沪教版八年级上册数学期末考试题

合集下载

沪教版八年级上册数学期末测试卷(参考答案)

沪教版八年级上册数学期末测试卷(参考答案)

沪教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x (分)变化的图象(全程)如图,根据图象判定下列结论不正确的是( )A.甲先到达终点B.前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇D.这次比赛的全程是28千米2、若在实数范围内有意义,则x的取值范围是( )A. ≥3B.x<3C.x≤3D.x>33、已知直角三角形的周长为4+,斜边为4,则该三角形的面积是()A.2B.C.D.4、用配方法解一元二次方程,方程可变形为()A. B. C. D.5、方程(x-5)(x+2)=0的解是 ( )A.x=5B.x=-2C.x1=-5,x2=2 D.x1=5,x2=-26、将方程化为一般形式,若二次项系数为3,则一次项系数和常数项分别为()A.-2,6B.-2,-6C.2,6D.2,-67、如图,一次函数y=kx+b的图象与反比例函数y= 的图象交于A,B两点.当一次函数的值大于反比例函数的值时,自变量x的取值范围是()A.﹣2<x<1B.0<x<1C.x<﹣2和0<x<1D.﹣2<x<1和x>18、已知x=2是关于x的一元二次方程x2+ax=0的一个根,则a的值为( )A.-2B.2C.D.9、如图,在△ABC中,∠ABC=50°,∠BAC=20°,D为线段AB的垂直平分线与直线BC的交点,连接AD,则∠ADC的度数为().A.50°B.60°C.70°D.80°10、如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是( )A.24B.30C.36D.4211、若点(3,4)是反比例函数图象上一点,则此函数图象必经过点()A.(2,6)B.(2,-6)C.(4,-3)D.(3,-4)12、下列运算正确的是()A. B. C. D.13、在中,,,,则点到斜边的距离是()A. B. C.9 D.614、若关于x的方程k2x2﹣(2k+1)x+1=0有实数根,则k的取值范围是()A.﹣B.C.D.k≥﹣且k≠015、如图,锐角三角形ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,l与m相交于P点.若∠BAC=60°,∠ACP=24°,则∠ABP是()A.24°B.30°C.32°D.36°二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC=5,S=12,AD⊥BC于点D,CE⊥AB于点△ABCE.若点P是AD上一动点,连接PE,PB,则PE+PB的最小值是________.17、已知关于x的一元二次方程x2﹣(k+2)x+2k=0,若x=l是这个方程的一个根,则求k=________.18、已知3 ,a ,4, b, 5这五个数据,其中a,b是方程x2+2=3x的两个根,那么这五个数据的平均数是________,方差是________.19、在如图正方形网格的格点中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有________个。

沪教版数学八年级数学上册期末练习(含答案)

沪教版数学八年级数学上册期末练习(含答案)

沪教版数学八年级数学上册期末练习卷姓名__________学号___________成绩__________一、选择题1. 下列等式中,根为-1的方程是( )A.2x 2+x=0B.3x 2+2x -5=0C.x 2-5x+4=0D.2x 2-3x -5=02. 关于x 的方程x 2-mx -1=0根的情况,下列说法正确的是( )A. 没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定 3. 关于x 的方程x2+(k2-4)x+k+1=0的两个根互为相反数,则k 的值是( ) A. -1 B.1 C.-2 D.24. 如图,三个正比例函数的图像对应的解析式为①y=ax ,②y=bx,③y=cx ,则a 、b 、c 的大小关系是( ) A. a<b<c B.c>a>b C. c>b>a D.b>a>c5.若正比例函数y=k 1x(k 1≠0)与反比例函数)1k (x1k y 22≠-=的大致图像如图所示,则k1、k2的取值范围是( ). A.k 1>0,k 2>1 B. k 1<0,k 2>1 C. k 1>0,k 2<1 D.k 1<0,k 2<16.如图所示,在Rt △ACB 中,∠C=90°,AD 平分∠BAC,若BC=16,BD=10,则点D 到AB 的距离是( ). A.6 B.8 C.10 D.12二、填空题7.如下图,在△ABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于D ,BC=12cm,BD=8cm ,点D 到点AB 的距离等于___________.8.正比例函数kx y =的图像是_________,它一定经过点_________.9.已知等腰三角形的周长为40,腰长为y ,底边长为x,则y 关于x 的函数解析式是__________.10.计算:=+-))((3223____________________. 11.把式子nm mn2n m --+分母有理化的结果是___________.12.一元二次方程031x -x 322=-根的情况是___________. 13.如果一个直角三角形的三边长是三个连续偶数,那么这个三角形的周长是__________.14.在△ABC 中,∠C=90°,BC=12,AB=13,AC=_________.15.已知点A(2,2)、B(5,-2)在x 轴上找一点M 使∠AMB 为直角,则点M 的坐标是_________.16.在△ABC 中,三边长分别为8k 、15k 、17k (k>0),则ABC________直角三角形.(填“是”或“不是”)(第4题图)(第5、6题图)(第7题图)17.已知2x x x f +=)(,则)3(f =_________;1x x3)x (g +-=,则()3g -=________.18.已知方程3ax 2-bx -1=0和ax 2+2bx -5=0有共同的根-1,则ab=______. 19.已知y=3x x 33x ++-+-,求y x +=_________.20.如图,∠A=60°,BD ⊥AC,CE ⊥AB,BD 与CE 相交于点F ,若FD=2cm,FE=4cm,则AB+CE=________cm.21.如下图,在△ABC 中,∠ACB=90°,∠A=20°,CD 与CE ,CD 与CE 分别是斜边AB 上的高和中线,则∠DCE=________°.22.如图,P 是反比例函数的图像上的一点,且S △PQO =10,求反比例函数的解析式是__________.三、计算题 23. 计算x1x 24x 6x 932-+ 24.解方程:(用公式法)010x 34x 2=+-25.解方程:x 2x 2x 322-=-)( 26.解方程:()5x x 322=+-27.已知010y 6x 4y x 422=+--+,求)x y x 5x 1x (y x y x 9x 32232--⎪⎪⎭⎫⎝⎛+的值.四、证明简答题.(第20题图)(第21题图)(第22题图)28.已知正比例函数y=3x 图像上点P 的横坐标为为-2,点P 关于x 轴,y 的对称点分别为P 1和P 2. (1)求出点P 、P 1、P 2的坐标.(2)若正比例函数y=k 1x 的图像经过点P 1,正比例函数y=k 2x 的图像经过点P 2,求k 1,k 2的值.29. 如图,在△ABC 中,∠ACB=90°,D 是AC 上任意一点,DE ⊥AB,垂足为点E,M 、N 分别是BD 、CE 的中点,求证:MN ⊥CE.30. 如图,在四边形ABCD 中,AD//BC ,E 为AD 的中点,连接AE 、BE,BE ⊥AE,延长AE 交BC 的延长线于点F,求证:(1)FC=AD ;(2)AB=BC+AD.31. 如图,BE 、CE 分别为△ABC 的两个外角平分线,EP ⊥AM 于P ,EQ ⊥AN 于Q.求:(1)EP=EQ;(2)点E ∠NAM 的平分线上.沪教版数学八年级数学上册期末练习卷答案1. D2.C3.C4.C5. B6.A7.4cm8. 一条直线,(0,0)9.)(20x 0x 2120y <<-= 10.622336--+ 11.n m - 12. 没有实数根 13. 24 14. 5 15.(1,0)或(6,0) 16.是 17.332-,323-- 18.-2 19.3 20.18 21.50°22.x20y -= 23.分)(分)(分)(解:原式1x 32x 2x 3x 22xxx ?22x ·6x 3·32⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-+=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-+= 24.25.26.28.29.31.。

沪教版八年级上册数学期末测试卷及含答案

沪教版八年级上册数学期末测试卷及含答案

沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4C.2D.42、如图,在△ABC中,∠C=90°,AC=8,BC=6,按下列步骤作图:①以点A 为圆心,适当长为半径画弧,分别交AC,AB于点D,E;②分别以D,E为圆心,DE的长为半径画弧,两弧相交于点F;③作射线AF,交BC于点G,则CG =()A.3B.6C.D.3、在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A. B. C. D.4、若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥2B.x>2C.x<2D.x≤25、下列一元二次方程中没有实数根的是()A.x 2+3x+4=0B.x 2-4x+4=0C.x 2-2x-5=0D.x 2+2x-4=06、函数y=中,自变量x的取值范围是()A. x>5B. x≥5C. x≤5D. x<57、方程(x﹣3)2=(x﹣3)的根为()A.3B.4C.4或3D.﹣4或38、如图四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则DC+BC的值为()A.6B.C.D.79、下列各式运算中,正确的是()A.a 3+a 2=a 5B. =3C.a 3•a 4=a 12D. = (a≠0)10、如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为A. B. C.D.11、若反比例函数y=的图象在二、四象限,那么直线y=kx-2经过哪几个象限()A.一、二、三B.一、二、四C.一、三、四D.二、三、四12、如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6步B.5步C.4步D.2步13、下列方程是一元二次方程的是()A. +x 2=0B.3x 2﹣2xy=0C.x 2+x﹣1=0D.ax 2﹣bx=014、下列二次根式中不能够与合并的是()A. B. C. D.15、有一块长方形铁皮,长100cm,宽50cm,在它的四周各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,设铁皮各角应切去的正方形边长为xcm,则下面所列方程正确的是()A.4x 2=3600B.100×50﹣4x 2=3600C.(100﹣x)(50﹣x)=3600 D.(100﹣2x)(50﹣2x)=3600二、填空题(共10题,共计30分)16、函数y=中自变量x的取值范围是________&nbsp;.17、如图,在平面直角坐标系xOy中,分别平行x、y轴的两直线a、b相交于点A(3,4).连接OA,线段OA长________;若在直线a上存在点P,使△AOP是以OA为腰的等腰三角形.那么所有满足条件的点P的坐标是________.18、如图,Rt△ABC的周长为cm,以AB、AC为边向外作正方形ABPQ 和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是________cm2.19、方程x(x﹣2)=﹣(x﹣2)的根是________ .20、如图,正方形ABCD中,点E在边BC上,∠BAE=n°.如果在边AB、CD上分别找一点F、G,使FG=AE,FG与AE相交于点O,那么∠GOE的大小等于________.21、计算________.22、如图,正方形网格中,每个小正方形的边长为,则网格上的是_________三角形.23、已知长方体的体积为36,长为,宽为,则高为________.24、把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为________.25、如图,在Rt△ACB中,∠ABC=90°,D为BC边的中点,BE⊥AD于点E,交AC于F,若AB=4,BC=6,则线段EF的长为________.三、解答题(共5题,共计25分)26、解方程:.27、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,若△ABC面积是36cm2, AB=10cm,AC=8cm,求DE的长.28、如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD 交CD的延长线于点F.求证:△ABE≌△ADF.29、已知,且x为偶数,求(1+x)的值.30、某工程队在我县实施一江两岸山水园林县城的改造建设中,承包了一项拆迁工程,原计划每天拆1250m2,因为准备工作不足,第一天少拆20%,从第二天开始,该工程队加快拆迁速度,第三天就拆迁了1440m2,问:(1)该工程队第一天拆迁面积是多少?(2)若该工程队第二、三天拆迁面积比前一天增加的百分数相同,求这个百分数。

沪教版八年级上册数学期末测试卷及含答案(综合题)(黄金题型)

沪教版八年级上册数学期末测试卷及含答案(综合题)(黄金题型)

沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()A.6B.9C.10D.122、如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.23、据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A. y=0.05 xB. y=5 xC. y=100 xD. y=0.05 x+1004、若函数y= 有意义,则()A.x>1B.x<1C.x=1D.x≠15、如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3B.4C.5D.66、如图,中,为线段AB的垂直平分线,交于点E,交于D,连接,若,则的长为( )A.6B.3C.4D.27、在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40B.a=b=5,c=5C.a:b:c=3:4:5 D.a=11,b=12,c=158、某药品经过两次降价,每瓶零售价由100元降为81元,则平均每次降价()A.8.5%B.9%C.9.5%D.10%9、若在实数范围内有意义,则x的取值范围是( )A. ≥3B.x<3C.x≤3D.x>310、如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.1011、如图,以数轴的单位长线段为边作一个正方形,以-1所在的点为旋转中心,将过-1点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.12、已知a,b,c是△ABC三条边的长,那么方程cx2+(a+b)x+ =0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.无法确定13、已知一个一元二次方程的二次项系数是3,常数项是1,则这个一元二次方程可能是()A.3x+1=0B.x 2+3=0C.3x 2﹣1=0D.3x 2+6x+1=014、下列各组数中,是勾股数的()A.12,15,18B.11,60,61C.15,16,17D.12,35,3615、菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8B.20C.8或20D.10二、填空题(共10题,共计30分)16、一个反比例函数的图象位于第二、四象限.请你写出一个符合条件的解析式是________ .17、为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是________ .18、如图,在中,,为边上的中线,过点作交于点.若,,则的长为________.19、如图,是一个简单的数值运算程序.则输入x的值为________.20、已知函数的图象经过点(1,3),且与x轴没有交点,写出一个满足题意的函数的解析式________.21、+2sin30°-tan60°+tan45°=________.22、若x2+3xy-2y2=0,那么= ________.23、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是________24、在“2011年北京郁金香文化节”中,北京国际鲜花港的3×106株郁金香为京城增添了亮丽的色彩.若这些郁金香平均每平方米种植的数量为n(单位:株/平方米),总种植面积为S(单位:平方米),则n与S的函数关系式为________ .(不要求写出自变量S的取值范围)25、计算:6 ×=________,÷(2﹣)=________.三、解答题(共5题,共计25分)26、解方程:x2-3x=5x-127、解方程:x2﹣6x+5=0 (配方法)28、数学阅读是学生个体根据已有的知识经验,通过阅读数学材料建构数学意义和方法的学习活动,是学生主动获取信息,汲取知识,发展数学思维,学习数学语言的途径之一.请你先阅读下面的材料,然后再根据要求解答提出的问题:问题情境:设a,b是有理数,且满足,求的值.解:由题意得,∵a,b都是有理数,∴也是有理数,∵是无理数,∴,∴,∴解决问题:设x,y都是有理数,且满足,求的值.29、如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线与AC交于点D,垂足为点F,试探究线段AD与DC的数量关系,并证明你的结论.30、如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,AB=10cm,DC=3cm,试求△ABD的面积.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、D5、D6、B7、D8、D9、A10、C11、C12、B13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

【新】沪教版八年级上册数学期末测试卷及含答案

【新】沪教版八年级上册数学期末测试卷及含答案

沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.()﹣2=9B. =﹣2C.(﹣2)0=﹣1D.|﹣5﹣3|=22、如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C 为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正确的是()A.①②③B.①②④C.①③④D.②③④3、下列二次根式中,与是同类二次根式的是()A. B. C. D.4、下列各式计算正确的是()A. B. C. D.5、方程x2=3x的解是()A.x=3B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x1=1,x2=36、如果关于x的一元二次方程(m﹣3)x2+3x+m2﹣9=0有一个解是0,那么m的值是( )A.3B.﹣3C.±3D.0或﹣37、在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简的结果为()A.3a+b﹣cB.﹣a﹣3b+3cC.a+3b﹣3cD.2a8、如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠PAQ=40°,则∠BAC的度数是()A.110°B.100°C.120°D.70°9、函数中,自变量x的取值范围是()A.x>2B.x<2C.x≠2D.x≠﹣210、下列根式中,不是最简二次根式的是()A. B. C. D.11、如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为().A.6米;B.9米;C.12米;D.15米.12、下列运算正确的是()A. =﹣4B. ﹣C.()2=4D.13、关于x的方程x2+x﹣k=0有两个不相等的实数根,则k的取值范围为()A.k>﹣B.k≥﹣C.k<﹣D.k>﹣且k≠014、下列计算正确的是()A. B.- C. D.15、根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.﹣B.C.1D.二、填空题(共10题,共计30分)16、化简:﹣=________.17、已知,则=________.18、如图,于点,为的中点,连接的平分线交于点,连结,若,则________.19、已知关于x的一元二次方程ax2﹣(a+2)x+2=0有两个不相等的正整数根时,整数a的值是________.20、如图,反比例函数y=-图象上有一点P,PA⊥x轴于A,点B在y轴的负半轴上,那么△PAB的面积是________21、下列二次根式,不能与合并的是________(填写序号即可).①;②;③;④;⑤.22、如果a+b+c=0,那么一元二次方程ax2+bx+c=0必有一个根是________.23、若8,a,17是一组勾股数,则a=________.24、反比例函数y=的图像过点(-2,a)、(2,b),若a-b=-6,则ab=________.25、已知直角三角形的三边长为 4,5,,为斜边,则以为边长的正方形面积为________.三、解答题(共5题,共计25分)26、解方程(配方法):27、如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=12,CD=2.求⊙O半径的长.28、如图,在钝角△ABC中,BC=9,AB=17,AC=10,AD⊥BC于D,求AD的长.29、如图,四边形ABCD是某新建厂区示意图,∠A=75°,∠B=45°,BC⊥CD,AB=500 米,AD=200米,现在要在厂区四周建围墙,求围墙的长度有多少米?30、在等腰三角形,三边长分别是.其中,若关于x的方程有两个相等的实数根,求的周长.参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、D5、B6、B7、E8、A9、C10、C11、B12、C13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

