污水处理构筑物设计计算
吨每天城市污水处理厂设计计算
污水厂设计计算书第一章 污水处理构筑物设计计算一、粗格栅1.设计流量Q=20000m 3/d ,选取流量系数K z =则: 最大流量Q max =×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数85.449.04.002.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=45)3.栅槽宽度(B)设:栅条宽度s=0.01m则:B=s (n-1)+bn=×(45-1)+×45=1.34m 4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 30.0260.0212===6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 102.060sin 81.929.0)02.001.0(4.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=0.3m 则:栅前槽总高度H 1=h+h 2=+=0.7m 栅后槽总高度H=h+h 1+h 2=++=0.802m 8.格栅总长度(L)L=L 1+L 2+++ H 1/tan α=++++tan60°= 9. 每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W=Q W 1=05.0105.130000100031max ⨯⨯=⨯⨯-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:α1αα图1-1 粗格栅计算草图二、集水池设计集水池的有效水深为6m,根据设计规范,集水池的容积应大于污水泵5 min的出水量,即:V>0.347m3/s×5×60=104.1m3,可将其设计为矩形,其尺寸为3 m×5m,池高为7m,则池容为105m3。
一级水处理设计计算
第一章 污水的一级处理构筑物设计计算1.1格栅格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。
被截留的物质称为栅渣。
设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。
格栅断面有圆形、矩形、正方形、半圆形等。
圆形水力条件好,但刚度差,故一般多采用矩形断面。
格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5~10mm );按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处的格栅。
1.1.1格栅的设计城市的排水系统采用分流制排水系统,城市污水主干管由西北方向流入污水处理厂厂区,主干管进水水量为s L Q 63.1504 ,污水进入污水处理厂处的管径为1250mm ,管道水面标高为80.0m 。
本设计中采用矩形断面并设置两道格栅(中格栅一道和细格栅一道),采用机械清渣。
其中,中格栅设在污水泵站前,细格栅设在污水泵站后。
中细两道格栅都设置三组即N=3组,每组的设计流量为0.502s m 3。
1.1.2设计参数1、格栅栅条间隙宽度,应符合下列要求:1) 粗格栅:机械清除时宜为16~25mm ;人工清除时宜为25~40mm 。
特殊情况下,最大间隙可为100mm 。
2) 细格栅:宜为1.5~10mm 。
3) 水泵前,应根据水泵要求确定。
2、 污水过栅流速宜采用0.6~1.Om /s 。
除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60~90°。
人工清除格栅的安装角度宜为30°~60°。
3、当格栅间隙为16~25mm 时,栅渣量取0.10~0.0533310m m 污水;当格栅间隙为30~50mm 时,栅渣量取0.03~0.0133310m m 污水。
污水处理厂设计计算书
