十字相乘法进行因式分解(详案)

合集下载

(完整版)十字相乘法因式分解讲义2

(完整版)十字相乘法因式分解讲义2

课题因式分解十字相乘法1、认识因式分解的意义。

教课目的2、娴熟运用适合的方法进行因式分解。

要点:因式分解的观点以及运用提取公因式法和公式法分解因式。

要点、难点难点:运用因式分解进行多项式的除法以及解简单的一元二次方程。

教课内容一、概括定义:把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫作分解因式。

意义:它是中学数学中最重要的恒等变形之一,它被宽泛地应用于初等数学之中,是我们解决很多半学问题的有力工具。

因式分解方法灵巧,技巧性强,学习这些方法与技巧,不单是掌握因式分解内容所必要的,并且对于培育学生的解题技术,发展学生的思想能力,都有着十分独到的作用。

学习它,既能够复习的整式四则运算,又为学习分式打好基础;学好它,既能够培育学生的察看、注意、运算能力,又能够提升学生综合剖析和解决问题的能力。

分解因式与整式乘法互为逆变形。

二、因式分解的方法因式分解没有广泛的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在比赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则1分解要完全2最后结果只有小括号3 最后结果中多项式首项系数为正(比如:-3 x2+x=-x(3x-1))十字相乘法分解因式1.二次三项式( 1)多项式ax2bx c ,称为字母的二次三项式,此中称为二次项,为一次项,为常数项.比如: x22x 3 和 x25x 6 都是对于x的二次三项式.( 2)在多项式x26xy 8y2中,假如把看作常数,就是对于的二次三项式;假如把看作常数,就是对于的二次三项式.( 3)在多项式2a2b27ab3中,把看作一个整体,即,就是对于的二次三项式.同样,多项式 (x ) 27()12,把看作一个整体,就是对于的二次三项式.y x y2.十字相乘法的依照和详细内容(1) 对于二次项系数为 1 的二次三项式x2(a b)x ab (x a)(x b)方法的特点是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号同样;当常数项为负数时,把它分解为两个异号因数的积,此中绝对值较大的因数的符号与一次项系数的符号同样.(2) 对于二次项系数不是 1 的二次三项式ax 2bx c a1 a2 x2( a1c2a2c1 ) x c1c2(a1x c1 )(a2 x c2 )它的特点是“ 拆两端,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,而后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号同样;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号同样注意:用十字相乘法分解因式,还要注意防止以下两种错误出现:一是没有仔细地考证交错相乘的两个积的和能否等于一次项系数;二是由十字相乘写出的因式漏写字母.二、典型例题例 1把以下各式分解因式:(1) x22x 15 ;(2) x25xy 6y 2.例 2把以下各式分解因式:(1) 2x25x 3;(2) 3x28x 3 .例 3把以下各式分解因式:1)x410x29 ;(2) 7( x y) 35( x y) 22( x y) ;(3) ( a28a) 222(a28a)120 .例 4分解因式:(x22x 3)( x22x 24)90 .例 5分解因式6x45x338 x25x6.例 6分解因式x22xy y25x 5y 6.例 7 分解因式: ca(c-a)+bc(b-c)+ab(a- b).试一试:把以下各式分解因式:(1) 2x215x 7(2)3a28a 4(3)5x27x 6(4) 6 y211y 10 (5)5a2b223ab 10(6)3a2 b217abxy 10 x2 y2(7)x27xy12 y2 (8)x47x218(9)4m28mn 3n2(10)5x515x3 y20xy2课后练习一、选择题1.假如x2px q( x a)( x b),那么p 等于()A . ab B. a+ b C.- ab D .- (a+ b)2.假如x2(a b) x 5b x2x 30 ,则b为( )A . 5B.- 6C.- 5 D . 63.多项式x23x a 可分解为(x-5)(x-b),则a,b的值分别为( ) A.10和-2B.-10和2C.10 和 2D.-10 和- 24.不可以用十字相乘法分解的是()A .x2x2B .3x210x23x C. 4x 2x 2D.5x26xy 8y2 5.分解结果等于 (x+ y- 4)(2x+ 2y- 5)的多项式是()A .2( x y)213(x y)20B.( 2x 2 y)213(x y)20C.2( x y)213( x y)20D.2( x y) 29( x y)206.将下述多项式分解后,有同样因式x-1 的多项式有()① x27x 6 ;② 3x22x 1 ;③ x 25x 6 ;④ 4x25x9;⑤ 15x223x 8;⑥ x 411x212A.2个B.3 个C.4 个D.5 个二、填空题7.x23x 10 8.m25m6__________.(m+ a)(m+b). a= __________,b= __________ .9.2x25x 3(x- 3)(__________) .10. x2____2y2(x- y)(__________) .11.a2n a(_____)(________) 2.m12.当 k= ______时,多项式3x27x k 有一个因式为(__________).13.若 x- y= 6,xy17,则代数式 x3 y2x2 y2xy3的值为__________.36三、解答题14.把以下各式分解因式:(1) x47x2 6 ;(2) x45x236 ;(3) 4x465x 2 y 216 y 4;(4) a67a3b38b6;(5) 6a45a34a2;(6) 4a637a4 b29a2 b4.15.把以下各式分解因式:(1) ( x23)24x2;(2) x2( x 2)29 ;(3) (3x22x 1)2(2x 23x 3)2;(4) ( x2x)217( x2x) 60 ;(5) ( x22x) 27( x22x) 8 ;.16.已知 x+ y= 2, xy= a+4,x3y326 ,求a的值.。