沪科版数学八年级上册期末考试试卷含答案

沪科版数学八年级上册期末考试试卷含答案

沪科版数学八年级上册期末考试试题一、选择题(共10小题)1.在平面直角坐标系内,下列的点位于第四象限的是()A.(﹣2,1)B.(﹣2,﹣1)C.(2,﹣1)D.(0,﹣1)2.下列图案中,属于轴对称图形的有()A.5个B.3个C.2个D.4个3.若点(2,y1)和(﹣2,y2)都在直线y=﹣x+3上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定4.为了估计池塘A,B两点之间的距离,小明在池塘的一侧选取一点C,测得AC=3m,BC=6m,则A,B两点之间的距离可能是()A.11m B.9m C.7m D.3m5.下列命题中是假命题的是()A.全等三角形的对应角相等B.三角形的外角大于任何一个内角C.等边对等角D.角平分线上的点到角两边的距离相等6.如图,∠ABD=∠CBD,现添加以下条件不能判定△ABD≌△CBD的是()A.∠A=∠C B.∠BDA=∠BDC C.AB=CB D.AD=CD 7.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D.若∠A=30°,AE=10,则CE的长为()A.5B.4C.3D.28.若ab<0且a<b,则一次函数y=ax+b的图象可能是()A.B.C.D.9.如图,过点A1(2,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(4,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B2021的坐标为()A.(22021,22020)B.(22021,22022)C.(22022,22021)D.(22020,22021)10.2020年12月22日8时38分,G8311次动车组列车从合肥南站始发,驶向沿江千年古城安庆.这标志着京港高铁合肥至安庆段正式开通运营.运行期间,一列动车匀速从合肥开往安庆,一列普通列车匀速从安庆开往合肥,两车同时出发,设普通列车行驶的时间为x(h),两车之间的距离y(km),图中的折线表示y与x之间的函数关系,下列说法正确的有()①合肥、安庆两地相距176km,两车出发后0.5h相遇;②普通列车到达终点站共需2h;③普通列车的平均速度为88km/h;④动车的平均速度为250km/h.A.1个B.2个C.3个D.4个二、填空题(共5小题,每小题4分,满分20分)11.函数y=中自变量x的取值范围是.12.已知点A(3,0)和B(1,3),如果直线y=kx+1与线段AB有公共点,那么k的取值范围是.13.已知一次函数y=kx+3(k>0)的图象与两坐标轴围成的三角形的面积为3,则一次函数的表达式为.14.已知C,D两点在线段AB的垂直平分线上,且∠ACB=50°,∠ADB=86°,则∠CAD 的度数是.15.如图,在△ABC中,∠BAC=124°,分别作AC,AB两边的垂直平分线PM,PN,垂足分别是点M,N.以下说法正确的是(填序号).①∠P=56°;②∠EAF=68°;③PE=PF;④点P到点B和点C的距离相等.三、(本大题共2小题,每小题8分,满分16分)16.如图,在平面直角坐标系中,已知点A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)画出△ABC向右平移5个单位,再向上平移4个单位得到的△A1B1C1,其中点C1的坐标为;(2)在x轴上画出点P,使PA+PB最小,此时点P的坐标为.17.如图,在△ABC中,∠BAC=62°,∠B=78°,AC的垂直平分线交BC于点D.(1)求∠BAD的度数;(2)若AB=8,BC=11,求△ABD的周长.四、(本大题共2小题,每小题10分,满分20分)18.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.19.定义:关于x的一次函数y=ax+b与y=bx+a(ab≠0)叫做一对交换函数,例如:一次函数y=3x+4与y=4x+3就是一对交换函数.(1)一次函数y=2x﹣b的交换函数是;(2)当b≠﹣2时,(1)中两个函数图象交点的横坐标是;(3)若(1)中两个函数图象与y轴围成的三角形的面积为4,求b的值.五、(本大题满分10分)20.如图,在△ABC中,AB=BC,∠B=90°,AD是∠BAC的平分线,CE⊥AD于点E.求证:AD=2CE.六、(本大题共2小题,每小题12分,满分24分)21.许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?22.数学模型学习与应用:(1)学习:如图1,∠BAD=90°,AB=AD,BC⊥AC于点C,DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D;又∠ACB=∠AED=90°,可以通过推理得到△ABC≌△DAE,进而得到AC=,BC=.我们把这个数学模型称为“一线三等角”模型.(2)应用:如图2,在△ABC中,AB=AC,点D,A,E都在直线l上,并且∠BAD =∠AEC=∠BAC=α.若DE=a,BD=b,求CE的长度(用含a,b的代数式表示);(3)拓展:如图3,在(2)的条件下,若α=120°,且△ACF是等边三角形,试判断△DEF的形状,并说明理由.参考答案一、选择题(共10小题).1.C.2.D3.A.4.C.5.B.6.D.7.A.8.B.9.B.10.C.二、填空题(本大题共5小题,每小题4分,满分20分)11.函数y=中自变量x的取值范围是x≥﹣且x≠1.解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.12.已知点A(3,0)和B(1,3),如果直线y=kx+1与线段AB有公共点,那么k的取值范围是﹣≤k≤2.解:由y=kx+1可知直线经过点(0,1),当k>0时,y=kx+1过B(1,3)时,3=k+1,解得k=2,∴直线y=kx+1与线段AB有公共点,则k≤2;当k<0时,y=kx+1过A(3,0),0=3k+1,解得k=﹣,∴直线y=kx+1与线段AB有公共点,则k≥﹣.综上,满足条件的k的取值范围是﹣≤k≤2;故答案为﹣≤k≤2.13.已知一次函数y=kx+3(k>0)的图象与两坐标轴围成的三角形的面积为3,则一次函数的表达式为y=x+3.解:一次函数y=kx+3与y轴的交点A的坐标为(0,3),则OA=3,由题意得,×OB×3=3,解得,OB=2,则点B的坐标为(﹣2,0),∴﹣2k+3=0,解得,k=,∴一次函数的表达式为y=x+3,故答案为:y=x+3.14.已知C,D两点在线段AB的垂直平分线上,且∠ACB=50°,∠ADB=86°,则∠CAD 的度数是18°或112°.解:∵C、D两点在线段AB的中垂线上,∴CA=CB,DA=DB,∵CD⊥AB,∴∠ACD=∠ACB=×50°=25°,∠ADC=∠ADB=×86°=43°,当点C与点D在线段AB两侧时,∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣25°﹣43°=112°,当点C与点D′在线段AB同侧时,∠CAD′=∠AD′C﹣∠ACD′=43°﹣25°=18°,故答案为:18°或112°.15.如图,在△ABC中,∠BAC=124°,分别作AC,AB两边的垂直平分线PM,PN,垂足分别是点M,N.以下说法正确的是①②④(填序号).①∠P=56°;②∠EAF=68°;③PE=PF;④点P到点B和点C的距离相等.解:∵PM垂直平分AC,PN垂直平分AB,∴∠PMA=∠PNA=90°,∴∠P=360°﹣90°﹣90°﹣124°=56°,①说法正确;∵∠BAC=124°,∴∠B+∠C=180°﹣124°=56°,∵PM垂直平分AC,PN垂直平分AB,∴EC=EA,FB=FA,∴∠EAC=∠C,∠FAB=∠B,∴∠EAF=∠BAC﹣∠EAC﹣∠FAB=∠BAC﹣(∠B+∠C)=124°﹣56°=68°,②说法正确;△ABC不一定是等腰三角形,∴PE与PF的大小无法确定,③说法错误;连接PC、PA、PB,∵PM垂直平分AC,PN垂直平分AB,∴PC=PA,PB=PA,∴PB=PC,即点P到点B和点C的距离相等,④说法正确,故答案为:①②④.三、(本大题共2小题,每小题8分,满分16分)16.如图,在平面直角坐标系中,已知点A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)画出△ABC向右平移5个单位,再向上平移4个单位得到的△A1B1C1,其中点C1的坐标为(1,0);(2)在x轴上画出点P,使PA+PB最小,此时点P的坐标为(﹣,0).【解答】解(1)如图所示:△A1B1C1,即为所求,点C1的坐标为(1,0);故答案为:(1,0);(2)作A点关于x轴对称点A′,则A′(﹣2,2),故设直线BA′的解析式为:y=kx+b,则,解得:,故直线BA′的解析式为:y=x+5,当y=0时,x=﹣,此时点P的坐标为:(﹣,0).故答案为:(﹣,0).17.如图,在△ABC中,∠BAC=62°,∠B=78°,AC的垂直平分线交BC于点D.(1)求∠BAD的度数;(2)若AB=8,BC=11,求△ABD的周长.解:(1)∵∠BAC=62°,∠B=78°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣62°﹣78°=40°,∵DE垂直平分AC,∴AD=CD,∴∠CAD=∠C=40°,∴∠BAD=∠BAC﹣∠CAD=62°﹣40°=22°;(2)∵AD=CD,AB=8,BC=11,∴△ABD的周长=AB+AD+BD=AB+CD+BD=AB+BC=8+11=19.四、(本大题共2小题,每小题10分,满分20分)18.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.解:猜想:CD=BE,CD⊥BE,理由如下:∵AD⊥AB,AE⊥AC,∴∠DAB=∠EAC=90°.∴∠DAB+∠BAC=∠EAC+∠BAC,即∠CAD=∠EAB,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∵∠AGD=∠FGB,∴∠BFD=∠BAD=90°,即CD⊥BE.19.定义:关于x的一次函数y=ax+b与y=bx+a(ab≠0)叫做一对交换函数,例如:一次函数y=3x+4与y=4x+3就是一对交换函数.(1)一次函数y=2x﹣b的交换函数是y=﹣bx+2;(2)当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1;(3)若(1)中两个函数图象与y轴围成的三角形的面积为4,求b的值.解:(1)由题意可得,一次函数y=2x﹣b的交换函数是y﹣bx+2,故答案为:y=﹣bx+2;(2)由题意可得,当2x﹣b=﹣bx+2时,解得x=1,即当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1,故答案为:x=1;(3)函数y=2x﹣b与y轴的交点是(0,﹣b),函数y=﹣bx+2与y轴的交点为(0,2),由(2)知,当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1,∵(1)中两个函数图象与y轴围成的三角形的面积为4,∴=4,解得b=6或b=﹣10,即b的值是6或﹣10.五、(本大题满分10分)20.如图,在△ABC中,AB=BC,∠B=90°,AD是∠BAC的平分线,CE⊥AD于点E.求证:AD=2CE.【解答】证明:延长AB、CE交于点F,∵∠ABC=90°,CE⊥AD,∠ADB=∠CDE,∴∠BAD=∠ECD,在△ABD和△CBF中,,∴△ABD≌△CBF(SAS),∴AD=CF,∵AD是∠BAC的平分线,∴∠CAE=∠FAE,在△CAE和△FAE中,,∴△CAE≌△FAE(ASA),∴CE=EF,∴AD=CF=2CE.六、(本大题共2小题,每小题12分,满分24分)21.许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?解:(1)设该厂每天能生产A型口罩x万只或B型口罩y万只.根据题意,得,解得,答:该厂每天能生产A型口罩0.8万只或B型口罩1万只.(2)设该厂应安排生产A型口罩m天,则生产B型口罩(7﹣m)天.根据题意,得,解得≤m≤6,设获得的总利润为w万元,根据题意得:w=0.5×0.8m+0.3×1×(7﹣m)=0.1m+2.1,∵m=0.1>0,∴w随m的增大而增大.∴当m=0.6时,w取最大值,最大值=0.1×6+2.1=2.7(万元).答:当安排生产A型口罩6天、B型口罩1天,获得2.7万元的最大总利润.22.数学模型学习与应用:(1)学习:如图1,∠BAD=90°,AB=AD,BC⊥AC于点C,DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D;又∠ACB=∠AED=90°,可以通过推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型称为“一线三等角”模型.(2)应用:如图2,在△ABC中,AB=AC,点D,A,E都在直线l上,并且∠BAD =∠AEC=∠BAC=α.若DE=a,BD=b,求CE的长度(用含a,b的代数式表示);(3)拓展:如图3,在(2)的条件下,若α=120°,且△ACF是等边三角形,试判断△DEF的形状,并说明理由.解:(1)∵∠1+∠2=∠2+∠D=90°,∴∠1=∠D,在△ABC和△DAE中,,∴△ABC≌△DAE(AAS),∴AC=DE,BC=AE,故答案为:DE,AE;(2)∵∠BAD=∠BAC=α,∴∠DBA+∠BAD=180°﹣α=∠BAD+∠CAE,∴∠CAE=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,∵DE=a,BD=b,∴CE=DE﹣BD=a﹣b;(3)△DEF是等边三角形,理由如下:由(2)知:△ABD≌△CAE,∴BD=AE,∠ABD=∠CAE,∵△ACF是等边三角形,∴∠CAF=60°,AB=AF,∴△ABF是等边三角形,∴∠ABD+∠ABD=∠CAE+∠CAF,即∠DBF=∠FAE,在△BDF和△AEF中,,∴△BDF≌△AEF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠AFD+∠AFE=∠AFD+∠BFD=60°,∴△DEF是等边三角形.。

沪科版数学八年级上学期期末测试题 (7)

沪科版数学八年级上学期期末测试题 (7)