第二篇设计计算书1.污水处理厂处理规模处理规模污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期万m 3/d,远期万m 3/d;污水处理厂处理规模污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量;最高日水量为生活污水最高日设计水量和工业废水的总和;Q 设= Q 1+Q 2 = 5000+5000 = 10000 m3/d 总变化系数: K=K×K=×1=2.城市污水处理工艺流程污水处理厂CASS 工艺流程图3.污水处理构筑物的设计泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物;在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备;3.1.1.1 设计参数:1栅前水深0.4m,过栅流速~1.0m/s,取v=0.8m/s,栅前流速~0.9 m/s ; 2栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; 3栅条宽度s=0.01m ;4格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; 5栅前槽宽B 1=0.82m,此时栅槽内流速为0.55m/s ; 6单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 1栅条的间隙数n,个式中, max Q -最大设计流量,3/m s ;-格栅倾角,°; b -栅条间隙,m ;h -栅前水深,m ; v -过栅流速,m/s ;2栅槽宽度B,m取栅条宽度s=0.01mB=Sn -1+bn3进水渠道渐宽部分的长度L 1,m式中,B 1-进水渠宽,m ;α1-渐宽部分展开角度,°;4栅槽与出水渠道连接处的渐窄部分长度L 2,m 5通过格栅的水头损失h 1,m式中:ε—ε=βs/b 4/3; h 0 — 计算水头损失,m ;k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3;ξ— 阻力系数,与栅条断面形状有关;设栅条断面为锐边矩形断面,β= v 2— 过栅流速, m/s ; α — 格栅安装倾角, °;6栅后槽总高度 H,m取栅前渠道超高20.3h m =7栅槽总长度L,m式中,H 1为栅前渠道深,112H h h =+,m 8每日栅渣量W,m 3/d式中,1W -为栅渣量,333/10m m 污水,格栅间隙为16~25mm 时为~,格栅间隙为30~50mm 时为~; K -污水流量总变化系数3.1.1.3 设计计算采用两座粗格栅池一个运行,一个备用; 1格栅间隙数 n,个max Q =185.03600246.110000≡⨯⨯3/m s268.04.0021.065sin 185.0=⨯⨯︒⨯=n 个;2栅槽宽度 B,mB=⨯26-1+⨯+=1.01m ; 校核槽内流速:Vc=46.001.14.0185.0=⨯m/s,在~0.9m/s 范围之内,符合;3 进水渠道渐宽部分长度 L 1,mL 1 26.020tan 282.0-01.1=︒=m4栅槽与出水渠连接的渐窄部分长度 L 2,mL 2 13.0226.0==m 5过栅水头损失 h 1,m设栅条断面为锐边矩形断面β=h 1 08.0365sin 8.928.0021.001.042.2234=⨯⨯⨯⨯⎪⎭⎫⎝⎛⨯=o m 6栅后总高度 H,m21h h h H ++= =++=≈0.8m7栅槽总长度 L,mL = ++++︒65tan 7.0=2.22m 8每日栅渣量W,m 3/dW d m d m /2.0/50.0106.105.086400185.0333>⨯⨯⨯== 宜采用机械清渣; 9计算草图如下: 设备选型中格栅选用BLQ 型格栅除污机,两共四台; 3.1.1.5 粗格栅栅槽尺寸确定3.1.2 进水泵房的确定3.1.2.1设计参数设计流量:最大设计流量为20000m3/d, 平均日设计流量为10000m3/d;3.1.2.2设计计算3.1.3 细格栅3.1.3.1 设计参数1栅前水深0.4m, 过栅流速~1.0m/s, 取v=0.8m/s,栅前流速~s m /; 2栅条净间隙,中格栅b= 3~ 10 mm, 取b=10mm ; 3栅条宽度s=0.01m ;4格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; 5栅前槽宽B 1=0.8 m,此时栅槽内流速为0.58 