七年级逆命题和逆定理(1)课件教案-程老师

合集下载

2.4 逆命题和逆定理(解析版)

2.4 逆命题和逆定理(解析版)

2.4 逆命题和逆定理(3)举出反例即可.【详解】(1)解:此命题的条件为:a=b,结论为:|a|=|b|;(2)此命题的逆命题为:如果|a|=|b|,那么a=b;(3)此命题的逆命题是假命题,当a,b为相反数时,它们的绝对值相等,但本身不相等,如a=2,b=―2时,|2|=|―2|,而2≠―2.【点睛】本题考查的是命题与定理,用到的知识点是真假命题的定义,正确的命题叫真命题,错误的命题叫做假命题,交换命题的中题设和结论即为原命题的逆命题.考查题型二互逆定理4.下列说法正确的是()A.任何命题都有逆命题B.任何定理都有逆定理C.真命题的逆命题一定是真命题D.定理的逆命题一定是真命题【答案】A【分析】利用逆命题、逆定理的知识对各项进行判断即可得到答案.【详解】解:A.任何命题都有逆命题,故A说法正确,符合题意;B.任何定理不一定有逆定理,故B说法错误,不符合题意;C.真命题的逆命题不一定是真命题,故C说法错误,不符合题意;D. 定理的逆命题不一定是真命题,故D说法错误,不符合题意;故选:A.【点睛】本题考查了命题与定理,判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题,经过推理论证的真命题叫定理,两个命题的题设与结论为互换的命题互为逆命题.5.下列定理中,没有逆定理的是()A.同角的余角相等B.等腰三角形两个底角相等C.线段垂直平分线上的任意一点到这条线段两个端点的距离相等D.两直线平行,同旁内角互补【答案】A【分析】没有逆定理就是逆命题不正确的选项,逐一写出各选项的逆命题,判定即可.【详解】解:A、逆命题是余角相等的两个角是同一个角,不是逆定理;B、逆命题是有两个角相等的三角形是等腰三角形,是逆定理;C、到线段两端点距离相等的点在线段的垂直平分线上,是逆定理;D、逆命题是同旁内角互补,两直线平行,是逆定理;故选A.【点睛】本题考查了命题与定理的知识,解题的关键是了解这些命题的逆命题,然后判断其真假.6.下列定理中,哪些有逆定理?如果有逆定理,写出它的逆定理.(1)同旁内角互补,两直线平行.(2)三角形的两边之和大于第三边.【答案】(1)有,逆定理是:两直线平行,同旁内角互补(2)有,逆定理是:如果三条线段中,任意两条线段长度之和大于第三条线段的长度,那么这三条线段能围成三角形【分析】(1)先写出逆命题,再根据平行线的性质判断逆命题的真假,进而可得出结论;(2)先写出逆命题,再根据三角形的三边关系判断逆命题的真假,进而可得出结论.【详解】(1)解:逆命题是:两直线平行,同旁内角互补,是真命题,故原定理有逆定理:两直线平行,同旁内角互补;(2)解:逆命题为:如果三条线段中,任意两条线段长度之和大于第三条线段的长度,那么这三条线段能围成三角形,是真命题,故原定理有逆定理:如果三条线段中,任意两条线段长度之和大于第三条线段的长度,那么这三条线段能围成三角形.【点睛】本题考查了逆定理的定义、平行线的性质、三角形的三边关系,解答的关键是理解逆定理的定义:如果一个定理的逆命题被证明是真命题,那么就叫它是原定理的逆定理.∠ABC,∴∠CBD=12∴∠CBD=∠BCE,在△BCE和△CBD∠CBE=∠BCDBC=CB∠BCE=∠CBD棍EF,GD组成,D是EF的中点.寻找角的平分线时,需要调整位置,使得所分角的顶点O在GD上,同时保证T形分角仪的E,F两点正好落在所分角的两条边OA,OB上,此时OD就会平分∠AOB.为说明制作原理,请结合下边图形,用数学符号语言补全“已知”、“求证”,并写出证明过程.已知:如图,点E,F分别在∠AOB的边上,DG经过点O,__________,__________.求证:__________.证明:【答案】见解析【分析】根据题意,写出已知、证明、求证,根据垂直平分线的性质得出OE=OF,进而根据等腰三角形的性质得出OD平分∠AOB.【详解】已知:如图,点E,F分别在∠AOB的边上,DG经过点O,DG⊥EF,DE=DF(或D是EF的中点),求证:OD平分∠AOB(或∠AOD=∠BOD).证明:∵DG⊥EF,DE=DF,∴DG垂直平分EF.∴OE=OF.∵DG⊥EF,点O在DG上,∴OD平分∠EOF.即OD平分∠AOB.【点睛】本题考查了垂直平分线的性质,等腰三角形的性质与判定,熟练掌握以上知识是解题的关键.11.如图,有如下四个论断:①AC∥DE;②DC∥EF;③CD平分∠BCA;④EF平分∠BED,请你选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个正确的数学命题并证明它.【答案】见解析【分析】根据平行线的性质和角平分线的定义即可得到结论.【详解】已知:AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED.证明:如图所示,∵AC∥DE,∴∠BCA=∠BED,即∠1+∠2=∠4+∠5,∵DC∥EF,∴∠2=∠5,∵CD平分∠BCA,∴∠1=∠2,∴∠4=∠5,∴EF平分∠BED.【点睛】本题考查了命题与定理,平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键.12.作图:已知直线l1∥l2∥l3,在三条直线上各取一个点作一个等边△ABC.操作:如图,在l1上取点A,D,在l3上取点E,作等边△ADE,DE交l2于点B;在l3上点E的左侧取点C,使CE=BD,连接AC,BC,则△ABC即为所求的等边三角形.(1)完成作图并写出已知,求证;(2)证明△ABC为等边三角形.【答案】(1)见解析(2)见解析【分析】(1)根据题意作图即可;然后写出对应的已知和求证即可;(2)只需要证明△ACE ≌△ADB 得到AC =AB ,∠CAE =∠BAD ,再证∠CAE +∠EAB =∠BAD +∠EAB =60°,即∠CAB =60°,即可证明△ABC 为等边三角形.【详解】(1)解:如图,△ABC 即为完成的图形;已知:如图,已知直线l 1∥l 2∥l 3,在l 1上取点A ,D ,在l 3上取点E ,作等边△ADE ,DE 交l 2于点B ;在l 3上点E 的左侧取点C ,使CE =BD ,连接AC ,BC .求证:△ABC 为等边三角形.(2)证明:由(1)得:∵△ADE 是等边三角形,∴AD =AE ,∠EAD =∠EDA =∠AED =60°,∵l 1∥l 2∥l 3,∴∠EAD =∠CEA =60°,∴∠AEC =∠EDA ,在△ACE 和△ADB 中,AD =AE ∠AEC =∠ADB BD =CE,∴△ACE ≌△ADB (SAS ),∴AC =AB ,∠CAE =∠BAD ,∴∠CAE +∠EAB =∠BAD +∠EAB =60°,∴∠CAB =60°,∴△ABC 为等边三角形.【点睛】本题主要考查了作等边三角形,全等三角形的性质与判定,等边三角形的性质与判定,平行线的性质,写出一个命题的已知和求证,正确理解题意画出图形是解题的关键.13.写出定理“等腰三角形顶角的角平分线和底边上的高线互相重合”的逆命题,并证明这个命题是真命题.逆命题:______.已知:______.求证:______.【答案】一边上的高线与这边对角的角平分线重合的三角形是等腰三角形;如图所示,AD⊥BC,AD是△ABC的角平分线;△ABC是等腰三角形;证明见解析.【分析】根据逆命题可直接进行解答,然后写出已知求证,进而根据三角形全等进行求证即可.【详解】解:由题意可得,原命题的逆命题为:一边上的高线与这边对角的角平分线重合的三角形是等腰三角形.这个命题是真命题.已知,如图所示:AD⊥BC,AD是△ABC的角平分线,求证△ABC是等腰三角形.证明如下:∵AD⊥BC,∴∠ADB=∠ADC,∵AD是△ABC的角平分线,∴∠DAB=∠DAC,∵AD=AD,∴△ABD≌△ACD,∴AB=AC,∴△ABC是等腰三角形.故答案为:一边上的高线与这边对角的角平分线重合的三角形是等腰三角形;如图所示,AD⊥BC,AD是△ABC的角平分线;△ABC是等腰三角形.【点睛】本题主要考查逆命题、全等三角形的性质与判定及等腰三角形的判定,熟练掌握逆命题、全等三角形的性质与判定及等腰三角形的判定是解题的关键.14.如图所示,AB,CD相交于点E,连接AD,BC,①∠A=∠C,②AD=CB,③AE=CE.以这三个式子中的两个作为命题的条件,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)在构成的三个命题中,真命题有________个;(2)请选择其中一个真命题加以证明.【答案】(1)2;(2)选择①②⇒③,见解析.【分析】(1)根据全等三角形的判定定理AAS ,ASA 即可判断;(2)选择①②⇒③,根据全等三角形的判定定理AAS ,得到ΔADE≌ΔCBE (AAS ),然后即可得到AE =CE .【详解】解:(1)①②⇒③,满足全等三角形判定定理AAS ,是真命题;①③⇒②,满足全等三角形判定定理ASA ,是真命题;②③⇒①,是SSA ,不能证明三角形全等,故不能得到①成立,是假命题;故答案为2;(2)选择①②⇒③.证明:在ΔADE 和ΔCBE 中,∠AED =∠CEB (对顶角相等),∠A =∠C (已知),AD =CB (已知),∴ΔADE≌ΔCBE (AAS ).∴AE =CE (全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定定理,掌握、熟练运用全等三角形的证明方法证明全等是解题的关键.。

