基于MATLAB的人脸识别
matlab 模式识别案例
matlab 模式识别案例一、介绍模式识别是一种通过学习样本数据集合中的规律,从而对未知数据进行分类或预测的技术。
在实际应用中,模式识别广泛应用于图像识别、语音识别、生物信息学等领域。
而MATLAB作为一种强大的数学计算软件,提供了丰富的工具包和函数用于模式识别的实现。
本文将介绍十个基于MATLAB的模式识别案例。
二、案例一:手写数字识别手写数字识别是模式识别中的经典问题之一。
利用MATLAB的图像处理工具箱,可以实现对手写数字图像的分割、特征提取和分类。
通过对训练集的学习,建立一个分类器,然后用测试集进行验证,即可实现对手写数字的识别。
三、案例二:人脸识别人脸识别是模式识别中的重要应用之一。
利用MATLAB的人脸识别工具箱,可以实现对人脸图像的特征提取和分类。
通过对训练集的学习,建立一个人脸模型,然后用测试集进行验证,即可实现对人脸的识别。
四、案例三:语音识别语音识别是模式识别中的重要应用之一。
利用MATLAB的语音处理工具箱,可以实现对语音信号的特征提取和分类。
通过对训练集的学习,建立一个语音模型,然后用测试集进行验证,即可实现对语音的识别。
五、案例四:信号识别信号识别是模式识别中的重要应用之一。
利用MATLAB的信号处理工具箱,可以实现对信号的特征提取和分类。
通过对训练集的学习,建立一个信号模型,然后用测试集进行验证,即可实现对信号的识别。
六、案例五:文本分类文本分类是模式识别中的重要应用之一。
利用MATLAB的自然语言处理工具箱,可以实现对文本的特征提取和分类。
通过对训练集的学习,建立一个文本模型,然后用测试集进行验证,即可实现对文本的分类。
七、案例六:图像分割图像分割是模式识别中的重要问题之一。
利用MATLAB的图像处理工具箱,可以实现对图像的分割。
通过对图像的像素进行聚类,将图像划分为不同的区域,从而实现图像分割。
八、案例七:异常检测异常检测是模式识别中的重要问题之一。
利用MATLAB的统计工具箱,可以实现对数据的异常检测。
基于matlab程序实现人脸识别
基于matlab程序实现人脸识别
人脸识别已经成为一个广泛被应用的技术,例如手机的解锁方式,安全系统等等。
它是一种基于人脸图像进行身份验证或身份识别的技术,也是近年来计算机视觉和模式识别领域研究的热点方向之一。
在这篇文档中,我们将介绍如何使用matlab编写一个简单的人脸识别程序。
人脸识别是什么?
人脸识别可以被定义为一个过程,旨在使用数字算法识别和验证图像或视频中
人脸身份。
在计算机科学的领域中,这项技术可以被描述为一种模式识别技术,
旨在通过在人脸图像上提取可识别特征来确定身份验证。
通俗易懂地理解,就是计算机能够识别人脸的特征,并将其与已知的数据匹配,从而确定人物身份。
人脸识别程序的开发流程
以下是本文介绍的基本程序开发流程:
1.数据集导入和预处理
2.特征提取和脸部对齐
3.模型训练和分类器设计
4.模型评估和测试
数据集导入和预处理
考虑到一个好的项目,我们需要一个良好的数据集。
在这里,我们可以使用来
自orl人脸数据集的数据。
该数据集中包含的有40个人的400幅灰度图像,每个
人有10个不同的示例。
您可以从该网站下载并使用这些数据来测试您的算法。
在这个过程中,我们需要使用matlab中的imread函数将数据读取为数字矩阵,然后将数据分为训练集和测试集。
这个过程旨在将原始的数据转换为我们算法能
够处理的数字矩阵,并将数据划分为训练集和测试集。
``` % 读取数据集 dataFolderPath =。
基于MATLAB的人脸识别系统的研究毕业论文
长沙民政职业技术学院毕业实践报告 题目:基于MATLAB 勺人脸识别系统的研扌旨导老师: ______ 谭刚林 ______________________ 系 另寸: 电子信息工程系 __________________ 班 级: ______________ 电子1133 ____________学号:1119013333 1119013334 1119013335 姓 名: 刘盼符思遥樊阳辉类型:2014年5月5日基于MATLAB勺人脸识别系统的研究符思遥、刘盼、樊阳辉指导老师:谭刚林苏宏艮马勇赞【摘要】人脸检测与识别技术是计算机视觉和模式识别等学科的研究热点之一,是进行身份认证最友好直接的手段,在出入境安全检查、内容检索、证件验证、门禁系统等领域都具有十分广泛的应用前景。
多年来,人脸识别技术中的很多问题都被深入地研究,而且大量的算法已经成功应用于人脸识别。
本文在研究了人脸检测和身份识别的关键技术和相关理论的基础上,重点讨论了在光照和背景不同的条件下,彩色静止图像的人脸检测和身份识别问题,它包括基于肤色分割的人脸粗检测、基于人眼检测的几何归一化和基于二维主成分分析法(2DPCA的身份识别。
本文主要工作如下:首先对彩色图像进行光照补偿,其次通过肤色检测获得可能的脸部区域并二值化,再用形态学开闭运算对图像进行滤波处理并通过一定规则确定人脸区域,然后运用水平垂直投影定位人眼坐标以此对人脸进行几何归一化,识别部分运用2DPCA勺图像映射方法对灰度图进行特征匹配,最后输出识别结果并进行语音播报。
实验结果表明,结合肤色和面部几何特征的算法能够对人脸进行较快速和准确的定位,同时2DPCAT法运用于身份识别也能达到较高的识别率。
本毕业设计对实际应用具有一定的参考价值,该系统的操作流程和输入输出方式是以实际应用为出发点,可应用于公安机关证件验证以及日常家庭的自动门禁系统等。
【关键词】人脸检测;肤色分割;人眼检测;2DPCA特征提取1绪论 (1)1.1选题的背景 (1)1.2人脸识别系统 (2)1.3人脸识别的典型方法 (2)2基于YCbCr颜色空间的肤色分割 (3)2.1三种色彩空间 (3)2.1.1 RGB色彩空间 (3)3基于2DPCA特征提取的身份识别 (4)3.1 2DPCA算法实验结果与分析 (5)3.1.1实验用数据库 (5)3.1.2实验结果与分析 (5)3.1.3 结论 (7)4人脸检测与识别系统设计与实现 (7)4.1系统环境 (7)4.2人脸检测与识别系统框图 (7)4.3系统功能模块 (8)4.4实验结果分析 (9)5总结与展望 (10)5.1总结 (10)5.2展望 (10)参考文献 (12)1绪论1.1选题的背景近年来随着计算机技术和互联网的发展,信息技术的安全变得越来越重要,生物特征识别技术得到广泛研究与开发,如人脸识别、指纹识别、掌形识别等。
如何使用Matlab进行人脸检测和人脸识别
如何使用Matlab进行人脸检测和人脸识别人脸检测和人脸识别是计算机视觉领域中的重要技术应用,可以广泛用于人脸识别系统、人脸支付、安全监控等众多领域。
本文将介绍如何使用Matlab进行人脸检测和人脸识别。
1. 背景介绍人脸检测和人脸识别技术的出现,为计算机系统实现对人脸的自动分析和识别提供了可能。
人脸检测是指从一幅图像或视频序列中确定是否存在人脸,并找出人脸的位置和大小。
而人脸识别则是在检测到的人脸图像上进行特征提取和模式匹配,以实现对人脸的身份识别。
2. 人脸检测在Matlab中,可以使用Viola-Jones算法进行人脸检测。
该算法通过构造Haar特征与Adaboost集成学习算法相结合,能够在较短的时间内实现高效的人脸检测。
具体操作如下:2.1 加载图像首先,在Matlab中加载需要进行人脸检测的图像。
可以使用imread函数进行图像加载,并将其转换为灰度图像进行处理。
例如:```Matlabimage = imread('face.jpg');gray_image = rgb2gray(image);```2.2 构建人脸检测器在Matlab中,可以使用vision.CascadeObjectDetector对象构建人脸检测器。
该对象可以通过Viola-Jones算法进行人脸检测。
具体代码如下:```MatlabfaceDetector = vision.CascadeObjectDetector();bbox = step(faceDetector, gray_image);```2.3 显示检测结果最后,可以使用insertObjectAnnotation函数将检测到的人脸位置在原始图像上标记出来。
代码示例如下:```Matlabdetected_image = insertObjectAnnotation(image, 'rectangle', bbox, 'Face');imshow(detected_image);```3. 人脸识别在Matlab中,可以使用基于人脸特征的Eigenface、Fisherface和LBPH等算法进行人脸识别。
基于MATLAB的人脸识别考勤系统
电子技术‖77‖基于MATLAB的人脸识别考勤系统◆杨天成本文的主要研究内容是人脸识别技术。
在研究中了解人脸识别技术在国内外的研究现状及发展前景,掌握了部分MA TLAB 的图像处理功能,并按照人脸图像采集、图像预处理、人脸特征提取与识别这条技术路线开发实现了一个简易人脸识别系统。
本次设计中的核心部分是人脸的检测与识别,此人脸识别可应用于企业员工考勤签到上。
本设计分为图像采集、数据库信息存储与显示、人脸识别、数据库信息清除、退出程序几部分组成。
采集图像模块的目的就是采集所要存储的人脸图片,将其存入数据库中,为后面的人脸识别算法提供相应的训练素材。
模块代码如下:if chos==1, clc ;[namefile ,pathname]=uigetfile ('*.pgm','Select image');%读取.pgm 文件 if name fi le~=0[img ,map]=imread (strcat (pathname ,name fi le ));imshow (img ); elsewarndlg ('放入的图片必须是已采集的',' Warning ') end end其中的name fl ie ,和pathname 分别指的是文件名和查找文件的路径。
当点击“采集图像”时,系统会根据操作指令弹出要采集的图片,选择确定后,会将这个图片的路径以及图片名相关信息保存到变量pathname 和name fi le 里。
当采集到图片后要将采集的图片保存到数据库中,此目的是为了给后期人脸识别时提供相应的训练素材。