m/s ; 6单位栅渣量:W 1 =0.1 m 3栅渣/103m 3污水; 3.1.3.2 设计计算 1格栅的间隙数n,个558.04.001.065sin 185.0=⨯⨯︒⨯=n 个2格栅的建筑宽度B,m取栅条宽度s=0.01m 校核槽内流速:Vc=42.009.14.0185.0=⨯m/s,在~0.9m/s 范围之内,符合;3进水渠道渐宽部分长度L 1,m4栅槽与出水渠道连接处的渐窄部位长度L 2,mL 2 2.024.0==m5通过格栅的水头损失h 1,m取栅条断面为锐边矩形断面 6栅后槽总高度H,m取栅前渠道超高m h 3.02= 7栅槽的总长度L,m 8每日栅渣量W,m 3/d取333110/10.0m m W =污水 宜采用机械清栅; 9计算草图如下:3.1.1.4 设备选型细格栅选用TGS型回转式格栅除污机,型号TGS-800,电机功率,格栅间隙10mm,共两台;3.1.1.5 粗格栅栅槽尺寸确定调节池的设计计算3.2.1 调节池的选择为了保证后续处理构筑物或设备的正常运行,需对废水的水量和水质进行调节,常用的水量调节池进水为重力流,出水用泵提升,池中最高水位不高于进水管的设计水位,有效水位一般为2~3m,最低水位为死水位;此外,酸性废水和碱性废水还可以在调节池内混合以达到中和的目的,短期排出的高温废水也可以利用调节池来降低水温;因此,调节池具有下列功能:a减少或防止冲击负荷对处理设备的不利影响;b使酸性废水和碱性废水得到中和;c调节水温;d当处理设备发生故障时,可起到临时的事故贮水池的作用;欲曝气可以有效地去除一定的COD、BOD等;调节池在结构上可分为砖石结构、混凝结构、钢结构;目前常用的是利用调节池特殊的结构形式进行差时混合,即水利混合;主要有对角线出水调节池和折流调节池;对角线出水调节池,其特点是出水槽沿对角线方向设置,同一时间流入池内的废水,由池的左、右两侧,经过不同时间流到出水槽;从而达到自动调节、均和调节、均和的目的;折流调节池,池内设置许多折流隔墙,使废水在池内来回折流;配水槽设于调节池上,通过许多孔口溢流投配到调节池的各个折流槽内,使废水在池内混合、均衡;113.2.2设计参数1 调节池有效水深为~5.0m,取h=4.0m;2 调节池停留时间4~8 小时,取T=5h;3 调节池保护高度~0.5m,取h′=0.3m;4设计流量Q = 3000m3/d = 125m3/h ;=0.3m;5超高部分:h16设池底为正方形,即长宽尺寸相等;3.2.3池体设计1池体容积Vm3V= 1+kQmax ×T式中: k—池子扩充系数,一般为10~20%,本设计池子扩充系数采用20%V--------调节池容积,m3T--------调节池中污水停留时间,取5h池容积为:V=1+20%××5=2500m3池面积为:A = V/h =2500/3=625m2式中: V--------调节池的有效容积,m 3A--------调节池面积,m 2h--------有效水深,m,取4.0m2设调节池1 座,采用方形池,池长L 与池宽B 相等,则 池长: L=A =625=25m,池长取L=25m,池宽取B=25m 池总高度:H=h+ h ′=4+=4.3m 式中 H--------调节池总高,m h--------有效水深,m,取3.0m h 1--------保护高,m3池子总尺寸为:L ×B ×H = 25×25×4.3m 3 4在池底设集水坑,水池底以i= 的坡度坡向集水坑;平流沉砂池的设计目前,应用较多的陈沙迟池型有平流沉砂池、曝气沉砂池和钟式沉砂池;本设计中选用平流沉砂池,它具有颗粒效果较好、工作稳定、构造简单、排沙较方便等优点; 3.3.1 设计参数1按最大设计流量设计,Q max =0.185m 3/s ;2设计流量时的水平流速:最大流速为0.3m/s,最小流速0.15m/s,取v=0.20m/s ; 3最大设计流量时,污水在池内停留时间不少于30s 一般为30—60s,取t=30s ; 4设计有效水深不应大于1.2m 一般采用—1.0m 每格池宽不应小于0.6m 取b=0.8m ; 5沉砂量的确定,城市污水按每10万立方米污水砂量为3立方米,沉砂含水率60%,容重立方米,贮砂斗容积按2天的沉砂量计,斗壁倾角55—60度,取600; 6沉砂池超高不宜小于0.3m,取h 1=0.3m ;7沉砂池不应小于两个,并按并联系列设计,以便可以切换工作;当污水流量较少时,可考虑一个工作,一个备用;当污水流量大时两个同时工作,本设计取两座; 3.3.2 设计计算1沉砂池水流部分的长度L,m沉砂池两闸板之间的长度为流水部分长度:式中,L —水流部分长度,m V ——最大流速,m/st ——最大流速时的停留时间,s2水流断面积A,2m式中,max Q ——单个池体最大设计流量,/s m 3A ——水流断面积 ,2m3池总宽度B,m设n=2,每格宽b=0.8mB=n ⨯b=⨯=1.6m46m .06.174.0B A h 2=== 介于-1m 之间合格式中,2h ——设计有效水深 4沉砂斗容积设排砂间隔时间为2日,城市污水沉砂量1x =353m /103m ,T=2日,式中,1x ——城市污水含沙量,353m /103m总K ——流量总变化系数,5沉砂室所需容积V ‵,m 设每分格有2个沉砂斗V ‵=3m 15.0226.0=⨯ 6沉砂斗各部分尺寸设斗底宽1α=0.4m,斗壁水平倾角600,斗高3h '=0.4m 沉砂斗上口宽α,m 沉砂斗容积V 0 ,m 3=0.17m 3>0.15 m 3 符合要求 7沉砂室高度h 3,m采用重力排砂,设池底坡度为,坡向排砂口式中:/3h ——斗高,mL 2—— 由计算得出 22.02a L L 2--=8沉砂池总高度1h ——超高,0.3m 9验算最小流量在最小流量时,用一格工作,按平均日流量的一半核算 s m s m A Q v /15.0/16.074.0116.0min min>=== 符合流速要求3.3.3 沉砂池设计计算草图见图图沉砂池设计计算草图CASS 池1CASS 工艺是将序批式活性污泥法SBR 的反应池沿长度方向分为两部分,前部为生物选择区也称预反应区,后部为主反应区;在预反应区内,微生物能通过酶的快速转移机理迅速的吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH和有害物质起到较好的缓冲作用,同时对丝状菌的生产起到抑制作用,可有效防止污泥膨胀;在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气、沉淀、排水于一体;每一个工作周期微生物处于好氧—缺氧周期性变化之中;在主反应区经历一个较低负荷的基质降解过程;因此,CASS工艺具有有效的脱氮效果;2工艺简图3.4.1 设计参数1一般生活污水Ne =—kgBOD5/kg MLSS·d,在本设计中取Ne=kgBOD5/kg MLSS·d;2一般来说城市污水厂的SVI值范围是50—150mg/l,取SVI=75mg/l;3一般CASS池的活性污泥浓度Nw控制在—4.0kg/m3范围内,污泥指数SVI值大时取下限,反之取上限,在设计中取Nw=3.5kg/m3;4每组流量为10000 m3/d,设4座4 超高0.5m;5 氧的半速常数: mg/L;6考虑格栅和平流沉砂池可去除部分有机物,取去除30%此时进水水质:CODcr=300mg/L×1-30%=210mg/L ,BOD5=200mg/L×1-30%=140mg/L ,SS=240mg/L×1-30%=168mg/L7出水水质: BOD5≤10mg/L SS ≤10mg/L COD≤60 mg/L8 进水最高水温30℃,最低水温20℃;3.3.1 设计计算3.3.1.1 CASS池容积V,m3采用容积负荷法计算:式中:Q—城市污水设计水量,m3/d ;Q=10000m3/d;Nw—混合液MLSS污泥浓度kg/m3,一般为-4.0 kgm3,本设计取3.5 kg/m3;Ne—BOD5污泥负荷kg BOD5/kg MLSS·d,一般为 BOD5/kg MLSS·d,设计取kgBOD5/kgMLSS·d;Sa —进水BOD 5浓度kg/ L,本设计Sa = 140 mg/L ; Se —出水BOD 5浓度kg/ L,本设计Se = 20 mg/L ;f —混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值,一般为,本设计取;则:33304875.05.315.010)20140(10000m V =⨯⨯⨯-⨯=-,取3100m 3设计为池子个数N1=4个一期建设两个,二期建设两个则单池容积为3100÷4=775m 3;3.3.1.2 CASS 池容积负荷CASS 