第13章 13.5 13.5. 1 互逆命题与互逆定理

第13章  13.5  13.5. 1 互逆命题与互逆定理

证明:过点E作EM⊥BC于点M,过点D作DN⊥BC于
点N,∵BD、CE分别是△ ABC的中线,∴S△ BEC=S△ BDC,

1 2
BC·EM=
1 2
BC·DN,∴EM=DN,在Rt△ EMC和
Rt△ DNB中,CE=BD,EM=DN,
∴Rt△ EMC≌Rt△ DNB,∴∠ECM=∠DBC,在△ EBC
6.在△ ABC 中,∠A 的相邻外角是 110°,要使△ ABC 是等腰三角形,则∠B= 55°或 70°或 40° .
7. 命题“等腰三角形两腰上的中线相等”的逆命题 是 两边上的中线相等的三角形是等腰三角形 ,这个命 题是 真 命题.(填“真”或“假”)
【解析】逆命题:两边上的中线相等的三角形是等 腰三角形.已知:如图,在△ ABC中,BD、CE分别是 边AC和AB上的中线,且CE=BD,求证:△ ABC是等腰 三角形.
知识点 互逆定理 4. 下列定理是否都有逆定理?若有,请写出来. (1)如果两个角都是直角,那么这两个角相等; (2)内错角相等,两直线平行; (3)等边三角形的三个内角都等于60°.
解:(1)逆命题是:如果两个角相等,那么这两个角 是直角,它是一个假命题,故(1)没有逆定理.
(2)逆命题是:两直线平行,内错角相等,它是一个 真命题,故(2)的逆命题就是它的逆定理.