但是需要注意的是在进行保存图片时要对保存的图片划分类别,同一个人的不同照片要划分到同一类中。
设第一个人的所有图片组成的类别为1,第二个人的所有图片组成的类别就为2,由此以此类推。
每一类的图片种类越多,越能保证后期识别的成功率。
同时为了能够保证录入的信息正确,可以点击“数据库信息”就会显示出数据库中存入了多少张照片以及分了多少类别。
Matlab在视频人脸检测与人脸识别中的应用技巧
Matlab在视频人脸检测与人脸识别中的应用技巧人脸检测和人脸识别是计算机视觉领域中的重要研究方向,近年来得到了广泛的应用。
在视频处理中,人脸的准确检测和识别是实现许多高级应用的基础。
Matlab作为一种功能强大的数学建模与仿真软件,提供了丰富的图像处理工具箱,使得人脸检测与识别算法的实现变得简单与高效。
一、图像预处理在进行人脸检测与识别之前,通常需要对图像进行预处理,以提高算法的准确性。
图像预处理的过程包括灰度化、直方图均衡化、尺寸归一化等。
利用Matlab的图像处理工具箱,可以快速实现这些预处理操作。
1.1 灰度化灰度化是将彩色图像转换为灰度图像的过程,将去除色彩信息,使图像变得更易处理。
在Matlab中,使用rgb2gray函数可以方便地将彩色图像转换为灰度图像。
1.2 直方图均衡化直方图均衡化是一种增强图像对比度的方法,通过对图像的灰度直方图进行变换来实现。
在Matlab中,使用histeq函数可以对图像的灰度直方图进行均衡化操作,提高图像的细节显示能力。
1.3 尺寸归一化不同的人脸图像具有不同的尺寸和角度,这对人脸检测与识别算法会造成影响。
为了提高算法的鲁棒性,通常需要将人脸图像进行尺寸归一化处理。
在Matlab中,可以使用imresize函数将图像进行缩放,使得人脸图像具有相同的尺寸。
二、人脸检测人脸检测是指在一幅图像中自动识别和定位人脸的过程,是人脸识别的首要步骤。
Matlab提供了多种人脸检测算法的实现,其中常用的有Haar特征分类器和基于深度学习的卷积神经网络(CNN)。
2.1 Haar特征分类器Haar特征分类器是一种基于机器学习的人脸检测算法,可以通过训练集的正负样本学习出人脸的特征。
在Matlab中,可以使用vision.CascadeObjectDetector对象和trainCascadeObjectDetector函数来实现Haar特征分类器的训练与检测。
2.2 基于深度学习的卷积神经网络(CNN)近年来,深度学习在图像处理领域取得了巨大的突破,其中卷积神经网络是一种非常有效的人脸检测方法。
Matlab中的人脸识别与人脸特征提取
Matlab中的人脸识别与人脸特征提取近年来,随着计算机技术的快速发展和应用的普及,人脸识别技术逐渐进入了我们的生活。
无论是在安全领域的门禁系统、身份验证应用,还是在娱乐领域的人脸美化软件,人脸识别都发挥着重要的作用。
而在人脸识别技术的实现中,人脸特征提取是一个关键的环节。
本文将介绍在Matlab中实现人脸识别和人脸特征提取的方法与技巧。
在Matlab中,有许多经典的人脸识别算法可供选择,其中最为常见且被广泛应用的是基于主成分分析(PCA)的人脸识别算法。
PCA是一种经典的降维算法,它通过线性变换将高维数据映射到低维空间中,从而捕捉数据的主要特征。
在人脸识别中,我们可以将每张人脸的像素矩阵视为一个高维数据向量,利用PCA算法将其映射到一个低维特征空间中。
在特征空间中,每张人脸都可以表示为一个特征向量,就像每个人都有自己独特的“人脸特征码”一样。
要在Matlab中实现基于PCA的人脸识别,首先需要收集一组包含多个人脸的图像数据集作为训练样本。
然后,将每个人脸的像素矩阵展开成一个列向量,并将这些列向量按列排成一个矩阵,构成一个大的数据矩阵。
接下来,通过对数据矩阵进行协方差矩阵分解和特征值分解,可以得到一组特征向量。
这些特征向量被称为“特征脸”,它们是训练样本中人脸数据的主要变化方向。
最后,通过计算待识别人脸与训练样本中每个人脸的特征向量的距离,并找出距离最小的特征向量所对应的人脸,即可完成人脸识别的过程。
除了PCA算法,还有其他一些在Matlab中常用的人脸识别算法,如线性判别分析(LDA)算法、小波变换、局部二值模式(LBP)等。
这些算法在原理和实现上各有特点,可以根据实际需求选择合适的算法进行人脸识别。
在人脸识别之前,首先需要对输入的人脸图像进行预处理。
通常的预处理步骤包括灰度化、直方图均衡化和人脸检测。
灰度化是将彩色图像转换为灰度图像,降低了计算复杂度,同时保留了图像的关键信息。
直方图均衡化可以增强图像的对比度,使得人脸特征更加明显。
MATLAB中的人脸检测与人脸关键点定位技术
MATLAB中的人脸检测与人脸关键点定位技术人脸检测与人脸关键点定位是计算机视觉中一个重要的课题,它在许多应用领域都有着广泛的应用,如人脸识别、人机交互、表情分析等。
MATLAB作为一种非常强大的科学计算软件,也提供了丰富的工具和函数来实现这些功能。
在本文中,将探讨MATLAB中的人脸检测与人脸关键点定位技术,并介绍其原理和具体实现方式。
一、人脸检测技术人脸检测是计算机视觉中的一项基础任务,其目标是在给定的图像中准确地识别出人脸的位置。
在MATLAB中,人脸检测通常基于基于统计模型的方法,如Haar特征和级联分类器。
1. Haar特征Haar特征是一种用于物体检测的特征描述方法,它通过计算图像中不同区域的灰度差异来表示目标物体的特征。
在人脸检测中,Haar特征可以用来检测人脸的各种细节,如眼睛、鼻子、嘴巴等。
MATLAB提供了一系列函数和工具箱来计算和提取Haar特征,以及构建Haar特征分类器。
2. 级联分类器级联分类器是一种常用的目标检测方法,它通过级联多个简单的分类器来实现对复杂目标的检测。
在人脸检测中,级联分类器可以用来筛选候选区域,并排除一些不可能是人脸的区域,从而提高检测的准确率。
MATLAB中的人脸检测函数通常会使用级联分类器进行初步筛选,以减少计算量。
二、人脸关键点定位技术人脸关键点定位是在检测到人脸后,进一步定位人脸的关键特征点,如眼睛、眉毛、鼻子、嘴巴等。
在MATLAB中,人脸关键点定位主要基于形状模型和特征点回归方法。
1. 形状模型形状模型是一种用于描述人脸形状变化的数学模型,它通过学习和建模一组训练数据的形状变化,从而能够对新的输入数据进行形状预测。
在人脸关键点定位中,形状模型可以用来对给定的人脸进行局部形状的估计,从而进一步定位关键点。
MATLAB提供了一些函数和工具箱来实现形状模型的训练和预测。
2. 特征点回归特征点回归是一种常用的人脸关键点定位方法,它通过学习一个回归函数,将图像中的像素坐标映射到关键点的位置坐标。
《基于MATLAB的人脸识别算法的研究》范文
《基于MATLAB的人脸识别算法的研究》篇一一、引言人脸识别技术是近年来计算机视觉领域研究的热点之一,其应用范围广泛,包括安全监控、身份认证、人机交互等。
MATLAB作为一种强大的数学计算软件,为研究人员提供了丰富的工具和函数,使得人脸识别算法的研究和实现变得更加便捷。
本文将介绍基于MATLAB的人脸识别算法的研究,包括算法原理、实现方法、实验结果及分析等方面。
二、人脸识别算法原理人脸识别算法主要基于计算机视觉和模式识别技术,通过对人脸特征进行提取和匹配,实现身份识别。
常见的人脸识别算法包括特征提取、特征匹配等步骤。
其中,特征提取是关键步骤,需要从人脸图像中提取出有效的特征,如纹理、形状、颜色等。
特征匹配则是将提取出的特征与人脸库中的特征进行比对,找出最匹配的人脸。
三、基于MATLAB的人脸识别算法实现1. 预处理在人脸识别算法的实现中,首先需要对人脸图像进行预处理,包括灰度化、归一化、降噪等操作。
这些操作可以有效地提高图像的质量,为后续的特征提取和匹配提供更好的基础。
2. 特征提取特征提取是人脸识别算法的核心步骤之一。
在MATLAB中,可以使用各种算法进行特征提取,如主成分分析(PCA)、局部二值模式(LBP)、方向梯度直方图(HOG)等。
本文采用PCA 算法进行特征提取,通过降维的方式将高维的人脸图像数据转化为低维的特征向量。
3. 特征匹配特征匹配是将提取出的特征与人脸库中的特征进行比对的过程。
在MATLAB中,可以使用各种相似度度量方法进行特征匹配,如欧氏距离、余弦相似度等。
本文采用欧氏距离作为相似度度量方法,通过计算特征向量之间的欧氏距离来找出最匹配的人脸。
四、实验结果及分析为了验证基于MATLAB的人脸识别算法的有效性,我们进行了多组实验。
实验数据集包括ORL人脸库、Yale人脸库等。
在实验中,我们使用了不同的特征提取和匹配方法,对算法的性能进行了评估。
实验结果表明,基于PCA算法的特征提取方法和欧氏距离相似度度量方法在人脸识别中具有较好的性能。
基于matlab的课程设计题目
基于matlab的课程设计题目基于matlab的课程设计题目正文:在matlab中,有许多有趣且实用的课程设计题目可以选择。
以下是一个基于matlab的课程设计题目示例:基于图像处理的人脸识别系统。
人脸识别是一种广泛应用于安全监控、身份验证等领域的技术。
该课程设计旨在利用matlab的图像处理功能,开发一个能够识别人脸的系统。
首先,你需要收集一批含有人脸的图像数据集。
可以从公开的人脸数据库中获取,如LFW(Labeled Faces in the Wild)数据库。
然后,使用matlab的图像处理工具箱,对这些图像进行预处理,包括人脸检测、图像归一化等。
接下来,你可以选择使用PCA(Principal Component Analysis)或LDA(Linear Discriminant Analysis)等算法进行特征提取和降维。
这些算法可以将人脸图像转换为一个更低维度的特征向量,以方便后续的分类。
然后,你可以使用matlab的机器学习工具箱,训练一个分类器来识别人脸。
可以选择支持向量机(SVM)、K近邻算法(KNN)或神经网络等方法。
通过使用训练数据集,将提取的特征向量与相应的标签进行训练。
最后,你可以使用训练好的分类器来测试你的人脸识别系统。
将测试图像输入系统,通过分类器进行分类,并与测试图像的真实标签进行比较,以评估系统的准确性。
拓展:除了人脸识别系统,还有许多其他基于matlab的课程设计题目可以选择,如音频信号处理、数字图像处理、机器学习、模式识别等。