池工艺是连续进水,间断排水,池内有效容积由变动容积V 1和固定容积组成,变动容积是指池内设计最高水位至滗水机最低水位之间的容积,固定容积由两部分组成,一是活性污泥最高泥面至池底之间的容积V 3,另一部分是撇水水位和泥面之间的容积,它是防止撇水时污泥流失的最小安全距离决定的容积V 2;依经验取循环周期T=4h,2h 进水与曝气,1h 沉淀,1h 排水;1CASS 池总有效容积V m 3:V =n 1×V 1+V 2+V 3式中:n 1—CASS 池个数,为实现连续排水,取n 1=4个;V —CASS 池总有效容积,m 3; V 1—变动容积,m 3; V 2—安全容积,m 3 ; V 3—污泥沉淀浓缩容积,m 3;2单格CASS 池平面面积Am 2:式中:n 1—CASS 池个数,为实现连续排水,在本设计中,取n 1=4个; H —池内最高液位Hm,一般H=H 1+H 2+H 3=3—5m,本设计取H=4.0m ;则 21940.443100m A =⨯=3池内设计最高水位至滗水机排放最低水位之间的高度,H 1m ;式中:n 2—一日内循环周期数,本设计取池内周期4h ; 则 m H 15.219464100001=⨯⨯=4滗水结束时泥面高度,H 2m ;H 2=H×Nw×SVI×10-3式中:Nw —池内混液污泥浓度g/L,本设计取Nw =3.5g/LSVI —污泥体积指数,SVI=75 则 H 2 = ××75×10-3 = 1.05m; 5撇水水位和泥面之间的安全距离,H 3m ; H 3=H-H l +H 2则:H 3=H-H l +H 2=+=0.8m校核:满足H 2≥H-H l +H 2,符合条件; 3.3.1.3 CASS 池外形尺寸11n VH B L =⨯⨯ 式中:B —池宽,m,B:H=1—2,取B=6m,6/4=,满足要求;L —池长,m,L:B=4—6,A/B=194/6=,6=,满足要求; 2CASS 池总高H 0m ; H 0=H +=4.5m3微生物选择区L 1,mCASS 池中间设1道隔墙,将池体分隔成微生物选择区和主反应区两部分;靠进水端为生物选择区,其容积为CASS 池总容积的10%左右,另一部分为主反应区;选择器的类别不同,对选择器的容积要求也不同;L 1=10﹪L=10%⨯=3.2m 3.4.1.4 连通孔口尺寸连通孔面积A 1m 2;式中:H 1—设计最高水位至滗水机排放最低水位之间的高度,2.15 m ; v —孔口流速20-50m/h,取v=40m/hn 3—在厌氧区和好氧区的隔墙底部设置连通孔;连通预反应区与主反应区水流,因单格宽6m,本设计取连通孔个数n 3=2个 L 1—选择区的长度,m ; 则:4孔口尺寸设计孔口沿墙均布,孔口宽度取0.8m,孔高为=1.24m;为:0.8m×1.24m3.3.1.5 需氧量O2=a′QS a-S e+b′VX v其中:a′—活性污泥微生物对有机污染物氧化分解过程的需氧率,即活性污泥微生物每代谢1kgBOD所需要的氧量,kg;生活污水中一般取—,取a′=kgBOD5;b′—活性污泥微生物通过内源代谢的自身氧化过程的需氧量,即1kg活性污泥每天自身氧化所需要的氧量,kg;生活污水中一般取—,取b′=kg污泥;O2—混合液需氧量,kgO2/d;X v=fN w==1.875kg/m3;由式有: O2=a′QS a-S e+b′VX v=10000+4000=d=h⑨供气量Q t=211-E A/79+211-E A式中:Q t—气泡离开地面时,氧的百分比,%E A—空气扩散装置的氧转移效率,取水下射流式扩散器,其的转移效率是25%Q t=211-E A/79+211-E A=211-25%/79+211-25%=%C sb=C s P b/105+Q t/42式中:C sb—CASS池内曝气时溶解氧饱和度的平均值,mg/l;C s—在大气压力条件下氧的饱和度,C s=l;水温20℃P b—空气扩散装置出口处的绝对压力,P b=P+103H;H—扩散装置的安装深度,H=3.5m;P—大气压力,P=105Pa;C sb=C s P b/105+Q t/42=101300+9800/206600+42=lp=P a/105式中:P a—当地大气压,P a=105Pa;P=P a/105=1R0=RC s20/{abpC sT-C