如图,△ ABC 是等边三角形. (1)若 AD=BE=CF,求证:△ DEF 是等边三角形; (2)请问(1)的逆命题成立吗?若成立,请证明;若不 成立,请用反例说明.
解:(1)∵△ABC 是等边三角形, ∴∠A=∠B=∠C, AB=AC=BC, 又∵AD=BE=CF, ∴AB-AD=BC-BE=AC-CF, 即 BD=CE=AF. ∴△ADF≌△BED≌△CFE.

《逆命题和逆定理》教学设计-01

《逆命题和逆定理》教学设计-01

《逆命题和逆定理》教学设计教学目标:1、经历逆命题的概念的发生过程,了解一个命题都是由条件与结论两部分构成,每个命题都有它的逆命题,命题有真假之分。

2、了解逆命题、逆定理的概念。

教学重点、难点:重点:会识别两个命题是不是互逆命题,会在简单情况下写出一个命题的逆命题,了解原命题成立,其逆命题不一定成立.难点:能判断一些命题的真假性,并能运用推理的思想方法证明一类较简单的真命题,同时了解假命题的证明方法是举反例说明.教学过程:一、回顾旧知,引入新课1、命题的概念:对某一件事情作出正确或不正确的判断的句子叫做命题。

我们还知道,命题都有两部分,即条件和结论,它的一般形式是“如果…,那么…”例1.命题:“平行四边形的对角线互相平分”条件是,结论是。

命题:“对角线互相平分的四边形是平行四边形”条件是,结论是。

以上两个命题有什么不同?请你说一说。

归纳:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。

如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。

就例1来说,如果说“平行四边形的对角线互相平分①”为原命题,则“对角线互相平分的四边形是平行四边形②”为逆命题。

我们说①②两个命题叫做互逆命题。

请学生分别说明上表的原命题,逆命题及真假。

问:每个命题都有它的逆命题,但每个真命题的逆命题是否一定为真命题?二、合作学习(P120,做一做)1、说出下列命题的逆命题,并判定逆命题的真假;①既是中心对称,又是轴对称的图形是圆。

逆命题:圆既是中心对称,又是轴对称的图形——真命题。

②有一组对边平行且相等的四边形是平行四边形。

逆命题:平行四边形有一组对边平行并且相等——真命题。

③磁悬浮列车是一种高速行驶时不接触地面的交通工具。

逆命题:高速行驶时,不接触地面的交通工具是磁悬浮列车——假命题。

归纳:像②那样,如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理。

《逆命题、逆定理》word教案 (公开课获奖)2022北师大版

《逆命题、逆定理》word教案 (公开课获奖)2022北师大版

有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。

2、通过实例,探究出有理数除法法则。

会把有理数除法转化为有理数乘法,培养学生的化归思想。

重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。

教学过程:一、创设情景,导入新课1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。

教师:引导学生回顾小学知识,根据除法是乘法的逆运算完成上例,要求6÷3即要求3×?=6,由3×2=6可知6÷3=2。

同理(-6)÷3=-2,6÷(-3)=-2,(-6)÷(-3)=2。

根据以上运算,你能发现什么规律?对于两个有理数a,b ,其中b ≠0,如果有一个有理数c 使得c ×b=a ,那么我们规定a ÷b=c ,称c 叫做a 除以b 的商。

2、从有理数的除法是通过乘法来规定,引导学生对比乘法法则,自己总结有理数除法法则,经讨论后,板书有理数除法法则。

同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。

逆命题与逆定理课件

逆命题与逆定理课件

在计算机科学中的应用
逆命题
在计算机科学中,逆命题常常被用来验证算法的正确性。例如,排序算法的时间 复杂度逆命题是“如果一个排序算法的时间复杂度低于O(n^2),则该算法一定 存在”。
逆定理
在计算机科学中,有些算法的特性可以通过逆命题来证明。例如,快速排序算法 的稳定性逆定理是“如果一个排序算法是稳定的,则该算法一定不是基于比较的 ”。
详细描述
在应用逆定理时,需要确保所涉及的对象、 条件和范围与原定理相符合。例如,勾股定 理的逆定理适用于直角三角形,但不适用于
非直角三角形或不等边三角形。
注意逆定理的表述方式
要点一
总结词
逆定理的表述方式应清晰、准确,避免产生歧义或误解。
要点二
详细描述
在表述逆定理时,应使用与原定理一致的逻辑结构和语言 风格,确保读者能够正确理解。同时,需要注意语句的完 整性和连贯性,避免出现语法错误或遗漏重要信息。
在数学中的应用
逆命题
在数学中,逆命题是一种重要的逻辑推理工具。通过逆命题,我们可以对已知命题进行否定,从而得出新的结论 。例如,原命题为“如果两个三角形全等,则它们的对应角相等”,其逆命题为“如果两个三角形的对应角相等 ,则这两个三角形全等”。
逆定理
逆定理是原定理的逆命题经过证明后形成的新的定理。例如,在几何学中,勾股定理的逆定理是“如果一个三角 形的三边满足勾股定理,则这个三角形是直角三角形”。
逆命题的性质
逆命题的真假性不一定与原命题相同 。
在数学中,一个定理的逆命题不一定 成立,只有当逆命题和原命题都成立 时,才称为逆定理。
逆命题的例子
01
02
03
原命题
如果一个三角形是等边三 角形,那么它的每个角都 是60度。

