模拟法,立体,测图分解

合集下载

摄影测量学基础第4章 立体观测与模拟摄影测量

摄影测量学基础第4章 立体观测与模拟摄影测量

N2
相应的模型点的投影重合,取N1。
2)以N1为中心旋转图底,使对角线 上的另一控制点N4的模型点的投影
N3
N4
落在相应两控制点N1 N4的连线上。
3)调整模型比例尺。沿投影基线方向移动一 个投影器,改变投影基线的长度,直到两模型 点的投影正好与图底上相应控制点重合。
3. 模型置平
1)任取一点如N1为高程起始点,调整高程起始 读数,使N1的高程读数等于实测高程。 2)用测标立体切准N2、 N3两点,读出相应的高 程读数,并计算出相对N1的高程差。
3、零立体效应
将正立体情况下的两张像片,在各自 的平面内按同一方向旋转90°,使像片上 纵横坐标互换了方向。像片上原来的纵坐 标y轴转到与基线平行,此时生理视差变为 像片的y方向的视差。
零立体效应是基于人眼测量左右视差 的精度高于上下视差,将上下视差转换成 左右视差,以提高观测精度。
这种立体视觉,称为零立体效应。
立体镜的主要作用是使得一只眼睛能清晰地只看 一张像片的影像。
桥式立体镜:简单但 观察的范围小
可以观察23—30cm边长的大像幅立体像对
反光立体镜:用两条分开的观测光路将 来自左右像片的光线分别传送到观察者的左 右眼睛中,每条观测光路由物镜、目镜和其 他光学装置组成。相比扩大像片间距和放大 像幅的作用,其立体观测效果更好。
§4.2 立体像对
1、立体像对的定义
由不同摄站获取的,具 有一定影像重叠的两张像
片。
立体摄影测量(双像测图) 也就是以立体像对为测量 单元的
o1 a1 S1
o2 a2 S2
A
2、立体像对的分类
1)航摄立体像对:航摄仪沿航线定时启动快门 拍摄而成;主要介绍。要求相邻像片的航向重叠 60%以上,无人机搭载的数码相机拍摄的像对可 达80%重叠度。

摄影测量学__考前知识点整理

摄影测量学__考前知识点整理

摄影比例尺:摄影比例尺越大,像片地面的分辨率越高,有利于影像的解译与提高成图精度 摄影航高:相对航高:绝对航高:摄影测量生产对摄影资料的基本要求:影像的色调、像片倾角(摄影机主光轴与铅垂线的夹角,α= 0 时为最理想的情形)像片重叠:航向重叠:同一航线内相邻像片应有一定的影像重叠;旁向重叠:相邻航线也应有一定的重叠;航线弯曲:一条航线内各张像片的像主点连线不在一条直线上;像片旋角:相邻两像片的主点的连线与像片沿航线方向的两框标连线之间的夹角;像片旋角过大会减小立体相对的有效观察范围中心投影:所有投射线或其延长线都通过一个固定点的投影阴位:投影中心位于物和像之间。

(距摄影中心f )阳位:投影中心位于物和像同侧。

(距摄影中心f )像方坐标系:像平面坐标系(像主点o 为原点)像空间坐标系(x 、y 、-f)像空间辅助坐标系S-uvw物方坐标系:地面测量坐标系T-XYZ (高斯平面坐标+高程)左手系地面摄影测量坐标系D-XYZ内方位元素: x 0,y 0,f 作用: 1、像点的框标坐标系向像空间坐标系的改化;2、确定摄影光束的形状;外方位元素:确定摄影光束在摄影瞬间的空间位置和姿态的参数线元素(X S ,Y S ,Z S )角元素(航向倾角ϕ、 旁向倾角ω、 像片旋角κ)共线条件方程(摄影中心、像点、地面点)像点位移:因像片倾斜引起的像点位移 同摄站同主距的倾斜像片和水平像片沿等比线重合时,地面点在倾斜像片上的像点与相应水平像片上像点之间的直线移位像点位于等比线上,无像片倾斜引起的像点位移等比线上部的像点的像片倾斜误差方向向着等角点等比线下部的像点的像片倾斜误差方向背向等角点(1) 当 时, ,即等比线上的点不会因像片倾斜产生像点位移(2)当 ,像点位移朝向等角点(一、二像限)(3)当 ,像点位移背向等角点(三、四像限)(4)当 时,主纵线上点的位移最大像片纠正:因像片倾斜产生的影像变形改正因地面起伏引起的像点位移(投影差):当地面有起伏时,高于或低于所选定的基准面的地面点的像点,与该地面点在基准面上的垂直投影点的像点之间的直线移位地形起伏像点位移的符号与该点的高差符号相同,像片上任何一点都存在像点位移 物镜畸变、大气折光、地球曲率及底片变形等一些因素均会导致像点位移航摄像片:中心投影,平均比例尺,影像有变形,方位发生变化地形图:正射投影,比例尺固定,图形形状与实地完全相似,方位保持不变在表示方法上:地形图是按成图比例尺,用各种规定的符号、注记和等高线表示地物地貌;航片则是通过影像的大小、形状和色调表示。