沪科版数学 八年级上学期 期末测试题1.(2022·安徽安庆·八年级期末)如图,在△ABC 中,AB =AC ,∠A =36°.(1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求与作法); (2)在(1)的条件下,求∠BDC 的度数.2.(2022·安徽蚌埠·八年级期末)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO 的三个顶点坐标分别为A (-1,3), B (-4,3) ,O (0,0).(1)△ABO 向右平移5个单位,向上平移1个单位,得到△A 1B 1C 1,画出△A 1B 1C 1并写出点B 1的坐标;(2)画出△A 1B 1C 1沿着x 轴翻折后得到的△A 2B 2C 2,并写出点A 2的坐标.3.(2022·安徽亳州·八年级期末)如图,在平面直角坐标系中,已知ABC ∆.(1)将ABC ∆向下平移6个单位,得111A B C ∆,画出111A B C ∆;(2)画出111A B C ∆关于y 轴的对称图形222A B C ∆,并写出点2B 的坐标.(注:点B 的对应点为1B ,点1B 的对应点为2B )4.(2022·安徽芜湖·八年级期末)如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,利用网格线按下列要求画图.(1)画△A 1B 1C 1,使它与△ABC 关于直线l 成轴对称;(2)在直线l 上找一点P ,使点P 到点A 、B 的距离之和最短;(3)在直线l 上找一点Q ,使点Q 到边AC 、BC 所在直线的距离相等.5.(2022·安徽安庆·八年级期末)如图,在平面直角坐标系中,已知△ABC .(1)将△ABC 向下平移6个单位,得111A B C △,画出111A B C △;(2)画出△ABC 关于y 轴的对称图形222A B C △;(3)连接122,,A A C ,并直接写出△A 1A 2C 2的面积.6.(2022·安徽合肥·八年级期末)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上,点C 的坐标是(1,2)--.(1)将ABC 沿x 轴正方向平移3个单位得到111A B C △,画出111A B C △,并写出点1B 的坐标;(2)画出111A B C △关于x 轴对称的222A B C △,并求出222A B C △的面积.7.(2022·安徽宿州·八年级期末)如图所示,在平面直角坐标系中,已知A (0,1),B (2,0),C (4,3). (1)在平面直角坐标系中画出△ABC ,以及与△ABC 关于y 轴对称的△DEF ;(2)△ABC 的面积是 ;(3)已知P 为x 轴上一点,若△ABP 的面积为4,求点P 的坐标.8.(2022·安徽蚌埠·八年级期末)已知:如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3、5).(1)点A先向右平移3个单位,再向下平移2个单位,所得点的坐标为;(2)画出△ABC关于y轴对称的△A1B1C1;(3)已知点D的横纵坐标都是整数,且△BCD和△BCA全等,请直接写出一个满足条件的点D的坐标为.(D不与A重合).9.(2022·安徽滁州·八年级期末)如图,在△ABC中,线段BC的垂直平分线DE交AC于点D.(1)若AB=3,AC=8,求△ABD的周长;(2)若△ABD的周长为13,△ABC的周长为20,求BC的长.,点D、E、F分别在AB、BC、AC边10.(2022·安徽亳州·八年级期末)如图,在ABC中,AB AC上,且BE CF =,BD CE =.(1)求证:DEF 为等腰三角形;(2)当50A ∠=︒时,求DEF ∠的度数.11.(2022·安徽蚌埠·八年级期末)已知:如图,AC ,DB 相交于点O ,AB DC =,ABO DCO ∠=∠.求证:(1)ABO DCO △≌△;(2)OBC OCB ∠=∠.12.(2022·安徽芜湖·八年级期末)如图,在△ABC 中,DM 、EN 分别垂直平分AC 和BC 交AB 于M 、N . (1)若AB =12cm ,求△MCN 的周长;(2)若∠ACB =118°,求∠MCN 的度数.13.(2022·安徽亳州·八年级期末)“中国海监50”在南海海域B 处巡逻,观测到灯塔A 在其北偏东80°的方向上,现该船以每小时10海里的速度沿南偏东40°的方向航行2小时后到达C 处,此时测得灯塔A 在其北偏东20°的方向上,求货轮到达C 处时与灯塔A 的距离AC .14.(2022·安徽亳州·八年级期末)已知ABC 为等腰三角形,请解答下列问题:(1)若此三角形的一个内角为100 ,求其余两角的度数;(2)若该三角形两边长为2和4,求此三角形的周长.15.(2022·安徽芜湖·八年级期末)已知:如图,在四边形ABCD中,AB∥CD,且AB=CD,点E在AB上,将△BCE沿CE对折得到△FCE,EF恰好过点A,FC边与AD边交于点G,且DC=DG.(1)求证:△ABC≌△CDA;(2)试判断△F AG的形状,并说明理由.16.(2022·安徽滁州·八年级期末)如图,BE⊥AC于点E,CD⊥AB于点D,BE,CD相交于点P,且AD =AE,连接AP.(1)求证:AP平分∠DAE;(2)连接BC,求证:△ABC为等腰三角形.17.(2022·安徽滁州·八年级期末)如图,在△ABC中,∠A=36°,∠C=72°,BD是△ABC的角平分线.(1)求∠ABD的度数;(2)若DE⊥AB于点E,AC=6,求AE的长.18.(2022·安徽宿州·八年级期末)如图,//AB CD ,CE 平分ACD ∠交AB 于点E .若154∠=︒,求2∠的度数.19.(2022·安徽安庆·八年级期末)教材呈现:如图是华师版八年级上册数学教材第96页的部分内容.定理证明:请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.定理应用:如图②,△ABC 的周长是10,BO 、CO 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,若OD =3,则△ABC 的面积为______.20.(2022·安徽宣城·八年级期末)在如图所示的正方形平面网格中,每个小正方形的边长为1,格点三角形顶点是网格线的交点的三角形的ABC 顶点A ,B 的坐标分别为()()3,31,1---.(1)请在网格平面内画出平面直角坐标系,并写出C 点坐标.(2)画出ABC 关于x 轴对称的111A B C △,再画出将111A B C △向右平移3个单位得222A B C △.(3)求111A B C △的面积.21.(2022·安徽亳州·八年级期末)如图,平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (2,﹣3),C (4,﹣2).(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)画出△A 1B 1C 1向左平移4个单位长度后得到的△A 2B 2C 2;(3)如果AC 上有一点P (m ,n )经过上述两次变换,那么对应A 2C 2上的点P 2的坐标是 . 22.(2022·安徽安庆·八年级期末)如图,在Rt △ABC 中,∠ACB =90°,DE 是AB 的垂直平分线,交BC 于点E .(1)已知△ABC 的周长是14,AD 的长是3,求△AEC 的周长;(2)已知∠B =30°,求证:点E 在线段CD 的垂直平分线上.∆中,线段AB、AC的垂直平分线与BC的交点分别为D、23.(2022·安徽六安·八年级期末)如图,在ABCE.(1)若ADE∆的周长是15,求BC的长;(2)若100∠的度数.BAC∠=,求DAE24.(2022·安徽池州·八年级期末)在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为8cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为18cm,求OA的长.25.(2022·安徽安庆·八年级期末)在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于点D、点E,图①,②,③是旋转得到的三种图形.(1)观察线段PD和PE之间有怎样的大小关系?并以图②为例,并加以证明;(2)观察线段CD、CE和BC之间有怎样的数量关系?并以图③为例,并加以证明;(3)△PBE是否能成为等腰三角形?若能,求出∠PEB的度数;若不能,请说明理由.26.(2022·安徽六安·八年级期末)如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:(1)Rt △ABF ≌Rt △DCE ;(2)OE =OF .27.(2022·安徽池州·八年级期末)已知,如图,延长ABC 的各边,使得BF AC =,AE CD AB ==,顺次连接D E F ,,,得到DEF 为等边三角形.求证:(1)AEF CDE ≌;(2)ABC 为等边三角形.28.(2022·安徽芜湖·八年级期末)如图,点C 在线段AB 上,AD ∥EB ,AC =BE ,AD =BC .CF 平分∠DCE .求证:(1)△ACD ≌△BEC ;(2)CF ⊥DE .29.(2022·安徽安庆·八年级期末)如图①,在ABC 中,AB AC =,点D 是BC 的中点,点E 在AD 上.(1)求证:BE CE =;(2)如图②,若BE 的延长线交AC 于点F ,且BF AC ⊥,垂足为F ,45BAC ∠=︒,其他条件不变.求证:BC AE =.30.(2022·安徽亳州·八年级期末)如图,在ABD 和ACD 中,已知AB AC B C =∠=∠,,求证:AD 是BAC ∠的平分线.31.(2022·安徽合肥·八年级期末)如图,在ABC ∆中,AD 平分BAC ∠,90C ∠=︒,DE AB ⊥于点E ,点F 在AC 上,BD DF =.(1)求证:CF EB =.(2)若12AB =,8AF =,求CF 的长.32.(2022·安徽合肥·八年级期末)如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD和CE相交于点P,交AC于点M,交AD于点N.(1)求证:BD=CE.(2)求证:AP平分∠BPE.(3)若α=60°,试探寻线段PE、AP、PD之间的数量关系,并说明理由.33.(2022·安徽六安·八年级期末)已知:如图,在△ABC中,BE⊥AC,CD⊥AB,BE=CD.求证:AB =AC.34.(2022·安徽芜湖·八年级期末)如图1,在△ABC中,BE、CF分别平分∠ABC和∠ACB,BE和CF相交于D点.(1)求证:∠BDC=90°+12A ∠;(2)如图2,若∠A=∠ABE,求证:EB+EC=BC+BF.35.(2022·安徽蚌埠·八年级期末)如图,在△ABC 和△CDE 中,∠ACB =∠DCE =90°,AC =BC ,DC =EC .过点C 作CF ⊥DE 交DE 于点F .(1)如图1,当点B 、E 、D 在同一条线上时,①求证:12CF DE =; ②求∠BDA 的度数;(2)如图2,连接AF 并延长至点G ,使AF =GF ,连接GE 、GB ,试判断△BEG 形状,并说明理由. 36.(2022·安徽宣城·八年级期末)如图,在ABC 中,,AB AC AB =的垂直平分线交AB 于M ,交AC 于N .(1)若65BCA ∠=︒,则A ∠的度数为___________;(2)连接NB ,若10,AB NBC =的周长是16,BC 的长是__________.37.(2022·安徽合肥·八年级期末)在△ABC 中,AC =BC ,∠ACB =90°,点D 、E 分别在AB 、BC 上,且AD =BE ,BD =AC ,连接CD 、DE .(1)如图1,求证:DE =CD ;(2)如图2,过E 作EF ⊥AB 于F ,求证:∠FED =∠CED ;(3)如图3,若延长ED 、CA 相交于G ,求证:D 为EG 的中点.38.(2022·安徽芜湖·八年级期末)【问题背景】(1)过等腰直角△ABC 的两个锐角顶点,分别向直角顶点C 所在的一条直线作垂线,垂足分别为点D ,E .如图1,这种图形可归纳为“一线三等角”.其中已知∠ADC =∠CEB =90°,AC =CB ,又由∠ACD +∠BCE =90°,∠CBE +∠BCE =90°,得到∠ACD =∠CBE ,所以△ACD ≌△CBE ,这种判定三角形全等的依据是________(填写SSS ,SAS ,ASA ,AAS 或HL ).图1【问题解决】(2)如图2,已知平面直角坐标系中的两点A (-2,4),B (3,1),在直线AB 的上方,以AB 为边作等腰直角△ABM ,写出所有符合条件的点M 坐标:________.图239.(2022·安徽宣城·八年级期末)如图1,,,60AC BC CD CE ACB DCE ====︒∠∠,AD 、BE 相交于点F .(1)求证:BE AD =;(2)求DFE ∠的度数;(3)取,AD BE 的中点分别为点P 、Q ,连接,,CP CQ PQ ,如图2,判断CPQ 的形状,并加以证明. 40.(2022·安徽阜阳·八年级期末)如图所示,点O 是等边三角形ABC 内一点,∠AOB=110°,BOC α∠=,以OC 为边作等边三角形OCD ,连接AD(1)当α=150°时,试判断AOD △的形状,并说明理由;(2)探究:当α为多少度时,AOD △是以AD 为底的等腰三角形?41.(2022·安徽芜湖·八年级期末)已知:如图,在等边△ABC 中,点O 是BC 的中点,∠DOE =120°,∠DOE 绕着点O 旋转,角的两边与AB 相交于点D ,与AC 相交于点E .(1)若OD ,OE 都在BC 的上方,如图1,求证:OD =OE .(2)在图1中,BD ,CE 与BC 的数量关系是 .(3)若点D 在AB 的延长线上,点E 在线段AC 上,如图2,直接写出BD ,CE 与BC 的数量关系是 . 42.(2022·安徽合肥·八年级期末)如图,∠AOB =30°,按下列步骤作图:①在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作圆弧DE ,交射线OB 于点F ,连接CF ; ②以点F 为圆心,CF 长为半径作圆弧,交弧DE 于点G ;③连接FG、CG,作射线OG.根据以上作图过程及所作图形完成下列问题.(1)求证:OF垂直平分CG.(2)求证:OCG为等边三角形43.(2022·安徽蚌埠·八年级期末)已知:如图,A1,A2,A3是∠MON的ON边上顺次三个不同的点,B1,B2,B3是∠MON的OM边上顺次三个不同的点,且有OA1=A1B1=B1A2=A2B2=B2A3(1)当∠MB1A2=45°时,∠MON=_______;(2)若OM边上不存在B3点,使得A3B3=B2A3 ,则∠MON的最小值是_______.44.(2022·安徽六安·八年级期末)如图,在平面直角坐标系中,AOP为等边三角形,A点坐标为(0,1),点B在y轴上且位于A点上方,以BP为边向BP的右侧作等边PBC,连接CA,并延长CA交x轴于点E.(1)求证:OB AC=;∠?请说明理由;(2)判断AP是否平分OAC△为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理(3)在y轴上是否存在点Q,使得AEQ由.45.(2022·安徽六安·八年级期末)如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于点D,求∠DBC 的度数.46.(2022·安徽滁州·八年级期末)在等腰三角形△ABC 中,AC BC =,D 、E 分别为AB 、BC 上一点,CDE A ∠=∠.(1)如图1,若BC BD =,求证:ADC BED ≅;(2)如图2,过点C 作CH DE ⊥,垂足为H ,若CD BD =,3EH =.①求证:CE DE =;②求CE -BE 的值.47.(2022·安徽安庆·八年级期末)如图,在△ABC 中,BA =BC ,D 在边CB 上,且DB =DA =AC .(1)如图1,填空∠B =_____________°,∠C =_____________°;(2)若M 为线段BC 上的点,过M 作直线MH ⊥AD 于H ,分别交直线AB 、AC 与点N 、E ,如图2 ①求证:△ANE 是等腰三角形;②试写出线段BN 、CE 、CD 之间的数量关系,并加以证明.48.(2022·安徽滁州·八年级期末)(1)如图1,直线m 经过等边三角形ABC 的顶点A ,在直线m 上取两点D ,E ,使得∠ADB =60°,∠AEC =60°.求证:BD +CE =DE ;(2)将(1)中的直线m 绕着点A 逆时针方向旋转一个角度到如图2的位置,并使∠ADB =120°,∠AEC =120°.若BD =3,CE =7,求DE 的长.49.(2022·安徽芜湖·八年级期末)已知:如图,在△ABC中,AB=AC,在△ADE中,AD=AE,且∠BAC =∠DAE,连接BD,CE交于点F,连接AF.(1)求证:△ABD≌△ACE;(2)求证:F A平分∠BFE.50.(2022·安徽安庆·八年级期末)如图,在△ABC中,D是BC的垂直平分线DH上一点,DF⊥AB于F,DE⊥AC交AC的延长线于E,且BF=CE.(1)若∠BAC=80°,则∠EDF=________.(2)求证:AD平分∠BAC;(3)在(1)的条件下,求∠BCD的度数.OA OB上,若51.(2022·安徽芜湖·八年级期末)已知:如图,OP平分AOB∠,C,D分别在,=.∠+∠=︒,求证:PC PD180PCO PDO52.(2022·安徽合肥·八年级期末)如图,ABC 中,90ACB ∠=︒,CD 为AB 边上的高,BE 平分ABC ∠,且分别交CD ,AC 于点F ,E .求证:CE CF =.53.(2022·安徽六安·八年级期末)如图,在ABC 中,D 是BC 上一点,P 是AD 上一点,12∠=∠.(1)若ABP △与ACP △的面积相等,求证:AB AC =;(2)若PB PC =,求证:AD BD ⊥.54.(2022·安徽安庆·八年级期末)(1)已知:如图1,线段CD 与AOB ∠,通过作图求一点P ,使PC PD =,并且点P 到AOB ∠两边的距离相等.(保留作图痕迹,不写作法)(2)已知:如图2,点O 在ABC 的外部,且OB OC =,点O 到BAC ∠两边的距离相等.问:AB AC =一定成立吗?若一定成立,请证明;若不一定成立,请画图说明.55.(2022·安徽淮南·八年级期末)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出△ABC 关于x 轴成轴对称的图形△A 1B 1C 1,并写出A 1、B 1、C 1的坐标;(2)在y 轴上找一点P ,使PA+PB 的值最小,请画出点P 的位置.56.(2022·安徽铜陵·八年级期末)如图,点D 、E 分别在等边△ABC 的边AB 、BC 上,且BD =CE ,CD ,AE 交于点F .(1)求∠AFD 的度数;(2)如图2,若D ,E ,M ,N 分别是△ABC 各边上的三等分点,BM ,CD 交于Q .若△ABC 的面积为S ,则四边形ANQF 的面积为______;(只写出答案即可,不要求写解题过程)(3)如图3,延长CD 到点P ,使∠BPD =30°,设AF =a ,CF =b ,请用含a ,b 的式子表示PC 的长,并说明理由.57.(2022·安徽合肥·八年级期末)如图1,在ABC 中,90ACB ∠=︒,AC BC =,AD CE ⊥于点D ,BE CE ⊥于点E .(1)求证:ACD CBE △△≌;(2)如图2,若点O 为AB 的中点,连接DO ,EO ,判断DOE △的形状,并说明理由.58.(2022·安徽合肥·八年级期末)如图,BD 和CD 分别平分ABC 的内角EBA ∠和外角ECA ∠,BD 交AC 于点F ,连接AD .(1)求证:12BDC BAC ∠=∠; (2)若AB AC =,请判断ABD △的形状,并证明你的结论;(3)在(2)的条件下,若AF BF =,求ABC ∠的大小.参考答案:1.(1)见解析;(2)72°【解析】(1)直接利用角平分线的作法得出BD ;(2)利用等腰三角形的性质以及角平分线的性质分析得出答案.(1)如图所示:BD 即为所求;(2)∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =36°,∴∠BDC =∠A +∠ABD =72°.此题主要考查角平分线的作图与角度求解,解题的关键是熟知等腰三角形的性质.2.(1)见解析,()1B 1,4(2)见解析,()2A 4,-4【解析】(1)把△ABO 的三个顶点A 、B 、O 分别向平移5个单位,向上平移1个单位,得到对应点A 1、B 1、C 1,依次连接这三个点即可得到△A 1B 1C 1,即可写出点B 1的坐标;(2)把△A 1B 1C 1的三个顶点A 1、B 1、C 1沿着x 轴翻折后得到A 2、B 2、C 2依次连接这三点,得到△A 2B 2C 2,由翻折即可写出点A 2的坐标.(1)111A B C △如图所示,1B (1,4); (2)222A B C △如图所示,2A (4,-4).本题考查了平面直角坐标系中图形的平移与翻折,关键是确定三角形三个顶点平移与翻折后点的坐标.3.(1)见解析;(2)见解析,点2B 的坐标为()32-,【解析】(1)根据题目要求进行平移即可;(2)直接画出111A B C ∆关于y 轴的对称图形222A B C ∆即可求出点2B 的坐标.解:如图所示,(1)(2)题如图所示点2B 的坐标为()32-,本题主要考查了平面直角坐标系和轴对称的相关知识,熟练运用轴对称的知识和在平面直角坐标系中对图形进行平移是解答此题的关键.4.(1)见解析;(2)见解析;(3)见解析【解析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)连接A 1B 交直线l 于点P ,点P 即为所求作.(3)∠ACB 的角平分线与直线l 的交点Q 即为所求作.(1)解:如图,分别作出A ,B ,C 的对应点A 1,B 1,C 1,△A 1B 1C 1即为所求作.(2)解:如图连接A 1B 交直线l 于点P ,点P 即为所求作,点P 即为所求作.(3)解:如图∠ACB 的角平分线与直线l 的交点Q 即为所求作,点Q 即为所求作.本题考查作图-轴对称变换,角平分线的性质,轴对称-最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(1)见解析;(2)见解析;(3)见解析,7【解析】(1)依据平移的方向和距离,即可得到111A B C △;(2)依据轴对称的性质,即可得到222A B C △;(3)依据割补法进行计算,即可得到△A 1A 2C 2的面积.(1)如图所示,111A B C △即为所求;(2)如图所示,222A B C △即为所求;(3)如图所示,△A 1A 2C 2即为所求作的三角形,△A 1A 2C 2的面积=3×6-12×2×3-12×2×6-12×1×4=18-3-6-2=7.本题考查作图−平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.6.(1)作图见解析,()11,4B -;(2)作图见解析,52【解析】(1)先将、、A B C 分别沿x 轴正方向平移3个单位得到111A B C 、、,再顺次连接即可得到111A B C △,写出1B 的坐标即可;(2)将111A B C 、、三点分别关于x 轴对称至222A B C 、、,再顺次连接即可得到222A B C △,用长方形的面积减去三个直角三角形的面积即可的得到222A B C △的面积.(1)如图所示,111A B C △即为所求,()11,4B -;(2)如图所示,222A B C △即为所求,2221115231212132222△A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=.本题考查平移作图以及轴对称作图,理解平移和轴对称的基本性质并掌握画法是解题关键.7.(1)见解析;(2)4;(3)()10,0P 或()6,0-【解析】(1)根据平面直角坐标系描出点,,A B C ,再根据题意作关于y 轴的对称点,,D E F ,顺次连接,,D E F 即可; (2)根据网格的特点求解ABC S ;(3)设(,0)P m ,进而根据三角形的面积公式进行计算即可;(1)如图,根据平面直角坐标系描出点,,A B C ,再根据题意作关于y 轴的对称点,,D E F ,顺次连接,,D E F 即可;(2)111431224234222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=(3)设(,0)P m , 11=21422ABP A S BP y m =⋅⋅-⨯=△ ∴10m =或6-∴()10,0P 或()6,0-本题考查了画轴对称图形,坐标与图形,割补法求网格内三角形的面积,掌握以上知识是解题的关键. 8.(1)(4,2)(2)作图见详解(3)(1,2)或(5,4)或(5,2)【解析】(1)利用平移变换的性质解决问题;(2)根据轴对称的性质解决问题,关于y 轴对称的点的坐标特点是:纵坐标相等,横坐标互为相反数;关于x 轴对称的点的坐标特点是:横坐标相等,纵坐标互为相反数;(3)如图,有三种情形,利用全等三角形的判定和性质解决问题.(1)解:点A 先向右平移3个单位,再向下平移2个单位,所得点的坐标为(4,2),故答案为:(4,2);(2)如图,△A 1B 1C 1即为所求的三角形;(3)满足条件的点D 的坐标为(1,2)或(5,4)或(5,2).本题考查了作图-轴对称变换,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.(1)11,(2)7.【解析】(1)由线段垂直平分线的性质可得DB=DC ,再根据三角形的周长为AB+BD+AD=AB+CD+AD=AB+AC=11.(2)由(1)可知ΔABD 的周长=AB+AC ,结合BC 等于ΔABC 的周长与ΔABD 的周长之差解答即可. 解:(1)∵DE 所在直线是BC 的垂直平分线,∴DB=DC∴ΔABD 的周长=AB+BD+AD=AB+CD+AD=AB+AC=3+8=11.(2)由(1)可知ΔABD 的周长=AB+AC ,又∵ΔABC 的周长=AB+AC+BC ,∴BC 等于ΔABC 的周长与ΔABD 的周长之差,即BC=20-13=7.本题考查线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.10.(1)见解析 (2)65°【解析】(1)根据AB =AC 可得∠B =∠C ,即可求证△BDE ≌△CEF ,即可解题;(2)根据全等三角形的性质得到∠CEF =∠BDE ,于是得到∠DEF =∠B ,根据等腰三角形的性质即可得到结论;解:(1)∵AB AC =,∴B C ∠=∠,在BDE 和CEF △中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,∴BDE CEF ≌△△(SAS ),∴DE EF =,∴DEF 为等腰三角形;(2)∵BDE CEF ≌△△,∴BDE CEF ∠=∠,∵CED ∠是BDE 的外角,∴CED BDE B ∠=∠+∠,∴∠+∠=∠+∠CEF DEF BDE B ,∴DEF B ∠=∠,在ABC 中50A ∠=︒, ∴()118050652B C ∠=∠=⨯︒-︒=︒, ∴65DEF ∠=︒.本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.11.(1)见详解;(2)见详解【解析】(1)根据AAS ,即可证明ABO DCO △≌△;(2)根据全等三角形的性质得OB =OC ,进而即可得到结论.证明:(1)在ABO 与DCO 中,∵AB DC ABO DCO AOB DOC =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ABO DCO △≌△(AAS );(2)∵ABO DCO △≌△,∴OB =OC ,∴OBC OCB ∠=∠.本题主要考查全等三角形的判定和性质定理以及等腰三角形的性质,掌握AAS 判定三角形全等,是解题的关键.12.(1)12cm ;(2)56︒【解析】(1)根据垂直平分线的性质可得AM CM =,CN NB =,即可求解;(2)根据等腰三角形的性质可得A ACM ∠=∠,B BCN ∠=∠,再根据三角形内角和即可求解. 解:(1)由题意可得DM 垂直平分AC ,NE 垂直平分BC ,∴AM CM =,CN BN =,∴△MCN 的周长为12cm AM MN NB AB ++==,故答案为12cm .(2)由等腰三角形的性质可得:A ACM ∠=∠,B BCN ∠=∠,∵118ACB ∠=︒,∴18062A B ACB ∠+∠=︒-∠=︒,∴62ACM BCN ∠+∠=︒,∴()56MCN ACB ACM BCN ∠=∠-∠+∠=︒,故答案为:56︒.此题考查了垂直平分线的性质,等腰三角形的性质以及三角形内角和的性质,解题的关键是灵活运用相关性质进行求解.13.20海里.【解析】先根据角的和差可得60ABC ∠=︒,再根据平行线的性质可得140∠=︒,从而可得60ACB ∠=︒,然后根据等边三角形的判定与性质可得AC BC =,由此即可得出答案.解:由题意得:180804060ABC ∠=︒-︒-︒=︒,10220BC =⨯=(海里),//CD BE ,140CBE ∴∠=∠=︒,20ACD ∠=︒,160ACB ACD ∴∠=∠+∠=︒,ABC ∴是等边三角形,20AC BC ∴==海里,答:货轮到达C 处时与灯塔A 的距离AC 为20海里.本题考查了方位角、平行线的性质、等边三角形的判定与性质等知识点,熟练掌握等边三角形的判定与性质是解题关键.14.(1)都为40︒;(2)10【解析】(1)根据三角形的内角和定理求解即可;(2)分两种情况,进行讨论,分别求解即可.解:(1)三角形的一个内角为100︒,则另外两个角的和为18010080︒-︒=︒又∵ABC 为等腰三角形∴100︒的内角为顶角,另外两个角为底角∴另外两个角的度数都为180402︒⨯=︒ 故答案为:都为40︒(2)三角形两边长为2和4,当腰为2,底为4时,∵2+24=,不满足三角形三边条件,舍去当腰为4,底为2时,424+>,4224-=<,符合三角形三边条件,此时三角形的周长为44210++=故答案为:10此题考查了等腰三角形的性质,三角形的内角和及三角形三边的关系,解题的关键是掌握等腰三角形的有关性质.15.(1)见解析(2)等边三角形,见解析【解析】(1)根据SAS 即可证明结论;(2)结合(1)可得∠BCA =∠DAC ,然后根据平行线的性质可得∠F AG =∠AFG =∠FGA ,进而可以解决问题.(1)证明:∵AB ∥CD ,∴∠BAC =∠DCA ,∵在△BCA 和△DCA 中,AB CD BAC DCA AC CA =⎧⎪∠=∠⎨⎪=⎩,∴△BAC ≌△DCA (SAS );(2)解:△F AG 是等边三角形.理由如下:∵△BAC ≌△DCA ,∴∠BCA =∠DAC ,∴BC ∥AD ,∴∠F AG =∠ABC ,由折叠的性质知:∠ABC =∠BFC ,∴∠F AG =∠AFG ,∵DC =DG ,∴∠DCG =∠DGC =∠FGA ,∵AB ∥CD ,∴∠AFG =∠DCG ,∴∠F AG =∠AFG =∠FGA ,所以△F AG是等边三角形.本题考查翻折变换,全等三角形的判定与性质,利用平行线的性质,确定△F AG是等边三角形是解本题的关键.16.(1)证明见解析(2)证明见解析【解析】(1)根据AD=AE,AP=AP,利用HL可证得△ADP≌△AEP,即可求证;(2)根据∠APD=∠APE,可得∠APB=∠APC,可证得△ABP≌△ACP,可得AB=AC,即可求证.(1)证明:∵BE⊥AC于点E,CD⊥AB于点D,∴∠ADP=∠AEP=90°,∵AD=AE,AP=AP,∴△ADP≌△AEP(HL),∴∠DAP=∠EAP,∴AP平分∠DAE;(2)证明:由(1)得∠APD=∠APE,∵∠BPD=∠CPE,∴∠APB=∠APC,又AP=AP,∠DAP=∠EAP,∴△ABP≌△ACP(ASA),∴AB=AC,∴△ABC为等腰三角形.本题主要考查了全等三角形的判定和性质,等腰三角形的判定,熟练掌握全等三角形的判定和性质定理,等腰三角形的判定定理是解题的关键.17.(1)36ABD ∠=︒(2)3AE =【解析】(1)由角平分线的定义可直接得到答案.(2)由内角大小可知ABC 、ABD △为等腰三角形,通过等腰三角形的相关性质即可得到答案.(1)解:∵∠ABC =180°-36°-72°=72°, ∴1362ABD ABC ∠=∠=︒ (2)解:∵∠C =∠ABC =72°,∴AB =AC =6又∵∠ABD =∠A =36°,∴AD =BD又∵DE ⊥AB , ∴11322AE EB AB AC ====. 本题考查与角平分线有关的三角形内角和问题、等腰三角形的性质,通过内角大小求得等腰三角形是解题的关键.18.117°【解析】根据∠1求出ACD ∠,再根据CE 平分ACD ∠求出∠ECD ,根据//AB CD ,得出∠2.证明:∵154∠=︒,∴180118054126ACD ∠=︒-∠=︒-︒=︒,∵CE 平分ACD ∠, ∴1632ACE ECD ACD ∠=∠=∠=︒, 又∵//AB CD ,∴218018063117ECD ∠=︒-∠=︒-︒=︒.本题考查了平行的性质和角平分线等有关知识,根据条件合理运用性质和定理是解决问题的关键. 19.定理证明:见解析;定理应用:15.【解析】定理证明:利用AAS 判定△OEP ≌△ODP 可得PE =PD ;定理应用:过O作OE⊥AB与E,OF⊥AC于F,利用角平分线的性质可得EO=DO,OF=DO,然后再利用面积的计算方法可得答案.定理证明:∵OC是∠AOB的角平分线,∴∠AOP=∠BOP,∵PD⊥OA,PE⊥OB,∴∠PEO=∠PDO=90°,在△OEP和△ODP中,∵EOP DOPPEO PDOOP oP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OEP≌△ODP(AAS),∴PE=PD;定理应用:过O作OE⊥AB与E,OF⊥AC于F,∵BO、CO分别平分∠ABC和∠ACB,∴EO=DO,OF=DO,∵OD=3,∴EO=FO=3,∵△ABC的周长是10,∴AB+BC+AC=10,∴△ABC的面积:1 2AB•EO+12AC•FO+12CB•DO=32(AB+AC+BC)=32×10=15,故答案为:15.本题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.20.(1)见解析(2)见解析(3)4【解析】(1)根据A,B的坐标分别为(-3,3)、(-1,-1)即可在网格平面内画出平面直角坐标系,进而写出C点坐标;(2)根据关于x轴对称的点的坐标特点,先找出对应点位置,再首尾连接即可得到△A1B1C1;根据平移的性质先找出对应点位置,再首尾连接即可得到△A2B2C2;(3)结合网格利用割补法即可求出△A1B1C1的面积.(1)如图即为平面直角坐标系,C(0,1)(2)如图,△A1B1C1,△A2B2C2即为所求;(3)△A1B1C1的面积=3×4-12×2×4-12×1×2-12×2×3=4.本题考查的是作图−−轴对称和平移变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.21.(1)见解析;(2)见解析;(3)(m﹣4,﹣n).【解析】(1)关于x轴对称的点的坐标特征是:横坐标不变,纵坐标变为原数的相反数,据此分别画出点A(1,0),B(2,﹣3),C(4,﹣2)关于x轴对称的点,再连接即可;(2)根据平移的性质解题:左平移4个单位长度即,横坐标减少4,纵坐标不变;(3)点P2的坐标是由点P通过先作关于x轴对称,再左平移4个单位长度后得到的.(1)画出正确的图如图所示,△A1B1C1即为所求:(2)画出正确的图如图所示,△A 2B 2C 2即为所求.(3)点P 2的坐标是由点P 通过先作关于x 轴对称得到P 1(m ,﹣n ),再左平移4个单位长度后得到的(m ﹣4,﹣n ),故答案为:(m ﹣4,﹣n ).本题考查图形变换与坐标,涉及轴对称、平移等知识,是重要考点,掌握相关知识是解题关键. 22.(1)8;(2)见解析【解析】(1)根据题意得出6AB =,根据△ABC 的周长是14,可得8AC BC +=,通过等量代换可知AEC C AC BC =+,即可得出答案;(2)通过证明出ADE ACE △≌△,得出DE CE =,即可证明.解:DE 是AB 的垂直平分线,,AE BE AD BD ∴==,3AD =,6AB ∴=, ABC 的周长为14,8AC BC ∴+=,AEC CAC CE AE AC BC =++=+, AEC CAC CE AE AC BC =++=+ 8AECC ∴=, AEC ∴的周长为8;(2)AE BE =,30∴∠=∠=︒,BAE B∠=︒,ACB90∴∠=︒,BAC60∴∠=∠=︒,30BAE CAE∠=∠=︒=,ADE ACE AE AE90,∴≌,()ADE ACE AAS∴=,DE CE即点E在线段CD的垂直平分线上.本题考查了垂直平分线的性质,三角形全等的判定及性质,解题的关键是掌握三角形全等的判断及形,利用转换的思想进行求解.23.(1)15;(2)20°【解析】(1)根据线段的垂直平分线的性质,即可得到AD=BD,AE=CE,再根据AD+DE+AE=15,即可得到BD+DE+CE=15;(2)根据三角形内角和定理,即可得到∠B+∠C=80°,再根据∠B+∠BAD,∠C=∠CAE,即可得出∠BAD+∠CAE=80°,进而得到∠DAE=100°-80°=20°.解:(1)∵线段AB、AC的垂直平分线与BC的交点分别为D、E,∴AD=BD,AE=CE,∵△ADE的周长是15,∴AD+DE+AE=15,∴BD+DE+CE=15,即BC=15;(2)∵∠BAC=100°,∴△ABC中,∠B+∠C=80°,又∵AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∴∠BAD+∠CAE=80°,∴∠DAE=100°-80°=20°.本题主要考查了线段垂直平分线的性质的运用,解题时注意:线段垂直平分线上任意一点,到线段两端点。