因式分解法(十字相乘法)

因式分解法(十字相乘法)

( 3 ) 6x2 - 7xy – 5y2
( 4 ) 4x2- 18x + 18
( 5 ) 4(a+b)2 + 4(a+b) - 15
试将 x 6 x 16 分解因式
2
x 6 x 16
2
x 6x 16
2


x 8x 2
提示:当二次项系数为-1时 ,先提出 负号再因式分解 。
( 3 ) 6x2 - 3x – 18
( 4 ) 8x2- 14xy + 6y2
观察:p与a、b符号关系
x 14x 45 ( x 5)(x 9)
2
x 29x 138 ( x 23)(x 6)
2
小结:当q>0时,q分解的因数a、b(
且(a、b符号)与p符号相同

5
十字相乘法(竖分常数交叉验, 横写因式不能乱。 )
例1、(3)
2x
x

2 x ቤተ መጻሕፍቲ ባይዱxy 7 y
2
2
7y

1y
2 xy 7 xy 5xy
所以: 原式 (2x 7 y)(x y)
将下列各式用十字相乘法进行因式分解
(1)2x2 + 13x + 15
(2)3x2 - 15x - 18
例1、用十字相乘法分解因式 2x2-2x-12
法一:
2x2-2x-12
-3 4
x 2x
= (x-3)(2x+4) = 2 (x-3) (x+2)
x×4+2x×(-3)=-2x
①竖分二次项与常数项 ③检验确定,横写因式 ②交叉相乘,和相加

(完整版)初中化学十字相乘法因式分解

(完整版)初中化学十字相乘法因式分解

(完整版)初中化学十字相乘法因式分解
初中化学十字相乘法因式分解是化学学科中的一种常用的化学
式化简方法。

该方法适用于由多个化合物组成的复杂化合物的化学
式化简。

十字相乘法因式分解的基本原理是根据化学式中的原子元素的
数量和化合价,寻找可相乘的因子,从而达到分解化学式的目的。

下面将以化合物C6H12O6为例,详细介绍十字相乘法因式分
解的步骤:
1. 首先,找到化合物中各个原子元素的化合价。

在C6H12O6中,碳的化合价为4,氢的化合价为1,氧的化合价为2。

2. 根据化合物元素的化合价,找到可相乘的因子。


C6H12O6中,碳的化合价为4,氢的化合价为1,氧的化合价为2,可以得到因子4、1和2。

3. 将化合物中各个原子元素的数量进行配平,使得因子的乘积
等于化合物中各个原子元素的数量。

在C6H12O6中,碳的原子数
量为6,氢的原子数量为12,氧的原子数量为6。

可得到化合物的
化学式化简为(CH2O)6。

以上就是初中化学十字相乘法因式分解的基本步骤和操作方法。

通过这种方法,可以将复杂化合物的化学式简化为更为简洁和清晰
的形式,便于研究和理解。

十字相乘法因式分解(经典全面)

十字相乘法因式分解(经典全面)

十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

第四章因式分解—十字相乘(教案)

第四章因式分解—十字相乘(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解十字相乘的基本概念。十字相乘是一种因式分解的方法,通过将多项式的项按照一定规则排列,找到两个数使得它们的乘积等于常数项,而它们的和等于一次项的系数。这种方法是解决二次多项式分解问题的关键。
2.案例分析:接下来,我们来看一个具体的案例,如分解x^2 + 5x + 6。这个案例将展示十字相乘在实际中的应用,以及它如何帮助我们解决问题。
-难点突破方法:
-使用图表、动画或实物模型来形象化展示十字相乘的过程;
-通过多个例题,展示不同情况下十字相乘的应用,强调识别和选择合适数字的策略;
-分组讨论,让学生在小组内相互解释和交流,共同解决难点问题;
-设计具有挑战性的问题,鼓励学生独立思考和探索,如让学生尝试分解含有一个变量和常数的二次多项式;
五、教学反思
在今天的教学中,我发现学生们对十字相乘的概念接受度较高,但实际操作时仍有一些困难。在讲解理论部分时,我尽量用生动的语言和具体的例子来阐述,希望让学生能够更好地理解。从学生的反馈来看,这种方法是有效的。
然而,当我让学生们尝试自己分解一些多项式时,部分学生显得有些迷茫。他们对于如何选择合适的数进行十字相乘感到困惑。这时,我意识到需要在教学过程中加强对这一难点的讲解和练习。或许,我可以设计一些更具针对性的练习题,让学生们在课堂上即时巩固所学知识。
-理解并记忆十字相乘法的步骤,尤其是如何确定乘积和和;
-在应用十字相乘法时,如何灵活变通,处理各种不同类型的二次多项式;
-将实际问题转化为数学表达式,并运用十字相乘法进行因式分解。
举例:难点在于如何引导学生从简单的例子中总结出十字相乘的规律,如对于多项式x^2 + 5x + 6,学生需要找出两个数(2和3),使得它们的乘积等于6,和等于5。学生可能在这一过程中遇到困难,需要教师通过具体例子和图示来帮助学生理解。

因式分解法之十字相乘法教案

因式分解法之十字相乘法教案

第7课时§2.4.1 因式分解法——十字相乘法教学目标1、 会对多项式运用十字相乘法进行分解因式;2、 能运用十字相乘法求解一元二次方程。

教学重点和难点重点:运用十字相乘法求解一元二次方程难点:对多项式运用十字相乘法进行分解因式教学过程设计一、从学生原有的认知结构提出问题这节课,我们学习一种比较简便的解一元二次方程的方法。