你可以根据自己的兴趣和专业方向,选择与之相关的课程设计题目。
例如,你可以设计一个音频信号处理系统,用于语音识别。
通过使用matlab的信号处理工具箱,对输入的语音信号进行预处理,包括去除噪声、语音分段等。
然后,使用mfcc(Mel-Frequency Cepstral Coefficients)等特征提取算法,将语音信号转换为特征向量。
(完整版)基于matlab程序实现人脸识别
基于matlab程序实现人脸识别1.人脸识别流程1.1.1基本原理基于YCbCr颜色空间的肤色模型进行肤色分割。
在YCbCr色彩空间内对肤色进行了建模发现,肤色聚类区域在Cb—Cr子平面上的投影将缩减,与中心区域显著不同。
采用这种方法的图像分割已经能够较为精确的将人脸和非人脸分割开来。
1.1.2流程图人脸识别流程图读入原始图像将图像转化为YCbCr颜色空间利用肤色模型二值化图像并作形态学处理选取出二值图像中的白色区域,度量区域属性,筛选后得到所有矩形块否筛选特定区域(高度和宽度的比率在(0.6~2)之间,眼睛特征)是存储人脸的矩形区域特殊区域根据其他信息筛选,标记最终的人脸区域2.人脸识别程序(1)人脸和非人脸区域分割程序function result = skin(Y,Cb,Cr)%SKIN Summary of this function goes here% Detailed explanation goes herea=25.39;b=14.03;ecx=1.60;ecy=2.41;sita=2.53;cx=109.38;cy=152.02;xishu=[cos(sita) sin(sita);-sin(sita) cos(sita)];%如果亮度大于230,则将长短轴同时扩大为原来的1.1倍if(Y>230)a=1.1*a;b=1.1*b;end%根据公式进行计算Cb=double(Cb);Cr=double(Cr);t=[(Cb-cx);(Cr-cy)];temp=xishu*t;value=(temp(1)-ecx)^2/a^2+(temp(2)-ecy)^2/b^2;%大于1则不是肤色,返回0;否则为肤色,返回1if value>1result=0;elseresult=1;endend(2)人脸的确认程序function eye = findeye(bImage,x,y,w,h)%FINDEYE Summary of this function goes here % Detailed explanation goes herepart=zeros(h,w);%二值化for i=y:(y+h)for j=x:(x+w)if bImage(i,j)==0part(i-y+1,j-x+1)=255;elsepart(i-y+1,j-x+1)=0;endendend[L,num]=bwlabel(part,8);%如果区域中有两个以上的矩形则认为有眼睛if num<2eye=0;elseeye=1;endend(3)人脸识别主程序clear all;%读入原始图像I=imread('face3.jpg');gray=rgb2gray(I);ycbcr=rgb2ycbcr(I);%将图像转化为YCbCr空间heighth=size(gray,1);%读取图像尺寸width=size(gray,2);for i=1:heighth %利用肤色模型二值化图像for j=1:widthY=ycbcr(i,j,1);Cb=ycbcr(i,j,2);Cr=ycbcr(i,j,3);if(Y<80)gray(i,j)=0;elseif(skin(Y,Cb,Cr)==1)%根据色彩模型进行图像二值化gray(i,j)=255;elsegray(i,j)=0;endendendendse=strel('arbitrary',eye(5));%二值图像形态学处理gray=imopen(gray,se);figure;imshow(gray)[L,num]=bwlabel(gray,8);%采用标记方法选出图中的白色区域stats=regionprops(L,'BoundingBox');%度量区域属性n=1;%存放经过筛选以后得到的所有矩形块result=zeros(n,4);figure,imshow(I);hold on;for i=1:num %开始筛选特定区域box=stats(i).BoundingBox;x=box(1);%矩形坐标Xy=box(2);%矩形坐标Yw=box(3);%矩形宽度wh=box(4);%矩形高度hratio=h/w;%宽度和高度的比例ux=uint16(x);uy=uint8(y);if ux>1ux=ux-1;endif uy>1uy=uy-1;endif w<20 || h<20|| w*h<400 %矩形长宽的范围和矩形的面积可自行设定continueelseif ratio<2 && ratio>0.6 && findeye(gray,ux,uy,w,h)==1%根据“三庭五眼”规则高度和宽度比例应该在(0.6,2)内;result(n,:)=[ux uy w h];n=n+1;endendif size(result,1)==1 && result(1,1)>0 %对可能是人脸的区域进行标记rectangle('Position',[result(1,1),result(1,2),result(1,3),result(1,4)],'EdgeColor','r'); else%如果满足条件的矩形区域大于1,则再根据其他信息进行筛选a=0;arr1=[];arr2=[];for m=1:size(result,1)m1=result(m,1);m2=result(m,2);m3=result(m,3);m4=result(m,4);%得到符合和人脸匹配的数据if m1+m3<width && m2+m4<heighth && m3<0.2*widtha=a+1;arr1(a)=m3;arr2(a)=m4;%rectangle('Position',[m1,m2,m3,m4],'EdgeColor','r');endend%得到人脸长度和宽度的最小区域arr3=[];arr3=sort(arr1,'ascend');arr4=[];arr4=sort(arr2,'ascend');%根据得到的数据标定最终的人脸区域for m=1:size(result,1)m1=result(m,1);m2=result(m,2);m3=result(m,3);m4=result(m,4);%最终标定人脸if m1+m3<width && m2+m4<heighth && m3<0.2*widthm3=arr3(1);m4=arr4(1);rectangle('Position',[m1,m2,m3,m4],'EdgeColor','r');endendend(4)程序说明人脸识别程序主要包含三个程序模块,人脸识别主程序由三部分构成。
(完整版)人脸识别MATLAB代码
1.色彩空间转换function [r,g]=rgb_RGB(Ori_Face)R=Ori_Face(:,:,1);G=Ori_Face(:,:,2);B=Ori_Face(:,:,3);R1=im2double(R); % 将uint8型转换成double型G1=im2double(G);B1=im2double(B);RGB=R1+G1+B1;row=size(Ori_Face,1); % 行像素column=size(Ori_Face,2); % 列像素for i=1:rowfor j=1:columnrr(i,j)=R1(i,j)/RGB(i,j);gg(i,j)=G1(i,j)/RGB(i,j);endendrrr=mean(rr);r=mean(rrr);ggg=mean(gg);g=mean(ggg);2.均值和协方差t1=imread('D:\matlab\皮肤库\1.jpg');[r1,g1]=rgb_RGB(t1); t2=imread('D:\matlab\皮肤库\2.jpg');[r2,g2]=rgb_RGB(t2); t3=imread('D:\matlab\皮肤库\3.jpg');[r3,g3]=rgb_RGB(t3); t4=imread('D:\matlab\皮肤库\4.jpg');[r4,g4]=rgb_RGB(t4); t5=imread('D:\matlab\皮肤库\5.jpg');[r5,g5]=rgb_RGB(t5); t6=imread('D:\matlab\皮肤库\6.jpg');[r6,g6]=rgb_RGB(t6); t7=imread('D:\matlab\皮肤库\7.jpg');[r7,g7]=rgb_RGB(t7); t8=imread('D:\matlab\皮肤库\8.jpg');[r8,g8]=rgb_RGB(t8);t9=imread('D:\matlab\皮肤库\9.jpg');[r9,g9]=rgb_RGB(t9);t10=imread('D:\matlab\皮肤库\10.jpg');[r10,g10]=rgb_RGB(t10);t11=imread('D:\matlab\皮肤库\11.jpg');[r11,g11]=rgb_RGB(t11);t12=imread('D:\matlab\皮肤库\12.jpg');[r12,g12]=rgb_RGB(t12);t13=imread('D:\matlab\皮肤库\13.jpg');[r13,g13]=rgb_RGB(t13);t14=imread('D:\matlab\皮肤库\14.jpg');[r14,g14]=rgb_RGB(t14);t15=imread('D:\matlab\皮肤库\15.jpg');[r15,g15]=rgb_RGB(t15);t16=imread('D:\matlab\皮肤库\16.jpg');[r16,g16]=rgb_RGB(t16);t17=imread('D:\matlab\皮肤库\17.jpg');[r17,g17]=rgb_RGB(t17);t18=imread('D:\matlab\皮肤库\18.jpg');[r18,g18