19.4.1逆命题与逆定理(第一课时)课件

19.4.1逆命题与逆定理(第一课时)课件

我能行
2
逆命题:圆既是中心对称,又是轴对称的图形——真命题
练习2、说出下列命题的逆命题,并判定逆命题 的真假: ①既是中心对称,又是轴对称的图形是圆。
②有一组对边平行且相等的四边形是平行四边形。
逆命题:平行四边形有一组对边平行并且相等——真命题。
③磁悬浮列车是一种高速行驶时不接触地面的交 通工具。
1、写出下列命题的逆命题,并判断它是真是假。
(1)如果x=y,那么x2 =y2; (2)如果一个三角形有一个角是钝角,那么它的另外 两个角是锐角; (3)如果a=b,那么a-b =0; (4)如果a>b,则ac2>bc2; (5)菱形的两条对角线互相垂直; (6)三角形的一条中线平分三角形的面积.
A
D
F B
E
C
5.指出下列命题的题设和结论,并说出它们的逆命题。 1、等边三角形的每个角都等于60° 题设:一个三角形是等边三角形. 结论:它的每个角都等于60° 逆命题:如果一个三角形的每个角都等于60°, 那么这个三角形是等边三角形. 2、全等三角形的对应角相等. 题设:两个三角形是全等三角形. 结论:它们的对应角相等. 逆命题:如果两个三角形的对应角相等, 那么这两个三角形全等.
若原命题不成立时,其逆命题也一定不成立吗?
思考: 若原命题成立,其逆命题一定成立吗?
归纳
2
归纳:如果一个定理的逆命题也是定理,那么 这两个定理叫做互逆定理。
其中的一个定理叫做另一个定理的逆定理。 注意1:逆命题、互逆命题不一定是真命题,
但逆定理、互逆定理,一定是真命题
注意2:不是所有的定理都有逆定理
自学指导
看课本,思考一下问题: 1、什么是互逆命题、互逆定理? 2、将P88的空白处补充完整

逆命题和逆定理课件

逆命题和逆定理课件

证明定理
逆命题和逆定理常常被用 来证明数学中的定理,通 过逆向推理,我们可以验 证一个命题是否成立。
解决数学问题
在解决数学问题时,逆命 题和逆定理可以帮助我们 从一个已知的结果出发, 反向推导出问题的答案。
数学逻辑
逆命题和逆定理是数学逻 辑中的重要概念,它们有 助于理解数学中的逻辑关 系和推理过程。
决策制定
在日常生活中,我们常常需要做 出决策,逆命题和逆定理可以帮 助我们分析一个决策可能带来的
结果和影响。
问题解决
在解决问题时,逆命题和逆定理可 以帮助我们从问题的结果出发,反 向推导出可能的原因或解决方案。
沟通交流
在沟通交流中,逆命题和逆定理可 以帮助我们理解对方的观点或立场 ,从而更好地进行交流和协商。
04
逆命题和逆定理的证明方法
直接证明法
总结词
通过直接推理,从已知条件出发,逐步推导出结论。
详细描述
直接证明法是最常见的一种证明方法,它直接利用已知条件和已知定理、定义 进行推理,逐步推导出结论。这种方法逻辑严谨,步骤清晰,易于理解。
反证法
总结词
通过假设与结论相反的情况,推导出矛盾,从而证明结论的 正确性。
ቤተ መጻሕፍቲ ባይዱ
对其他学科的意义
促进其他学科的发展
逆命题和逆定理在其他学科中也有广 泛应用,如物理学、工程学等,它们 的运用有助于推动这些学科的发展。
提供跨学科研究的工具
逆命题和逆定理可以作为跨学科研究 的工具,促进不同学科之间的交流和 合作。
对日常生活的意义
提高逻辑思维能力和判断力
逆命题和逆定理的学习和应用有助于提高人们的逻辑思维能力和判断力,帮助人们更好 地应对生活中的各种挑战。

27.2.4逆命题、逆定理

27.2.4逆命题、逆定理

B A
C D
∵AC,BD是矩形ABCD的两条对角线. B ∴AC=BD. 推论(直角三角形性质):直角三角形 A 斜边上的中线等于斜边的一半.
在△ABC中,∠ACB=900, 1 ∵AD=BD, CD AB.
2
C
C
D B
回顾
思考
矩形的判定,直角三角形的 判定
D
A 定理:有三个角是直角的四边形是矩形. ∵∠A=∠B=∠C=900, ∴四边形ABCD是矩形. B 定理:对角线相等的平行四边形是矩形. ∵AC,BD是□ABCD的两条对角线,且AC=DB. A ∴四边形ABCD是矩形. 定理:如果一个三角形一边上的中线等 于这边的一半,那么这个三角形是直角三 B 角形.
回顾
思考
菱形的判定
定理:四条边都相等的四边形是菱形. 在四边形ABCD中, ∵AB=BC=CD=AD, ∴四边形ABCD是菱形.
D A B C A
D O C
ห้องสมุดไป่ตู้
B
定理:对角线互相垂直的平行四边形是菱形.
∵AC,BD是□ ABCD的两条对角线,AC⊥BD.
∴四边形ABCD是菱形.
; 混凝土搅拌站 稳定土拌合站 移动破碎站 ; 2019.1 ;
D
E B
已知:如图,AC,BD是矩形ABCD的两条对 角线,AC,BD相交于点O,∠AOD=1200, AB=2.5cm.
求矩形对角线的长.
A D
O B C
回顾
思考
菱形的性质
D
A O C
定理:菱形的四条边都相等. ∵四边形ABCD是菱形, ∴AB=BC=CD=AD.
D
A
B
C
B
定理:菱形的两条对角线互相垂直,并且每条对角线平分 一组对角. ∵AC,BD是菱形ABCD的两条对角线. ∴AC⊥BD,AC平分∠BAD和∠BCD,BD 平分∠ADC和∠ABC.