沪教版2019-2020学年第一学期八年级数学上册期末考试复习试卷及答案

沪教版2019-2020学年第一学期八年级数学上册期末考试复习试卷及答案

沪教版八年级数学上册期末考试复习试卷一.选择题(共15小题)1()A B+C D2.将根号外的因式移到根号内,得()A B.C.D3.实数a、b在数轴上位置如图,则化简||a b+为()A.a-B.3a-C.2b a+D.2b a-4.关于x的方程232ax x ax+=+是一元二次方程,那么()A.0a≠B.1a≠C.2a≠D.3a≠5.若2222440x xy y x-+-+=,那么yx-的值是()A.14B.4-C.14-D.46.过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x名同学,列方程为()A.1(1)3802x x-=B.(1)380x x-=C.2(1)380x x-=D.(1)380x x+=7.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.12(1)45x x-=B.12(1)45x x+=C.(1)45x x-=D.(1)45x x+=8.反比例函数kyx=的图象经过点(1,2)-,1(A x,1)y、2(B x,2)y是图象上另两点,其中12x x<<,那么1y、2y的大小关系是()A.12y y>B.12y y<C.12y y=D.都有可能9.已知函数y kx=中y随x的增大而减小,那么它和函数kyx=在同一直角坐标系内的大致图象可能是()A .B .C .D .10.已知函数(0)ky k x=≠中,在每个象限内,y 随x 的增大而增大,那么它和函数(0)y kx k =-≠在同一直角坐标平面内的大致图象是( )A .B .C .D .11.下列命题中是真命题的是( ) A .反比例函数2y x=,y 随x 的增大而减小B .一个三角形的三个内角的度数之比为1:2:3,则三边长度之比是1:2:3C .直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形D .如果1a =-,那么一定有a l < 12.下列命题的逆命题为假命题的是( )A .如果一元二次方程20(0)ax bx c a ++=≠没有实数根,那么240b ac -<.B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.13.如图,在ABC ∆中,90C ∠=︒,12BC AB =,BD 平分ABC ∠,2BD =,则以下结论错误的是( )A .点D 在AB 的垂直平分线上 B .点D 到AB 的距离为1C .点A 到BD 的距离为2D .点B 到AC 14.如图,在ABC ∆中,20AB AC cm ==,DE 垂直平分AB ,垂足为E ,交AC 于D ,若DBC ∆的周长为35cm ,则BC 的长为( )A .5cmB .10cmC .15cmD .17.5cm15.如图字母B 所代表的正方形的面积是( )A .12B .13C .144D .194二.填空题(共17小题)161<+的解集是 .17.比较大小:< “”或“= “”或“>” )18= . 19.若224941250x y x y +--+=,则322x y += . 20.已知关于x 的方程221(2)104x m x m +-+-=有两个实数根,那么m 的取值范围是 .21.若关于x 的一元二次方程22(21)10a x a x +-+=有两个实数根,则a 的取值范围是 .22.如果关于x 的方程22(2)10m x m x --+=的两个实数根互为倒数,那么m = . 23.等腰ABC ∆中,8BC =,若AB 、AC 的长是关于x 的方程2100x x m -+=的根,则m 的值等于 .24.如图,在长为32米、宽为20米的长方形绿地内,修筑两条同样宽且分别平行于长方形相邻两边的道路,把绿地分成4块,这4块绿地的总面积为540平方米.如果设道路宽为x 米,由题意所列出关于x 的方程是 .25.某校六年级(1)班同学在“六一”节前夕,每个同学都向其他同学赠送纪念品一件,全班共送出纪念品870件,那么该班共有学生 人. 26.如图,已知两个反比例函数11:C y x =和21:3C y x=在第一象限内的图象,设点P 在1C 上,PC x ⊥轴于点C ,交2C 于点A ,PD y ⊥轴于点D ,交2C 于点B ,则四边形PAOB 的面积为 .27.如图,Rt ABC ∆中,90C ∠=︒,2BD CD =,AD 是BAC ∠的角平分线,CAD ∠= 度.28.如图:在Rt ABC ∆中,90C ∠=︒,AB 的垂直平分线EF 分别交BC 、AB 于点E 、F ,65AEF ∠=︒,那么CAE ∠= .29.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC a =,CE b =,H 是AF 的中点,那么CH 的长是 .(用含a 、b 的代数式表示)30.如图,三角形ABC 三边的长分别为22AB m n =-,2AC mn =,22BC m n =+,其中m 、n 都是正整数.以AB 、AC 、BC 为边分别向外画正方形,面积分别为1S 、2S 、3S ,那么1S 、2S 、3S 之间的数量关系为 .31.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,边AB 的垂直平分线DE 交AC 于D ,若10CD cm =,则AD = cm .32.把命题“等角的补角相等”改写成“如果⋯那么⋯”的形式是 . 三.解答题(共18小题)3303)+-.3426(31)+-+35-36.当t =的值.37.已知x =2623x x x -+-的值.38.解方程:2(3)3(3)0x x x -+-=39.用配方法解方程:212302x x -+=.40.某企业研制的产品今年第一季度的销售数量为300件,第二季度由于市场等因素,销售数量比第一季度减少了4%,从第三季度起,该企业搞了一系列的促销活动,销售数量又有所提升,第四季度的销售量达到了450件,假设第三季度与第四季度销售数量的增长率相同,求这个增长率.41.如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米. (1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽.42.某工地利用一面16米长的墙和简易板材围一个面积为140平方米的长方形临时堆场,已知和墙平行的一边要开一个宽为2米的门,除留作门以外部分的板材总长度为32米,求这个长方形临时堆场的尺寸.43.如图,利用长20米的一段围墙,用篱笆围一个长方形的场地,中间用篱笆分割出2个小长方形,总共用去篱笆36米,为了使这个长方形的ABCD的面积为96平方米,求AB、BC边各为多少米.44.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.45.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?46.已知:如图,点(1,)A m 是正比例函数1y k x =与反比例函数2k y x=的图象在第一象限的交点,AB x ⊥轴,垂足为点B ,ABO ∆的面积是2. (1)求m 的值以及这两个函数的解析式;(2)若点P 在x 轴上,且AOP ∆是以OA 为腰的等腰三角形,求点P 的坐标.47.如图,在平面直角坐标系中,OA OB ⊥,AB x ⊥轴于点C ,点A ,1)在反比例函数ky x=的图象上. (1)求反比例函数ky x=的表达式; (2)求AOB ∆的面积;(3)在坐标轴上是否存在一点P ,使得以O 、B 、P 三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P 的坐标:若不存在,简述你的理由.48.已知:如图,在BCD ∆中,CE BD ⊥于点E ,点A 是边CD 的中点,EF 垂直平分线AB (1)求证:12BE CD =;(2)当AB BC =,25ABD ∠=︒时,求ACB ∠的度数.49.已知:如图,BP 、CP 分别是ABC ∆的外角平分线,PM AB ⊥于点M ,PN AC ⊥于点N .求证:PA 平分MAN ∠.50.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O .求证:点O 到EB 与ED 的距离相等.参考答案一.选择题(共15小题)1( )A B +CD2x y ==+, 故选:C .2.将根号外的因式移到根号内,得( )A B .C .D解:== 故选:B .3.实数a 、b 在数轴上位置如图,则化简||a b +为( )A .a -B .3a -C .2b a +D .2b a -解:0b a <<,且||||b a >, 0a b ∴+<,∴||a b +()a b a a b =----- 3a =-,故选:B .4.关于x 的方程232ax x ax +=+是一元二次方程,那么( ) A .0a ≠B .1a ≠C .2a ≠D .3a ≠解:232ax x ax +=+,2(3)20ax a x +-+=,依题意得:0a ≠. 故选:A .5.若2222440x xy y x -+-+=,那么y x -的值是( ) A .14B .4-C .14-D .4解:2222440x xy y x -+-+=,2222440x xy y x x ∴-++-+=, 22()(2)0x y x ∴-+-=,∴020x y x -=⎧⎨-=⎩, 解得22x y =⎧⎨=⎩.∴原式2124-==. 故选:A .6.过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( )A .1(1)3802x x -=B .(1)380x x -=C .2(1)380x x -=D .(1)380x x +=解:设全班有x 名同学,由题意得: (1)380x x -=,故选:B .7.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( ) A .12 (1)45x x -= B .12(1)45x x += C .(1)45x x -= D .(1)45x x +=解:有x 支球队参加篮球比赛,每两队之间都比赛一场, ∴共比赛场数为1(1)2x x -, ∴共比赛了45场, ∴1(1)452x x -=, 故选:A . 8.反比例函数ky x=的图象经过点(1,2)-,1(A x ,1)y 、2(B x ,2)y 是图象上另两点,其中120x x <<,那么1y 、2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .都有可能解:反比例函数ky x=的图象经过点(1,2)-, 2k ∴=-,∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,120x x <<,1(A x ∴,1)y 、2(B x ,2)y 两点均位于第二象限,12y y ∴<.故选:B .9.已知函数y kx =中y 随x 的增大而减小,那么它和函数ky x=在同一直角坐标系内的大致图象可能是( )A .B .C .D .解:函数y kx =中y 随x 的增大而减小, 0k ∴<,∴函数y kx =的图象经过二、四象限,故可排除A 、B ;0k <, ∴函数ky x=的图象在二、四象限,故C 错误,D 正确. 故选:D . 10.已知函数(0)ky k x=≠中,在每个象限内,y 随x 的增大而增大,那么它和函数(0)y kx k =-≠在同一直角坐标平面内的大致图象是( )A.B.C.D.解:函数kyx=中,在每个象限内,y随x的增大而增大,k∴<,∴双曲线在第二、四象限,∴函数y kx=-的图象经过第一、三象限,故选:A.11.下列命题中是真命题的是()A.反比例函数2yx=,y随x的增大而减小B.一个三角形的三个内角的度数之比为1:2:3,则三边长度之比是1:2:3C.直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形D.如果1a=-,那么一定有a l<解:A、反比例函数2yx=,在第一、三象限,y随x的增大而减小,本说法是假命题;B、一个三角形的三个内角的度数之比为1:2:3,这三个角的度数分别为30︒、60︒、90︒,则三边长度之比是2,本说法是假命题;C、直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形是真命题;D1a=-,那么一定有a l…,本说法是假命题;故选:C.12.下列命题的逆命题为假命题的是( )A .如果一元二次方程20(0)ax bx c a ++=≠没有实数根,那么240b ac -<.B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.解:A 、逆命题为:如果一元二次方程20(0)ax bx c a ++=≠中240b ac -<,那么没有实数根,正确,是真命题;B 、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,为真命题;C 、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;D 、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题, 故选:C .13.如图,在ABC ∆中,90C ∠=︒,12BC AB =,BD 平分ABC ∠,2BD =,则以下结论错误的是( )A .点D 在AB 的垂直平分线上 B .点D 到AB 的距离为1C .点A 到BD 的距离为2 D .点B 到AC 解:在ABC ∆中,90C ∠=︒,12BC AB =, 30A ∴∠=︒, 60ABC ∴∠=︒,BD 平分ABC ∠, 30ABD CBD ∴∠=∠=︒,A ABD ∴∠=∠,112CD BD ==, 2AD BD ∴==,∴点D 在AB 的垂直平分线上,过D 作DE AB ⊥于E , 1DE DC ∴==,∴点D 到AB 的距离为1,BC ==∴点B 到AC ,过A 作AF BD ⊥交BD 的延长线于F , 12AF AB BC ∴===,∴点A 到BD ,故选:C .14.如图,在ABC ∆中,20AB AC cm ==,DE 垂直平分AB ,垂足为E ,交AC 于D ,若DBC ∆的周长为35cm ,则BC 的长为( )A .5cmB .10cmC .15cmD .17.5cm解:DBC ∆的周长35BC BD CD cm =++=(已知) 又DE 垂直平分ABAD BD ∴=(线段垂直平分线的性质)故35BC AD CD cm ++= 20AC AD DC =+=(已知) 352015BC cm ∴=-=.故选:C .15.如图字母B 所代表的正方形的面积是( )A .12B .13C .144D .194解:由题可知,在直角三角形中,斜边的平方169=,一直角边的平方25=,根据勾股定理知,另一直角边平方16925144=-=,即字母B 所代表的正方形的面积是144. 故选:C .二.填空题(共17小题)161<+的解集是 x <1<x <x <+故答案为x <+17.比较大小:3< “”或“= “”或“>” )解:23=,23∴-<故答案为:<.184- .解:原式|44=-=-,4.19.若224941250x y x y +--+=,则322x y += 2 . 解:222222494125(441)(9124)(21)(32)0x y x y x x y y x y +--+=-++-+=-+-=, 210x ∴-=且320y -=,解得:12x =,23y =, 则3132221122223x y +=⨯+⨯=+=. 故答案为:220.已知关于x 的方程221(2)104x m x m +-+-=有两个实数根,那么m 的取值范围是2m … .解:关于x 的方程221(2)104x m x m +-+-=有两个实数根,∴△221(2)41(1)4804m m m =--⨯⨯-=-+…,2m ∴….故答案为:2m ….21.若关于x 的一元二次方程22(21)10a x a x +-+=有两个实数根,则a 的取值范围是 14a …且0a ≠ .解:根据题意得20a ≠且△22(21)40a a =--…, 解得14a …且0a ≠. 故答案为14a …且0a ≠. 22.如果关于x 的方程22(2)10m x m x --+=的两个实数根互为倒数,那么m = 1- . 解:方程22(2)10m x m x --+=的两个实数根互为倒数, ∴211m =,解得1m =或1m =-, 当1m =时,方程变形为210x x ++=,△141130=-⨯⨯=-<,方程没有实数解, 所以m 的值为1-. 故答案为:1-.23.等腰ABC ∆中,8BC =,若AB 、AC 的长是关于x 的方程2100x x m -+=的根,则m 的值等于 25或16 .解:当8AB BC ==,把8x =代入方程得64800m -+=,解得16m =, 此时方程为210160x x -+=,解得18x =,22x =;当AB AC =,则10AB AC +=,所以5AB AC ==,则5525m =⨯=.故答案为25或16.24.如图,在长为32米、宽为20米的长方形绿地内,修筑两条同样宽且分别平行于长方形相邻两边的道路,把绿地分成4块,这4块绿地的总面积为540平方米.如果设道路宽为x 米,由题意所列出关于x 的方程是 (20)(32)540x x --= .解:设道路的宽为x 米.依题意得: (32)(20)540x x --=,故答案为:(32)(20)540x x --=.25.某校六年级(1)班同学在“六一”节前夕,每个同学都向其他同学赠送纪念品一件,全班共送出纪念品870件,那么该班共有学生 30 人. 解:设有x 人,则 (1)870x x -=30x =或29x =-(舍去). 全班共有30人. 故答案为:30.26.如图,已知两个反比例函数11:C y x =和21:3C y x=在第一象限内的图象,设点P 在1C 上,PC x ⊥轴于点C ,交2C 于点A ,PD y ⊥轴于点D ,交2C 于点B ,则四边形PAOB 的面积为3.解:PC x ⊥轴,PD y ⊥轴,11111||23236AOC BOD S S ∆∆∴===⨯=,1PCOD S =矩形, ∴四边形PAOB 的面积121263=-⨯=, 故答案为23.27.如图,Rt ABC ∆中,90C ∠=︒,2BD CD =,AD 是BAC ∠的角平分线,CAD ∠= 30 度.解:过点D 作DE AB ⊥于E 点,AD 是BAC ∠的角平分线,DC AC ⊥,DE AB ⊥, DC DE ∴=. 2BD CD =,2BD DE ∴=. 30B ∴∠=︒. 90C ∠=︒, 60CAB ∴∠=︒.160302CAD ∴∠=⨯︒=︒. 故答案为30.28.如图:在Rt ABC ∆中,90C ∠=︒,AB 的垂直平分线EF 分别交BC 、AB 于点E 、F ,65AEF ∠=︒,那么CAE ∠= 40︒ .解:AB 的垂直平分线EF 分别交BC 、AB 于点E 、F ,AF BF ∴=,EF AB ⊥, AE BE ∴=,65BEF AEF ∴∠=∠=︒, 130AEB ∴∠=︒, 90C ∠=︒,40CAE AEB C ∴∠=∠-∠=︒,故答案为:40︒.29.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC a =,CE b =,H 是AF 的中点,那么CH (用含a 、b 的代数式表示)解:连接AC 、CF ,在正方形ABCD 和正方形CEFG 中, 45ACG ∠=︒,45FCG ∠=︒, 90ACF ∴∠=︒, BC a =,CE b =,AC ∴=,CF =,由勾股定理得,AF == 90ACF ∠=︒,H 是AF 的中点,CH ∴=30.如图,三角形ABC 三边的长分别为22AB m n =-,2AC mn =,22BC m n =+,其中m 、n 都是正整数.以AB 、AC 、BC 为边分别向外画正方形,面积分别为1S 、2S 、3S ,那么1S 、2S 、3S 之间的数量关系为 123S S S += .解:22AB m n =-,2AC mn =,22BC m n =+,222AB AC BC ∴+=,ABC ∴∆是直角三角形,设Rt ABC ∆的三边分别为a 、b 、c ,21S c ∴=,22S b =,23S a =,ABC ∆是直角三角形,222b c a ∴+=,即123S S S +=.故答案为:123S S S +=.31.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,边AB 的垂直平分线DE 交AC 于D ,若10CD cm =,则AD = 20 cm .解:DE 是边AB 的垂直平分线,10DE CD cm ∴==,DE AB ⊥,30A ∠=︒,220AD DE cm ∴==,故答案为:20.32.把命题“等角的补角相等”改写成“如果⋯那么⋯”的形式是 如果两个角是等角的补角,那么它们相等 .解:题设为:两个角是等角的补角,结论为:相等,故写成“如果⋯那么⋯”的形式是:如果两个角是等角的补角,那么它们相等. 故答案为:如果两个角是等角的补角,那么它们相等.三.解答题(共18小题)3303)+-.解:原式|3|1=-+3)1=--+31=++4=-3426(31)+-+解:原式311)=+-+42=+-2=+.35-解:原式2=+-2=++.36.当t =的值.解:当t ==|3|t =-|3=-3=-37.已知x =2623x x x -+-的值. 解:x ==3=+ 原式2(3)293x x -+-=-====. 38.解方程:2(3)3(3)0x x x -+-=解:2(3)3(3)0x x x -+-=,(3)(23)0x x ∴-+=,则30x -=或230x +=,解得:13x =,232x =-. 39.用配方法解方程:212302x x -+=. 解:239912()0216162x x -+-+=, 23912()0482x --+=, 2352()48x -= 235()416x -=34x -=x = 40.某企业研制的产品今年第一季度的销售数量为300件,第二季度由于市场等因素,销售数量比第一季度减少了4%,从第三季度起,该企业搞了一系列的促销活动,销售数量又有所提升,第四季度的销售量达到了450件,假设第三季度与第四季度销售数量的增长率相同,求这个增长率.解:设这个增长率是x ,根据题意,得2300(14%)(1)450x -+=, 整理,得225(1)16x +=, 解得10.25x =,2 2.25x =-(不合题意舍去).答:这个增长率是25%.41.如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽.解:(1)由图可知,花圃的面积为(402)(602)a a --;(2)由已知可列式:36040(402)(602)60408a a ⨯---=⨯⨯, 解得:15a =,245a =(舍去).答:所以通道的宽为5米.42.某工地利用一面16米长的墙和简易板材围一个面积为140平方米的长方形临时堆场,已知和墙平行的一边要开一个宽为2米的门,除留作门以外部分的板材总长度为32米,求这个长方形临时堆场的尺寸.解:如图,设这个长方形临时堆场垂直于墙面的一边为x 米,则平行于墙面的一边为(3222)x -+米,根据题意有,(342)140x x -=,解得7x =或10x =,其中7x =时,3422016x -=>,所以10x =.答:这个长方形垂直于墙面的一边为10米,平行于墙面的一边为14米.43.如图,利用长20米的一段围墙,用篱笆围一个长方形的场地,中间用篱笆分割出2个小长方形,总共用去篱笆36米,为了使这个长方形的ABCD的面积为96平方米,求AB、BC边各为多少米.解:设AB为x米,则BC为(363)x-米,(363)96x x-=解得:14x=,28x=当4x=时3632420x-=>(不合题意,舍去)当8x=时36312x-=.答:8AB=米,12BC=米.44.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长 2 千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.解:(1)由题意和图象可得,小强去学校时下坡路为:312-=(千米),故答案为:2;(2)小强下坡的速度为:2(106)0.5÷-=千米/分钟,故答案为:0.5;(3)小强上坡时的速度为:1166÷=千米/分钟, 故小强回家骑车走这段路的时间是:211410.56+=(分钟), 故答案为:14.45.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y (毫克)与时间x (时)成正比例;药物释放结束后,y 与x 成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y 与x 之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?解:(1)药物释放过程中,y 与x 成正比,设(0)y kx k =≠,函数图象经过点(2,1)A ,12k ∴=,即12k =, 12y x ∴=; 当药物释放结束后,y 与x 成反比例,设(0)k y k x ''=≠, 函数图象经过点(2,1)A ,212k '∴=⨯=,2y x∴=;(2)当0.25y =时,代入反比例函数2y x=,可得 8x =, ∴从药物释放开始,至少需要经过8小时,学生才能进入教室.46.已知:如图,点(1,)A m 是正比例函数1y k x =与反比例函数2k y x=的图象在第一象限的交点,AB x ⊥轴,垂足为点B ,ABO ∆的面积是2.(1)求m 的值以及这两个函数的解析式; (2)若点P 在x 轴上,且AOP ∆是以OA 为腰的等腰三角形,求点P 的坐标.解:(1)ABO ∆的面积是2,2224k ∴=⨯=,∴反比例函数的解析式为4y x=. 当1x =时,44m x==, ∴点A 的坐标为(1,4). 又点(1,4)A 在正比例函数1y k x =的图象上,14k ∴=,∴正比例函数的解析式为4y x =.(2)AOP ∆是以OA 为腰的等腰三角形,OA OP ∴=或OA AP =.①当OA OP =时,点A 的坐标为(1,4),OA ∴==,OP ∴=,∴点P 的坐标为(,0)或,0);②当OA AP=时,22OP OB==,∴点P的坐标为(2,0).综上所述:点P的坐标为(,0),0),(2,0).47.如图,在平面直角坐标系中,OA OB⊥,AB x⊥轴于点C,点A,1)在反比例函数kyx=的图象上.(1)求反比例函数kyx=的表达式;(2)求AOB∆的面积;(3)在坐标轴上是否存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P的坐标:若不存在,简述你的理由.解:(1)将A1)代入kyx=,得:1=,解得:k=∴反比例函数的表达式为y=.(2)点A的坐标为,1),AB x⊥轴于点C,OC∴=1AC=,22OA AC∴===,30AOC∴∠=︒.OA OB ⊥,90AOB ∴∠=︒,30B AOC ∴∠=∠=︒,24AB OA ∴==,11422AOB S AB OC ∆∴==⨯= (3)在Rt AOB ∆中,2OA =,90AOB ∠=︒,30ABO ∠=︒,tan 30OA OB ∴==︒. 分三种情况考虑: ①当OP OB =时,如图2所示,2OB =,OP ∴=,∴点P 的坐标为(-0),0),(0,-,(0,; ②当BP BO =时,如图3,过点B 做BD y ⊥轴于点D ,则3OD BC AB AC ==-=, BP BO =,2OP OC ∴==或26OP OD ==,∴点P 的坐标为0),(0,6)-;③当PO PB =时,如图4所示.若点P 在x 轴上,PO PB =,60BOP ∠=︒,BOP ∴∆为等边三角形,OP OB ∴==,∴点P 的坐标为0);若点P 在y 轴上,设OP a =,则3PD a =-,PO PB =,222PB PD BD ∴=+,即222(3)1a a =-+,解得:2a =,∴点P 的坐标为(0,2)-.综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形,点P的坐标为(-,0),0),(0,-,(0,,(0,6)-.-,(0,2)48.已知:如图,在BCD⊥于点E,点A是边CD的中点,EF垂直平分线AB ∆中,CE BD(1)求证:12BE CD =; (2)当AB BC =,25ABD ∠=︒时,求ACB ∠的度数.【解答】(1)证明:连接AE ,CE BD ⊥,点A 是边CD 的中点,12AE AD CD ∴==, EF 垂直平分线AB ,EA EB ∴=,12BE CD ∴=; (2)EA EB =,25EAB ABD ∴∠=∠=︒,50AED EAB ABD ∴∠=∠+∠=︒,EA AD =,50D AED ∴∠=∠=︒,75BAC ABD D ∴∠=∠+∠=︒,AB BC =,75ACB BAC ∴∠=∠=︒.49.已知:如图,BP 、CP 分别是ABC ∆的外角平分线,PM AB ⊥于点M ,PN AC ⊥于点N .求证:PA 平分MAN ∠.【解答】证明:作PD BC ⊥于点D , BP 是ABC ∆的外角平分线,PM AB ⊥,PD BC ⊥, PM PD ∴=,同理,PN PD =,PM PN ∴=,又PM AB ⊥,PN AC ⊥, PA ∴平分MAN ∠.50.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O .求证:点O 到EB 与ED 的距离相等.【解答】证明://AD BC ,180ADC BCD ∴∠+∠=︒, DB 平分ADC ∠,CE 平分BCD ∠, 90ODC OCD ∴∠+∠=︒,90DOC ∴∠=︒,又CE 平分BCD ∠, CB CD ∴=,OB OD ∴=,CE ∴是BD 的垂直平分线,EB ED ∴=,又90DOC ∠=︒, EC ∴平分BED ∠, ∴点O 到EB 与ED 的距离相等.。