T-20}式中:R0—水温20℃时,气压105Pa时,转移到曝气池混合液的总氧量,kg/h;R—实际条件下转移到曝气池混合液的总氧量,kg/h;C s20—水温20℃时,大气压力条件下氧的饱和度,mg/l;a—污水中杂质影响修正系数,取a=;b—污水含盐量影响修正系数,取b=1;p—气压修正系数;C—混合液溶解氧浓度,取C=2mg/l;R0=RC s20/{abpC sT-C T-20}={11 20-20}=83.16kg/h空气扩散装置的供气量为:G=R0/E A=25%=1108.8m3/h=18.48m3/min3.1.6 CASS池运行模式设计CASS池运行周期设计为4h,其中曝气120min,沉淀40-60min,滗水40min,闲置20min,正常的闲置期通常在滗水器恢复待运行状态4min后开始;池内最大水深4.0m,换水水深0.8m,存泥水深2.1m,保护水深1.1m,进水开始与结束由水位控制,曝气开始由水位和时间控制,排水结束由水位控制;主反应区即好氧区,是去除营养物质的主要场所,通常控制ORP在100-150mV,溶解氧L;运行过程中通常将主反应区的曝气强度加以控制使反应区内主体溶液处于好氧状态,完成降解有机物的过程,而活性污泥内部则基本处于缺氧状态,溶解氧向污泥絮体内的传递受到限制而硝态氮由污泥内向主体溶液的传递不受限制,从而使主反应区中同时发生有机污染物的降解以及同步硝化和反硝化作用;⑩主要设备⑴水下射流曝气机在次设计中,选用GSS型潜水自吸式射流曝气设备;根据水深4.5m,池面积是31.78m7m4,预反应区长2.54m,及GSS型潜水自吸式射流曝气机的规格和主要性能参数,可选用型曝气机,4个预反应区每区一台,主反应区没池3台,共16台;分布见CASS池平面图;型潜水自吸式射流曝气机技术参数:电机功率,供氧量5kgO2/h,适宜水深2.625m,重量90kg;⑵滗水器根据该设计要求:分4池,滗水深度是 1.875m,池面面积是㎡,滗水时间为1h,滗水量为:V4==416.70m3/h,及滗水器主要技术参数,可选XBS-5000型旋转式滗水器,每池一台,共4台;XBS-5000型旋转式滗水器技术参数:长5000mm,功率;滗水深度1.875m;3.1.7 排水系统设计为了保证每次换水水量及时排除以及排水装置运行需要,将排水口设在最低水位以下0.6m,最高水位以下1.4m处,设计池内底埋深1.0m,则排水口相对地坪标高为1.6m,最低水位相对地面标高为2.2m;单池每周期排水量为:6×27×=130m3排水时间设计为40min每池设一个滗水器,滗水器流量为:130÷40÷60=195m3/h选择排水管管径为DN200滗水器排水过程中能随水位的下降而下降,使排出的上清液始终是上层清液;为防止水面浮渣进入滗水器被排走,滗水器排水口一般都淹没在水下一定深度;中间水池本设计中中间水池的作用主要是贮存、调节CASS池排出的水量,以便后续三级深度处理能顺利进行; CASS池每个周期为4小时,每个周期滗水器在40min钟内排出的水量为:4×6×27×=518m3后续中水平均处理流量为: 518÷4=130m3/h,设计为150m3/h中间水池所需最小容积为:518-150×40÷60=418m3设计中间水池的容积为: 500m3设计为两个池,一期一座,二期增建一座;采用圆形地下水池,池内并设置喷泉,以形成水景;有效水深为3.2m,则池子直径D为:9.5m地面超高0.3m,池总深度3.5m;3.1.5接触消毒池与加氯间1.设计说明设计流量Q=50000m3/d=2083.3 m3/h;水力停留时间T=;设计投氯量为C=~L2.设计计算a 设置消毒池一座池体容积VV=QT=×=1041.65 m3消毒池池长L=30m,每格池宽b=5.0m,长宽比L/b=6接触消毒池总宽B=nb=3×=15.0m接触消毒池有效水深设计为H1=4m实际消毒池容积V`为V`=BLH1=300××4=600m3满足要求有效停留时间的要求;b加氯量计算设计最大投氯量为L;每日投氯量为W=250kg/d=10.4kg/h;选用贮氯量500kg的液氯钢瓶,每日加氯量为瓶,共贮用10瓶;每日加氯机两台,一用一备;单台投氯量为10~20kg/h;配置注水泵两台,一用一备,要求注水量Q3~6m3/h,扬程不小于20m H2O;C 混合装置在接触消毒池第一格和第二格起端设置混合搅拌机两台;混合搅拌机功率No为No= μQTG2/100式中Q