]=rgb_RGB(t18);t19=imread('D:\matlab\皮肤库\19.jpg');[r19,g19]=rgb_RGB(t19);t20=imread('D:\matlab\皮肤库\20.jpg');[r20,g20]=rgb_RGB(t20);t21=imread('D:\matlab\皮肤库\21.jpg');[r21,g21]=rgb_RGB(t21);t22=imread('D:\matlab\皮肤库\22.jpg');[r22,g22]=rgb_RGB(t22);t23=imread('D:\matlab\皮肤库\23.jpg');[r23,g23]=rgb_RGB(t23);t24=imread('D:\matlab\皮肤库\24.jpg');[r24,g24]=rgb_RGB(t24);t25=imread('D:\matlab\皮肤库\25.jpg');[r25,g25]=rgb_RGB(t25);t26=imread('D:\matlab\皮肤库\26.jpg');[r26,g26]=rgb_RGB(t26);t27=imread('D:\matlab\皮肤库\27.jpg');[r27,g27]=rgb_RGB(t27);r=cat(1,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22, r23,r24,r25,r26,r27);g=cat(1,g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13,g14,g15,g16,g17,g18,g19,g20 ,g21,g22,g23,g24,g25,g26,g27);m=mean([r,g])n=cov([r,g])3.求质心function [xmean, ymean] = center(bw)bw=bwfill(bw,'holes');area = bwarea(bw);[m n] =size(bw);bw=double(bw);xmean =0; ymean = 0;for i=1:m,for j=1:n,xmean = xmean + j*bw(i,j);ymean = ymean + i*bw(i,j);end;end;if(area==0)xmean=0;ymean=0;elsexmean = xmean/area;ymean = ymean/area;xmean = round(xmean);ymean = round(ymean);end4. 求偏转角度function [theta] = orient(bw,xmean,ymean) [m n] =size(bw);bw=double(bw);a = 0;b = 0;c = 0;for i=1:m,for j=1:n,a = a + (j - xmean)^2 * bw(i,j);b = b + (j - xmean) * (i - ymean) * bw(i,j);c = c + (i - ymean)^2 * bw(i,j);end;b = 2 * b;theta = atan(b/(a-c))/2;theta = theta*(180/pi); % 从幅度转换到角度5. 找区域边界function [left, right, up, down] = bianjie(A)[m n] = size(A);left = -1;right = -1;up = -1;down = -1;for j=1:n,for i=1:m,if (A(i,j) ~= 0)left = j;break;end;end;if (left ~= -1) break;end;end;for j=n:-1:1,for i=1:m,if (A(i,j) ~= 0)right = j;break;end;end;if (right ~= -1) break;end;for i=1:m,for j=1:n,if (A(i,j) ~= 0)up = i;break;end;end;if (up ~= -1)break;end;end;for i=m:-1:1,for j=1:n,if (A(i,j) ~= 0)down = i;break;end;end;if (down ~= -1)break;end;end;6. 求起始坐标function newcoord = checklimit(coord,maxval) newcoord = coord;if (newcoord<1)newcoord=1;end;if (newcoord>maxval)newcoord=maxval;end;7.模板匹配function [ccorr, mfit, RectCoord] = mobanpipei(mult, frontalmodel,ly,wx,cx, cy, angle)frontalmodel=rgb2gray(frontalmodel);model_rot = imresize(frontalmodel,[ly wx],'bilinear'); % 调整模板大小model_rot = imrotate(model_rot,angle,'bilinear'); % 旋转模板[l,r,u,d] = bianjie(model_rot); % 求边界坐标bwmodel_rot=imcrop(model_rot,[l u (r-l) (d-u)]); % 选择模板人脸区域[modx,mody] =center(bwmodel_rot); % 求质心[morig, norig] = size(bwmodel_rot);% 产生一个覆盖了人脸模板的灰度图像mfit = zeros(size(mult));mfitbw = zeros(size(mult));[limy, limx] = size(mfit);% 计算原图像中人脸模板的坐标startx = cx-modx;starty = cy-mody;endx = startx + norig-1;endy = starty + morig-1;startx = checklimit(startx,limx);starty = checklimit(starty,limy);endx = checklimit(endx,limx);endy = checklimit(endy,limy);for i=starty:endy,for j=startx:endx,mfit(i,j) = model_rot(i-starty+1,j-startx+1);end;end;ccorr = corr2(mfit,mult) % 计算相关度[l,r,u,d] = bianjie(bwmodel_rot);sx = startx+l;sy = starty+u;RectCoord = [sx sy (r-1) (d-u)]; % 产生矩形坐标8.主程序clear;[fname,pname]=uigetfile({'*.jpg';'*.bmp';'*.tif';'*.gif'},'Please choose a color picture...'); % 返回打开的图片名与图片路径名[u,v]=size(fname);y=fname(v); % 图片格式代表值switch ycase 0errordlg('You Should Load Image File First...','Warning...');case{'g';'G';'p';'P';'f';'F'}; % 图片格式若是JPG/jpg、BMP/bmp、TIF/tif 或者GIF/gif,才打开I=cat(2,pname,fname);Ori_Face=imread(I);subplot(2,3,1),imshow(Ori_Face);otherwiseerrordlg('You Should Load Image File First...','Warning...');endR=Ori_Face(:,:,1);G=Ori_Face(:,:,2);B=Ori_Face(:,:,3);R1=im2double(R); % 将uint8型转换成double型处理G1=im2double(G);B1=im2double(B);RGB=R1+G1+B1;m=[ 0.4144,0.3174]; % 均值n=[0.0031,-0.0004;-0.0004,0.0003]; % 方差row=size(Ori_Face,1); % 行像素数column=size(Ori_Face,2); % 列像素数for i=1:rowfor j=1:columnif RGB(i,j)==0rr(i,j)=0;gg(i,j)=0;elserr(i,j)=R1(i,j)/RGB(i,j); % rgb归一化gg(i,j)=G1(i,j)/RGB(i,j);x=[rr(i,j),gg(i,j)];p(i,j)=exp((-0.5)*(x-m)*inv(n)*(x-m)'); % 皮肤概率服从高斯分布endendendsubplot(2,3,2);imshow(p); % 显示皮肤灰度图像low_pass=1/9*ones(3);image_low=filter2(low_pass, p); % 低通滤波去噪声subplot(2,3,3);imshow(image_low);% 自适应阀值程序previousSkin2 = zeros(i,j);changelist = [];for threshold = 0.55:-0.1:0.05two_value = zeros(i,j);two_value(find(image_low>threshold)) = 1;change = sum(sum(two_value - previousSkin2));changelist = [changelist change];previousSkin2 = two_value;end[C, I] = min(changelist);optimalThreshold = (7-I)*0.1two_value = zeros(i,j);two_value(find(image_low>optimalThreshold)) = 1; % 二值化subplot(2,3,4);imshow(two_value); % 显示二值图像frontalmodel=imread('E:\我的照片\人脸模板.jpg'); % 读入人脸模板照片FaceCoord=[];imsourcegray=rgb2gray(Ori_Face); % 将原照片转换为灰度图像[L,N]=bwlabel(two_value,8); % 标注二值图像中连接的部分,L为数据矩阵,N为颗粒的个数for i=1:N,[x,y]=find(bwlabel(two_value)==i); % 寻找矩阵中标号为i的行和列的下标bwsegment = bwselect(two_value,y,x,8); % 选择出第i个颗粒numholes = 1-bweuler(bwsegment,4); % 计算此区域的空洞数if (numholes >= 1) % 若此区域至少包含一个洞,则将其选出进行下一步运算RectCoord = -1;[m n] = size(bwsegment);[cx,cy]=center(bwsegment); % 求此区域的质心bwnohole=bwfill(bwsegment,'holes'); % 将洞封住(将灰度值赋为1)justface = uint8(double(bwnohole) .