逆命题和逆定理(1)

逆命题和逆定理(1)

逆命题和逆定理(1)渔渡中学党文州教学目标1、经历逆命题的概念的发生过程,了解一个命题都是由条件与结论两部分构成,每个命题都有它的逆命题,命题有真假之分。

2、了解逆命题、逆定理的概念。

教学重难点重点:会识别两个命题是不是互逆命题,会在简单情况下写出一个命题的逆命题,了解原命题成立,其逆命题不一定成立.难点:能判断一些命题的真假性,并能运用推理的思想方法证明一类较简单的真命题,同时了解假命题的证明方法是举反例说明.教学过程一、回顾旧知,引入新课1、命题的概念:对某一件事情作出正确或不正确的判断的句子叫做命题。

我们还知道,命题都有两部分,即条件和结论,它的一般形式是“如果…,那么…”例1.命题:“平行四边形的对角线互相平分”条件是,结论是。

命题:“对角线互相平分的四边形是平行四边形”条件是,结论是。

以上两个命题有什么不同?请你说一说。

归纳:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。

如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。

就例1来说,如果说“平行四边形的对角线互相平分①”为原命题,则“对角线互相平分的四边形是平行四边形②”为逆命题。

我们说①②两个命题叫做互逆命题。

请学生分别说明上表的原命题,逆命题及真假。

(幻灯片演示)问:每个命题都有它的逆命题,但每个真命题的逆命题是否一定为真命题?二、合作学习(做一做)1、说出下列命题的逆命题,并判定逆命题的真假;①既是中心对称,又是轴对称的图形是圆。

逆命题:圆既是中心对称,又是轴对称的图形——真命题。

②有一组对边平行且相等的四边形是平行四边形。

逆命题:平行四边形有一组对边平行并且相等——真命题。

③磁悬浮列车是一种高速行驶时不接触地面的交通工具。

逆命题:高速行驶时,不接触地面的交通工具是磁悬浮列车——假命题。

归纳:像②那样,如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理。

19.3 命题和逆定理(解析版)

19.3 命题和逆定理(解析版)

19.3 命题和逆定理1.知道原命题、逆命题、互逆命题、逆定理、互逆定理的含义2.会写一个命题的逆命题,并会证明它的真假3.知道每一个命题都有逆命题,但一个定理不一定有逆定理知识点一 互逆命题、原命题、逆命题1.概念在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题(1)原命题与逆命题是相对的,每个命题都有逆命题.(2)原命题是真命题,逆命题不一定是真命题;原命题是假命题,逆命题不一定是假命题拓展:符号语言表示原命题:如果p,那么q;逆命题:如果q,那么p.2.方法写原命题的逆命题时,首先要分清这个命题的题设和结论,最好先将原命题改写成“如果…,那么…”的形式,“如果”引出的部分是题设,“那么”引出的部分是结论,再根据改写后的命题写出原命题的逆命题.即学即练1(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)下列命题的逆命题是假命题的是( )A .直角三角形的两个锐角互余B .两直线平行,内错角相等C .三条边对应相等的两个三角形是全等三角形D .若x y =,则22x y =【答案】D【分析】写出原命题的逆命题后判断正误即可.【详解】解:A 、逆命题为两角互余的三角形是直角三角形,正确,是真命题,不符合题意;B 、逆命题为内错角相等,两直线平行,正确,是真命题,不符合题意;如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.即学即练2(2022秋·上海青浦·八年级校考期末)下列定理中,没有逆定理的是()A.两直线平行,同旁内角互补;B.两个全等三角形的对应角相等C.直角三角形的两个锐角互余;D.两内角相等的三角形是等腰三角形【答案】B【分析】先写出各选项的逆命题,判断出其真假即可解答.【详解】A.其逆命题是“同旁内角互补,两直线平行”,正确,所以有逆定理;B.其逆命题是“对应角相等的三角形是全等三角形”,错误,所以没有逆定理;C.其逆命题是“两个锐角互余的三角形是直角三角形”,正确,所以有逆定理;D.其逆命题是“等腰三角形的两个内角相等”,正确,所以有逆定理.故选B.【点睛】本题考查了命题与定理的区别,正确的命题叫定理.例2(2023秋·上海静安·八年级上海市风华初级中学校考期末)下列定理中,如果其逆命题是真命题,那么这个定理是()A.对顶角相等B.直角三角形的两个锐角互余C.全等三角形的对应角相等D.邻补角互补【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,可得答案.【详解】解:∵“如果22a b=.”=,那么a=b”的逆命题是“如果a=b,那么22a b∴“如果22=,那么a=b”的逆命题是真命题,a b故答案为:真.【点睛】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.一、单选题1.(2023春·上海嘉定·八年级校考开学考试)下列命题的逆命题是假命题的是()A.同位角相等,两直线平行B.在一个三角形中,等边对等角C.全等三角形三条对应边相等D.全等三角形三个对应角相等【答案】D【分析】先写出原命题的逆命题,然后判断真假即可解答.【详解】解:A、逆命题为两直线平行,同位角相等,正确,为真命题;B、逆命题为:在一个三角形中等角对等边,正确,是真命题;C、逆命题为:三条边对应相等的三角形全等,正确,是真命题;D、逆命题为:三个角对应相等的三角形全等,错误,为假命题,故选:D.【点睛】本题主要考查了命题与定理的知识,能够正确的写出原命题的逆命题是解题的关键.2.(2022秋·上海黄浦·八年级校联考阶段练习)下列命题中,逆命题是假命题的是( )A.等边三角形的三个内角都等于60°B.如果两个三角形全等,那么这两个三角形的对应角相等C.如果两个三角形全等,那么这两个三角形的对应边相等D.相等的两个角是对顶角【答案】B【分析】先分别确定各命题的逆命题,再判断真假即可.【详解】A选项的逆命题是“三个内角都等于60°的是等边三角形”,是真命题,所以不符合题意;题意;C 、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,不符合题意;D 、若0a >,0b >,则0a b +>的逆命题是若0a b +>,则0a >,0b >,逆命题是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.5.(2022秋·上海·八年级专题练习)下列命题中,其逆命题是真命题的命题个数( )(1)全等三角形的对应角相等; (2) 对顶角相等; (3) 等角对等边;(4)两直线平行,同位角相等; (5)全等三角形的面积相等;A .1个B .2个C .3个D .4个【答案】B【分析】首先写出各个命题的逆命题,再进一步判断真假.【详解】(1)逆命题是:三个角对应相等的两个三角形全等,错误;(2)逆命题是:相等的角是对顶角,错误;(3)逆命题是等边对等角,正确;(4)逆命题是同位角相等,两条直线平行,正确;(5)逆命题是面积相等,两三角形全等,错误.故选:B .【点睛】本题主要考查了逆命题的定义及真假性,学生易出现只判断原命题的真假,也就是审题不认真,难度适中.【答案】见解析【分析】由角的和差关系可得∠CPB=∠DPA,由中点的定义可得BP=AP,利用SAS可证明△APD≌△BPC,根据全等三角形的性质即可得结论.【详解】∵∠1=∠2,∴∠1+∠CPD=∠2+∠CPD,即∠CPB=∠DPA∵P是线段AB的中点,∴BP=AP,在△APD和△BPC中,BP APCPB DPA PC PD=ìïÐ=Ðíï=î,∴△APD≌△BPC,∴∠C=∠D.【点睛】本题考查中点的定义及全等三角形的判定与性质,判定三角形全等的常用方法有:SSS、SAS、AAS、ASA、HL等,注意:SSA、AAA不能判定两个三角形全等,利用SAS时,角必须是两边的夹角;熟练掌握并灵活运用全等三角形的判定定理是解题关键.14.(2022春·上海·八年级专题练习)如图,在Y ABCD中,E为对角线AC延长线上的一点.(1)若四边形ABCD是菱形,求证:BE=DE.(2)写出(1)的逆命题,并判断其是真命题还是假命题,若是真命题,给出证明;若是假命题,举出反例.【答案】见解析【详解】试题分析:(1)根据“菱形ABCD的对角线互相垂直平分”的性质推知OE是△BDE 的边BD上的中垂线,结合角平分线的性质可知△DEB为等腰三角形;(2)(1)的逆命题是“若BE=DE,则四边形ABCD是菱形”.根据平行四边形ABCD的对角线相互平分知OD=OB,结合角平分线的性质推知OE是BD的中垂线,即平行四边形ABCD 的对角线互相垂直.试题解析:(1)连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,且BO=OD.又∵E是AC延长线上的一点,∴EO是△BDE的边BD的中垂线,∠DEB的角平分线,∴△DEB是等腰三角形,∴BE=DE;(2)(1)的逆命题是“若BE=DE,则四边形ABCD是菱形”,它是真命题,理由如下:∵平行四边形ABCD,对角线AC、BD交于点O,∴BO=OD.又∵BE=DE∴EO⊥BD,即AC⊥BD,∴四边形ABCD是菱形.。