立体测图

立体测图

影像增强
特征提取

2)模式识别软件主要包括:
特征识别与定位,包括框标的 识别与定位, 影像匹配(同名点、线与面的 识别) 目标识别

3 ) 解析摄影测量软件主要包括:
定向参数计算; 空中三角测量解算
核线关系解算;坐标计算与变换
数值内插; 数字微分纠正
投影变换


3、Aerodata Int.Surveys公司(比利时): 将激光扫描仪、航空相机、像片扫描仪集成起来, 完成航测。地面1m格网的高程精度0。2m。 4、OSAKA公司(日): 推出SE-11X新型相机,特点:陶瓷材料真空板压 平;8个框标;专门电路抗噪;与GPS兼容;数据 记录上下个51位。可用于地面摄影和航空摄影。 5、WEHRLI公司(美): 推出高精度像片扫描仪,特点:精度4 um;灰阶 4096(12bit);光照稳定;WINDOWS NT环境; 基本分辨率10 um(2540dpi), 通过内插可有15、25、 30um分辨率。


2)类型: 解析测图仪: Opton C—100 ; Wild BC2 Zeiss:P系列, Kern:DSR系列 Wild &Prime:System-9 Jx-1,3系列解析测图仪 解析正射投影仪: Zeiss: Z-2, Wild : OR-1型, 为起伏地区制作正射影像图。
国际上具代表性的全数字摄影测量系统
1 、 Leica 公司的 Helava 扫描仪 DSW300 (量测分 辨 率 为 1um , 扫 描 速 度 35mm/s , 像 元 尺 寸 875um ) , 工 作 站 DPW770 ; ( 全 色 SPOT , Landsat) 2 、 Intergraph 公 司 的 扫 描 仪 AS1 与 工 作 站 Intergraphstation;(SPOT) 3、Zeiss 的扫描仪SCA1(分辨率1um,像元大小 7.5-120um, 扫描速度 1 兆像素 / 秒),工作站 PHODIS; 4 、 Vision International 公 司 的 工 作 站 Microsoft; 5、武测的VirtuoZo;(SPOT,近景影像) 6、Vaxel的扫描仪Vaxe400;

第四章 双向立体测图基础与立体测图

第四章  双向立体测图基础与立体测图
立体摄影测量(双向立体测图)是利用一个立体像片对,在恢复它们内外方位元素后,重建与地面相似的几何模型,并对该模型进行测量的一种摄影测量方法。
几何模型:根据摄影过程的几何反转原理,恢复了立体像对的内方位和相对方位后,所有同名光线成对相交,由无数同名光线相交交点构成的与实地相似的几何表面。
重建立体模型的过程:1恢复像片对的内方位元素。2恢复像片对的外方位元素。(1找出两张像片位置的数据,称这些数据为像片对的相对定向元素,形成几何模型;2找出恢复该模型大小与空间方位的的数据,即绝对定向元素。)
立体观察方法:1立体镜观察法2双目镜观测光法立体观察。
立体摄影测量也称双像测图,是由两个相邻摄站所摄取的具有一定重叠度的一对像片对为量测单元。立体相对的特殊点线面:两摄影中心连线称摄影基线,地面上任一点在左右像片上的构像称同名像点,通过摄影基线与地面上任一点所做的平面称为该点的核面,若同名射线都在核面内,则同名射线必然对对相交。过像底点的核面称为垂核面。核面与像片面的交线称为核线。基线的延长线与左右像片的交点成为核点。
在不改变两投影中心位置的情况下,通过两个光束旋转来确定相对方位,适用于单独像对的作业,因此又称为单独像对系统。以基线坐标系为基础,将摄影基线固定水平(5个)
基线坐标系: 左摄站为原点,摄影基线为X0轴,左主核面为X0Z0面, Z0轴向上为正,Y0轴按右手法则来确定的坐标系
绝对方位元素确定几何模型的比例尺和它在地面坐标系中空间方位的元素
立体像对基本知识
空间景物在感光材料上构像,再用人眼观察构像的相片而产生生理视差,重建空间景物立体视觉,这样的立体感觉称人造立体视觉,所看到的立体模型称立体视模型。
立体观察条件①两张像片必须是从不同摄影站摄取的。②两眼各看一张像片,即必须分像。③必须使同名像点的连线与眼基线平行,以保证两视线 在同一个视平面内。④比例尺基本一致(比例尺的差异小于比例尺的15%)