二、师生共同研究形成概念1、 复习分解因式分解因式:把一个多项式分解成几个整式的积的形式一)填空:1))4)(3(++x x = ; 2))5)(4(++x x = 。

3))3)(1(++y y = ; 4)))((q x p x ++= 。

二)能否对1272++x x 、2092++x x 、342++y y 、pq x q p x +++)(2进行因式分解?它们有什么特点?特点:1)二次项系数是1;2)常数项是两个数之积;3)一次项系数是常数项的两个因数之和。

2、 十字相乘法步骤:(1)列出常数项分解成两个因数的积的各种可能情况;(2)尝试其中的哪两个因数的和恰好等于一次项系数;(3)将原多项式分解成))((q x p x ++的形式。

关键:乘积等于常数项的两个因数,它们的和是一次项系数二次项、常数项分解坚直写,符号决定常数式,交叉相乘验中项,横向写出两因式3、 讲解例题例1 分解因式:1)562++x x ; 2)862++y y ; 3)1682+-x x ; 4)21102+-a a ;5)1452-+x x ; 6)542-+t t ; 7)14132--x x ; 8)6322--x x 。

分析:关键之处在于把常数项分解成两数的积,再找它们的和等于一次项的系数的两个因数。

例2 分解因式:1)652++x x ; 2)652+-x x ; 3)652-+x x ; 4)652--x x 。

分析:此例题中各式都有很大的相同之处。

只有深刻理会十字相乘法,才可以正确地把四个多项式分解因式。

(完整版)十字相乘法

(完整版)十字相乘法

十字相乘法分解因式因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.1.二次三项式 (1)多项式c bx ax ++2,称为字母 的二次三项式,其中 称为二次项, 为一次项, 为常数项.例如:322--x x 和652++x x 都是关于x 的二次三项式.(2)在多项式2286y xy x +-中,如果把 看作常数,就是关于 的二次三项式;如果把 看作常数,就是关于 的二次三项式.(3)在多项式37222+-ab b a 中,把 看作一个整体,即 ,就是关于 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把 看作一个整体,就是关于 的二次三项式.2.十字相乘法的依据和具体内容(1)对于二次项系数为1的二次三项式))(()(2b x a x ab x b a x ++=+++方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同; 当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.例1、 因式分解。

分析:因为7x + (-8x) =-x解:原式=(x+7)(x-8)例2、 因式分解。

分析:因为-2x+(-8x )=-10x 解:原式=(x-2)(x-8)(2)对于二次项系数不是1的二次三项式c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母. 例3、 因式分解。

如何利用十字相乘法分解因式

如何利用十字相乘法分解因式

数学篇学思导引所谓的“十字相乘法”就是借助画十字交叉线分解系数,从而把二次三项式ax 2+bx +c 分解因式的方法.十字相乘法在因式分解中经常用到,它可以解答很多公式法、配方法等不能解答的问题.在运用十字相乘法分解因式时需要拆分常数项或二次项系数,并逐一核验对角线乘积的和是否等于一次项系数,若相等,则拆分成功,否则拆分不成功,需要舍弃,最后将拆分后的项按照乘积的形式书写出来,即可完成因式分解.一、二次项系数为“1”时,拆常数项,凑一次项对于二次三项式x 2+bx +c ,当二次项系数为1时,采用十字相乘法分解因式通常是“拆常数项,凑一次项”.即将常数项c 拆分成两个因数c 1和c 2,使这两个因数c 1和c 2的乘积结果刚好是常数项c ,同时c 1和c 2的和刚好是一次项系数b .如图1所示:只要能满足c =c 1c 2,b =c 1+c 2,则x 2+bx +c =x 2+(c 1+c 2)x +c 1c 2=(x +c 1)(x +c 2).图1例1分解因式y 2-8y +15.分析:此二项式的二次项系数为“1”,直接拆分常数项15即可.常数项15=1×15=-1×图2解:y 2-8y +15=(y -3)(y -5).例2分解因式x 2-2x -15.分析:此题可直接拆分常数项-15,因为常数项是负数,所以拆分的因数中需要安排一个负号,这就需要核验一次项系数后确定.-15=-1×15=1×(-15)=-3×5=3×(-5),-1×15和1×(-15)的情形很容易看出不符合要求,另外两种情形如图3、图4所示;拆分为图3核验结果为1×5+1×(-3)=2,不等于一次项系数-2,舍弃;图4验核结果为1×(-5)+1×3=-2,等于一次项系数-2,核验正确.图3图4解:x 2-2x -15=(x +3)(x -5).评注:从以上的解题过程可以发现:当常数项为正数时,把它分解为两个同号因数的积,每个因数的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.二、二次项系数不为“1”时,拆两头,凑中间如何利用十字相乘法分解因式盐城市初级中学陈爱荣数学篇学思导引“拆两头,凑中间”,即分别把二次项系数a 和常数项c 各自拆分成两个因数a 1和a 2、c 1和c 2,使a 1和a 2的乘积结果等于二次项系数a ,c 1和c 2的乘积结果等于常数项c ,并使a 1c 2+a 2c 1正好等于一次项系数b ,如图5所示,则ax 2+bx +c =a 1a 2x 2+(a 1c 2+a 2c 1)x +c 1c 2=(a 1x +c 1)(a 2x +c 2),a x1c 1a x 2c 2a x 1a 22c 1c 2(a +1c a c x 221)图5例3分解因式5x 2+7x -6.分析:此题中二次项系数不为“1”,需要拆分二次项系数和常数项系数,即5=1×5,-6=-1×6=1×(-6)=-2×3=2×(-3),如下图6-1至6-8所示,然后逐一核对对角线乘积和与一次项系数是否一致,由表1可知,图6-6的分解符合题意.图6-1图6-2图6-3图6-4图6-5图6-6图6-7图6-8表1十字相乘法数据核验表序号12345678图示6-16-26-36-46-56-66-76-8数据验核1×6+5×(-1)=11×(-6)+5×1=-11×1+5×(-6)=-291×(-1)+5×6=291×3+5×(-2)=-71×(-3)+5×2=71×2+5×(-3)=-131×(-2)+5×3=13取舍情况舍弃,×舍弃,×舍弃,×舍弃,×舍弃,×正确,√舍弃,×舍弃,×解:5x 2+7x -6=(5x -3)(x +2).例4分解因式9+5x -4x 2.分析:此题二次项系数为负数,如果提取负号则可以转化为二次项系数为正数的情形,即9+5x -4x 2=-(4x 2-5x -9).然后求解出4x 2-5x -9的因式分解结果即可.二次项系数可拆分为4=1×4=2×2,常数项可拆分为-9=-1×9=1×(-9)=-3×3,如下图7-1至7-9所示,然后逐一核对对角线乘积和转化后的一次项系数(-5)是否一致.由表2可知,图7-2的分解符合题意.图7-1图7-2图7-3图7-4图7-5图7-6图7-7图7-8图7-9表2十字相乘法数据核验表(转化后)序号123456789图示7-17-27-37-47-57-67-77-87-9数据验核1×9+4×(-1)=51×(-9)+4×1=-51×1+4×(-9)=-351×(-1)+4×9=351×3+4×(-3)=-91×(-3)+4×3=92×9+2×(-1)=162×(-9)+2×1=-162×(-3)+2×3=0取舍情况舍弃,×正确,√舍弃,×舍弃,×舍弃,×舍弃,×舍弃,×舍弃,×舍弃,×解:9+5x -4x 2=-(4x 2-5x -9)=-(x +1)(4x -9).评注:当二次项系数和常数项系数有多种拆分情况时,同学们需要逐一核验拆分后对角线乘积的和是否与一次项系数一致,然后舍弃所有不符合的情况,保留正确的拆分情况.此外,如果二次项系数是负数,则应先将负号提到括号外面,使二次项系数为正数,然后再进行因式分解.27。