沪教版八年级上册数学期末测试卷

沪教版八年级上册数学期末测试卷

沪教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、下列命题错误的是( )A.关于x的方程x 2=a必有两个互为相反数的根B.关于x的方程(x−a) 2=b 2必有实根C.关于x的方程mx 2+nx=0必有实根D.关于x的方程x 2+a 2+1=0没有实数根2、已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()A. B. C.D.3、下列各组数据为勾股数的是()A. ,,B.1,,C.5,12,13D.2,3,44、如图,矩形中,,把矩形沿直线折叠,点B落在点E 处,交于点F,若,则线段的长为().A.3B.4C.5D.65、端午节前夕,在东昌湖举行第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是()A.乙队比甲队提前0.25min到达终点B.当乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟快40mD.自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min6、已知点,,都在反比例函数的图像上,则()A. B. C. D.7、在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为()A. B. C. D.8、若关于x的一元二次方程(x﹣2)2=m有实数解,则m的取值范围是()A.m≤0B.m>0C.m≥0D.无法确定9、若二次根式有意义,则x的取值范围是()A.x<4B.x>4C.x≥4D.x≤410、若反比例函数的图象经过第二、四象限,则m为()A. B. C. D.11、方程与所有根的乘积等于()A.-18B.18C.-3D.312、下列函数中,反比例函数是()A.y=B.y=4xC.y=D.y=13、在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A. B. C. D.14、化简二次根式的结果为( )A.-5B.5C.±5D.15、绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4mB.5mC.6mD.8m二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,△ABC的边AB∥x轴,点A在双曲线y=(x <0)上,点B在双曲线y=(x>0)上,边AC中点D在x轴上,△ABC的面积为8,则k= ________.17、如图所示,直线y= x分别与双曲线y= (k1>0,x>0)、双曲线y=(k2>0,x>0)交于点A,点B,且OA=2AB,将直线向左平移4个单位长度后,与双曲线y= 交于点C,若S△ABC =1,则k1k2的值为________.18、=________(书写每项化简过程)=________.19、三角形三个内角度数之比是1:2:3,最大边长是12,则它的最小边的长是________.20、如图,点B是反比例函数上一点,矩形OABC的周长是20,正方形BCGH和正方形OCDF的面积之和为68,则反比例函数的解析式是________.21、一元二次方程x2﹣x﹣1=0根的判别式的值等于________22、点A ,B 都在反比例函数图象上,则________.(填写<,>,=号)23、若关于x的方程有两个相等的实数根,则式子的值为________24、如图,Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2,则AC的长是________25、将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入原反比例函数中,所得函数值记为y2,再将x=y2+1代入原反比例函数中,所得函数值记为y3,…,如此继续下去,则y2014=________ .三、解答题(共5题,共计25分)26、实数,在数轴上的位置如图所示,请化简:27、如图,是等腰三角形,的平分线交于点交于点E,求的周长.28、如图:在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,AB=10,AC=6,求D到AB的距离.29、数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?30、先化简,再求值:,其中,.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、D5、D6、D7、C8、C10、B11、A12、C13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

沪教版八年级上册数学期末测试卷及含答案(完整版)

沪教版八年级上册数学期末测试卷及含答案(完整版)

沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知点,,点P在线段AB上(不与端点重合),反比例函数的图象经过点P,则的取值范围是()A. >3B.0≤≤3C.0<≤3D. ≥32、如图正比例函数y=k1x与反比例函数y=的图象相交于A、B两点,AC ⊥x轴于点C,CD∥AB交y轴于点D,连接AD、BD,若S△ABD=6,则下列结论正确的是()A. k1=﹣6B. k1=﹣3C. k2=﹣6D. k2=﹣123、下列关于x的一元二次方程中,没有实数根的是()A. B. C.D.4、下列式子为最简二次根式的是()A. B. C. D.5、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为图中的()A. B. C.D.6、下列各数分别与(2-)相乘,结果为有理数的是()A. B.2+ C.2- D.-2+7、如图,在四边形ABCD中,∠A=90°,AB=3 ,AD= ,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN 的中点,则EF长度的最大值为()A. B.3.5 C.5 D.2.58、如图所示,两个反比例函数y= 和y= 在第一象限内的图象依次是C 1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k1+k2B.k1﹣k2C.k1•k2D.k1•k2﹣k29、下列二次根式中,是最简二次根式的是()A. B. C. D.10、函数y=(m2﹣m)是反比例函数,则()A.m≠0B.m≠0且m≠1C.m=2D.m=1或211、将水匀速滴进如图所示的容器时,能符合题意反映容器中水的高度(h)与时间(t)之间对应关系的图象大致是()A. B. C. D.12、最简二次根式与是同类二次根式,则x等于()A. B.10 C.2 D.413、若关于x的方程是一元二次方程,则a的取值范围是()A.a≠1B.a>1C.a<1D.a≠014、如图,在平面直角坐标系中,正方形 ABCO 的顶点 A,C 分别在 y 轴、x 轴上,以 AB 为弦的⊙M 与 x 轴相切,若点 A 的坐标(0,8),则圆心M 的坐标为()A.(-4,3)B.(-3,4)C.(-5,5)D.(-4,5)15、下列二次根式中,与是同类二次根式的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC 的中点,连接DE,则△CDE的周长为________.17、如图,点A在反比例函数上,AB⊥x轴于点B,且△AOB的面积是4,则k的值是________.18、如图,过点的直线交轴于点,,,曲线过点,将点沿轴正方向平移个单位长度恰好落在该曲线上,则的值为________.19、若x是实数,且y= + ﹣1,则x+y=________.20、函数y=中,自变量x的取值范围是________.21、方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为________.22、圆的面积S与半径R之间的关系式是S=πR2,其中自变量是________ .23、如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC 边上的高长度为________.24、如图,反比例函数y= 的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为________.25、余干二中秋季运动会上,小捷掷出的铅球在场地上砸出一个小坑(如图),其中AB为8cm,小坑的最大深度为2cm,则该铅球的直径为________cm.三、解答题(共5题,共计25分)26、解方程组:27、已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE28、如图,在△ABC中,∠C=90°,∠A=36°,DE是线段AB的垂直平分线,交AB于点D,交AC于点E.求∠EBC的度数.29、利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.30、如图3-5-24,⊙O直径AB为5 cm,弦AC为3 cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、A5、D6、B7、D8、B9、D10、C11、D12、A13、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

沪教版8年级上册数学期末测试卷2套详细答案

沪教版8年级上册数学期末测试卷2套详细答案

沪教版8年级上册数学期末测试卷2套详细答案第一套:上海市2019八年级(上)期末数学试卷一、选择题(本题共6题,每题3分,满分18分)1.已知最简二次根式 $ \sqrt{2}-1 $,则它的值是()。

A。

$ -1 $。

B。

$ \sqrt{2}-1 $。

C。

$ 1 $。

D。

$ 2 $2.下面的代数式中,其中 $ \frac{1}{\sqrt{3}} $ 的一个有理化因式是()。

A。

$ \frac{\sqrt{3}}{3} $。

B。

$ \frac{1}{\sqrt{3}} $。

C。

$ \sqrt{3} $。

D。

$ 3\sqrt{3} $3.如果关于 $ x $ 的方程 $ ax^2-3x+2=0 $ 是一元二次方程,则 $ a $ 的取值范围是()。

A。

$ a>0 $。

B。

$ a\ge0 $。

C。

$ a=1 $。

D。

$ a\ne0 $4.下面说法正确的是()。

A。

一个人的体重与他的年龄成正比例关系B。

正方形的面积和它的边长成正比例关系C。

车辆所行驶的路程 $ S $ 一定时,车轮的半径 $ r $ 和车轮旋转的周数 $ m $ 成反比例关系D。

水管每分钟流出的水量 $ Q $ 一定时,流出的总水量$ y $ 和放水的时间 $ x $ 成反比例关系5.下列条件中不能判定两个直角三角形全等的是()。

A。

两个锐角分别对应相等B。

两条直角边分别对应相等C。

一条直角边和斜边分别对应相等D。

一个锐角和一条直角边分别对应相等6.如图,已知 $ \triangle ABC $ 中,$ \angle ACB=90^\circ $,$ CH $、$ CM $ 分别是斜边 $ AB $ 上的高和中线,则下列结论正确的是()。

A。

$ CM=BC $B。

$ CB=AB $C。

$ \angle ACM=30^\circ $D。

$ CH\cdot AB=AC\cdot BC $二、填空题(本题共12小题,每小题2分,满分24分)7.计算:$ \frac{3}{5}\times\frac{1}{2}\times\frac{2}{3}=\frac{\Box}{15} $。

(全优)沪教版八年级上册数学期末测试卷及含答案(模拟题)

(全优)沪教版八年级上册数学期末测试卷及含答案(模拟题)

沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、方程x2+3x﹣1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.只有一个实数根2、如图所示,和都是边长为2的等边三角形,点在同一条直线上,连接,则的长为( )A. B. C. D.3、直角三角形两条直角边长分别是5和12,则第三边上的中线长为()A.5B.6C.6.5D.124、以坐标原点O为圆心,作半径为1的圆,若直线与⊙O相交,则b的取值范围是()A. B. C. D.5、在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定6、已知直角三角形中30°角所对的直角边长是2 cm,则另一条直角边的长是( )A.4 cmB.4 cmC.6 cmD.6 cm7、已知关于x的一元二次方程x2-2kx+6=0有两个相等的实数根,则k的值为()A.±2 /6B.±C.2或3D. 或8、当时,化简等于()A. B. C. D.9、如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE ⊥AB于点E.若PE=3,则两平行线AD与BC间的距离为( )A.3B.4C.5D.610、已知二次函数的图象如下,则一次函数与反比例函数在同一平面直角坐标系中的图象大致是()A. B. C. D.11、m是方程x2+x﹣1=0的根,则式子2m2+2m+2017的值为()A.2016B.2017C.2018D.201912、关于x的方程(a-5)x2-4x-1=0有实数根,则a满足()A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠513、一元二次方程x2﹣4=0的根为()A.x=2B.x=﹣2C.x1=2,x2=﹣2 D.x=414、一元二次方程2x2﹣3x+1=0的二次项系数是2,则一次项系数是()A.1B.﹣3C.3D.﹣115、如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH= BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④二、填空题(共10题,共计30分)16、函数的自变量x的取值范围是________17、等腰△ABC内接于半径为5的⊙O,点O到底边BC的距离为3,则AB的长为________.18、如图,点A在反比例函数图象上,点B、C在反比例函数图象上,且轴,轴,若点C的纵坐标为2,则的长度为________.19、当________时,在实数范围内有意义.20、若式子在实数范围内有意义,则x应满足的条件是________.21、已知关于x的方程x2+(1﹣m)x+ =0有两个不相等的实数根,则m的最大整数值是________.22、在直角梯形中,,如果,,,那么对角线________.23、如图,在平面直角坐标系xOy中,点B在y轴上,AB=AO,反比例函数y=的图象经过点A,若△ABO的面积为2,则k的值为________.24、如图,菱形ABCD的一个内角是60∘,将它绕对角线的交点O顺时针旋转90∘后得到菱形A′B′C′D′.旋转前后两菱形重叠部分多边形的周长为,则菱形ABCD的边长为________.25、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB 边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C 长度的最小值是________.三、解答题(共5题,共计25分)26、计算:(﹣)﹣2﹣(π﹣3)0+sin30°﹣()()27、如图,△ABC中,∠A=120°,AB=AC,AC的垂直平分线分别交AC,BC于点E,F,求证:BF=2CF.28、如图,∠ABD=∠ACD=90°,∠1=∠2.求证:AD平分∠BDC。

沪教版八年级上册数学期末测试卷2套详细答案

沪教版八年级上册数学期末测试卷2套详细答案

第一套八年级上册数学期末测试卷2套详细答案一、选择:(本题共6题,每题3分,满分18分)1.已知最简二次根式与是同类二次根式,则x的值是()A.﹣1 B.0 C.1 D.22.下面的代数式中,其中 +1的一个有理化因式是()A.B. C. +1 D.﹣13.如关于x的方程ax2﹣3x+2=0是一元二次方程,则a的取值范围是()A.a>0 B.a≥0 C.a=1 D.a≠04.下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系5.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等6.如图所示,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论正确的是()A.CM=BC B.CB=AB C.∠ACM=30° D.CH•AB=AC•BC二、填空题(本题共12小题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.计算: = .8.计算: = .9.如关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是.10.在实数范围内分解因式x2﹣4x﹣1= .11.函数的定义域是.12.如正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是.13.命题“全等三角形的周长相等”的逆命题是.14.经过已知点A和点B的圆的圆心的轨迹是.15.已知直角坐标平面内两点A(﹣3,1)和B(1,2),那么A、B两点间的距离等于.16.如在四边形ABCD中,∠B=60°,AB=BC=13,AD=12,DC=5,那么∠ADC= .17.边长为5的等边三角形的面积是.18.已知在△AOB中,∠B=90°,AB=OB,点O的坐标为(0,0),点A的坐标为(0,4),点B在第一象限内,将这个三角形绕原点O逆时针旋转75°后,那么旋转后点B的坐标为.三、解答题(本大题共8题,满分58分)19.计算:.20.解方程:(x﹣)2+4x=0.21.已知关于x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,求这个方程根的判别式的值.22.如图所示,在△ABC中,∠C=90°,AC=6cm,AB=10cm,点D 在边AC上,且点D到边AB和边BC的距离相等.(1)作图:在AC上求作点D;(保留作图痕迹,不写作法)(2)求CD的长.23.如图所示,在直角坐标系xOy中,反比例函数图象与直线y=x相交于横坐标为2的点A.(1)求反比例函数的解析式;(2)如点B在直线y=x上,点C在反比例函数图象上,BC∥x 轴,BC=3,且BC在点A上方,求点B的坐标.24.如图示,已知在△ABC中,∠ABC=90°,点E是AC的中点,联结BE,过点C作CD∥BE,且∠ADC=90°,在DC取点F,使DF=BE,分别联结BD、EF.(1)求证:DE=BE;(2)求证:EF垂直平分BD.25.为改善奉贤交通状况,使奉贤区融入上海1小时交通圈内,上海轨交5号线南延伸工程于2014年启动,并将于2017年年底通车.(1)某施工队负责地铁沿线的修路工程,原计划每周修2000米,但由于设备故障第一周少修了20%,从第二周起工程队增加工人和设备,加快了速度,第三周修了2704米,求该工程队第二周、第三周平均每周的增长率.(2)轨交五号线从西渡站到南桥新城站,行驶过程中的路程y (千米)与时间x(分钟)之间的函数图象如图所示.请根据图象解决下列问题:①求y关于x的函数关系式并写出定义域;②轨交五号线从西渡站到南桥新城站沿途经过奉浦站,如果它从西渡站到奉浦站的路程是4千米,那么轨交五号线从西渡站到奉浦站需要多少时间?26.如图示,已知△ABC中,∠ACB=90°,∠ABC=30°,AC=2,点P是边AB上的一个动点,以点P为圆心,PB的长为半径画弧,交射线BC于点D,射线PD交射线AC于点E.(1)当点D与点C重合时,求PB的长;(2)当点E在AC的延长线上时,设PB=x,CE=y,求y关于x的函数关系式,并写出定义域;(3)当△PAD是直角三角形时,求PB的长.第一套:八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)1.如果最简二次根式与是同类二次根式,那么x的值是()A.﹣1 B.0 C.1 D.2【考点】同类二次根式.【分析】根据题意,它们的被开方数相同,列出方程求解即可.【解答】解:由最简二次根式与是同类二次根式,得x+2=3x,解得x=1.故选:C.2.下列代数式中, +1的一个有理化因式是()A.B. C. +1 D.﹣1【考点】分母有理化.【分析】根据有理化因式的定义进行求解即可.两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.【解答】解:∵由平方差公式,()()=x﹣1,∴的有理化因式是,故选D.3.如果关于x的方程ax2﹣3x+2=0是一元二次方程,那么a取值范围是()A.a>0 B.a≥0 C.a=1 D.a≠0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:依题意得:a≠0.故选:D.4.下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系【考点】反比例函数的定义;正比例函数的定义.【分析】分别利用反比例函数、正比例函数以及二次函数关系分别分析得出答案.【解答】解:A、一个人的体重与他的年龄成正比例关系,错误;B、正方形的面积和它的边长是二次函数关系,故此选项错误;C、车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D、水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;故选:C.5.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等【考点】直角三角形全等的判定.【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【解答】解:A、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;B、可以利用边角边判定两三角形全等,不符合题意;C、可以利用边角边或HL判定两三角形全等,不符合题意;D、可以利用角角边判定两三角形全等,不符合题意.故选:A.6.如图,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论正确的是()A.CM=BC B.CB=AB C.∠ACM=30° D.CH•AB=AC•BC【考点】三角形的角平分线、中线和高.【分析】由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH ∽△CHB,然后由相似三角形的对应边成比例,证得CH2=AH•HB;由△ABC中,∠ACB=90°,CM是斜边AB上中线,根据直角三角形斜边的中线等于斜边的一半,即可得CM=AB.【解答】解:△ABC中,∠ACB=90°,CM分别是斜边AB上的中线,可得:CM=AM=MB,但不能得出CM=BC,故A错误;根据直角三角形斜边的中线等于斜边的一半,即可得CM=AB,但不能得出CB=AB,故B错误;△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,无法得出∠ACM=30°,故C错误;由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH∽△CHB,根据相似三角形的对应边成比例得出CH•AB=AC•BC,故D正确;故选D二、填空题(本题共12小题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.计算: = 2.【考点】算术平方根.【分析】根据算术平方根的性质进行化简,即=|a|.【解答】解: ==2.故答案为2.8.计算: = 2a .【考点】二次根式的加减法.【分析】先化简二次根式,再作加法计算.【解答】解:原式=a+a=2a,故答案为:2a.9.如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m 的取值范围是m<﹣4 .【考点】根的判别式.【分析】根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围.【解答】解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4.10.在实数范围内分解因式x2﹣4x﹣1= (x﹣2+)(x﹣2﹣).【考点】实数范围内分解因式.【分析】根据完全平方公式配方,然后再把5写成()2利用平方差公式继续分解因式.【解答】解:原式=x2﹣4x+4﹣5=(x﹣2)2﹣5=(x﹣2+)(x﹣2﹣).故答案为:(x﹣2+)(x﹣2﹣).11.函数的定义域是x>﹣2 .【考点】函数自变量的取值范围.【分析】根据当表达式的分母中含有自变量时,自变量取值要使分母不为零,求解即可.【解答】解:由题意得:>0,即:x+2>0,解得:x>﹣2.故答案为:x>﹣2.12.如正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是k>3 .【考点】正比例函数的性质.【分析】根据正比例函数y=(k﹣3)x的图象经过第一、三象限得出k的取值范围即可.【解答】解:因为正比例函数y=(k﹣3)x的图象经过第一、三象限,所以k﹣3>0,解得:k>3,故答案为:k>3.13.命题“全等三角形的周长相等”的逆命题是周长相等的三角形是全等三角形.【考点】命题与定理.【分析】交换原命题的题设和结论即可得到原命题的逆命题.【解答】解:命题“全等三角形的周长相等”的逆命题是周长相等的三角形是全等三角形,故答案为:周长相等的三角形是全等三角形、14.经过已知点A和点B的圆的圆心的轨迹是线段AB的垂直平分线.【考点】轨迹.【分析】要求作经过已知点A和点B的圆的圆心,则圆心应满足到点A和点B的距离相等,从而根据线段的垂直平分线性质即可求解.【解答】解:据同圆的半径相等,则圆心应满足到点A和点B的距离相等,即经过已知点A和点B的圆的圆心的轨迹是线段AB 的垂直平分线.故答案为线段AB的垂直平分线.15.已知直角坐标平面内两点A(﹣3,1)和B(1,2),那么A、B两点间的距离等于.【考点】两点间的距离公式.【分析】根据两点间的距离公式,可以得到问题的答案.【解答】解:∵直角坐标平面内两点A(﹣3,1)和B(1,2),∴A、B两点间的距离为: =.故答案为.16.如在四边形ABCD中,∠B=60°,AB=BC=13,AD=12,DC=5,那么∠ADC= 90°.【考点】勾股定理的逆定理;等边三角形的判定与性质.【分析】根据等边三角形的判定得出△ABC是等边三角形,求出AC=13,根据勾股定理的逆定理推出即可.【解答】解:连接AC,∵∠B=60°,AB=BC=13,∴△ABC是等边三角形,∴AC=13,∵AD=12,CD=5,∴AD2+CD2=AC2,∴∠AC=90°,故答案为:90°.17.边长为5的等边三角形的面积是.【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可以求得高线AD的长度,根据三角形的面积公式即可得出结果.【解答】解:如图所示:作AD⊥BC于D,∵△ABC是等边三角形,∴D为BC的中点,BD=DC=,在Rt△ABD中,AB=5,BD=,∴AD===,∴等边△ABC的面积=BC•AD=×5×=.故答案为:.18.已知在△AOB中,∠B=90°,AB=OB,点O的坐标为(0,0),点A的坐标为(0,4),点B在第一象限内,将这个三角形绕原点O逆时针旋转75°后,那么旋转后点B的坐标为(,).【考点】坐标与图形变化-旋转;解直角三角形.【分析】易得△AOB的等腰直角三角形,那么OB的长为2,绕原点O逆时针旋转75°后,那么点B与y轴正半轴组成30°的角,利用相应的三角函数可求得旋转后点B的坐标.【解答】解:∵∠B=90°,AB=OB,点O的坐标为(0,0),点A 的坐标为(0,4),∴OA=4.∴OB=2,∵将这个三角形绕原点O逆时针旋转75°,∴点B与y轴正半轴组成30°的角,点B的横坐标为﹣,纵坐标为.∴旋转后点B的坐标为(,).三、解答题(本大题共8题,满分58分)[将下列各题的解答过程,做在答题纸的相应位置上]19.计算:.【考点】二次根式的加减法.【分析】根据二次根式的加减法,即可解答.【解答】解:由题意,得 m>0原式==20.解方程:(x﹣)2+4x=0.【考点】二次根式的混合运算.【分析】利用完全平方公式把原方程变形,根据二次根式的加减法法则整理,解方程即可.【解答】解:,,,,所以原方程的解是:.21.已知关于x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,求这个方程根的判别式的值.【考点】整式的加减—化简求值.【分析】首先根据x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,可得(m﹣2)2=0,据此求出m的值是多少;然后根据△=b2﹣4ac,求出这个方程根的判别式的值是多少即可.【解答】解:∵关于x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,∴(m﹣2)2=0,解得m=2,∴原方程是x2+5x=0,∴△=b2﹣4ac=52﹣4×1×0=25∴这个方程根的判别式的值是25.22.如图,在△ABC中,∠C=90°,AC=6cm,AB=10cm,点D在边AC上,且点D到边AB和边BC的距离相等.(1)作图:在AC上求作点D;(保留作图痕迹,不写作法)(2)求CD的长.【考点】作图—基本作图;全等三角形的判定与性质;角平分线的性质.【分析】(1)直接利用角平分线的做法得出符合题意的图形;(2)直接利用角平分线的性质结合全等三角形的判定与性质得出BC=BE,进而得出DC的长.【解答】解:(1)如图所示:(2)过点D作DE⊥AB,垂足为点E,∵点D到边AB和边BC的距离相等,∴BD平分∠ABC.(到角的两边距离相等的点在这个角的平分线上)∵∠C=90°,DE⊥AB,∴DC=DE.(角平分线上的点到角的两边的距离相等)在Rt△CBD和Rt△EBD中,∴Rt△CBD≌Rt△EBD(HL),∴BC=BE.∵在△ABC中,∠C=90°,∴AB2=BC2+AC2.(勾股定理)∵AC=6cm,AB=10cm,∴BC=8cm.∴AE=10﹣8=2cm.设DC=DE=x,∵AC=6cm,∴AD=6﹣x.∵在△ADE中,∠AED=90°,∴AD2=AE2+DE2.(勾股定理)∴(6﹣x)2=22+x2.解得:.即CD的长是.23.如图所示,在直角坐标系xOy中,反比例函数图象与直线y=x相交于横坐标为2的点A.(1)求反比例函数的解析式;(2)如点B在直线y=x上,点C在反比例函数图象上,BC∥x 轴,BC=3,且BC在点A上方,求点B的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把x=2代入y=x 得出点A 坐标,从而求得反比例函数的解析式;(2)设点C (,m ),根据BC ∥x 轴,得点B (2m ,m ),再由BC=3,列出方程求得m ,检验得出答案.【解答】解:(1)设反比例函数的解析式为y=(k ≠0),∵横坐标为2的点A 在直线y=x 上,∴点A 的坐标为(2,1), ∴1=,∴k=2,∴反比例函数的解析式为;(2)设点C (,m ),则点B (2m ,m ),∴BC=2m ﹣=3,∴2m 2﹣3m ﹣2=0,∴m 1=2,m 2=﹣,m 1=2,m 2=﹣都是方程的解,但m=﹣不符合题意,∴点B 的坐标为(4,2).24.如图,已知在△ABC中,∠ABC=90°,点E是AC的中点,联结BE,过点C作CD∥BE,且∠ADC=90°,在DC取点F,使DF=BE,分别联结BD、EF.(1)求证:DE=BE;(2)求证:EF垂直平分BD.【考点】直角三角形斜边上的中线;线段垂直平分线的性质.【分析】(1)根据直角三角形斜边上的中线的性质求出BE=DE,根据等腰三角形性质求出即可;(2)证出DE=DF,得出∠DEF=∠DFE,证出∠BEF=∠DEF,即可得出结论.【解答】(1)证明:∵∠ABC=90°,∠ADC=90°,点E是AC的中点,∴,.(直角三角形斜边上的中线等于斜边的一半)∴BE=DE.(2)证明:∵CD∥BE,∴∠BEF=∠DFE.∵DF=BE,BE=DE,∴DE=DF.∴∠DEF=∠DFE.∴∠BEF=∠DEF.∴EF垂直平分BD.(等腰三角形三线合一)25.为改善奉贤交通状况,使奉贤区融入上海1小时交通圈内,上海轨交5号线南延伸工程于2014年启动,并将于2017年年底通车.(1)某施工队负责地铁沿线的修路工程,原计划每周修2000米,但由于设备故障第一周少修了20%,从第二周起工程队增加工人和设备,加快了速度,第三周修了2704米,求该工程队第二周、第三周平均每周的增长率.(2)轨交五号线从西渡站到南桥新城站,行驶过程中的路程y (千米)与时间x(分钟)之间的函数图象如图所示.请根据图象解决下列问题:①求y关于x的函数关系式并写出定义域;②轨交五号线从西渡站到南桥新城站沿途经过奉浦站,如果它从西渡站到奉浦站的路程是4千米,那么轨交五号线从西渡站到奉浦站需要多少时间?【考点】一元二次方程的应用;一次函数的应用.【分析】(1)首先表示出第一周修的长度,进而利用结合求第二周、第三周平均每周的增长率,得出等式求出答案;(2)①直接利用待定系数法求出函数解析式,再利用图形得出x 的取值范围;②当y=4代入函数解析式进而求出答案.【解答】解:(1)设该工程队第二周、第三周平均每周的增长率为x ,由题意,得 2000(1﹣20%)(1+x )2=2704.整理,得 (1+x )2=1.69.解得 x 1=0.3,x 2=﹣2.3.(不合题意,舍去)答:该工程队第二周、第三周平均每周的增长率是30%.(2)①由题意可知y 关于x 的函数关系式是y=kx (k ≠0), 由图象经过点(10,12)得:12=10k ,解得:k=.∴y 关于x 的函数关系是:y=x (0≤x ≤10);②由题意可知y=4,∴,解得:x=,答:五号线从西渡站到奉浦站需要分钟.26.如图所示,已知△ABC中,∠ACB=90°,∠ABC=30°,AC=2,点P是边AB上的一个动点,以点P为圆心,PB的长为半径画弧,交射线BC于点D,射线PD交射线AC于点E.(1)当点D与点C重合时,求PB的长;(2)当点E在AC的延长线上时,设PB=x,CE=y,求y关于x的函数关系式,并写出定义域;(3)当△PAD是直角三角形时,求PB的长.【考点】三角形综合题.【分析】(1)根据直角三角形的性质得到AC=AB,根据等腰三角形的性质得到∠PCB=∠B=30°,根据等边三角形的性质即可得到结论;(2)由等腰三角形的性质得到∠PDB=∠B=30°,求得AE=AP,即可得到结论;(3)①如图2所示,当点E在AC的延长线上时,求得∠PDA=90°,根据直角三角形的性质得到PD=AP,解方程得到x=;②如图3,当点E在AC边上时,根据直角三角形的性质得到AP=PD.解方程得到x=.【解答】解:(1)如图1所示,∵在△ABC 中,∠ACB=90°,∠ABC=30°,∴AC=AB,∵AC=2,∴AB=4,∵以点P为圆心,PB的长为半径画弧,交射线BC于点D,点D 与点C重合,∴PD=PB,∴∠PCB=∠B=30°,∴∠APC=∠ACD=60°,∴AP=AC=2,∴BP=2;(2)∵PD=PB,∠ABC=30°,∴∠PDB=∠B=30°,∴∠APE=60°,∠CDE=30°,∵∠ACD=90°,∴∠AEP=60°,∴AE=AP,∵PB=x,CE=y,∴2+y=4﹣x,y=2﹣x.(0<x<2);(3)①如图2,当点E在AC的延长线上时,连接AD,∵△PAD是直角三角形,∠APD=60°,∠PAD<60°,∴∠PDA=90°,∴∠PAD=30°.∴PD=AP,即x=(4﹣x),∴x=;②如图3,当点E在AC边上时,连接AD∵△PAD是直角三角形,∠APD=60°,∠ADP<60°,∴∠PAD=90°,∴∠PDA=30°.∴AP=PD.即4﹣x=x,∴x=.综上所述:当PB的长是或时,△PAD是直角三角形.第二套:八年级上册培优数学试题时间:120分钟 满分150分一、选择 (共10小题,每小题4分,共40分)1. 在平面直角坐标系中,点P(-1,4)一定是在 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.若点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为 ( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)3.一次函数y=﹣2x ﹣3一定不经过 ( )A .第一象限 B. 第二象限 C. 第三象限 D.第四象限4.下列图形当中,为轴对称图形的是 ( )5.函数y=21 x 中的自变量x 的取值范围是 ( )A .x ≠2 B. x <2 C. x ≥2 D.x >26△ABC 中,∠A ﹦31∠B ﹦51∠C ,则△ABC 是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定7.如果一次函数y﹦kx﹢b的图象经过第一象限,且与y轴负半轴相交,那么()A. k﹥0,b﹥0B. k﹥0,b﹤0C. k﹤0,b﹥0D. k﹤0, b﹤08.如图,直线y﹦kx﹢b交坐标轴于A,B两点,则不等式kx﹢b﹥0的解集是()A. x﹥-2B. x﹥3C. x﹤-2D. x﹤39.如图示,OD=OB,AD∥BC,则全等三角形有()A. 2对B. 3对C. 4对D. 5对10. 两个一次函数y=-x+5和y=﹣2x+8的图象的交点坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)二、填空题(本题共4小题,每小题5分,满分20分)11.通过平移把点A(2,-1)移到点A’(2,2),按同样的平移方式,点B(-3,1)移动到点B’,则点B’的坐标是 .12.如图所示,将两根钢条A A’、 B B’的中点O连在一起,使A A’、B B’可以绕着点O自由转动,就做成了一个测量工具,则A’ B’的长等于内槽宽AB,那么判定△OAB≌△OA’ B’的理由是 .13.2008年罕见雪灾发生之后,灾区急需帐篷。