《摄影测量》模拟法立体测图

《摄影测量》模拟法立体测图

型的平移、旋转和缩放将立体模型纳入地面测量坐
标系。
N1
N2
1、准备工作
将像对范围内的四个地面控制点,按测图比
例尺按其坐标展绘在图纸上,制成图底。
N3
N4
§ 4-3模拟法立体测图
1、定向过程
(1). 模型平移
将图底安放在承影面上,移动图底,是其中一个控 制点与相应模型点投影重合------解决了 X , Y
左右视差:P
上下视差:Q X
§ 4-3模拟法立体测图
左右视差是承影面与模型点的空间位置不吻合造成 的,可以通过升降承影面,改变高度加以消除;
上下视差是由于两像片相对位置没有恢复到摄影时的 相对位置所导致的------上下视差是衡量同名光线是 否相交的标志(相对定向是否完成的标志)。
通过运动投影器,同名点的上下视差随着发生变 化,当诸多同名点的上下视差为零,相对定向即 告完成。通过微动投影器的定向螺旋,消除承影面上同名
(4). 安置高程
任取一点为高程起点,调整高程起始读数,使该点 的高程读数等于实测高程------解求 Z
§ 4-3模拟法立体测图
(5.) 模型置平
用测标分别立体切准模型点 N2, N3 ,读出相应的高 tan h'12 h12
程读数,计算出相对于N1的高差 h12 , h13
求出地面点实测的高差
绝对定向的实质-------利用一定数量的地面控制 点反求7个绝对定向元素(???)(解析法)。控 制点数????
§ 4-3模拟法立体测图
(三)、绝对定向模拟立体测图仪完成这一工作
是根据展有一定数量的控制点的图底与所建模型上
对应点在承影面上正射投影位置的差异,即控制点
实地高差与相应模型点间高差的不符情况,通过模

04 双像立体测图基础与05解析基础

04   双像立体测图基础与05解析基础

立体像对的相对定向Relative orientation
相对定向的含义是 ,恢复摄影瞬间立体 像对左右像片之间的 相对空间方位。 确定两个像片的相 对空间方位需要5个 参数

单独法相 对定向
Φ1 ,k1 ,Φ2 ,k2 ,w2 Bx , By , Φ2 ,k2 ,w2 连续法相 对定向
立体像对的绝对定向 Absolute orientation
X a1 Y a 2 Z a3
b1 b2 b3
c1 X X s X X s c2 Y Ys R 1 Y Ys Z Z Z Z c3 s s
偏导数 1
二、几种典型的模拟法立体测图仪
(参考:朱肇光编 测绘出版社《摄影测量学》第七章)
1、B8S模拟测图仪
B8S为机械投影模拟立体测图仪,利 用精密机械仪器模拟外业航空摄影时航 片的相对位置,在室内建立立体模型, 用控制点来解算其它地物点坐标值,是 70年代为主流的摄影测量测图仪器。
生产厂家:德国WILD厂,规格:23×23cm
绝对定向也称大地定向,是指确定立体 模型或由多个立体模型构成的区域的绝对 方位,也就是确定立体模型相对地面的关 系。 绝对定向参数为7个 Xs、Ys、Zs、、、、b

§4-4 模拟法立体测图
一、模拟法立体测图原理
模拟法立体测图是利用光学投影或 机械投影方式,恢复摄影瞬间像对的内 方位元素和像对的外方位元素,形成与 实地相似的光学立体模型,从而实现摄 影过程的几何反转。
x x x x x x X s Ys Z s x 0 x X s Ys Z s y y y y y y X s Ys Z s y 0 y X s Ys Z s

《摄影测量》解析法立体测图

《摄影测量》解析法立体测图
第五章解析法立体测图
主要内容
• §5-1概述
• §5-2解析法立体测原理
§5-1 解析法测图概述
模拟法立体测图
模拟测图仪借助仪器上的投影光线或机械 导杆,通过相对定向和绝对定向之后,重建被 摄目标的光学立体模型。通过对光学立体模型 的量测获取被摄目标的几何信息。
模拟测图仪具有复杂的光学和机械系统。
2. 相对定向-----确定立体像对相互位置关系
半自动观测。自动依次驱动车架到六个标准点位,作业员消 除观察点的上下视差,输入计算机。用最小二乘法解算定向 元素,并显示出定向参数和点位的余差,有作业员判定是否 需要重测。
3、解析测图仪的软件
3. 绝对定向-----解求绝对定向元素 预先输入地控制点坐标。立体切准控制点,记入控制
二、解析测图仪的特点
1. 精度高
仪器: 光机部分构造简单,机械传动少,结构稳定; 系统误差:摄影过程的像差、像片材料变形、仪器机 械部分通过计算机软件改正; 偶然误差:通过平差法配置; 观测值:像点坐标量测的精度达2 m
二、解析测图仪的特点
2. 功能强
方便进行数字模型、纵横断面和等高线测量, 输出的成果是数字的或图解的成果。
点观测的模型坐标,用最小二乘法解算绝对定向方程,输出 绝对定向元素。
4. 模型存储与恢复
确定模型的参数及有关数据存储起来,在需要时, 精确恢复出模型。
5. 点观察 输入像片坐标或模型坐标或地面坐标,自动驱动到指
定观察点位。
3、解析测图仪的软件
6. 数字地面模型 测标沿着XY平面按一定轨迹移动,作业员只需控制Z
方向使测标切准模型和掌握扫描的开启和停止。扫描观测 数据按规定的格式记录下来。
7. 面积、体积和矢量计算