十字相乘法进行因式分解讲解与练习

十字相乘法进行因式分解讲解与练习

十字相乘法与配方法1.十字相乘法的依据和具体内容依据:逆用(ax +b )(cx +d )竖式乘法法则.2()()()x a x b x a b x ab ++=+++ ⇒ 2()()()x a b x ab x a x b +++=++x x a b步骤: ①竖分而次项与常数项;②交叉相乘,和相加;③检验确定,横写因式.如:)45)(2(86522-+=-+x x y xy x例1 把下列各式分解因式:(1)1522--x x ;(2)2265y xy x +-.例2 把下列各式分解因式:(1)3522--x x ;(2)3832-+x x .例3 把下列各式分解因式:(1)91024+-x x ;(2))(2)(5)(723y x y x y x +-+-+;(3)120)8(22)8(222++++a a a a .例4 分解因式:90)242)(32(22+-+-+x x x x .例5 分解因式653856234++-+x x x x .例6 分解因式655222-+-+-y x y xy x .例7 分解因式:ca (c -a )+bc (b -c )+ab (a -b ).例8 已知12624+++x x x 有一个因式是42++ax x ,求a 值和这个多项式的其他因式.【同步练习】一、选择题1.如果))((2b x a x q px x ++=+-,那么p 等于 ( )A .abB .a +bC .-abD .-(a +b )2.如果305)(22--=+++⋅x x b x b a x ,则b 为 ( )A .5B .-6C .-5D .63.多项式a x x +-32可分解为(x -5)(x -b ),则a ,b 的值分别为 ( )A .10和-2B .-10和2C .10和2D .-10和-2二、填空题4.=-+1032x x __________.5.=--652m m (m +a )(m +b ).a =__________,b =__________.6.=--3522x x (x -3)(__________).7.当k =______时,多项式k x x -+732有一个因式为(__________).8.若x -y =6,3617=xy ,则代数式32232xy y x y x +-的值为__________. 三、解答题9.把下列各式分解因式:(1)6724+-x x ; (2)36524--x x ;(3)422416654y y x x +-; (4)633687b b a a --;(5)234456a a a --; (6)422469374b a b a a +-.10.已知332426x y xy a x y =+=,=+,+,求a 的值.2.配方法:步骤:1.转化: 将此一元二次方程化为20ax bx c ++=的形式(即一元二次方程的一般形式)。

十字相乘法分解因式举例

十字相乘法分解因式举例

十字相乘法分解因式举例十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。

十字分解法能用于二次三项式的分解因式(不一定是整数范围内)。

对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。

那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。

在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。

当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

基本式子:x²+(p+q)x+pq=(x+p)(x+q)。

运算举例a²+a-42首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a + ?)×(a -?),然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。