沪教版(上海)八年级第一学期数学期末试卷

沪教版(上海)八年级第一学期数学期末试卷

上海市八年级(上)期末数学试卷(附答案与解析)一、选择题(本大题共6题,每题2分,满分12分)1.(2分)下列二次根式中,最简二次根式是()A.B.C.D.2.(2分)已知函数中,在每个象限内,y随x的增大而增大,那么它和函数y =kx(k≠0)在同一直角坐标平面内的大致图象是()A.B.C.D.3.(2分)方程x2=4x的解是()A.x=4B.x=2C.x=4或x=0D.x=04.(2分)已知反比例函数y=的图象经过点(3,﹣2),则k的值是()A.﹣6B.6C.D.﹣5.(2分)如图,一棵直立的大树在一次强台风中被折断,折断处离地面2米,倒下部分与地面成30°角,这棵树在折断前的高度为()A.米B.米C.4米D.6米6.(2分)已知下列命题中:①有两条边分别相等的两个直角三角形全等;②有一条腰相等的两个等腰直角三角形全等;③有一条边与一个锐角分别相等的两个直角三角形全等;④顶角与底边分别对应相等的两个等腰三角形全等.其中真命题的个数是()A.1B.2C.3D.4二、填空题(本大题共12题,每题3分,满分36分)7.(3分)计算:=.8.(3分)函数的定义域是.9.(3分)在实数范围内分解因式:x2﹣x﹣3=.10.(3分)如果正比例函数y=(k﹣2)x的图象经过第二、四象限,那么k的取值范围是.11.(3分)已知某种近视眼镜的度数y(度)与镜片焦距x(米)之间的函数解析式为,如果测得该近视眼镜镜片的焦距为0.25米,那么该近视眼镜的度数为度.12.(3分)已知直角坐标平面内点A(1,2)和点B(2,4),则线段AB=.13.(3分)命题“直角三角形两锐角互余”的逆命题是:.14.(3分)以线段MN为底边的等腰三角形的顶角顶点的轨迹是.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC,AD平分∠CAB,如果CD=1,那么BD=.16.(3分)如图,在四边形ABCD中,∠ABC=90°,∠ADC=90°,AC=26,BD=24,联结AC、BD,取AC和BD的中点M、N,联结MN,则MN的长度为.17.(3分)在平面直角坐标系中,已知反比例函数,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立了一个“凡尔赛阶梯”,那么A2的坐标为.18.(3分)如图,已知Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,D是边AB上的一点,将△BCD沿直线CD翻折,使点B落在点B1的位置,若B1D⊥BC,则BD的长度为.三、计算题(本大题共2题,满分10分)19.(5分)计算:.20.(5分)解方程:2x(x﹣2)=x2﹣3.四、解答题(本大题共5题,21-24每题6分,25题8分,满分32分)21.(6分)已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.22.(6分)为了让我们的小朋友们有更好的学习环境,我校2020年投资110万元改造硬件设施,计划以后每年以相同的增长率进行投资,到2022年投资额将达到185.9万元.(1)求我校改造硬件设施投资额的年平均增长率;(2)从2020年到2022年,这三年我校将总共投资多少万元?23.(6分)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.24.(6分)如图,在△ABC中,AB=AC,∠B=30°.(1)在BC边上求作一点N,使得AN=BN;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,求证:CN=2BN.25.(8分)如图,已知一次函数和反比例函数的图象交点是A(4,m).(1)求反比例函数解析式;(2)在x轴的正半轴上存在一点P,使得△AOP是等腰三角形,请求出点P的坐标.五、综合题:(本大题只有1题,满分10分)26.(10分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,点D、E在线段AB上.(1)如图1,若CD=CE,求证:AD=BE;(2)如图2,若∠DCE=45°,求证:DE2=AD2+BE2;(3)如图3,若点P是△ABC内任意一点,∠BPC=135°,设AP=a、BP=b、CP=c,请直接写出a,b,c之间的数量关系.八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题2分,满分12分)1.(2分)下列二次根式中,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的概念判断即可.【解答】解:A、=,被开方数含分母,不是最简二次根式,不符合题意;B、=2,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;C|,是最简二次根式,符合题意;D、=|y|,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意;故选:C.2.(2分)已知函数中,在每个象限内,y随x的增大而增大,那么它和函数y =kx(k≠0)在同一直角坐标平面内的大致图象是()A.B.C.D.【分析】首先根据反比例函数图象的性质判断出k的范围,在确定其所在象限,进而确定正比例函数图象所在象限,即可得到答案.【解答】解:∵函数中,在每个象限内,y随x的增大而增大,∴k<0,∴双曲线在第二、四象限,∴函数y=kx的图象经过第二、四象限,故选:B.3.(2分)方程x2=4x的解是()A.x=4B.x=2C.x=4或x=0D.x=0【分析】本题可先进行移项得到:x2﹣4x=0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0.【解答】解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,∴x=0或x=4.故选:C.4.(2分)已知反比例函数y=的图象经过点(3,﹣2),则k的值是()A.﹣6B.6C.D.﹣【分析】把(3,﹣2)代入解析式,就可以得到k的值.【解答】解:根据题意,得k=xy=﹣2×3=﹣6.故选:A.5.(2分)如图,一棵直立的大树在一次强台风中被折断,折断处离地面2米,倒下部分与地面成30°角,这棵树在折断前的高度为()A.米B.米C.4米D.6米【分析】根据直角三角形中30°角所对的直角边等于斜边的一半,求出折断部分的长度,再加上离地面的距离就是折断前树的高度.【解答】解:如图,根据题意BC=2米,∵∠BAC=30°,∴AB=2BC=2×2=4米,∴2+4=6米.故选:D.6.(2分)已知下列命题中:①有两条边分别相等的两个直角三角形全等;②有一条腰相等的两个等腰直角三角形全等;③有一条边与一个锐角分别相等的两个直角三角形全等;④顶角与底边分别对应相等的两个等腰三角形全等.其中真命题的个数是()A.1B.2C.3D.4【分析】根据全等三角形的判定、等腰三角形和直角三角形的性质分别对每一项进行分析即可.【解答】解:①有两条边分别相等的两个直角三角形不一定全等,原命题是假命题;②有一条腰相等的两个等腰直角三角形全等,是真命题;③有一条边与一个锐角分别相等的两个直角三角形不一定全等,原命题是假命题;④顶角与底边分别对应相等的两个等腰三角形全等,是真命题.其中真命题的个数是2个;故选:B.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)计算:=4.【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴=4,故答案为4.8.(3分)函数的定义域是x≥﹣2.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:3x+6≥0,解得x≥﹣2.故答案为:x≥﹣2.9.(3分)在实数范围内分解因式:x2﹣x﹣3=.【分析】首先解一元二次方程x2﹣x﹣3=0,即可直接写出分解的结果.【解答】解:解方程x2﹣x﹣3=0,得x=,则:x2﹣x﹣3=.故答案是:.10.(3分)如果正比例函数y=(k﹣2)x的图象经过第二、四象限,那么k的取值范围是k <2.【分析】根据正比例函数的性质(正比例函数y=kx(k≠0),当k<0时,该函数的图象经过第二、四象限)解答.【解答】解:∵正比例函数y=(k﹣2)x的的图象经过第二、四象限,∴k﹣2<0,解得,k<2.故答案是:k<2.11.(3分)已知某种近视眼镜的度数y(度)与镜片焦距x(米)之间的函数解析式为,如果测得该近视眼镜镜片的焦距为0.25米,那么该近视眼镜的度数为400度.【分析】把近视眼镜镜片的焦距为0.25米代入函数解析式就可解决问题.【解答】解:把x=0.25代入,解得y=400,所以他的眼睛近视400度.故答案为:400.12.(3分)已知直角坐标平面内点A(1,2)和点B(2,4),则线段AB=.【分析】利用勾股定理列式计算即可得解.【解答】解:∵点A(1,2),B(2,4),∴AB==.故答案为:.13.(3分)命题“直角三角形两锐角互余”的逆命题是:如果三角形有两个锐角互余,那么这个三角形是直角三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可得到原命题的逆命题.【解答】解:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,所以逆命题是:“如果三角形有两个锐角互余,那么这个三角形是直角三角形”.故答案为:如果三角形有两个锐角互余,那么这个三角形是直角三角形.14.(3分)以线段MN为底边的等腰三角形的顶角顶点的轨迹是线段MN的垂直平分线(线段MN的中点除外).【分析】满足△MNC以线段MN为底边且CM=CN,根据线段的垂直平分线判定得到点C在线段AB的垂直平分线上,除去与MN的交点(交点不满足三角形的条件).【解答】解:∵△MNC以线段MN为底边,CM=CN,∴点C在线段MN的垂直平分线上,除去与MN的交点(交点不满足三角形的条件),∴以线段MN为底边的等腰三角形的顶点C的轨迹是:线段MN的垂直平分线(线段MN的中点除外).故答案为:线段MN的垂直平分线(线段MN的中点除外).15.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC,AD平分∠CAB,如果CD=1,那么BD=.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE =CD,再求出△BDE是等腰直角三角形,然后根据等腰直角三角形斜边等于直角边的倍解答.【解答】解:如图,过点D作DE⊥AB于E,∵AD平分∠CAB,∠C=90°,∴DE=CD=1,∵AC=BC,∠C=90°,∴∠B=45°,∴△BDE是等腰直角三角形,∴BD=DE=.故答案为:.16.(3分)如图,在四边形ABCD中,∠ABC=90°,∠ADC=90°,AC=26,BD=24,联结AC、BD,取AC和BD的中点M、N,联结MN,则MN的长度为5.【分析】连接MB、MD,利用直角三角形斜边上中线的性质得出△MBD为等腰三角形,再利等腰三角形“三线合一”得出MN⊥BD,BN=ND=BD=12,最后利用勾股定理即可求出MN的长度.【解答】解:如图,连接MB、MD,∵∠ABC=90°,∠ADC=90°,M是AC的中点,∴MB=AC,MD=AC,∵AC=26,∴MB=MD=×26=13,∵N是BD的中点,BD=24,∴MN⊥BD,BN=DN=BD=×24=12,∴MN===5,故答案为:5.17.(3分)在平面直角坐标系中,已知反比例函数,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立了一个“凡尔赛阶梯”,那么A2的坐标为(,).【分析】根据题意求得A3(1,1),设A2所在的正方形的边长为m,则A2(m,m+1),由图象上点的坐标特征得到k=m(m+1)=1,解得m=,即可求得A2的坐标为(,).【解答】解:∵反比例函数的解析式为,∴A3所在的正方形的边长为1,∴A3(1,1),设A2所在的正方形的边长为m,则A2(m,m+1),∴m(m+1)=1,解得m=(负数舍去),∴A2的坐标为(,),故答案为:(,).18.(3分)如图,已知Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,D是边AB上的一点,将△BCD沿直线CD翻折,使点B落在点B1的位置,若B1D⊥BC,则BD的长度为.【分析】延长B1D交BC于E,由B1D⊥BC,可得DE=BD,BE=BD,设BD=x,在Rt△B1CE中可得(x+x)2+(3﹣x)2=32,即可解得答案.【解答】解:延长B1D交BC于E,如图:∵B1D⊥BC,∴∠BED=∠B1EC=90°,∵∠B=30°,∴DE=BD,BE=BD,设BD=x,∵将△BCD沿直线CD翻折,使点B落在点B1的位置,∴B1D=x,∵BC=3,∴CE=3﹣x,B1C=BC=3,在Rt△B1CE中,B1E2+CE2=B1C2,∴(x+x)2+(3﹣x)2=32,解得x=0(舍去)或x=,∴BD=,故答案为:.三、计算题(本大题共2题,满分10分)19.(5分)计算:.【分析】先进行分母有理化、化简二次根式,再去括号,计算加减即可.【解答】解:原式=﹣(﹣1)+2=﹣2﹣+1+2=2﹣1.20.(5分)解方程:2x(x﹣2)=x2﹣3.【分析】先把方程变形为一般式,再把方程左边进行因式分解(x﹣1)(x﹣3)=0,方程就可化为两个一元一次方程x﹣1=0或x﹣3=0,解两个一元一次方程即可.【解答】解:方程变形为:x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=3.四、解答题(本大题共5题,21-24每题6分,25题8分,满分32分)21.(6分)已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.【分析】根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可.【解答】解:∵关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,∴b2﹣4ac=(2m)2﹣4(m﹣1)(m+3)=4m2﹣(4m2+8m﹣12)=4m2﹣4m2﹣8m+12=﹣8m+12≥0,m﹣1≠0,解得:m≤且m≠1,则m的最大整数值为0.22.(6分)为了让我们的小朋友们有更好的学习环境,我校2020年投资110万元改造硬件设施,计划以后每年以相同的增长率进行投资,到2022年投资额将达到185.9万元.(1)求我校改造硬件设施投资额的年平均增长率;(2)从2020年到2022年,这三年我校将总共投资多少万元?【分析】(1)设我校改造硬件设施投资额的年平均增长率为x,利用2022年投资额=2020年投资额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用这三年我校总共投资的金额=2020年投资额+2020年投资额×(1+年平均增长率)+2022年投资额,即可求出结论.【解答】解:(1)设我校改造硬件设施投资额的年平均增长率为x,依题意得:110(1+x)2=185.9,解得:x1=0.3=30%,x2=﹣2.3(不合题意,舍去).答:我校改造硬件设施投资额的年平均增长率为30%.(2)110+110×(1+30%)+185.9=110+143+185.9=438.9(万元).答:从2020年到2022年,这三年我校将总共投资438.9万元23.(6分)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.【分析】求出∠A=∠DEC,∠B=∠C=90°,根据AAS证△ABE≌△ECD,推出AB=CE,求出AB+BC=2AB+BE=11,把BE=3代入求出AB即可.【解答】解:∵AB⊥BC,DC⊥BC,垂足分别是点B、C,∴∠B=∠C=90°.∴∠A+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∵∠AEB+∠AED+∠DEC=180°,∴∠AEB+∠DEC=90°,∴∠A=∠DEC,∵在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AB=CE,∵BC=BE+CE=BE+AB,∴AB+BC=2AB+BE=11,∵BE=3,∴AB=4.24.(6分)如图,在△ABC中,AB=AC,∠B=30°.(1)在BC边上求作一点N,使得AN=BN;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,求证:CN=2BN.【分析】(1)作线段AB的垂直平分线上;(2)根据等腰三角形的性质计算出∠C的度数,再计算出∠CAN的度数,然后根据三角形的性质可得CN=2AN,进而得到CN=2BN.【解答】(1)解:作图正确;(2)证明:连接AN.∵AB=AC,∴∠B=∠C=30°.∴∠BAC=180°﹣2∠B=120°.∵AN=BN,∴∠NAC=∠BAC﹣∠NAB=120°﹣30°=90°.∵∠C=30°,∴CN=2AN.∴CN=2BN.25.(8分)如图,已知一次函数和反比例函数的图象交点是A(4,m).(1)求反比例函数解析式;(2)在x轴的正半轴上存在一点P,使得△AOP是等腰三角形,请求出点P的坐标.【分析】(1)根据一次函数解析式求出A点坐标,再用待定系数法求出反比例函数解析式即可;(2)若使△AOP是等腰三角形,分OA=OP,OA=AP,OP=AP三种情况讨论分别求出P点的坐标即可.【解答】解:(1)∵A点是一次函数和反比例函数图象的交点,∴m=×4,解得m=2,即A(4,2),把A点坐标代入反比例函数得,2=,解得k=8,∴反比例函数的解析式为y=;(2)设P点的坐标为(n,0),若使△AOP是等腰三角形,分以下三种情况:①当OA=OP时,由(1)知,A(4,2),∴n==2,即P(2,0);②当OA=AP时,作AH⊥OP于H,∵A(4,2),∴OH=4,∵OA=AP,∴OP=2OH=2×4=8,即P(8,0);③当OP=AP时,∵A(4,2),∴n=,即n2=(4﹣n)2+22,解得n=,即P(,0),综上,符合条件的P点坐标为(2,0)或(8,0)或(,0).五、综合题:(本大题只有1题,满分10分)26.(10分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,点D、E在线段AB上.(1)如图1,若CD=CE,求证:AD=BE;(2)如图2,若∠DCE=45°,求证:DE2=AD2+BE2;(3)如图3,若点P是△ABC内任意一点,∠BPC=135°,设AP=a、BP=b、CP=c,请直接写出a,b,c之间的数量关系.【分析】(1)由CA=CB得∠A=∠B,由CD=CE得∠CEA=∠CDB,则△ACE≌△BCD,得AE=BD,即可转化为AD=BE;(2)将△ACD绕点C沿逆时针方向旋转90°得到△BCF,联结EF,则BF=AD,证明△FCE≌△DCE,得FE=DE,再证明∠EBF=90°,则FE2=BF2+BE2,即可证得DE2=AD2+BE2;(3)将△CAP绕点C沿逆时针方向旋转90°得到△CBG,联结PG,则BG=AP,GC =PC,∠PCG=90°,所以PG2=PC2+GC2=2PC2,再证明∠BPG=90°,则BG2=BP2+PG2,可证得AP2=BP2+2PC2,即a2=b2+2c2.【解答】(1)证明:如图1,∵CA=CB,∴∠A=∠B,∵CD=CE,∴∠CEA=∠CDB,∴△ACE≌△BCD(AAS),∴AE=BD,∴AE﹣DE=BD﹣DE,∴AD=BE.(2)证明:如图2,将△ACD绕点C沿逆时针方向旋转90°得到△BCF,联结EF,∵∠ACB=90°,CA=CB,∴∠CBA=∠A=45°,由旋转得CF=CD,∠BCF=∠ACD,∵∠DCE=45°,∴∠FCE=∠BCF+∠BCE=∠ACD+∠BCE=90°﹣45°=45°,∴∠FCE=∠DCE,∵CE=CE,∴△FCE≌△DCE(SAS),∴FE=DE,∵∠CBF=∠A=∠CBA=45°,∴∠EBF=90°,∴FE2=BF2+BE2,∵BF=AD,∴DE2=AD2+BE2.(3)a2=b2+2c2,理由如下:如图3,将△CAP绕点C沿逆时针方向旋转90°得到△CBG,联结PG,由旋转得GC=PC,∠PCG=90°,∴∠CPG=∠CGP=45°,PG2=PC2+GC2=2PC2,∵∠BPC=135°,∴∠BPG=135°﹣45°=90°,∴BG2=BP2+PG2,∵BG=AP,∴AP2=BP2+2PC2,∴a2=b2+2c2.。