(完整word版)航空摄影测量

(完整word版)航空摄影测量

航空摄影测量一.前言及单张相片的航测解析1.摄影测量学:利用各种非接触型的传感器,获取模拟的或数字的影象,然后解析和数字化提取所需要的信息,在空间信息系统里数字的加以存储,管理,分析和表达,再通过可视化和符号化形成产品2.摄影比例尺:航摄相片上的一段线的长度l,与实际地面上的相应线段长度L的比,1/m=l/L ,此时视相片为水平,地面取平均高程。

也等于摄象机主距f和平均地面高H的比,即1/m=f/H 3.空中摄影测量采用竖直摄影方式,即摄影瞬间摄象机的铅垂线垂直于地面,偏离垂线夹角应小于3度,夹角称相片斜角4.航向重叠:同航向要求重叠度60%。

旁向重叠:相邻航带间重叠度要求24%。

5.航摄影象是地物上的各点通过航摄机的物镜投射到相片上的一点,称为中心投影。

6.摄影测量的几何处理任务是通过相片上像点的位置确定相应地面点的空间位置,这就需要坐标转换来确定地面点.描述像点位置的坐标系为相方坐标系,描述地面点位置的坐标系为物方坐标系。

7.用摄影测量的方法研究地物的几何和物理信息时,必须建立该物体与相片之间的数学关系,首先需要确定的是摄影瞬间摄影中心与相片在地面坐标系中的位置和姿态。

内方位元素:表示摄影中心与相片之间相关位置的参数外方位元素:表示摄影中心和相片在地面坐标系中的位置和姿态的参数。

8.像点偏移:地面点在相片上的投影因相片倾斜或地面不平而移位或多边形形变.二.双像解析摄影测量1.人造立体视觉需要满足的条件:两张相片必须是两个位置对同一景物摄取的相对。

每只眼睛只能观察一张相片。

两相片上的同名景物连线必须与眼基线大致平行。

两相片的比例尺相近(差别<15%),否则需要用zoom模块进行调节。

2.用解析的方法处理立体相对(定向—恢复地面目标的空间坐标),常用方法:①利用相片的空间后方交会与前方交会来解求地面目标的空间坐标(绝对坐标)②利用相对的内在几何关系,进行相对定向,建立与地面相似的立体模型,计算出模型点的空间坐标,再通过绝对定向,将模型进行平移,旋转,缩放,以纳入到规定的地面坐标系中,解析出地面目标的绝对空间坐标。

摄影测量与遥感考试要点

摄影测量与遥感考试要点

第一章绪论1、传统摄影测量学:利用光学摄影机摄影的像片,研究和确定被摄物体的大小、形状、位置、性质和相互关系的一门科学和技术。

2、摄影测量学,其含义是基于像片的量测。

3、摄影测量与遥感的主要特点是在像片上进行量测与解译,无需接触被测物体本身,因而很少受自然和地理条件的限制,而且可获得摄影瞬间的动态物体影像。

4、摄影测量与遥感的分类:(1)按距离远近:航空摄影测量与遥感;航天摄影测量与遥感;地面摄影测量与遥感;近景摄影测量与遥感和显微摄影测量与遥感(2)按用途分:地形摄影测量与遥感和非地形摄影测量与遥感(3)仅就摄影测量而言,按技术处理手段:模拟摄影测量、解析摄影测量和数字摄影测量(三个发展阶段)5、影像信息科学:是一门记录、存储、传输、量测、处理、解译、分析和显示由非接触传感器影像获得的目标及其环境信息的科学、技术和经济实体。

第二章单张航摄像片解析1、摄影是按小孔成像原理进行的。

航空摄影机物镜中心至底片面的距离是固定值,称为航摄机主距,常用f表示。

主距之所以是固定值是因为航高相对于摄影机主距很大,它近似于无穷远成像,所以主距约等于摄影机物镜的焦距。

2、航摄机向地面摄影时,摄影物镜的主光轴偏离铅垂线SN的夹角a,称为航摄像片倾角。

3、当像片水平,地面水平时,从相似三角理论可知,此时,航摄比例尺为像片上一段距离l和地面上相应距离L之比,即1/m=l/L=f/H,式中,f为摄影机主距,H为相对于平均高程面的航摄高度,称为航高。

