泛的关注。
在许多领域中,非晶材料已经被应用,同时也有许多领域正在探索其应用。
本文将介绍非晶材料的应用。
1. 超强韧性合金非晶合金是由三个或更多的金属元素组成的合金。
它们的母材料具有无序的原子结构,这使它们比晶体材料具有更高的强度和硬度。
这些材料通常用于制造抗腐蚀、耐磨损和高温应用的部件,如飞机发动机、汽车制动器、航空航天部件等。
非晶合金还可以用于制造集成电路、计算机芯片等应用。
2. 太阳能电池板非晶硅薄膜太阳能电池板在光能转换效率上较晶体硅略低,但其可以制备成大尺寸、灵活性好、可弯曲性高等特点。
该类电池模组随着先进制造技术的应用,有望取代传统的晶体硅太阳能电池板。
3. 记忆合金非晶合金在形状记忆方面可以被制成许多形状,具有高形状记忆效应、高能量储存特性和高循环稳定性。
这些特性使得非晶合金可以广泛应用于电子、机械、医疗器械等领域。
例如,非晶合金可以作为心脏手术器械、医疗外科器械、自动控制输油管道阀门、智能头发卷等。
4. 功能性玻璃非晶材料可以制成功能性玻璃,由于其优异的光学性能,可以用于制造光学器件,如液晶、液晶显示器等。
同时,非晶玻璃还可以制成防爆材料、装饰玻璃、声学材料等。
5. 磁性材料非晶合金在磁性材料领域已经得到广泛应用,由于其微观结构的非晶性质,使得非晶合金具有相对应的特殊磁性。
非晶合金可以应用于转变、传动装置中,例如大型的磁力发电机、磁力轴承、传动器等。
6. 纳米颗粒非晶材料可以制造出大小只有纳米尺度的微小颗粒。
这些纳米颗粒具有很多优异的性能,包括高强度、高韧性、高稳定性等。
这些优异性质使得非晶材料的纳米颗粒被应用于制造高性能材料、生物医学领域、传感器等。
总之,非晶材料的应用在不同领域中各不相同,但其独特的物理和化学性质使其能够在制造高性能材料、电子器件、磁性材料、生物医学器械等领域得到广泛应用。
随着技术的发展,我们相信非晶材料将在更多领域被应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推广国产非晶合金带材应用的几个技术关键
随着国产非晶合金带材制造技术的不断改进,其性能得到进一步提升,这为其应用推广打下了良好基础。
实践证明,变压器制造企业在不修改任何设计方案沿用传统变压器装配工艺的情况下,可完全使用国产非晶合金带材铁心替代进口非晶合金带材铁心。
由于国内外非晶合金带材特性的某些差异,在推广国产非晶合金带材应用中,以下一些保证铁心性能指标和质量水平的关键点需要重视。
目前国内生产非晶合金带材铁心的剪切机,均是采用双滚轮挤压输送。
如果带材的弧口向下,带材边缘在托架上不易滑行;如果带材的弧口面向上,带材又容易从托架上侧滑;而且非晶合金带材在剪切机上堆叠时也容易滑落或错位。
根据试验,国产非晶合金带材的最佳剪切方案是:每2卷或3卷需要剪切的带材中,下层1卷带材弧口向上,上层带材(1卷或2卷)弧口向下。
此送料方式,可确保带材在剪切机出料口呈一定刚性,在两根托架上平稳输送;且落料堆叠时,不会侧滑。
铁心成型时,由于国产非晶合金带材呈弧形,必须增大模板对铁心侧面的压紧力,保证铁心的物理尺寸达到设计要求。
带模板成型后的铁心,可采用适当的方法整平端面。
虽然由此产生的铁心内在应力比进口非晶合金带材大一些,但通过后续合理的热处理工艺技术,可以完全消除这些应力,恢复其磁特性。
另外,由于国产非晶合金带材的脆性比进口带材要大,因此在变压器装配过程中,要控制铁心打开和闭合接头时对带材的损伤,防止带材脆裂;而且,装配过程中形成的碎片必须严格清除干净,防止进入线圈和变压器油箱,否则,对变压器运行非常危险。
半成品的铁心,需要在铁心的两个端面涂敷绝缘材料,加以形状的固定和保护,以适合非晶合金铁心的包装、运输、储存和变压器的装配。
这看似简单的要求,却对于国产非晶合金带材铁心的最终性能有着很大的影响。
目前用户常用的两种封装用绝缘材料是环氧树脂和胶水。
由于国产非晶合金带材的板型横向呈一定的弧形,涂敷环氧树脂固化后,在铁心边缘的带材会造成新的局部机械应力,由此会增加铁心的空载损耗和激磁功率。
而涂敷胶水的铁心,明显不存在上述情况。
因此,建议优先选择涂敷胶水。
还有,关于铁心的层间结构设计。
经试验验证:对于国产1K101-A2类材料,由于材料厚度较大,采用每组20片的结构,铁心的剪切质量和成品性能都有较大改善;由于减少了片数,可减小铁心搭接处的接头气隙,也可降低铁心运行时的噪声。
对于国产1K101-A1类材料,其带材比进口带材更薄,每组30片的片间结构是最佳设计。
组间增量控制在 4.90~5.10mm,所得到的最终铁心性能可优于进口带材。