T——混合池容,m3;μ——水力黏度,20℃时μ=×-4kgm2;G——搅拌速度梯度,对于机械混合G500s-1;No=×10-4××30×500×500/3×5×100=实际选用JBK—2200框式调速搅拌机,搅拌器直径∮2200mm,高度H2000mm,电动机功率;液氯消毒设计说明设计说明设计流量Q=20000m3/d=833.3m3/h ;水力停留时间T=; 仓库储量按15d计算, 设计投氯量为7mg/L设计计算1)加氯量GG=×7×=2)储氯量WW=15×24×G=15×24×=3)加氯机和氯瓶采用投加量为0~20kg/h加氯机3台,两用一备,并轮换使用;液氯的储存选用容量为400kg的纲瓶,共用6只;4)加氯间和氯库加氯间与氯库合建;加氯间内布置3台加氯机及其配套投加设备,两台水加压泵;氯库中6只氯瓶两排布置,设3台称量氯瓶质量的液压磅秤;为搬运方便氯库内设CD1-26D单轨电动葫芦一个,轨道在氯瓶上方,并通到氯库大门外;氯库外设事故池,池中长期贮水,水深1.5米;加氯系统的电控柜,自动控制系统均安装在值班室内;为方便观察巡视,值班与加氯间设大型观察窗机连通的门;5)加氯间和加氯库的通风设备根据加氯间、氯库工艺设计,加氯间总容积V1=××=m3,氯库容积V2=×9×=m3.为保证安全每小时换气8~12次;加氯间每小时换气量G1=×12=m3氯库每小时换气量G2=×12=m3故加氯间选用一台T30-3通风轴流风机,配电功率,并个安装一台漏氯探测器,位置在室内地面以上20cm;2.污泥浓缩池因本设计采用CASS工艺,污泥产量很少,采用间歇式污泥浓缩池;半地下式,竖流式浓缩池;周边进水,中心排泥的运行方式,每8h排泥一次,每天排泥三次;为方便检修,设池数为两座;其设计计算如下:①污泥量的计算剩余活性污泥量以挥发性固体V SS计:由BOD-污泥负荷率COD-污泥负荷率与污泥增长率的关系:△X=YS a-S e Q-K d VX v△X—每日增长排放的挥发性污泥量V SS,kg/d;Y—产率系数,即微生物每代谢1kgBOD所合成的MLVSSkg数;生活污水取值为—,取kgMLVSS;K d—活性污泥的自身氧化率亦称衰减系数,1/d;生活污水取值—,取d;Q—每日处理污水量,m3/d;S a—经预处理后,进入曝气池污水含BOD的浓度,kg/m3;S e—经生化处理后,处理水中残留的BOD的浓度,kg/m3;V—CASS池的有效容积,m3;X v—混合液中挥发性悬浮固体量MLVSS,kg/m3;由可得:△X=YS a-S e Q-K d VX v=4000=140 kgVSS/d剩余污泥量以悬浮固体SS计:P ss=△X/ff—V SS/SS值,取f=P ss=△X/f=140/=200 kgSS/d②污泥浓缩池的计算对于活性污泥,污泥固体负荷取25kg/㎡d,污泥浓缩后含水率为97%,污泥的固体浓度是5kg/m3含水率%;浓缩池总面积为:A=5200/25=40㎡取圆形池,其直径为:D=2A/2 =5.05m;取有效水深3m,核算停留时间:40324/200=符合设计规定因污泥浓缩池面积较小,不用污泥浓缩机,池底做成斗状,其与水平倾角为55°,斗口径取3.0m,则斗高为:h=/2tan55°=1.463m取污泥浓缩池超高为0.3m,则总高为:H=++=4.763m;有效容积为:20㎡2③浓缩后污泥产量的计算浓缩后污泥含水率为97%,浓缩前污泥含水率为%,浓缩前的污泥量为200 kgSS/d,以体积计算为:V ss=200P ss/100-P1000V ss—污泥量,m3/d;P—污泥含水率,%;1000—污泥浓度,kg/m3;由有: V ss=200P ss/100-P1000=200100/1000=40 m3/d浓缩后污泥量为:V ss′/V ss=100-P/100-P′P′—浓缩后污泥含水率,%;由有:V ss′=V ss100-P/100-P′=40/100-97=6.67 m3/d每次排泥量为:3=2.22 m3/次;3.