当像片有倾斜或地面有起伏时,近似计算摄影比例尺的公式为:1/m约=f/H。

摄影比例尺越大,像片地面分辨率越高,有利于影像的解译和提高成图的精度。

4、同一条航线内相邻像片之间的影像重叠称为航向重叠,一般要求在60%以上。

相邻航线的重叠称为旁向重叠,重叠度要求在24%以上。

5、把一条航线的航摄像片根据地物景象叠拼起来,每张像片的主点连线不在一条直线上,而是成为弯弯曲曲的折线,称为航线弯曲。

第四章 立体测图

第四章 立体测图

3、影像数字化立体测图 、
是目前正在发展的一种方法。 是目前正在发展的一种方法。所用的仪器 称为数字摄影测量系统,由数字化仪、计算机、 称为数字摄影测量系统,由数字化仪、计算机、 输出设备及摄影测量软件等组成。 输出设备及摄影测量软件等组成。利用数字相 关技术代替人眼观察, 关技术代替人眼观察,自动寻找同名像点并量 测坐标;采用解析计算方法建立数字立体模型, 测坐标;采用解析计算方法建立数字立体模型, 由此建立数字高程模型,自动绘制等高线, 由此建立数字高程模型,自动绘制等高线,制 作正射影像图。 作正射影像图。 特点:整个过程除少量人机交互外, 特点:整个过程除少量人机交互外,全部 自动化。
(3)双目镜观测光路的立体观察 ) 用两条分开的观测光路将来自左右像片 的光线分别传送到观测者的左右眼睛中, 的光线分别传送到观测者的左右眼睛中, 每条观测光路由物镜、 每条观测光路由物镜、目镜和其他光学 装置组成。 装置组成。
2、立体量测 、 摄影测量中,不仅需要建立立体模型, 摄影测量中,不仅需要建立立体模型,还要对 立体模型进行量测。一般用一个可以在立体表 立体模型进行量测。 测标来进行量测 点状或 面游动的测标来进行量测,测标一般为点状 面游动的测标来进行量测,测标一般为点状或 线状,目的是可以更准确地判断测标是否切准 线状,目的是可以更准确地判断测标是否切准 立体模型表面。 立体模型表面。 立体量测时,大多采用双测标法。双测标法是 立体量测时,大多采用双测标法。 双测标法 利用放入光路中的两个单独的实测标分别切准 立体像对上的同名像点进行立体量测。 同名像点进行立体量测 立体像对上的同名像点进行立体量测。
人用双眼观察景物可判断其远近,得到景物的立体 效应,这种现象称为人眼的天然立体视觉。 生理视差是产生天然立体 感觉的根本原因。

第4章 立体测图

第4章  立体测图

(1)相对定向
两相邻像片任意放置在投影器上.恢复内方位 元素以后,光线经投影物镜投影到承影面上成 像。这时,同名光线不相交,即与承影面的两 个交点不重合,这个不重合其实就是存在左右 视差和上下视差,当升降测绘台时,左右视差 可以消除,只存在上下视差,因此,上下视差 是衡量同名光线是否相交的标志,或者说.若 同名像点上存在上下视差,就说明没有恢复两 张像片的相对关系,即没有完成相对定向,根 据这一原则,我们可以通过运动投影器,消除 同名点上的上下视差,达到相对定向的目的。
连续像对相对定向元素
连续像对相对定向元素
连续像对相对定向元素
左片
右片
连续像对相对定向元素
在这样的坐标系下:
BY 连续像对相对定向元素:
BZ 2 2 2
注意:
①这里的 BX BY BZ 2 2 2 并不是真正的外方位角 元素。 ②BX与两像片相关位置无关,只决定模型大小。 因此纳入到绝对定向元素中。 ③与单独像对不同的是:五个元素中有两个直 线元素BYBZ。
4-3 立体测图仪上像对的相对定向
一、目的:为了建立两张像片的相关位置,达到 同名光线对对相交,建立与实地相似的立体 模型。 二、仪器上表现: ⒈左右视差P
不影响相对定向,只影 响交点(模型点)高低。
⒉上下视差Q
只有当Q=0时,两条同名光线相交。
因此,相对定向完成与否的标志是Q=0。
单独像对相对定向元素
注意:
⒈实际操作时,无需计算,就观察同名像点 上的上下视差。 ⒉步骤中的⑴与⑵、⑶与⑷可以对调。 ⒊3/4点可与5/6点对调。 ⒋过度改正倍数一般为1.5倍(经验)。 (相对定向是在像空间辅助坐标系下进行的, 模型大小没定,也可能左歪或右歪)
4-4 绝对定向