* double(imsourcegray));% 只在原照片的灰度图像中保留该候选区域angle = orient(bwsegment,cx,cy); % 求此区域的偏转角度bw = imrotate(bwsegment, angle, 'bilinear');bw = bwfill(bw,'holes');[l,r,u,d] =bianjie(bw);wx = (r - l +1); % 宽度ly = (d - u + 1); % 高度wratio = ly/wx % 高宽比if ((0.8<=wratio)&(wratio<=2))% 如果目标区域的高度/宽度比例大于0.8且小于2.0,则将其选出进行下一步运算S=ly*wx; % 计算包含此区域矩形的面积A=bwarea(bwsegment); % 计算此区域面积if (A/S>0.35)[ccorr,mfit, RectCoord] = mobanpipei(justface,frontalmodel,ly,wx, cx,cy, angle);endif (ccorr>=0.6)mfitbw=(mfit>=1);invbw = xor(mfitbw,ones(size(mfitbw)));source_with_hole = uint8(double(invbw) .* double(imsourcegray));final_image = uint8(double(source_with_hole) + double(mfit));subplot(2,3,5);imshow(final_image); % 显示覆盖了模板脸的灰度图像imsourcegray = final_image;subplot(2,3,6);imshow(Ori_Face); % 显示检测效果图end;if (RectCoord ~= -1)FaceCoord = [FaceCoord; RectCoord];endendendend% 在认为是人脸的区域画矩形[numfaces x] = size(FaceCoord);for i=1:numfaces,hd = rectangle('Position',FaceCoord(i,:));set(hd, 'edgecolor', 'y');end人脸检测是人脸识别、人机交互、智能视觉监控等工作的前提。
MATLAB技术人脸识别算法
MATLAB技术人脸识别算法MATLAB技术在人脸识别算法中的应用人脸识别技术是近年来快速发展的一项先进技术,它可以实现对人脸图像进行自动识别和身份验证。
作为一种非接触式的生物识别技术,人脸识别具有高效、方便、准确的特点,因此在安全领域、人机交互、图像检索等方面有着广泛的应用。
而MATLAB作为一种功能强大的科学计算工具,其丰富的图像处理工具箱和灵活的编程环境,使得其成为人脸识别算法研究和开发的重要工具。
一、人脸识别算法概述人脸识别算法主要包括人脸检测、人脸特征提取和人脸匹配三个步骤。
人脸检测是指从图像或视频中自动检测并定位人脸,通常采用基于特征的方法(如Haar特征、HOG特征等)或基于模型的方法(如支持向量机、神经网络等)进行。
人脸特征提取是指从检测到的人脸中提取出具有代表性的特征,常用的方法有主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等。
人脸匹配是指将提取出来的人脸特征与已有的数据库中的人脸特征进行比对和匹配,一般采用欧氏距离、余弦相似度等度量方法。
二、MATLAB中的人脸检测算法实现MATLAB提供了多种人脸检测算法的库函数和工具箱,例如Viola-Jones算法、DLib算法等。
这些算法基于不同的原理和方法,可以根据实际需求选择适合的算法进行人脸检测。
以Viola-Jones算法为例,其基于Haar特征的方法可以高效地进行人脸检测。
在MATLAB中,可以使用“vision.CascadeObjectDetector”类实现Viola-Jones算法的人脸检测功能。
首先,需要加载人脸检测器对象,并使用“detect”方法对图像进行人脸检测,最后使用“insertShape”方法将检测结果标记在原图像上。
三、MATLAB中的人脸特征提取算法实现MATLAB提供了多种常用的人脸特征提取算法的函数和工具箱,如PCA、LDA、LBP等。
这些算法能够对从图像中提取到的人脸特征进行降维和优化,以便于后续的人脸匹配工作。
Matlab中的人脸识别与表情分析方法
Matlab中的人脸识别与表情分析方法人脸识别和表情分析是计算机视觉领域中的热门研究方向。
在这个信息爆炸的时代,人们对于自动化识别和分析人脸表情的需求越来越高。
Matlab作为一种功能强大的数值计算与可视化软件,提供了一些重要的工具和算法来实现人脸识别和表情分析。
本文将介绍Matlab中一些常用的人脸识别与表情分析方法。
首先,我们来介绍一下人脸识别的基本概念和方法。
人脸识别是指通过计算机技术来识别和验证人脸的身份。
常见的人脸识别方法包括主成分分析(PCA)、线性判别分析(LDA)和支持向量机(SVM)等。
在Matlab中,可以使用内置的人脸识别工具箱来实现这些方法。
其中,主成分分析是一种常用的降维方法,它通过对数据进行特征提取和投影变换,将高维数据映射到低维空间。
在人脸识别中,PCA可以用来提取脸部特征,并通过与已知人脸数据的比较来判断其身份。
在Matlab中,可以使用pca函数实现主成分分析。
另一种常用的人脸识别方法是线性判别分析。
LDA可以通过最大化类间散布和最小化类内散布的方式来找到最优的投影向量,从而实现有效的人脸分类。
Matlab提供了lda函数来实现线性判别分析。
此外,支持向量机也是一种常用的分类方法,它的基本思想是寻找一个最优的超平面来实现数据的最佳分类。
在人脸识别领域,SVM可以通过训练一组已知标记的人脸图像来建立分类模型,然后利用该模型来识别新的人脸图像。
Matlab中的svmtrain和svmclassify函数可以帮助我们实现这一过程。
除了人脸识别,表情分析也是一个引人注目的研究领域。
表情分析旨在从人脸图像中提取和解释情绪表达。
常见的表情分析方法包括基于特征提取的方法、基于神经网络的方法和基于统计模型的方法等。
在Matlab中,可以使用图像处理工具箱提供的函数来实现基于特征提取的表情分析。
这些函数包括人脸检测、特征检测和分类器训练等功能。
通过这些函数,我们可以提取脸部特征,如眼睛、嘴巴等,进而分析表情的特征,如笑容、愤怒等。
matlab中face_m的用法
matlab中face_m的用法MATLAB中的face_m函数是一个用于人脸识别的功能函数。
它可以通过输入一张图像,自动检测出人脸,并进行人脸识别操作。
本文将从以下几个方面进行介绍:1. face_m函数的基本介绍;2. face_m函数的输入和输出;3. face_m函数的使用示例;4. face_m函数的原理分析;5. face_m 函数的应用案例。
1. face_m函数的基本介绍face_m函数是MATLAB中的一个人脸识别功能函数,它通过使用计算机视觉和机器学习的算法,可以实现对人脸的自动检测和识别。
该函数基于机器学习的方法,通过训练一组样本数据,学习人脸的特征和模式,从而实现对输入图像中人脸的检测和识别。
2. face_m函数的输入和输出face_m函数的输入参数通常包括一个待处理的图像,以及一些其他的参数设置,如检测阈值、人脸角度等。
输出参数则包括检测到的人脸位置、人脸特征描述符等信息。
通常情况下,输出参数可以作为后续人脸识别的输入。
3. face_m函数的使用示例下面是一个使用face_m函数的简单示例:matlab读取待处理的图像image = imread('test.jpg');调用face_m函数进行人脸检测和识别[faces, features] = face_m(image);显示检测结果for i = 1:size(faces, 1)rectangle('Position', faces(i, :), 'EdgeColor', 'r');end在这个示例中,首先通过imread函数读取了一张待处理的图片,然后调用face_m函数对该图像进行人脸检测和识别。
最后,通过在图像上绘制矩形框来显示检测到的人脸位置。
4. face_m函数的原理分析face_m函数的实现基于传统的人脸识别算法和机器学习方法。
通常,人脸识别的过程可以分为以下几步:人脸检测、特征提取和特征匹配。
matlab人脸识别考勤设计
一、概述人脸识别技术在近年来得到了广泛的应用,其中在考勤系统中的应用也越来越普遍。
MATLAB作为一种强大的计算机软件,可以实现人脸识别算法的设计和应用。
本文将探讨如何利用MATLAB进行人脸识别考勤系统的设计。
二、人脸识别技术的原理1. 人脸采集:通过摄像头采集被识别人员的人脸图像。