七年级数学教案:互逆命题(全2课时)

七年级数学教案:互逆命题(全2课时)

课时NO: 主备人:审核人用案时间:年月日星期教学课题12.3互逆命题(2)教学目标1.进一步理解命题证明的一般步骤.2.知道可以利用互逆的两个真命题证明相关问题.3.在证明中,不断发展合乎逻辑的思考、有条理的表达能力.教学重点命题证明的一般步骤,有条理的证明. 在证明中,不断发展合乎逻辑的思考、有条理的表达能力.教学难点命题证明的一般步骤,有条理的证明. 在证明中,不断发展合乎逻辑的思考、有条理的表达能力.教学方法教具准备教学课件教学过程个案补充一.自主先学:.预学作业:阅读P159-160,思考下列问题:1.在你已经学过的命题中,试举出两个命题:它们不仅是互逆命题,而且都是真命题.2.命题证明的一般步骤是什么?3例1是如何添加辅助线的?为什么要这样添加?证明过程中用到了哪两个互逆命题?4例2是如何证明的?说出该命题的逆命题,这个逆命题是真命题吗?.预学检测:(1)已知:如图,直线AB、CD、EF被直线BF所截,∠B+∠1=180°,∠2=∠3.求证:∠B+∠F=180°.(2)你在(1)的证明过程中应用了哪两个互逆的真命题.二.探究交流问题如何证明命题?活动1:证明:“对顶角的平分线在同一直线上”.活动2:证明命题:如果一个角的两边与另一个角的两边互相平行,那么这两个角相等或互补.三.交流展示【导法慧学】原命题正确它的逆命题是否正确?【导评促学】1.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个B.1个C.2个D.3个2.如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.求证∠AED=∠C证明:∵∠EFD+∠EFG=180°()∠BDG+∠EFG=180°()∴∠BDG=∠EFD()∴BD∥EF()∴∠BDE+∠DEF=180°()又∵∠DEF=∠B()∴∠BDE+∠B=180°()∴DE∥BC()∴∠AED=∠C()以上证明过程用到了两个互逆的真命题,这两个真命题是;.3.如图:∠1=∠2,∠D=90°,EF⊥CD,求证:∠3=∠B.四.小结与反思:课外作业:布置作业板书设计教后札记。

13.5 逆命题、逆定理(线段垂直平分线优秀课件)

13.5 逆命题、逆定理(线段垂直平分线优秀课件)


1 已知:如图,在Rt△ABC中, ∠A=90°AB=3,AC=5,BC边 的垂直平分线DE交BC于点D, B 交AC于点E, △ABE周长
A E
D
C
基础过关
如图,在△ABC中,∠C=90°, B ∠B=15°,AB的垂直平分线交 B C于点D,如果BD=8 cm D 4cm 30° ∠ADC=_____A校址
本节课你有哪些收获?
一、线段垂直平分线的的性质定理: 线段垂直平分线上的点与这条线段 两个端点的距离相等。 二、逆定理: 与一条线段两个端点距离相等的点, 在这条线段的垂直平分线上。
课后作业:
课本96页第1、2、3题
概念复习
垂直平分线的概念是什么? (三要素:与已知线段垂直、平分 的直线)
学习目标
掌握线段垂直平分线的性质定 理及逆定理
能运用两个定理解决有关的实 际问题
问题:如图,A、B、C三个村庄合建 一所学校,要求校址P点距离三个村 庄都相等.请你帮助确定校址. C