模拟法,立体,测图分解

模拟法,立体,测图分解

b 、解析相对定向
量测同名像点,解得相对定向元素建立起自由立体模型。
c、解析绝对定向
量测像控点,解得绝对定向元素将模型纳入测图坐标系统。
d、数字测图
机助立体测绘 数字地面模型数据点采集 空中三角测量 地形分析 在线影像自动匹配
返回目录
解 析 立 体 测 图
7、 解析测图仪上的立体测图内业过程
数据输入 解析内定向 解析相对定向 解析绝对定向 数字测图
(2)绝对定向
绝对定向的目的在于解求七个参数。 1)将控制点根据其平面坐标按图比例尺展绘在图纸上,制成图 底。 2)利用图纸的平移、旋转使其中一个控制点在承影面上的投影 与图纸上的同名控制点重合,并使高程读数与其实际高程值 相等,这就相当于解求了三个偏移参数。 3)以该点为中心旋转图底,使其与另一控制点的连线与图纸上 同名连线相重合,这就意味着解求了一个旋转角参数。 4)比较图底上两控制点间的长度与相应模型点投影间的长度, 两者若不相等,则沿投影基线方向移动其中一个投影器改变 投影基线的长度,直到两模型点的投影正好与图底上相应控 制点重合。这一操作相当于解求比例尺因子。 5)最后将模型置平,这就解求了另外两个旋转角参数。
(1)相对定向 两相邻像片任意放置在投影器上.恢复内方位元素以 后,光线经投影物镜投影到承影面上成像。这时,同 名光线不相交,即与承影面的两个交点不重合,这个 不重合其实就是存在左右视差和上下视差,当升降测 绘台时,左右视差可以消除,只存在上下视差,因此, 上下视差是衡量同名光线是否相交的标志,或者 说.若同名像点上存在上下视差,就说明没有恢复两 张像片的相对关系,即没有完成相对定向,根据这一 原则,我们可以通过运动投影器,消除同名点上的上 下视差,达到相对定向的目的。
(2)相对定向 解析法立体测图系统能自动依次驱动车架到达通常 的六个标准点位,作业员每次只需消除观察点处的上 下视差,用按钮将它们记入计算机。全部点位观测完 毕后,计算机就用最小二乘法解算定向方程,并显示 出定向参数和点位的余差,由作业员判定是否需要重 测。 (3)绝对定向 用户预先输入地面控制点坐标值。操作过程中立体 切准控制点,记入控制点观测的模型坐标,然后按最 小二乘法解算定向方程,输出定向参数和余差。

数字摄影测量测量考试提纲

数字摄影测量测量考试提纲

第一章:.1.摄影测量按用途的分类地形摄影测量、非地形摄影测量、2.地形摄影测量的主要任务是什么?测制各种比例尺的地形图,建立地形数据库(非地形摄影测量应用比较广)3.摄影测量发展的三个阶段及其主要特征。

模拟摄影测量。

解析摄影测量、数学摄影测量4.摄影测量的特点。

无需接触物体本身获得被摄物体信息;很少受自然和地理条件的限制;可获得瞬间的动态物体影像;由二维影像重建三维目标;面采集数据方式;同时提取物体的几何与物理特性5. 4D产品是指什么?DEM(数学高程模型);DOM(数学正摄影像图);DLG(数字线划地图);DRG(数字栅格地图)6. 影像信息学的组成摄影测量与遥感,地理信息系统第二章:1. 航空摄影机的特点。