再看最后一项是-42 ,(-42)是-6×7 或者6×(-7)也可以分解成-21×2 或者21×(-2)。

首先,21和2无论正负,通过任意加减后都不可能是1,只可能是7或者6,所以排除后者。

然后,再确定是-7×6还是7×(-6)。

﹣7﹢6=﹣1,7﹣6=1,因为一次项系数为1,所以确定是7×﹣6。

所以a²+a-42就被分解成为(a+7)×(a-6),这就是通俗的十字分解法分解因式。

分解因式例1、因式分解。

x²-x-56分析:因为7x + (-8x) =-x解:原式=(x+7)(x-8)例2、因式分解。

十字相乘法因式分解(经典全面)

十字相乘法因式分解(经典全面)

十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

(完整版)十字相乘法因式分解说课稿

(完整版)十字相乘法因式分解说课稿

(完整版)十字相乘法因式分解说课稿十字相乘法因式分解说课稿初一数学张金燕我的说课内容是湘教版七年级数学下册第三章因式分解的补充内容,下面我就教材、教法与学法指导、教学设计和教学反思等几个方面来向大家介绍一下我对本节课的理解与设计.一、说教材1、教材的地位与作用因式分解的方法有提公因式法和公式法,是在学生学习了整式的乘法基础上,对整式运算进行探索和研究的一个重要课题,是学生完整、全面掌握因式分解的必备环节。

不论是在知识的衔接上,还是在学习方法与能力的迁移上,本节课的教学都起重要的奠基作用。

2、教学目标【知识与技能】理解掌握十字相乘法因式分解的算理,会进行简单的十字相乘法因式分解,理解二次项系数不为1的二次三项式分解因式【过程与方法】通过观察与独立思考、合作与交流掌握十字相乘法的特点,熟练掌握用十字相乘法对二次项系数为1的二次三项式分解因式,【情感与态度】激发学生的求知欲,培养学生积极思考的学习习惯.3、教学重、难点重点:十字相乘法因式分解.难点:十字相乘法因式分解的探索过程.二、说教法设计数学教学是数学活动的教学,是师生交流、互动、共同发展的过程。

学生是学习的主体,教师是学生学习的组织者、引导者和合作者。

本节课的教学,从学生的学习经验和已有的知识背景、思维方式出发,向他们提供充实的数学活动,通过学前反馈、目标导入、自主探究、合作交流、展示提升、达标检测教学活动,使学生获得深刻的体验和经验,深化学生的认知程度,真正理解和掌握十字相乘法因式分解的运算法则,逐步提高熟练程度,夯实基础知识,提高运算能力.针对本节课的内容特点和初一学生的思维特征,本节课的总体教法设计思路为:1、注重引导,激发思维,积极探究;2、学生概括总结,教师补充拓展;3、加强针对性练习,巩固和强化认知.三、说教学设计:本节课设计了七个教学环节:抽测、目标导入、独学、对学、小展、大展、整理与检测.1、抽测提公因式法和公式法分解因式是十字相乘法因式分解的重要基础,学习本堂课之前,必须充分理解提公因式法和公式法的适用条件,才能避免知识混乱的现象抽测题: x5-x3 x4-y4 x4-8x2+162、目标导入(1)复习提公因式法: ma+mb+mc=m(a+b+c)运用公式法: a2-b2=(a+b)(a-b)a2 ±2ab+b2=(a ±b)2(2)总结提公因式法适用于任意多项式,只要满足有公因式;公式法只要满足公式即可.(3)对于公式法(a+b)(a-b)中的改成(a+2)(a-3),则(a+2)(a-3)=a2-a-6则也是符合多项式的乘积。

(完整版)十字相乘法因式分解

(完整版)十字相乘法因式分解

当q>0时,q分解的因数a、b( 当q<0时, q分解的因数a、b(
) 同号 ) 异号
观察:p与a、b符号关

x2 14x 45 (x 5)(x 9)
x2 29x 138 (x 23)(x 6)
小结: 当q>0时,q分解的因数a、b(
) 同号
且(a、b符号)与p符号相同
x2 7x 60 (x 12)(x 5) x2 14x 72 (x 4)(x 18)
当q<0时, q分解的因数a、b(
) 异号
(其中绝对值较大的因数符号)与p符号相同
练习:在 横线上 填 、 符号
__ __ x2 4x 3 =(x + 3)(x + 1)
_-_ __ x2 2x 3 =(x
3)(x + 1)
_-_ _-_ y2 9y 20 =(y
4)(y 5)
_-_ __ t2 10t 56 =(t
4)(t +14)
当q>0时,q分解的因数a、b( 同号 )且(a、b符号)与p符号相同
当q<0时, q分解的因数a、b( 异号) (其中绝对值较大的因数符号)与p符号相同
试将 x2 6x 16 分解因式
x2 6x 16
x2 6x 16
x 8x 2
提示:当二次项系数为 -1 时 , 先提出负号再因式分解 。
十字相乘法②
试因式分解6x2+7x+2。
这里就要用到十字相乘法(适用于二次三项式)。
既然是二次式,就可以写成(ax+b)(cx+d)的形式。 (ax+b)(cx+d)=acx2+(ad+bc)x+bd

因式分解十字相乘法

因式分解十字相乘法

因式分解(factoring)是指将一个多项式表示为若干个积的形式。

十字相乘法(cross multiplication)是一种因式分解的方法,用于多项式形如a * x + b * y = c * x + d * y 的情况。

具体来说,要使用十字相乘法进行因式分解,需要按照如下步骤操作:1.将多项式的两边同时乘上x 和y 的积,得到(a * x + b * y) * (c *x * y) = (c * x + d * y) * (a * x * y)。

2.将积展开,得到a * c * x^2 + a * d * x * y + b * c * x * y + b * d * y^2= a * c * x^2 + a * d * x * y + b * c * x * y + b * d * y^2。