2. 人脸特征提取:使用特定的算法从人脸图像中提取人脸的特征信息,如眼睛、鼻子、嘴巴的位置等。
3. 人脸匹配:将提取到的人脸特征信息与数据库中的人脸特征进行匹配,找出相似度最高的人脸特征。
4. 判断识别结果:根据匹配结果判断被识别人员的身份。
三、MATLAB在人脸识别中的应用1. 图像处理工具箱:MATLAB提供了丰富的图像处理函数,可以用于人脸图像的预处理,包括图像的灰度化、裁剪、旋转等操作。
2. 人脸识别工具箱:MATLAB的人脸识别工具箱中提供了多种经典的人脸识别算法,如Fisher人脸识别算法、LBP算法等。
3. 数据库操作:MATLAB可以方便地与数据库进行连接,将采集到的人脸特征信息存储并进行管理。
四、人脸识别考勤系统的设计1. 人脸采集模块:通过MATLAB的图像处理工具箱,实现对被识别人员的人脸图像的采集和预处理。
2. 人脸特征提取模块:利用MATLAB的人脸识别工具箱,提取被识别人员的人脸特征信息,并将其存储在数据库中。
3. 人脸匹配模块:利用MATLAB的数据库操作功能,将实时采集到的人脸特征信息与数据库中已有的人脸特征进行匹配,得出匹配结果。
4. 识别结果判断模块:根据匹配结果,判断被识别人员的身份,提供考勤记录。
五、系统的优化和拓展1. 优化算法:针对特定的人脸识别场景,可以对MATLAB提供的人脸识别算法进行优化,提高系统的准确性和稳定性。
2. 多模态融合:结合声音识别、指纹识别等多种识别方式,构建多模态识别系统,提高系统的安全性和鲁棒性。
3. 云评台应用:将MATLAB设计的人脸识别考勤系统部署到云评台上,实现远程考勤和多地点管理。
基于MATLAB的人脸朝向识别
clear allclc;%% 人脸特征向量提取% 人数M=10;% 人脸朝向类别数N=5;% 特征向量提取pixel_value=feature_extraction(M,N);%% 训练集/测试集产生% 产生图像序号的随机序列rand_label=randperm(M*N);% 人脸朝向标号direction_label=repmat(1:N,1,M);% 训练集train_label=rand_label(1:30);P_train=pixel_value(train_label,:)';Tc_train=direction_label(train_label);T_train=ind2vec(Tc_train);% 测试集test_label=rand_label(31:end);P_test=pixel_value(test_label,:)';Tc_test=direction_label(test_label);%% K-fold交叉验证确定最佳神经元个数k_fold=10;Indices=crossvalind('Kfold',size(P_train,2),k_fold); error_min=10e10;best_number=1;best_input=[];best_output=[];best_train_set_index=[];best_validation_set_index=[];h=waitbar(0,'正在寻找最佳神经元个数.....');for i=1:k_fold% 验证集标号validation_set_index=(Indices==i);% 训练集标号train_set_index=~validation_set_index;% 验证集validation_set_input=P_train(:,validation_set_index);validation_set_output=T_train(:,validation_set_index);% 训练集train_set_input=P_train(:,train_set_index);train_set_output=T_train(:,train_set_index);for number=10:30for j=1:5rate{j}=length(find(Tc_train(:,train_set_index)==j))/length(find(train_set_index==1)) ;endnet=newlvq(minmax(train_set_input),number,cell2mat(rate));% 设置网络参数net.trainParam.epochs=100;net.trainParam.show=10;net.trainParam.lr=0.1;net.trainParam.goal=0.001;% 训练网络net=train(net,train_set_input,train_set_output);waitbar(((i-1)*21+number)/219,h);%% 仿真测试T_sim=sim(net,validation_set_input);Tc_sim=vec2ind(T_sim);error=length(find(Tc_sim~=Tc_train(:,validation_set_index)));if error<error_minerror_min=error;best_number=number;best_input=train_set_input;best_output=train_set_output;best_train_set_index=train_set_index;best_validation_set_index=validation_set_index;endendenddisp(['经过交叉验证,得到的最佳神经元个数为:' num2str(best_number)]); close(h);%% 创建LVQ网络for i=1:5rate{i}=length(find(Tc_train(:,best_train_set_index)==i))/length(find(best_train_set_i ndex==1));endnet=newlvq(minmax(best_input),best_number,cell2mat(rate),0.01);% 设置训练参数net.trainParam.epochs=100;net.trainParam.goal=0.001;net.trainParam.lr=0.1;%% 训练网络net=train(net,best_input,best_output);%% 人脸识别测试T_sim=sim(net,P_test);Tc_sim=vec2ind(T_sim);result=[Tc_test;Tc_sim]%% 结果显示% 训练集人脸标号strain_label=sort(train_label(best_train_set_index));htrain_label=ceil(strain_label/N);% 训练集人脸朝向标号dtrain_label=strain_label-floor(strain_label/N)*N;dtrain_label(dtrain_label==0)=N;% 显示训练集图像序号disp('训练集图像为:' );for i=1:length(find(best_train_set_index==1))str_train=[num2str(htrain_label(i)) '_'...num2str(dtrain_label(i)) ' '];fprintf('%s',str_train)if mod(i,5)==0fprintf('\n');endend% 验证集人脸标号svalidation_label=sort(train_label(best_validation_set_index)); hvalidation_label=ceil(svalidation_label/N);% 验证集人脸朝向标号dvalidation_label=svalidation_label-floor(svalidation_label/N)*N; dvalidation_label(dvalidation_label==0)=N;% 显示验证集图像序号fprintf('\n');disp('验证集图像为:' );for i=1:length(find(best_validation_set_index==1)) str_validation=[num2str(hvalidation_label(i)) '_'...num2str(dvalidation_label(i)) ' '];fprintf('%s',str_validation)if mod(i,5)==0fprintf('\n');endend% 测试集人脸标号stest_label=sort(test_label);htest_label=ceil(stest_label/N);% 测试集人脸朝向标号dtest_label=stest_label-floor(stest_label/N)*N;dtest_label(dtest_label==0)=N;% 显示测试集图像序号fprintf('\n');disp('测试集图像为:');for i=1:20str_test=[num2str(htest_label(i)) '_'...num2str(dtest_label(i)) ' '];fprintf('%s',str_test)if mod(i,5)==0fprintf('\n');endend% 显示识别出错图像error=Tc_sim-Tc_test;location={'左方' '左前方' '前方' '右前方' '右方'};for i=1:length(error)if error(i)~=0% 识别出错图像人脸标号herror_label=ceil(test_label(i)/N);% 识别出错图像人脸朝向标号derror_label=test_label(i)-floor(test_label(i)/N)*N;derror_label(derror_label==0)=N;% 图像原始朝向standard=location{Tc_test(i)};% 图像识别结果朝向identify=location{Tc_sim(i)};str_err=strcat(['图像' num2str(herror_label) '_'...num2str(derror_label) '识别出错.']);disp([str_err '(正确结果:朝向' standard...';识别结果:朝向' identify ')']);endend% 显示识别率disp(['识别率为:' num2str(length(find(error==0))/20*100) '%']); % 特征提取子函数function pixel_value=feature_extraction(m,n)pixel_value=zeros(50,8);sample_number=0;for i=1:mfor j=1:nstr=strcat('Images\',num2str(i),'_',num2str(j),'.bmp');img= imread(str);[rows cols]= size(img);img_edge=edge(img,'Sobel');sub_rows=floor(rows/6);sub_cols=floor(cols/8);sample_number=sample_number+1;for subblock_i=1:8for ii=sub_rows+1:2*sub_rowsfor jj=(subblock_i-1)*sub_cols+1:subblock_i*sub_colspixel_value(sample_number,subblock_i)=...pixel_value(sample_number,subblock_i)+img_edge(ii,jj);endendendendendfunction [w1,w2]=lvq1_train(P,Tc,Num_Compet,pc,lr,maxiter)%% 初始化权系数矩阵% 输入层与竞争层之间权值bound=minmax(P);w1=repmat(mean(bound,2)',Num_Compet,1);% 竞争层与输出层之间权值Num_Output=length(pc);pc=pc(:);indices=[0;floor(cumsum(pc)*Num_Compet)];w2=zeros(Num_Output,Num_Compet);for i=1:Num_Outputw2(i,(indices(i)+1):indices(i+1)) = 1;end%% 迭代计算n=size(P,2);for k=1:maxiterfor i=1:nd=zeros(Num_Compet,1);for j=1:Num_Competd(j)=sqrt(sse(w1(j,:)'-P(:,i)));end[min_d,index]=min(d);n1=compet(-1*d);n2=purelin(w2*n1);if isequal(Tc(i),vec2ind(n2));w1(index,:)=w1(index,:)+lr*(P(:,i)'-w1(index,:));elsew1(index,:)=w1(index,:)-lr*(P(:,i)'-w1(index,:));endendendfunction [w1,w2]=lvq2_train(P,Tc,Num_Compet,lr,maxiter,w1,w2)%% 迭代计算n=size(P,2);for k=1:maxiterfor i=1:n% 计算各个竞争层神经元与当前输入向量的距离d=zeros(Num_Compet,1);for j=1:Num_Competd(j)=sqrt(sse(w1(j,:)'-P(:,i)));end% 寻找与当前输入向量距离最小的竞争层神经元标号,记为index1[min_d1,index1]=min(d);% 计算与index1相连接的输出神经元对应的类别a1_1=compet(-1*d);n2_1=purelin(w2*a1_1);a2_1=vec2ind(n2_1);% 寻找与当前输入向量距离次小的竞争层神经元标号,记为index2d(index1)=inf;[min_d2,index2]=min(d);% 计算与index2相连接的输出神经元对应的类别a1_2=compet(-1*d);n2_2=purelin(w2*a1_2);a2_2=vec2ind(n2_2);% 判断两个竞争层神经元对应的类别是否相等flag1=isequal(a2_1,a2_2);flag2=min_d1/min_d2>0.6;if ~flag1 && flag2if isequal(Tc(i),a2_1)w1(index1,:)=w1(index1,:)+lr*(P(:,i)'-w1(index1,:));w1(index2,:)=w1(index2,:)-lr*(P(:,i)'-w1(index2,:));elsew1(index1,:)=w1(index1,:)-lr*(P(:,i)'-w1(index1,:));w1(index2,:)=w1(index2,:)+lr*(P(:,i)'-w1(index2,:));endelsew1(index1,:)=w1(index1,:)+lr*(P(:,i)'-w1(index1,:));endendendfunction result=lvq_predict(P,Tc,Num_Compet,w1,w2)n=size(P,2);result=zeros(2,n);result(1,:)=Tc;for i=1:nd=zeros(Num_Compet,1);for j=1:Num_Competd(j)=sqrt(sse(w1(j,:)'-P(:,i)));endn1=compet(-1*d);n2=purelin(w2*n1);result(2,i)=vec2ind(n2);endNum_Correct=length(find(result(2,:)==Tc));accuracy=Num_Correct/n;disp(['accuracy=' num2str(accuracy*100) '%(' num2str(Num_Correct) '/' num2str(n) ')']);%% 清除环境变量clear allclc;%% 人脸特征向量提取% 人数M=10;% 人脸朝向类别数N=5;% 特征向量提取pixel_value=feature_extraction(M,N);%% 训练集/测试集产生% 产生图像序号的随机序列rand_label=randperm(M*N);% 人脸朝向标号direction_label=repmat(1:N,1,M);% 训练集train_label=rand_label(1:30);P_train=pixel_value(train_label,:)';Tc_train=direction_label(train_label);test_label=rand_label(31:end);P_test=pixel_value(test_label,:)';Tc_test=direction_label(test_label);%% 计算PCfor i=1:5rate{i}=length(find(Tc_train==i))/30;end%% LVQ1算法[w1,w2]=lvq1_train(P_train,Tc_train,20,cell2mat(rate),0.01,5); result_1=lvq_predict(P_test,Tc_test,20,w1,w2);%% LVQ2算法[w1,w2]=lvq2_train(P_train,Tc_train,20,0.01,5,w1,w2); result_2=lvq_predict(P_test,Tc_test,20,w1,w2);%% 清除环境变量clear allclc;%% 人脸特征向量提取% 人数M=10;% 人脸朝向类别数N=5;% 特征向量提取pixel_value=feature_extraction(M,N);%% 训练集/测试集产生% 产生图像序号的随机序列rand_label=randperm(M*N);% 人脸朝向标号direction_label=[1 0 0;1 1 0;0 1 0;0 1 1;0 0 1];train_label=rand_label(1:30);P_train=pixel_value(train_label,:)';dtrain_label=train_label-floor(train_label/N)*N;dtrain_label(dtrain_label==0)=N;T_train=direction_label(dtrain_label,:)';% 测试集test_label=rand_label(31:end);P_test=pixel_value(test_label,:)';dtest_label=test_label-floor(test_label/N)*N;dtest_label(dtest_label==0)=N;T_test=direction_label(dtest_label,:)'%% 创建BP网络net=newff(minmax(P_train),[10,3],{'tansig','purelin'},'trainlm'); % 设置训练参数net.trainParam.epochs=1000;net.trainParam.show=10;net.trainParam.goal=1e-3;net.trainParam.lr=0.1;%% 网络训练net=train(net,P_train,T_train);%% 仿真测试T_sim=sim(net,P_test);for i=1:3for j=1:20if T_sim(i,j)<0.5T_sim(i,j)=0;elseT_sim(i,j)=1;endendT_sim T_test。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB的人脸识别————————————————————————————————作者: ————————————————————————————————日期:图像识别题目:基于MATLAB的人脸识别院系:计算机科学与应用系班级:姓名:学号:日期:设计题目基于MATLAB的人脸识别设计技术参数测试数据库图片10张训练数据库图片20张图片大小1024×768 特征向量提取阈值 1设计要求综合运用本课程的理论知识,并利用MATLAB作为工具实现对人脸图片的预处理,运用PCA算法进行人脸特征提取,进而进行人脸匹配识别。