A


B
猜想: 线段垂直平分线上的点到这条线段 两个端点距离相等.
线段垂直平分线的判定:
逆定理:到线段两个端点的距离 相等的点在这条线段的垂直平分线 上. 几何语言: ∵PA=PB(已知), ∴点P在AB的垂直平分线上(到一条线段 两个端点距离相等的点,在这条线段的垂直 平分线上).
巩固新知
1、四边形ABCD中,AB=AD,BC=DC,
线段BD的垂直平分线上 则①点A在_________________________________ 线段BD的垂直平分线上 ②点C在___________________________________ 垂直平分线 ③AC是BD的_______________________________ B 2、 在△ABC中,AC=27,E是AC上一点,△BCE周长50, 线段AB的垂直平分线 BC长23,则点E在_____________________ A C D A

七年级证明(1)课件教案-程老师

七年级证明(1)课件教案-程老师

17 。 n 3n 7 =_____ 当n=5时, 2 25 。 当n=6时, n 3n 7 =_____
2
当n=6时,代数式的值为25,25不是质数, 所以命题是假命题。
要判定一个命题是真命题,
往往需要从命题的条件出发, 根据已知的定义、基本事实、定理(包括推论), 一步一步推得结论成立, 这样的推理过程叫做证明
试一试: 2 7 。 = _____ n 3 n 7 当n=0时 2 5 。 n 3n 7 =_____ 当n=1时, 2 5 。 当n=2时, n 3n 7 =_____ 7 。 当n=3时,n 2 3n 7 =_____ 2 11 。 当n=4时, n 3n 7 =_____
复习回顾:
定义
命题分类
推 真命题 理
基本事实
定理(推论)
举 假命题 反 例
当n=0,1,2,3,4时,代数式 n 3n 7
2
的值分别为7,5,5,11,它们都是质数, 那么,命题“对于自然数n,代数式的值 都是素数”是真命题吗? 思考: 若是假命题,怎样反驳?若是真命题,
怎样验证?
大数学家 已知:如图1.3-3,DE∥BC,∠1=∠E. 求证:BE平分∠ABC
A D E
解题思路: (1)平行线怎么用? (2)两个角相等如何利 用,找哪个中间角过度? (3)要说明BE平分角就 是要说明什么?
B
1 2
C
探究活动二:
已知:如图,AB∥CD,EP,FP分别平分∠BEF, ∠DFE.求证:∠P =900
什么是证明
小试牛刀
请在括号内,填写出推理的理由。
1.已知:如图,直线EF,GH被直线MN所截, AB

逆命题与逆定理

逆命题与逆定理

逆命题与逆定理知识点:一、命题1.概念:对事情进行判断的句子叫做命题.2.组成部分:命题由题设和结论两部分组成.每个命题都可以写成“如果……,那么……”的形式,“如果”的内容部分是题设,“那么”的内容部分是结论.3.分类:命题分为真命题和假命题两种.判断正确的命题称为真命题,反之称为假命题.验证一个命题是真命题,要经过证明;验证一个命题是假命题,可以举出一个反例.例:“两直线平行,内错角相等”的题设是______,结论是_____它是命题。

练习1.命题“平行四边形的对角线互相平分”的条件是_____,结论是______.二、互逆命题1.概念:在两个命题中,如果第一个命的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题,其中一个叫做原命题,则另一个就叫做它的逆命题.2.说明:(1)任何一个命题都有逆命题,它们互为逆命题,“互逆”是指两个命题之间的关系;(2)把一个命题的题设和结论交换,就得到它的逆命题;(3)原命题成立,它的逆命题不一定成立,反之亦然.例1.指出下列命题的题设和结论,并写出它们的逆命题.(1)两直线平行,同旁内角互补;(2)直角三角形的两个锐角互余;(3)对顶角相等.(1)题设是“两条平行线被第三条直线所截”,结论是“同旁内角互补”;逆命题是“如果两条直线被第三条直线所截,同旁内角互补,那么这两条直线平行”.(2)题设是“如果一个三角形是直角三角形”,结论是“那么这个三角形的两个锐角互余”;逆命题是“如果一个三角形中两个锐角互余,那么这个三角形是直角三角形”.(3)题设是“如果两个角是对顶角”,结论是“那么这两个角相等”;逆命题是“如果有两个角相等,那么它们是对顶角”. 名师点金:当一个命题的逆命题不容易写时,可以先把这个命题写成“如果……,那么……”的形式,然后再把题设和结论倒过来即可.练习1.命题“矩形的对角线相等”的逆命题是__________________.2.命题“如果∠A=65°,∠B=25°,那么∠A 与∠B 互余”的逆命题是________,它的逆命题是_______(填“真”或“假”)命题.3.命题“全等三角形的面积相等”的逆命题的条件是___________,结论是_____________.写出下列命题的逆命题,并判断原命题、逆命题的真假。