沪教版八年级上册数学期末测试卷及含答案(有一套)

沪教版八年级上册数学期末测试卷及含答案(有一套)

沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、的值为()A. B. C. D.2、如图,A、B是双曲线上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A. B. C.3 D.43、下列函数中,自变量x的取值范围为x<1的是()A. B. C. D.4、二次函数的图象如图所示,反比列函数与正比列函数在同一坐标系内的大致图象是()A. B. C.D.5、关于x的一元二次方程x2-2x-3=0的根是()A.x1=1,x2=3 B.x1=-1,x2=3 C.x1=1,x2=-3 D.x1=-1,x2=-36、下列函数中,自变量的取值范围为的是()A. B. C. D.7、如图,每个小正方形的边长为1,格点A、B、C在同一圆弧上,若点A的坐标为(﹣2,3),则该圆弧所在圆的圆心坐标是()A.(﹣1,1)B.(﹣3,0)C.(﹣3,1)D.(0,1)8、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,则a的值是( )A.1B.-1C.1或-1D.29、P是反比例函数y=的图象上一点,过P点分别向x轴、y轴作垂线,所得的图中阴影部分的面积为6,则这个反比例函数的解析式为 ( )A. y=-B. y=C. y=-D. y=10、下列各式一定是二次根式的是( )A. B. C. D.11、如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,AB=4,BC=6,点O是边BC上一点,以O为圆心,OC为半径的⊙O,与边AD只有一个公共点,则OC的取值范围是()A.4<OC≤B.4≤OC≤C.4<OCD.4≤OC12、下列方程为一元二次方程的是()A.ax 2﹣bx+c=0(a、b、c为常数)B.x(x+3)=x 2﹣1C.x(x﹣2)=3D.13、如图所示,DE⊥AB,DF⊥AC,AE=AF,则下列结论成立的是()A.BD=CDB.DE=DFC.∠B=∠CD.AB=AC14、函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数15、下列方程中,是关于x的一元二次方程的是()A.x 2+3y=1B.x 2+3x=1C.ax 2+bx+c=0D.二、填空题(共10题,共计30分)16、如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG 与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM= ,则MN的长为________。

沪教版-上海市浦东新区第一学期初二(上)数学期末考试试卷及答案

沪教版-上海市浦东新区第一学期初二(上)数学期末考试试卷及答案

沪教版-上海市浦东新区第一学期初二(上)数学期末考试试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1浦东新区第一学期初二数学期末考试试卷一、填空题:(本大题共16题,每题2分,满分32分) 1.计算:28-= . 2.方程x x =2的根是 .3.函数12+=x y 的定义域是 . 4.化简二次根式2)3(π-= .5.在实数范围内分解因式:12-+x x = . 6.如果函数21)(-=x x f ,那么)3(f = .7.已知关于x 的方程0)12(22=+--k x k x 有两个相等的实数根,则k = . 8.某工厂七月份产值是100万元,计划九月份的产值要达到169万元,如果每月的产值的增长率相同,则增长率为 .9.已知y 是x 的反比例函数,且当2=x 时,4=y ,则当1=x 时,=y _______. 10.命题“全等三角形的面积相等”的逆命题是 . 11.经过线段AB 两个端点的圆的圆心的轨迹是 .12.已知在Rt △ABC 中,∠C =90°,AB =10cm ,AC =6cm ,那么B C = cm . 13.在直角坐标平面中,如果线段AB 的两个端点坐标分别为(4,−1)和(1,3),那么线段AB 的长为 .14.如图,已知AD AB =,∠B=∠D ,在求证BC=DC 的过程中,正确添加一条辅助线的方法是:联结 .15.如图,已知在等腰△ABC 中,如果AB =AC ,∠A =40°,DE 是AB 的垂直平分线,那么∠DBC = 度.16.如图,Rt △ABC 中,∠ACB =90°,CD 是AB 边上的中线,AC 比BC 长3cm ,如果△ADC 的周长为12cm,那么△BDC 的周长为 cm .(第14题) (第15题) (第16题) 二、选择题:(本大题共4题,每题2分,满分8分)17.下列关于x 的方程一定有实数解的是……………………………………(). (A )022=+-x x (B )02=-+m x x (C )01222=+-x x (D )012=--mx x18.下列结论中正确的个数有……………………………………………………( ). (1))(622b a m +不是最简二次根式; (2)a 8与a21是同类二次根式; (3)a 与a 互为有理化因式; (4)2)2)(1(x x x =+-是一元二次方程;(A )0个 (B )1个 (C )2个 (D )3个 19.已知函数)0(≠=k kx y 中y 随x 的增大而增大,那么它和函数(0)k ≠ky=x在同一直角坐标平面内的大致图像可能是……………………………………………( ).DCBACBACBDAE(A) (B) (C) (D)20.已知a 、b 、c 分别是△ABC 的三边,根据下列条件能判定△ABC 为直角三角形的是……( ).(A )11,13,8===c b a (B )12,10,6===c b a (C )9,41,40===c b a (D )25,9,24===c b a三、(本大题共6题,每题7分,满分42分)21.计算:xx x x 1246932-+. 解:22.解方程:3)2(22-=-x x x .解:23.已知:如图,在△ABC 中,CD ⊥AB 垂足为D ,BE ⊥AC 垂足为E ,联结DE ,点G 、F 分别是BC 、DE 的中点.求证:GF ⊥DE . 证明:24.已知:如图,在Rt △ABC 中,∠A =90°,CD 平分∠ACB 交边AB 于点D ,DE ⊥BC 垂足为E ,AD=21BD .A DFG A CDEB (第23题)求证:BE=CE . 证明:25.已知:如图,在四边形ABCD 中, AD ∥BC ,AB=BC+AD ,AE 平分∠BAD 交CD 于点E .求证:BE ⊥AE .证明:26.某建筑工程队在工地一边靠墙处用64米长的铁栅栏围成一个长方形的临时仓库,可利用的墙长是32米,铁栅栏只围三边,围成的长方形形面积是510平方米,求按以上要求所围成长方形的两条邻边的长.解:四、(本大题共2题,第27题9分,第28题9分,满分18分)27.为了预防“流感”,某学校对教室采用“药熏”消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示).现测得药物4分钟燃毕,此时室内空气中每立方米含药量为8毫克.请根据题中所提供的信息,解答下列问题:(1)求药物燃烧时,y 关于x 的函数解析式及定义域; (2)求药物燃烧完后,y 关于x 的函数解析式及定义域;D CA EB(第25题)(第26题)(3)研究表明,当空气中每立方米的含药量不低于2毫克时,才能有效地杀灭空气中的病菌,那么此次消毒有效时间有多长?解:(1)28.已知:如图,等边△ABC 的边长是4,D 是边BC 上的一个动点(与点B 、C不重合),联结AD ,作AD 的垂直平分线分别与边AB 、AC 交于点E 、F . (1)求△BDE 和△DCF 的周长和;(2)设CD 长为x ,△BDE 的周长为y ,求y 关于x 的函数解析式,并写出它的定义域;(3)当△BDE 是直角三角形时,求CD 的长. 解:(1)FEDCBA(第28题)(第27题)第一学期期末质量抽测初二数学参考答案及评分说明一、填空题:1.2; 2.1,021==x x ; 3.21-≥x ; 4.3-π;5.)251)(251(-+++x x ; 6.23--; 7.41; 8.30%; 9.8; 10.如果两个三角形的面积相等,那么这两个三角形是全等三角形; 11.线段AB 的垂直平分线; 12.8; 13.5; 14.BD ; 15.30; 16.9.二、选择题:17.D ; 18.C ; 19.D ; 20.C . 三、21.解:原式=x x x 232-+…………………………………………(2分,2分, 2分)=x 3. ……………………………………………………………………(1分)22.解:34222-=-x x x ………………………………………………………………(1分)0342=+-x x …………………………………………………………………(2分) 0)3)(1(=--x x ………………………………………………………………(2分) 3,121==x x .……………………………………………………………………(2分)23.证明:联结DG 、EG .∵CD ⊥AB ,点G 是BC 的中点,∴DG =21BC .………………………………(2分)同理,E G =21BC .………………………………………………………………(2分) ∴DG=EG .………………………………………………………………………(1分) ∵F 是DE 的中点,∴GF ⊥DE .………………………………………………(2分)24.证明:∵∠A =90°,DE ⊥B C , CD 平分∠A CB ,∴A D =DE ……………………(1分)∵A D =21BD ,∴DE =21BD .……………………………………………………(1分) 在Rt △BDE 中,∵DE =21BD ,∴∠B =30°.…………………………………(1分)在Rt △ABC 中,∵∠A =90°,∠B =30°,∴∠ACB =60°.………………(1分)∵CD 平分∠A CB ,∴∠BCD =21∠ACB =30°.………………………………(1分) ∴∠BCD =∠B ,∴BD =CD .……………………………………………………(1分) ∵DE ⊥BC ,∴BE =CE .…………………………………………………………(1分)25.解:延长AE 、BC 交于点F .∵AD ∥BC ,∴∠DAE=∠F .……………………………………………………(1分) ∵AE 平分∠BAD ,∴∠DAE=∠BAF …………………………………………(1分) ∴∠BAF=∠F ,∴AB=BF .……………………………………………………(1分) ∵AB=BC+AD ,BF=BC+CF ,∴AD=CF .……………………………………(1分) 易证△ADE ≌△FCE ,∴AE=FE .………………………………………………(2分) ∴B E ⊥AE .………………………………………………………………………(1分)26.解:设垂直于墙的一边为x 米,则平行于墙的一边为)264(x -米.……………(1分)根据题意得 510)264(=-x x .………………………………………………(2分) 解得151=x ,172=x …………………………………………………………(1分) 当15=x 时,3234264>=-x (不符合题意,舍去)……………………(1分)当17=x 时,30264=-x ……………………………………………………(1分) 答:按要求所围成长方形的两条邻边的长分别为17米和30米.…………………(1分)27.解:(1)∵正比例函数的图像经过点P (4,8),∴正比例函数的解析式为x y 2=.……………………………………………(2分) 定义域为0≤x ≤4.………………………………………………………………(1分) (2)∵反比例函数的图像经过点P (4,8), ∴反比例函数的解析式为xy 32=.……………………………………………(2分)定义域为x ≥4.…………………………………………………………………(1分) (3)把2=y 代入x y 2=中得1=x ,…………………………………………(1分) 把2=y 代入xy 32=中得1=x 6,……………………………………………(1分) 16-1=15,∴此次消毒的有效时间为15分钟.…………………………………(1分)28.解:(1)∵EF 垂直平分AD ,∴AE=DE ,AF=DF .………………………………(1分)∴C △BDE + C △CDF =BE+BD+DE+CD+DF+CF=BC+AC+AB .……………………(1分) ∵BC=AC=AB=4,∴C △BDE + C △CDF =12.………………………………………(1分) (2)∵CD= x ,BC =4,∴BD=x -4.…………………………………………(1分) ∵DE=AE ,∴ C △BDE =AB+BD ,即x y -=8.………………………………(1分) 定义域为40<<x .……………………………………………………………(1分) (3)∵△ABC 是等边三角形,∴∠B=60°. ①当∠BED=90°时,∠BDE=30°∴ BE=21BD=)4(21x -,DE=)4(23x -, ∵BE+DE=4,∴)4(21x -+)4(23x -=4,解得348-=x .……………(1分)②当∠EDB=90°时,∠BED=30°∴ BE=2BD=)4(2x -,DE=)4(3x -, ∵BE+DE=4,∴)4(2x -+)4(3x -=4,解得434-=x .……………(1分)综上所述,当△BDE 是直角三角形时,CD 的长为348-或434-.…(1分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪教版八年级上册数学期末考试题
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、填空题(题型注释) 1.一元二次方程x (x -2)=0的解是______.
2.对于一次函数y =yy +y ,当自变量y 的取值为−2≤y ≤5时,相应的函数值的范围为−3≤y ≤−6,则该函数的解析式为 。

3.如果两个最简二次根式31a -与23a +能合并,那么a =____.
4.如图所示:图象中所反映的过程是:小冬从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 轴表示时间,y 轴表示小冬离家的距离.根据图象提供的信息,下列说法正确的有________.
①.体育场离小冬家2.5千米 ②.小冬在体育场锻炼了15分钟
③.体育场离早餐店4千米 ④.小冬从早餐店回家的平均速度是3千米/小时 5.如果菱形的一个角为60°,边长为4cm ,那么它的面积为____________ cm
6.如图,A 、B 是双曲线k y x
=上的点,分别过A 、B 两点作x 轴、y 轴的垂线段.S 1,S 2,S 3分别表示图中三个矩形的面积,若S 3=1,且S 1+S 2=4,则k=_________.
7.如图,矩形OABC 中,AB=1,AO=2,将矩形OABC 绕点O 按顺时针转90o ,得到矩形OA ,B ,C ,,则BB ,=_______.
8.若点A (-1,a )在反比例函数y =-
3x 的图像上,则a 的值为_____________. 评卷人
得分 二、解答题(题型注释)
9.解方程:
(1)4x 2-1=0 (2)x 2+x -6=0
10.计算:(1)()2
32312--⨯; (2)2111
a a a +-+-. 11.有这样一个问题:探究函数2=2x y x
+的图象和性质.小奥根据学习函数的经验,对函数22x y x
=+的图象和性质进行了探究.下面是小奥的探究过程,请补充完整: (1)函数22x y x =+的自变量x 的取值范围是 ; (2)下表是y 与x 的几组对应值:
求m 的值;
(3)如下图,在平面直角坐标系xoy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; (4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,2).结合函数图象,写出该函数的其他性质(一条即可): . 12.如图,在正方形ABCD 中,点E 是AD 上的点,点F 是BC 的延长线上一点,CF=DE ,连结BE 和EF ,EF 与CD 交于点G ,且∠FBE=∠FEB .
(1)过点F 作FH ⊥BE 于点H ,证明:; (2)猜想:BE 、AE 、EF 之间的数量关系,并证明你的结论; (3)若DG=2,求AE 值.
答案
1.x 1=0,x 2=2
【解析】1.试题分析:本题主要考查的就是一元二次方程的解法,当ab=0时,则a=0或b=0,根据题意可得:x=0或x-2=0,则x 1=0,x 2=2.
2.y =−37y −277或y =37y −367 【解析】2.试题解析:分两种情况: ①当k >0时,把x =-2,y =-3;x =5,y =-6代入一次函数的解析式y =kx +b ,
得{−2y +y =−35y +y =−6,解得:{y =−37y =−
277
, 则这个函数的解析式是y =-37x -277;
②当k <0时,把x=-2,y=-6;x=5,y=-3代入一次函数的解析式y =kx +b ,
得{−2y +yy −65y +yy −3,解得:{y =37y =−367
, 则这个函数的解析式是y =37x -367.
故这个函数的解析式是y =-37x -277或y =37x -367.
【点睛】本题主要考查待定系数法求一次函数解析式以及一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小,注意要分情况讨论.
3.4
【解析】3.∵两个最简二次根式能合并,∴3123a a -=+ ,解得:a =4.故答案为:4.
4.①②④
【解析】4.由函数图象可知,体育场离小冬家2.5千米,选项①正确;由图象可得出小冬在体育场锻炼30-15=15分钟,选项②正确;体育场离小冬家2.5千米,体育场离早餐店 2.5-1.5=1千米,选项③错误;观察图象可知,小冬从早餐店回家所用时间为95-65=30分钟,距离为1.5km ,所以小冬从早餐店回家的平均速度1.5÷0.5=3千米/时,选项④正确.所以说法正确的有①②④.
点睛:结合图象得出小冬从家直接到体育场,故第一段函数图象所对应的y 轴的最高点即为体育场离小冬家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离小冬家2.5千米,体育场离早餐店2.5-1.5
千米;平均速度=总路程÷总时间.
5.83
【解析】5.
如图,菱形ABCD 中, 60BAD ∠= . 60BAD ∠=,
30BAO ∴∠= ,
114222
OB AB ∴==⨯= , 22224223OA AB OB ∴=-=-=,
24BD OB ∴== , 243AC OA == .
114348322
ABCD S AC BD ∴=⋅=⨯⨯=菱形 . 6.3【解析】6.13S S k +=① , 23S S k +=② ,
∴+①② 得12322S S S k ++=.
31S = ,且S 1+S 2=4,
12322426k S S S ∴=++=+=, 3k ∴= . 7.10. 【解析】7.试题解析:如图所示:
∵矩形OABC 中,AB=1,AO=2,将矩形OABC 绕点O 按顺时针转
90°,得到矩形OA′B′C,
∴BD=3,B′D=1,
则BB′=22'=10BD B D +.
8.3
【解析】8.∵陈点A (-1,a )代入在反比例函数y =-3
x 中,
∴a=3;
故答案是:3。

9.(1)x 1=1
2,x 2=-1
2 (2)x 1=-3,x 2=2
【解析】9.(1)4x 2-1=0
解:整理得:x 2-1
4=0
于是得:x 2=1
4
由平方根的意义得:
或:因式分解,得:
(2x +1)(2x -1)=0
2x +1=0,或2x -1=0
解得:x 1=-1
2,x 2=1
2
(2)解: x 2+x -6=0
因式分解,得:
(x +3)(x -2)=0
x +3=0,或x -2=0
解得:x 1=-3,x 2=2
10.(1)143-;(2)21a
a -.
【解析】10.试题分析(1)先把括号展开,再计算乘法,最后算加减法即可;
(2)通分后,分子去括号,合并同类项即可.
试题解析:(1)原式=34346-+-
=143-
(2):原式=()2
21111a a a a -+---=21a
a -
11.(1)x≠0;(2)m=13
6;
(3)画图见解析;
(4)当x ﹥2 时,y 随x 的增大而增大等等
【解析】11.试题分析:(1)由图表可知x ≠0;
(2)根据图表可知当x=3时的函数值为m ,把x=3代入解析式即可求得;
(3)根据坐标系中的点,用平滑的曲线连接即可;
(4)观察图象即可得出该函数的其他性质.
试题解析: (1) x≠0 (2)将x=3,y=m 代入 22x y x =+ 得m=136
(3)如图所示: (4)当x ﹥2 时,y 随x 的增大而增大等等 12.(1)证明见解析;(2)证明见解析;(3)
43 【解析】12.试题分析:(1)根据正方形的性质得到
∠AEB=∠EBF ,由已知条件得到∠A=∠BHF ,根据相似三角形
的判定定理即可得到结论;
(2)根据已知条件得到FH 是等腰△FBE 底边上的高,求得BH=
12
BE ,由根据相似三角形的性质得到=AE BE BH BF
; (3)由已知条件得到正方形ABCD 的边长为2,设AE=k (0<k <2),则DE ═2-k ,BF=4-k ,根据勾股定理列方程即可得到结果.
试题解析:(1)证明:∵在正方形ABCD 中,AD ∥BC ,
∴∠AEB=∠EBF ,
又∵FH ⊥BE ,∴∠A=∠BHF=90°,
∴△ABE ∽△HFB ;
(2)BE 2=2AE•EF
证明如下:∵∠FBE=∠FEB ,∴BF=EF ,
∵FH ⊥BE ,
∴FH 是等腰△FBE 底边上的中线, ∴BH=
12
BE , 由(1)得, =AE BE BH BF
, ∴=12AE BE BF
BE ∴BE 2=2AE•BF ;
∵BF=EF ,∴BE 2=2AE•EF ; (3)解:∵DG ═2,
∴正方形ABCD 的边长为4,
设AE=k (0<k <4),则DE ═4﹣k ,BF=8﹣k ,
∴在Rt △ABM 中,BE 2=AB 2+AE 2=16+k 2,
由BE 2=2AE•BF ,得16+k 2=2k (8﹣k ),
即3k 2﹣16k+16=0,解得k 1=
43,k 2=4 ∵k≠4,
∴AE=43
.。

相关文档
最新文档