3.将两边同时减去x * y 的积,得到a * c * x^2 + b * d * y^2 - x * y *(a * d + b * c) = 0。

4.将因式分解的结果写成(a * x + b * y) * (c * x + d * y) = 0 的形式,即得到(a * x + b * y) * (c * x + d * y) = 0。

这样,就可以得到多项式a * x + b * y = c * x + d * y 的因式分解结果。

例如,要对多项式2 * x - 3 * y = 5 * x + 4 * y 进行因式分解,可以按照如下步骤操作:1.将多项式的两边同时乘上x 和y 的积,得到(2 * x - 3 * y) * (5 *x * y) = (5 * x + 4 * y) * (2 * x * y)。

2.将积展开,得到2 * 5 * x^2 - 3 * 4 * x * y = 2 * 5 * x^2 + 4 * 2 * x * y3.将两边同时减去x * y 的积,得到2 * 5 * x^2 - 3 * 4 * x * y - 2 * 5 *x^2 - 4 * 2 * x * y = 0。

十字相乘法分解因式

十字相乘法分解因式

课前练习 :下列各式因式分解
1.- x2+2 x+15
2
4
2
3.x -7x +18;
.( x+y ) 2-8 (x+y ) +48;
2
2
4. x -5xy+6y 。
答: 1.-( x+3)( x-5);
2.( x+y-12 )( x+y+4 );
3 .( x+3 )( x-3 )( x 2+2);
4.( x-2y )( x-3y )。
课堂教学设计说明
1.为了使学生切实掌握运用十字相乘法把某些二次三项式因式分解的思路和方法,

教学设计中,先通过例 1,较祥尽地讲解借助画十字交叉线分解系数的具体方法,在此基础
上再进一步概括如何运用十字相乘法把二次三项式
ax2+bx+c 进行因式分解的一般思路和方
法。只有使学生掌握了十字相乘法的一般法则, 才能进一步指导解决各种具体的问题, 这种
我们已经学习了把形如 x 2+px+q 的某些二次三项式因式分解, 也学习了通过设辅助元的
方法把能转化为形如 x2+px+q 型的某些多项式因式分解。
对于二次项系数不是 1 的二次三项式如何因式分解呢?这节课就来讨论这个问题, 某些形如 ax2 +bx+c 的课 例1
把 2x2-7x+3 因式分解。
指出: 通过例 1 和例 2 可以看到, 运用十字相乘法把一个二次项系数不是 1 的二次三项
式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。
对于二次项系数是 1 的二次三项式, 也可以用十字相乘法分解因式, 这时只需考虑如何 把常数项分解因数。例如把 x 2+2x-15 分解因式,十字相乘法是

十字相乘法(多项式因式分解--教案)

十字相乘法(多项式因式分解--教案)

十字相乘法教案教学目标:1.知识目标:使学生掌握通过代换方法,进行可以转化为x2+(a+b)x+ab型的多项式因式分解,领会整体代换、字母表示式和化归等数学方法。

理解运用十字相乘法分解因式的关键。

2.能力目标:通过问题设计,培养学生观察、分析、抽象、概括的逻辑思维能力;训练学生思维的灵活性、层次性,逐步提高学生运用变量代换思想和化归思想解决问题的能力。

3.情感目标:通过问题解决,培养合作意识,激发成功体验,鼓励创新思维。

教学设计思想:本课是简单介绍十字相乘法后的第二节课,结合学生基础较好的特点,我改变教参中的处理方式,尝试以二期课改的理念为指导,帮助学生进行探索性地学习,更好地实现有效学习。

在设计上,希望使学生体会字母表示式的想法和数学题的演变,学会透过现象看本质,灵活运用十字相乘法分解因式,进一步理解运用十字相乘法分解因式的关键。

感悟,从整体上观察、思考和处理问题是一种重要的数学方法,也是解决数学问题、发展数学内容时常用技能和技巧。

化归思想是数学中解决问题的主要思想方法。

教学过程:一、复习引入1.回忆课本上十字相乘法分解因式的一般步骤例1:把多项式x2-3x + 2分解因式。

x -1x -2解:x2-3x + 2 = (x-1) (x-2)像这种借助于画十字交叉线分解因式的方法叫做十字相乘法。

提问:是不是所有的二次三项式都能用十字相乘法分解因式?答:不是,(反例:x2 +3x-2)。

提问:形如x2+px+q的二次三项式满足什么条件时可以用十字相乘法分解因式?请同学总结:(板书)x2+px+q当q=ab,p =a+b时,x2+px+q = (x+a) (x+b) (*)再提问:在将首项系数为1的二次三项式因式分解时,你认为要注意什么?答:试分解后要及时检验,纵向相乘得首项,末项;交叉相乘得中间项。