工作量两周的课程设计时间,完成一份课程设计报告书,包括设计的任务书、基本原理、设计思路与设计的基本思想、设计体会以及相关的程序代码;熟练掌握Matlab的使用。
工作计划第1-2天按要求查阅相关资料文献,确定人脸识别的总体设计思路;第3-4天分析设计题目,理解人脸识别的原理同时寻求相关的实现算法;第5-8天编写程序代码,创建图片数据库,运用PCA算法进行特征提取并编写特征脸,上机进行调试;第9-12天编写人脸识别程序,实现总体功能;第13-14天整理思路,书写课程设计报告书。
参考资料1 黄文梅,熊佳林,杨勇编著.信号分析与处理——MATALB语言及应用.国防科技大学出版社,20002 钱同惠编著.数字信号处理.北京:机械工业出版社,20043 姚天任,江太辉编著.数字信号处理.第2版.武汉:武汉理工大学出版社,20004 谢平,林洪彬,王娜.信号处理原理及应用.机械工业出版社,20045刘敏,魏玲.Matlab.通信仿真与应用.国防工业出版社,20056 楼顺天.基于Matlab7.x 的系统分析与设计.西安电子科技大学,20027孙洪.数字信号处理.电子工业出版社,2001目录引言ﻩ错误!未定义书签。
1 人脸识别技术ﻩ错误!未定义书签。
1.1人脸识别的研究内容ﻩ错误!未定义书签。
1.1.1人脸检测(Face Detection)........... 错误!未定义书签。
1.1.2人脸表征(Face Representation)ﻩ错误!未定义书签。
1.2几种典型的人脸识别方法ﻩ错误!未定义书签。
1.2.1基于几何特征的人脸识别方法............ 错误!未定义书签。
1.2.2基于K-L变换的特征脸方法ﻩ错误!未定义书签。
1.2.3神经网络方法ﻩ错误!未定义书签。
1.2.4基于小波包的识别方法ﻩ41.2.5支持向量机的识别方法...................... 错误!未定义书签。
2人脸特征提取与识别 ......................................................... 错误!未定义书签。
2.1利用PCA进行特征提取的经典算法——Eigenface算法 (5)2.2 PCA人脸识别流程ﻩ错误!未定义书签。
2.3特征向量选取ﻩ错误!未定义书签。
2.4距离函数的选择ﻩ错误!未定义书签。
2.5基于PCA的人脸识别ﻩ错误!未定义书签。
MATLAB人脸识别程序............................................. 错误!未定义书签。
3 MATLAB软件程序编写ﻩ错误!未定义书签。
3.1.创建图片数据库 .................................................. 错误!未定义书签。
3.2主程序 ................................................................. 错误!未定义书签。
3.3最终程序结果 ........................................................ 错误!未定义书签。
4心得与体会ﻩ错误!未定义书签。
参考文献 ................................................................................... 错误!未定义书签。
引言随着社会的发展及技术的进步,社会各方面对快速高效的自动身份验证的需求可以说无处不在,并与日俱增。
例如,某人是否是我国的居民,是否有权进入某安全系统,是否有权进行特定的交易等。
尤其是自2001年美国“9.1l”恐怖袭击发生以来,如何在车站、机场等公共场所利用高科技手段,迅速而准确地发现并确认可疑分子成了目前世界各国在反恐斗争中普遍关注的问题。
为此,各国都投入大量人力、物力研究发展各类识别技术,使得生物特征识别技术得到了极大的发展。
生物特征识别技术主要包括:人脸识别、虹膜识别、指纹识别、步态识别、语音识别、笔迹识别、掌纹识别以及多生物特征融合识别等。
人类通过视觉识别文字,感知外界信息。
在客观世界中,有75%的信息量都来自视觉,因此让计算机或机器人具有视觉,是人工智能的重要环节。
由于生物特征是人的内在属性,具有很强的稳定性和个体差异性,因此是身份验证最理想的依据。
与虹膜、指纹、基因、掌纹等其他人体生物特征识别系统相比,人脸识别系统更加直接、方便、友好,易于为用户所接受,并且通过人脸的表情、姿态分析,还能获得其它识别系统难以得到的一些信息。
人脸识别技术在国家重要机关及社会安防领域具有广泛用途。
例如:公安系统的罪犯识别、信用卡验证、医学、档案管理、视频会议、人机交互系统等身份识别和各类卡持有人的身份验证。
同其他人体生物特征(如:指纹、掌纹、虹膜、语音等)识别技术相比,人脸识别技术的隐性最好,人脸识别系统更直接、友好,是当今国际反恐和安防最重视的科技手段和攻关标志之一。
虽然人类能毫不费力地识别出人脸及表情,但对人脸的机器自动识别确实一个难度极大的课题,它涉及到模式识别、图像处理及生理、心理学等诸多方面的知识。
人脸识别技术的研究虽然己经取得了一定的可喜成果,但在实际应用中仍存在着许多严峻的问题。
人脸的非刚体性、姿态、表情、发型以及化妆的多样性都给正确识别带来了困难,要让计算机像人一样方便地识别出大量的人脸,尚需不同科学研究领域的科学家共同不懈的努力。
1 人脸识别技术人脸因人而异,绝无相同,即使一对双胞胎,其面部也一定存在着某方面的差异。
虽然人类在表情、年龄或发型等发生巨大变化的情况下,可以毫不困难地由脸而识别出某一个人,但要建立一个能够完全自动进行人脸识别的系统却是非常困难的,它牵涉到模式识别、图像处理、计算机视觉、生理学、心理学以及认知科学等方面的诸多知识,并与基于其他生物特征的身份鉴别方法以及计算机人机感知交互领域都有密切联系。
与指纹、视网膜、虹膜、基因、掌形等其他人体生物特征识别系统相比,人脸识别系统更加直接、友好,使用者无任何心理障碍,并且通过人脸的表情和姿态分析,还能获得其他识别系统难以得到的一些信息。
20世纪90年代以来,随着需要的剧增,人脸识别技术成为一个热门的研究话题。
1.1人脸识别的研究内容人脸识别(Face Recognition)是利用计算机对人脸图像进行特征提取和识别的模式识别技术。
在二十世纪七十年代初,对人脸识别的研究涉及心理学神经科学。
其直接目的是要搞清楚人是如何对人脸进行识别的。
七十年代中期以后,开展了用数学、物理和技术的方法对人脸自动识别的研究。
人脸识别一般可描述为:给定静止图像或动态图像序列,利用已有的人脸图像数据库来确认图像中的一个或多个人。
从广义上来说,计算机人脸识别的研究内容大概可以分为以下五个方面。
1.1.1人脸检测(Face Detection)此过程包括人脸检测(Detection)、人脸定位(Location)和人脸跟踪(Tracking)。
所谓人脸检测,就是给定任意图像,确定其中是否存在人脸,如果有,给出人脸的位置、大小等状态信息。
人脸跟踪指在一纽连续静态图像所构成的动态视频中实时地检测人脸。
人脸检测主要受到光照、噪声、姿念以及遮挡等因素的影响,人脸检测的结果直接关系到后面两个过程的准确性。
近年来,人脸检测和跟踪开始成为独立的研究课题受到关注。
1.1.2人脸表征(Face Representation)人脸表征就是提取人脸的特征,是将现实空间的图像映射到机器空间的过程。
人脸的表示具有多样性和唯一性,这其实就是人脸共性和特性之间的关系问题:只有保持这种多样性和唯一性,才能保证人脸图像的准确描述和识别。
人脸图像信息数据量巨大,为提高检测和识别的运算速度以及提高图像传输和匹配检索速度,必须对图像进行数据压缩,降低向量维数,即用尽可能少的数据表示尽可能多的信息。
人脸的表征在提取人脸特征的同时,也实现了对原始图像数据的降维。
1.2几种典型的人脸识别方法对人脸识别方法的研究主要有两大方向:一是基于人脸图像局部特征的识别方法;二是基于人脸图像整体特征的识别方法。
基于人脸图像局部特征的识别通常抽取人脸器官如眼睛、眉毛、鼻子和嘴等器官的位置,尺度以及彼此间的比率作为特征。
进一步地可以用几何形状拟合人脸器官,从而以几何参数作为描述人脸的特征。
由于此类方法通常要精确地抽取出位置、尺度、比率或几何参数作为描述人脸的特征,因此对人脸图像的表情变化比较敏感。
同时,人脸器官分割的精确度也对人脸特征的提取有一定的影响。
另外,该类方法并没有充分利用到人脸图像本身具有的获度信息,该方向已经不是人脸识别技术发展的主流方向。
基于人脸图像整体特征的人脸识别方法由于不需要精确提取人脸图像中部件的具体信息,而且可以充分利用到人脸图像本身具有的灰度信息,因此可获得更好的识别性能。
目前,绝大部分关于人脸识别方法的文章都是基于人脸图像整体特征的,主要有特征脸法、最佳鉴别向量集法,贝叶斯法,基予傅立叶不变特征法,弹性图匹配法,其他相关方法有线性子空间法,可变形模型法和神经网络法。
这些方法中有的侧重于表述人脸图像的特征提取,如弹性图匹配法和傅立叶不变特征法;有的则侧重于分类,如最佳鉴别向量集法、贝叶斯法和神经网络法;而有的则侧重于人脸图像重构,如特征脸法和线性子空间法。
所有这些基于人脸图像整体特征的人脸识别方法均取得了一定的识别性能。
1.2.1基于几何特征的人脸识别方法基于几何特征的人脸识别方法主要源于人脸识别的初期研究阶段。
这种方法是以人脸各个器官和几何关系为基础进行算法设计。
对于不同人来说,脸上的各个器官,如眼睛、鼻子、嘴巴以及整个脸部的轮廓具有不同的形状、大小、相对位置和分布情况。
在基于几何特征的人脸识别方法中,可以用一个矢量来表示提取出来的几何参数。
如果要获得一个准确、稳定和可靠的识别结果,就要求这些被选出的几何特征参数包含足够丰富的辨识人脸的信息,且能反映不同人脸之间的差别。
也就是说对这些矢量要求具有较高的模式分类能力,同时还要有一定的稳健性,能够消除由于时间变迁、光照变化等其他干扰因素所带来的影响。