(具有框标装置,是量测摄影机;物镜品质优秀。

)2.航空摄影的基本过程(准备工作、空中摄影、摄影处理、检查验收与评定)第三章:1、中心投影成像的特点及作图方法。

(点?、线?、平行线?)2. 像主点、像底点的特性. 像主点的特性:垂直于地面,平行线在像片上的构物点像底点的特性垂直于像片面3. 摄影测量常用的坐标系有哪些?其中哪些属于像方坐标系,哪些属于物方坐标系?(1)像方坐标系:a、像平面坐标系:(用来表示像点在图片上的位置,在实际应用中,常用框标连线交点为原点的右手平面坐标系P-xy,称其为框标平面坐标系)b、像空间坐标系(以摄影中心S为原点,x、y轴与像平面坐标系的x、y轴平行,z轴与光轴重合,形成像空间右手直角坐标系S-xyz; c、像空间辅助坐标系()(2)、物方坐标系:a、地面测量坐标系b、地形摄影测量坐标系4.内外方位元素分别是指什么?有何用途?内方位元素是描述摄影中心与相片之间相关位置的参数,包括三个参数,摄影中心S到相片的垂距(1)f;相主点o在框标坐标系中的坐标x0,y0.作用:1、像点的框标坐标系向像空系的改化;2、确定摄影光束的形状;(可以得到与摄影时完全相同的光束)外方位元素:确定摄影瞬间像片在地面直角坐标系中空间位置和姿态的参数外方位线元素:描述摄影光束的空间姿态和地面坐标系中的位置5.写出中心投影构像方程并说明其各符号的含义?)()()()()()()()()()()()(333222333111s s s s s s s s s s s s Z Z c Y Y b X X a Z Z c Y Y b X X a fy Z Z c Y Y b X X a Z Z c Y Y b X X a f x -+-+--+-+--=-+-+--+-+--= x,y 以像主点为原点的坐标X ,Y ,Z 相应地面点坐标x0,y0,f 为影像的内方位元素Xs, Ys, Zs 为摄站点的物方空间坐标X a ,Ya , Za 为物方点的物方空间坐标ai,bi,ci 为6.如何将像平面坐标转换到地面测量坐标系?(参考作业)PPT7.航摄像片的像点位移一般是因为什么引起的?相片倾斜或地面有起伏时,所摄取的影像均与理想情况有所差异。

第四章双像立体测图基础与立体测图

第四章双像立体测图基础与立体测图
2
单独法相对定向元素: 1 , 1 ,2,2,2
二、
绝对定向元素
Zt O
Xt
Z0
Y0 X0
Yt
绝对定向元素: ,X0 , Y0 , Z0 ,, ,
三、三维空间相似变换原理
X tp Ytp Ztp
R
Xp Yp Zp
X0 Y0 Z0
Ztp M
XY0tpY0 Z0 Xtp
相似变换参数: ,X0 , Y0 , Z0 ,, ,
一、相对定向元素
像片外方位元素:
Xs1,Ys1,Zs1,1,1,1 Xs2,Ys2,Zs2,2,2,2
z1
y1 x1
S1
Z
a1(x1,y1)
z2
y2
S2 a2(x2,y2)
x2
A(X,Y,Z) Y
X
描述立体像对中两张像片相对位置和姿态关系的参数
连续法相对定向元素
Z1
Y1
B
Bx
ቤተ መጻሕፍቲ ባይዱS1
X1
y1
Z2 Y2
一、立体像对的重要点线面
摄影基线
相邻两摄站的连线
l1
p2
p1 S2
同名核线
S1
核面与左右像 片面的交线
同名像点
同名光线在左右 像片上的构像
同名光线
同一地面点发出 的两条光线
核面
A
摄影基线与某一地面 点组成的平面
P1
P2
P1
P2

S1
S2
S1
S2
P2
P1
S1
S2

E
像 理想像对
正直像对
E
E
竖直像对
对 相邻两像
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)绝对定向
绝对定向的目的在于解求七个参数。 1)将控制点根据其平面坐标按图比例尺展绘在图纸上,制成图 底。 2)利用图纸的平移、旋转使其中一个控制点在承影面上的投影 与图纸上的同名控制点重合,并使高程读数与其实际高程值 相等,这就相当于解求了三个偏移参数。 3)以该点为中心旋转图底,使其与另一控制点的连线与图纸上 同名连线相重合,这就意味着解求了一个旋转角参数。 4)比较图底上两控制点间的长度与相应模型点投影间的长度, 两者若不相等,则沿投影基线方向移动其中一个投影器改变 投影基线的长度,直到两模型点的投影正好与图底上相应控 制点重合。这一操作相当于解求比例尺因子。 5)最后将模型置平,这就解求了另外两个旋转角参数。
二、解析法立体测图 解析测图仪是由一台精密立体坐标量测仪、一台电子计 算机、数控绘图桌、相应的接口设备以及软件系统组 成的测图系统。其基本组成部分如图1所示。接口设 备有编码器和伺服系统。
1、解析法立体测图的几个主要步骤 (1)内定向 在解析测图仪上像片是任意安放在像片架上的。像片 坐标与像片架坐标间的关系依靠内定向软件来建立, 通过量测四个(或8个)框标点的像片架坐标,其像 片坐标认为是理论值。用最小二乘法解算就可求出内 定向元素。
4)模型存贮与恢复 可将每个所确定的立体模型的各个参数以及有关数据存 储起来,以后需要时,可再精确恢复原来的模型,对 于解析空中三角测量而言,这个可以省去再一次相对 定向和绝对定向的操作。 5)模型点观察 在输入了像片坐标或者地面坐标后,能自动驱动到指 定的观察点位。 6)数字地面模型(DTM) 7)空中三角测量
模拟法立体测图和解析法立体测图
立体测图方法概述
模拟法立体测图 解析法立体测图 数字化测图