应该注意的是一次项的系数和末项的系数都是包含了符号的。

如果常数项q是正数,那么把它分解成两个同号因数的积,它们的符号与一次项系数p的符号相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十字相乘法进行因式分解【基础知识精讲】(1)理解二次三项式的意义; (2)理解十字相乘法的根据; (3)能用十字相乘法分解二次三项式;(4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法.【重点难点解析】 1.二次三项式多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式.在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式))(()(2b x a x ab x b a x ++=+++分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =⋅21,c c c =⋅21,且b c a c a =+1221,那么c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如:)45)(2(86522-+=-+x x y xy x3.因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.【典型热点考题】例1 把下列各式分解因式:(1)1522--x x ;(2)2265y xy x +-.点悟:(1)常数项-15可分为3 ×(-5),且3+(-5)=-2恰为一次项系数;(2)将y 看作常数,转化为关于x 的二次三项式,常数项26y 可分为(-2y )(-3y ),而(-2y )+(-3y )=(-5y )恰为一次项系数.解:(1))5)(3(1522-+=--x x x x ; (2))3)(2(6522y x y x y xy x --=+-. 例2 把下列各式分解因式:(1)3522--x x ;(2)3832-+x x .点悟:我们要把多项式c bx ax ++2分解成形如))((2211c ax c ax ++的形式,这里a a a =21,c c c =21而b c a c a =+1221.解:(1))3)(12(3522-+=--x x x x ; (2))x )(x (x x 3133832+-=-+.点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性.例3 把下列各式分解因式: (1)91024+-x x ;(2))(2)(5)(723y x y x y x +-+-+; (3)120)8(22)8(222++++a a a a .点悟:(1)把2x 看作一整体,从而转化为关于2x 的二次三项式; (2)提取公因式(x +y )后,原式可转化为关于(x +y )的二次三项式; (3)以)8(2a a +为整体,转化为关于)8(2a a +的二次三项式. 解:(1) )9)(1(9102224--=+-x x x x =(x +1)(x -1)(x +3)(x -3).(2) )(2)(5)(723y x y x y x +-+-+]2)(5)(7)[(2-+-++=y x y x y x=(x +y )[(x +y )-1][7(x +y )+2] =(x +y )(x +y -1)(7x +7y +2). (3) 120)8(22)8(222++++a a a a)108)(128(22++++=a a a a )108)(6)(2(2++++=a a a a点拨:要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解.同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止.例4 分解因式:90)242)(32(22+-+-+x x x x . 点悟:把x x 22+看作一个变量,利用换元法解之. 解:设y x x =+22,则 原式=(y -3)(y -24)+90162272+-=y y=(y -18)(y -9))92)(182(22-+-+=x x x x .点拨:本题中将x x 22+视为一个整体大大简化了解题过程,体现了换元法化简求解的良好效果.此外,)9)(18(162272--=+-y y y y 一步,我们用了“十字相乘法”进行分解.例5 分解因式653856234++-+x x x x . 点悟:可考虑换元法及变形降次来解之. 解:原式]38)1(5)1(6[222-+++=xx x x x ]50)1(5)1(6[22-+++=xx x x x ,令y xx =+1,则 原式)5056(22-+=y y x)103)(52(2+-=y y x)1033)(522(2++-+=xx x x x )3103)(252(22+++-=x x x x)13)(3)(12)(2(++--=x x x x .点拨:本题连续应用了“十字相乘法”分解因式的同时,还应用了换元法,方法巧妙,令人眼花瞭乱.但是,品味之余应想到对换元后得出的结论一定要“还原”,这是一个重要环节. 例6 分解因式655222-+-+-y x y xy x .点悟:方法1:依次按三项,两项,一项分为三组,转化为关于(x -y )的二次三项式. 方法2:把字母y 看作是常数,转化为关于x 的二次三项式. 解法1: 655222-+-+-y x y xy x6)55()2(22-+-++-=y x y xy x 6)(5)(2----=y x y x)6)(1(--+-=y x y x .解法2: 655222-+-+-y x y xy x65)52(22-+++-=y y x y x )1)(6()52(2-+++-=y y x y x)]y (x )][y (x [16--+-==(x -y -6)(x -y +1).例7 分解因式:ca (c -a )+bc (b -c )+ab (a -b ).点悟:先将前面的两个括号展开,再将展开的部分重新分组. 解:ca (c -a )+bc (b -c )+ab (a -b ))(2222b a ab bc c b c a ac -+-+-= )()()(222b a ab b a c b a c -+---= )())(()(2b a ab b a b a c b a c -+-+--= ])()[(2ab b a c c b a ++--==(a -b )(c -a )(c -b ).点拨:因式分解,有时需要把多项式去括号、展开、整理、重新分组,有时仅需要把某几项展开再分组.此题展开四项后,根据字母c 的次数分组,出现了含a -b 的因式,从而能提公因式.随后又出现了关于c 的二次三项式能再次分解.例8 已知12624+++x x x 有一个因式是42++ax x ,求a 值和这个多项式的其他因式.点悟:因为12624+++x x x 是四次多项式,有一个因式是42++ax x ,根据多项式的乘法原则可知道另一个因式是32++bx x (a 、b 是待定常数),故有=+++12624x x x +2(x )3()42+++⋅bx x ax .根据此恒等关系式,可求出a ,b 的值. 解:设另一个多项式为32++bx x ,则12624+++x x x)3)(4(22++++=bx x ax x12)43()43()(234++++++++=x b a x ab x b a x ,∵ 12624+++x x x 与12)43()43()(234++++++++x b a x ab x b a x 是同一个多项式,所以其对应项系数分别相等.