1逆命题和逆定理课件

1逆命题和逆定理课件
(1)直角都相等; 真 相等的角都是直角。 假
(2)平行四边形是中心对称图形;真 中心对称图形是平行四边形。 假
写出下列命题的逆命题,再判断原命题和逆命 题的真假:
(3)轴对称图形是等腰三角形 ; 假
等腰三角形是轴对称图形。 真
(4)全等三角形对应边相等; 真
三条边对应相等的两个 三角形是全等三角形.
逆逆
1、同位角相角相等。
两个命题中,如果第一个命题的题设 是第二个命题的结论,而第一个命题的结 论又是第二个命题的题设,那么这两个命 题叫做互逆命题。
其中一个命题叫做原命题,另一个命题叫 做它的逆命题。
例1:说说命题“如果两个角是同一个角 的余角,那么这两个角相等。”的逆命题。
解:逆命题是:如果两个角相等,那么这 两个角是同一个角的余角。
1)说出命题“如果a2=b2,那么a=b。” 的逆命题。
2) 说出命题“如果两个角是等角的补角, 那么这两个角相等。”的逆命题。
3)说出命题“如果三角形的两条边相等, 那么它们所对的角也相等。”的逆命题。
如果一个定理的逆命题能被证明也是定 理,那么这两个定理叫做互逆定理,其 中一个就叫做另一个的逆定理。
2) 平行四边形的对角线相等。
如果一个四边形是平行四边形,那么它 的两条对角线相等。
逆命题:如果一个四边形的两条对角线 相等,那么这个四边形是平行四边形。
下列命题改写成“如果……,那么……” 的情势,并说出它的题设和结论。 写出下列命题的逆命题。
3)等腰三角形的两个底角相等。 如果一个三角形是等腰三角形,那么它的 两个底角相等。 逆命题:如果一个三角形的两个角相等, 那么这个三角形是等腰三角形。
练习册 P63 习题19.3
(选做题) 写出命题“直角三角形斜边上的中 线等于斜边的一半。”的逆命题, 判断这个逆命题的真假,并给出证 明。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

显然,上述两个命题可称为互逆定理
线段垂直平分线性质定理: 线段垂直平分线上的点到这条线段两个端点的距离相等 线段垂直平分线性质定理的逆定理: 到一条线段两个端点距离相等的点,在这条线段的垂直 平分线上
几何语言:
P
∵PA=PB
B
∴点P在AB的垂直平分线上
A
做一做
1.写出下列各命题的逆命题,并判断互逆命题的真假: (1)同位角相等; 逆命题:相等的角是同位角, (2)如果|a|=|b|,那么a=b; 逆命题:如果a=b,那么|a|=|b|
已知:如图,AB是一条线段,P是一点,且PA=P P B 求证:点P在线段AB的垂直平分线上
证明: ⑴当点P不在 线段AB上时, 作PC⊥AB于点O ∵PA=PB,PO⊥AB, ∴OA=OB(等腰三角形三线合一性质) ∴PC是AB的垂直平分线。
A A O C P P P P P P B B
∴点P在线段AB的垂直平分线上 ⑵当点P在线段AB上,结论命题还是假命题:
(1)两直线平行,同位角相等. 同位角相等,两直线平行. (2)同位角相等 相等的角是同位角 (3)面积相等的三角形全等。 全等三角形的面积相等。
真命题 真命题 真命题
假命题 假命题 真命题
真命题 (4)在一个三角形中,等角对等边。 在一个三角形中,等边对等角。 真命题 (5)磁悬浮列车是一种高速行驶时不接触地面的 真命题 交通工具。 高速行驶时不接触地面的交通工具是磁悬浮列车。 假命题
判断下列说法是否正确?请说明理由
(1)假命题没有逆命题; (2)真命题没有逆命题; (3)每个命题都有逆命题; (4)真命题的逆命题是真命题 思考:每个命题都 有逆命题吗?
× × √ ×
一个命题的逆命题是真命题还是假命题?
举例说明一个原命题是真命题,逆命题也是真命题的例 子 有没有原命题是真命题,而逆命题是假命题的例子?
对某件事作出正确或不正确判断的句子叫做命题 命题的结构:命题由题设、结论组成 命题有真有假。 正确的命题是真命题,错误的命题是假命题
下列句子是命题的是( D ) A.画∠AOB=45° C.连结CD B. 小于直角的角是锐角吗? D. 三角形的中位线平行且等于第三边的一半
命题
条件
结论 同位角相等
(1)三角形两边之和大于第三边。
是假命题 逆命题:两边之和大于第三边的图形是三角形。 没有逆定理
⑵有三条边对应相等的三角形全等。
全等三角形的三条对应边都相等。
⑶全等三角形的对应角相等。
没有逆定理
辨一辨
下列说法哪些正确,哪些不正确? (1)每个定理都有逆定理。 (2)每个命题都有逆命题。 (3)假命题没有逆命题。
× √ × ×
(4)真命题的逆命题是真命题。
D
例1、按要求作答:
⑴任意作一条线段,并画出它的中垂线
P
A
O
B
⑵线段的中垂线(垂直平分线)有什么性质?
C
线段垂直平分线上的点到这条线段两个端点的距离相等
⑶请说出它的逆命题,并证明这个逆命题是真命题.
解:
这个定理的逆命题是: 到一条线段两个端点距离
相等的点,在这条线段的垂直平分线上.
一个命题经证明是真命题,就可称为定理;
定理:两直线平行,内错角相等。
逆定理 请说出其逆命题,并判断是真命题还是假命题:
逆命题:内错角相等,两直线平行。 (真命题)
如果一个定理的逆命题能被证明是真命题,
那么就叫它是原定理的逆定理,这两个定理叫
互逆定理。 请说出一对互逆定理
下列定理中,哪些有逆定理?如果有逆定理, 请说出逆定理。
(3)等边三角形的三个角都是60°
逆命题:三个角都是60°的三角形是等边三角形
谈谈本节课的收获
互逆命题
互逆定理
两直线平行 a 2=b 2 a =b
⑴两直线平行,同位角相等 两直线平行
⑵同位角相等,两直线平行 同位角相等 ⑶如果a=b,那么a2=b2。 ⑷如果a2=b2,那么a=b。
a =b a 2=b 2
观察表中的命题,命题⑴与命题⑵有什么关 系?命题⑶与命题⑷呢?
在两个命题中,如果第一个命题的条件是第 二个命题的结论,而第一个命题的结论是第二个 命题的条件,那么这两个命题叫做互逆命题。 我们把其中的一个叫做原命题,另一个叫做它的 逆命题。
相关文档
最新文档