一、模拟法立体测图
这是一种经典的摄影测量制图方法。它是利用两个投影器,将 航摄的透明底片,装在投影器中,再用灯光照射,用与立体电 影相似的原理,重建地面立体模型。在测绘承影面上,用一个 量测用的测绘台进行测图。这种方法曾经是测图的重要方法。 由于它是用立体型的航测仪器,模拟摄影过程的反转,所以称 为模拟摄影测量。这种方法所用的仪器类型很多,70年代后, 由于电子技术的发展,这类仪器已被解析测图仪代替。这种仪 器测绘的地形图都是线划产品,用于建立地理基础信息库时, 还需将地图进行数字化,增加了工作量。因此,目前这类仪器 都在进行技术改造,增加计算机与接口设备,甩计算机输助测 日,提高测囹效率,并使产品具有线划与数字两种形式。可直 接进入地理信息库。
(2)相对定向 解析法立体测图系统能自动依次驱动车架到达通常 的六个标准点位,作业员每次只需消除观察点处的上 下视差,用按钮将它们记入计算机。全部点位观测完 毕后,计算机就用最小二乘法解算定向方程,并显示 出定向参数和点位的余差,由作业员判定是否需要重 测。 (3)绝对定向 用户预先输入地面控制点坐标值。操作过程中立体 切准控制点,记入控制点观测的模型坐标,然后按最 小二乘法解算定向方程,输出定向参数和余差。
(1)相对定向 两相邻像片任意放置在投影器上.恢复内方位元素以 后,光线经投影物镜投影到承影面上成像。这时,同 名光线不相交,即与承影面的两个交点不重合,这个 不重合其实就是存在左右视差和上下视差,当升降测 绘台时,左右视差可以消除,只存在上下视差,因此, 上下视差是衡量同名光线是否相交的标志,或者 说.若同名像点上存在上下视差,就说明没有恢复两 张像片的相对关系,即没有完成相对定向,根据这一 原则,我们可以通过运动投影器,消除同名点上的上 下视差,达到相对定向的目的。
1、模拟法立体测图原理
地面点反射出的光线,通过摄影物镜记录在感光材料上,经 摄影处理得到摄影底片。地面点A, M, C, D等发出的光线,通 过相邻两摄影机物镜S1和S2,分别构像在左右像片上重叠范 围内,成为两个摄影光束。两摄影站S1和S2的距离是空间摄 影基线B。光线AS1和AS2, CS1和CS2等都是相应的同名光 线。且同名光线对对相交。根据摄影过程的可逆性,将底片 P1与P2装回到与摄影机相同的两个投影镜箱内,保持两投影 机的方位与摄影时方位相同;但物镜间的距离缩小;此时投 影基线为SS’2=b。在投影器上,用聚光灯照明,则两投影器 光束中所有同名光线仍对对相交,构成空间的交点,所有这 些交点的集合,构成与地面相似的光学立体模型这个过程称 为摄影过程的几何反转。这就是模拟法立体测图的原理。
2、模拟法立体测图过程 模拟立体测图仍是通过相对定向和绝对定向两个步骤 来恢复投影光束的方位,恢复像片的内方位元素之后, 利用投影器的运动使同名光线对对相交,完成相对定 向,建立相对立体模型。然后仍借助机械螺旋的运 动.将相对立体模型进行平移、旋转、缩放,纳入到 地面测量坐标系中,并规划为规定的比例尺,这就是 绝对定向。
数控 绘图仪
3、解析测图仪工作原理
x1 y1 XM
YM
x2 y2
数控
绘图桌
计 Байду номын сангаас 机
立 体 坐 标 量 测 仪
X Y
Z
(1)、定向过程中 在仪器上,经像对定向(包括解析内定向、解析相对定向、 解析绝对定向)后,建立起物像对应关系。 (2)、测绘过程中 从手轮、脚盘读出模型的地面摄测坐标(X,Y,Z) ' ' 输入计算机算得相应的像平面坐标 ( x, y ) ( x , y ) 由伺服系统驱动测标运动到对应像点位置 作业员观察到测标在立体模型上的位置
1、解析测图仪的结构
三、解析测图仪
解析测图仪是由精密立体坐标量测仪(带伺服系统)、计算机、 数控绘图仪、接口设备及相应软件组成的立体测图系统。 2.解析测图仪的优点(与模拟测图仪相比较) (1)、精度高 光机部分简单、结构稳定;改正系统误差、平差偶然误差;像点量 测精度达1~3μ m (2)、功能强 作业不受摄影方式及仪器活动范围限制;可处理各类航片或卫片资 料;可完成多种测绘工作;取得多种测绘成果 (3)、效率高 解析定向;机助测 立体坐标量测仪 图(4)、可产生数 字测绘产品,便于 成果进入GIS管理 作业员 应用 机计 算
相关文档
最新文档