即有由①、③解得,a =-1,b =1, 代入②,等式成立.∴ a =-1,另一个因式为32++x x .点拨:这种方法称为待定系数法,是很有用的方法.待定系数法、配方法、换元法是因式分解较为常用的方法,在其他数学知识的学习中也经常运用.希望读者不可轻视.【易错例题分析】例9 分解因式:22210235y aby b a -+. 错解:∵ -10=5×(-2),5=1×5, 5×5+1×(-2)=23,一流教育——圆你成功梦∴ 原式=(5ab +5y )(-2ab +5y ).警示:错在没有掌握十字相乘法的含义和步骤.正解:∵ 5=1×5,-10=5×(-2),5×5+1×(-2)=23.∴ 原式=(ab +5y )(5ab -2y ). 【同步练习】 一、选择题1.如果))((2b x a x q px x ++=+-,那么p 等于 ( ) A .ab B .a +b C .-ab D .-(a +b )2.如果305)(22--=+++⋅x x b x b a x ,则b 为 ( )A .5B .-6C .-5D .63.多项式a x x +-32可分解为(x -5)(x -b ),则a ,b 的值分别为 ( ) A .10和-2 B .-10和2 C .10和2 D .-10和-24.不能用十字相乘法分解的是 ( ) A .22-+x x B .x x x 310322+-C .242++x x D .22865y xy x --5.分解结果等于(x +y -4)(2x +2y -5)的多项式是 ( ) A .20)(13)(22++-+y x y x B .20)(13)22(2++-+y x y x C .20)(13)(22++++y x y x D .20)(9)(22++-+y x y x6.将下述多项式分解后,有相同因式x -1的多项式有 ( ) ①672+-x x ; ②1232-+x x ; ③652-+x x ; ④9542--x x ; ⑤823152+-x x ; ⑥121124-+x x A .2个 B .3个 C .4个 D .5个 二、填空题7.=-+1032x x __________. 8.=--652m m (m +a )(m +b ). a =__________,b =__________. 9.=--3522x x (x -3)(__________).10.+2x ____=-22y (x -y )(__________).11.22____)(____(_____)+=++a mna . 12.当k =______时,多项式k x x -+732有一个因式为(__________). 13.若x -y =6,3617=xy ,则代数式32232xy y x y x +-的值为__________. 三、解答题14.把下列各式分解因式:(1)6724+-x x ; (2)36524--x x ;(3)422416654y y x x +-; (4)633687b b a a --;(5)234456a a a --; (6)422469374b a b a a +-. 15.把下列各式分解因式:(1)2224)3(x x --;(2)9)2(22--x x ;(3)2222)332()123(++-++x x x x ; (4)60)(17)(222++-+x x x x ; (5)8)2(7)2(222-+-+x x x x ; (6)48)2(14)2(2++-+b a b a . 16.把下列各式分解因式: (1)b a ax x b a +++-2)(2;(2)))(()(222q p q p pq x q p x -+++-; (3)81023222-++--y x y xy x ; (4)310434422-+---y x y xy x ;(5)120)127)(23(22-++++x x x x ; (6)4222212)2)((y y xy x y xy x -++++.17.已知60197223+--x x x 有因式2x -5,把它分解因式. 18.已知x +y =2,xy =a +4,2633=+y x ,求a 的值. 参考答案 【同步练习】1.D 2.B 3.D 4.C 5.A 6.C 7.(x +5)(x -2) 8.1或-6,-6或1 9.2x +110.xy ,x +2y 11.224m n ,a ,mn212.-2,3x +1或x +2 13.17 14.(1) 原式)6)(1(22--=x x)6)(1)(1(2--+=x x x(2) 原式)4)(9(22+-=x x)4)(3)(3(2+-+=x x x(3) 原式)16)(4(2222y x y x --=)4)(4)(2)(2(y x y x y x y x -+-+=(4) 原式))(8(3333b a b a +-=))()(42)(2(2222b ab a b a b ab a b a +-+++-=(5) 原式)456(22--=a a a)43)(12(2-+=a a a(6) 原式)9374(42242b b a a a +-=)9)(4(22222b a b a a --=)3)(3)(2)(2(2b a b a b a b a a -+-+=15.(1) 原式)23)(23(22x x x x +---=)1)(3)(1)(3(-++-=x x x x(2) 原式]3)2(][3)2([+---=x x x x)32)(32(22+---=x x x x )32)(1)(3(2+-+-=x x x x(3) 原式)332123()332123(2222---+++++++=⋅x x x x x x x x)1)(2)(455(2+-++=x x x x(4) 原式)5)(12(22-+-+=x x x x)5)(3)(4(2-+-+=x x x x(5) 原式)12)(82(22++-+=x x x x2)1)(4)(2(++-=x x x(6)原式)82)(62(-+-+=b a b a 16.(1) 原式)1]()[(+++-=x b a x b a (2) 原式)]()][([q p q x q p p x +---=))((22q pq x pq p x --+-=(3)原式)8103()22(22+----=y y x y x)2)(43()22(2-----=y y x y x]2)][43([-+--=y x y x )2)(43(-++-=y x y x(4) 原式3103)1(4422-+-+-=y y x y x)3)(13()1(442---+-=y y x y x)32)(132(-++-=y x y x(5) 原式120)4)(3)(2)(1(-++++=x x x x120)45)(65(22-++++=x x x x一流教育——圆你成功梦11 1201)55(22--++=x x)1155)(1155(22-+++++=x x x x)65)(165(22-+++=x x x x)6)(1)(165(2+-++=x x x x(6) 原式422222212)()(y y xy x y y xy x -+++++= )3)(4(222222y y xy x y y xy x -+++++=)2)(5(2222y xy x y xy x -+++=)2)()(5(22y x y x y xy x +-++=17.提示:)52()601972(23-+--÷x x x x)3)(4(122+-=--=x x x x18.∵ ))((2233y xy x y x y x +-+=+]3))[((2xy y x y x -++=,又∵ 2=+y x ,xy =a +4,2633=+y x ,∴ 26)]4(32[22=+-a ,解之得,a =-7.。

相关文档
最新文档