脱水机房①根据各构筑物的合理布置,确定其尺寸为:9m9m5m②主要设备⑴带式压滤机的选型:因污泥的产量为6.67m3/d,根据DY型带式压滤机的性能参数,选用DY500的DY带式压滤机可满足要求,每天工作3次,每次40min;其性能参数为:带宽700mm,处理量 6.67 m3/h,功率,冲洗水量为≤5 m3/d,冲洗水压≥,泥饼含水率75%;配套设备:冲洗水泵:4,Q=6.5 m3/h,h=60m,p=3Kw;污泥螺杆泵调速:G=35-1,Q=-4.31 m3h,P=,p=;移动式空压机:TA-65,Q=-0.19 m3/min,P=,p=;加药装置配计量泵:GTF1000,Q=-1000L/h,p=;自动冲洗过滤器:DPG50-I;管道混合器:GJH100;皮带输送机:PDS500,B=500mm,V=0.8m/s;LS螺旋输送机:WLS-260,输送量m3/h:30°;15°;30°,输送长度:≤10m,安装角度:≤20°;;⑵PAM加药装置的选型污泥浓缩池的容积为20m32,对以生化处理的废水,PAM的投加量取30-50ppm,在本设计中取40ppm,则每天须投加PAM为4040ppm=1.6L;根据其性能参数,选用JBY型加药装置公称容积为1m3的加药装置;。
污水处理各构筑物设计计算完整版
污水处理各构筑物设计计算完整版污水处理是指将污水中的有害物质经过一系列物理、化学和生物过程进行处理,以达到排放标准或循环利用的目的。
在污水处理过程中,各种构筑物的设计计算是至关重要的。
下面将对接触氧化池、滤池、沉淀池、UASB等构筑物的设计计算进行详细介绍。
1.接触氧化池:接触氧化池是污水处理过程中的一种重要设备,其主要作用是利用活性污泥和氧气的接触作用来进行有机物的生物降解。
在进行接触氧化池的设计计算时,首先需要确定污水处理量和处理要求,然后根据水负荷、气液比、氧气需求量等参数进行池体容积的计算。
2.滤池:滤池是污水处理过程中的一种常用设备,其主要作用是通过滤料层的过滤作用,去除污水中的悬浮颗粒物和部分有机物。
在进行滤池的设计计算时,需要确定处理量、处理目标和滤料层的厚度等参数。
通过选择合适的滤料和计算滤池的总面积,可以实现对污水的有效过滤和处理。
3.沉淀池:沉淀池是污水处理过程中的一种关键设备,其主要作用是通过重力沉淀将污水中的悬浮颗粒物和部分有机物沉降到池底。
在进行沉淀池的设计计算时,需要确定处理量、沉淀时间和沉淀效率等参数。
通过计算沉淀池的底面积和深度,可以实现对污水的有效沉淀和分离。
4.UASB(上升式厌氧污泥床反应器):UASB是污水处理中的一种先进工艺,其主要作用是通过厌氧微生物的生化反应,将有机物转化为沼气和沉淀物。
在进行UASB的设计计算时,需要确定处理量、进水COD浓度和污泥停留时间等参数。
通过计算UASB反应器的体积和流速,可以实现对污水的高效处理和资源回收。
在污水处理过程中,风量和加药量也是设计计算中重要的考虑因素。
风量的大小直接影响到氧气传递和气液的接触效果,而加药量的确定则与废水的特性和处理要求有关。
因此,在进行设计计算时,需要根据具体的工艺要求和参数进行合理的设计。
总之,污水处理各构筑物的设计计算是确保整个处理过程顺利进行的重要环节,只有通过科学合理的计算和设计,才能实现对污水的高效处理和资源回收。
污水处理构筑物设计计算
污水厂设计计算书第一章 污水处理构筑物设计计算一、泵前中格栅1.设计参数:设计流量Q=5×104m3/d=578.7L/s栅前流速v1=0.7m/s,过栅流速v2=0.9m/s栅条宽度s=0.01m,格栅间隙e=20mm栅前部分长度0.5m,格栅倾角α=60°单位栅渣量ω1=0.05m3栅渣/103m3污水2.设计计算(1)确定格栅前水深,根据最优水力断面公式计算得:栅前槽宽,则栅前水深(2)栅条间隙数(取n=48)(3)栅槽有效宽度B=s(n-1)+en=0.01(48-1)+0.02×48=1.43m (4)进水渠道渐宽部分长度(其中α1为进水渠展开角)(5)栅槽与出水渠道连接处的渐窄部分长度(6)过栅水头损失(h1)因栅条边为矩形截面,取k=3,则其中ε=β(s/e)4/3h0:计算水头损失k:系数,格栅受污物堵塞后,水头损失增加倍数,取k=3ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42(7)栅后槽总高度(H)取栅前渠道超高h2=0.3m,则栅前槽总高度H1=h+h2=0.64+0.3=0.94m栅后槽总高度H=h+h1+h2=0.64+0.103+0.3=1.04(8)格栅总长度L=L1+L2+0.5+1.0+0.77/tanα=0.206+0.103+0.5+1.0+0.77/tan60°=2.35m(9)每日栅渣量ω=Q平均日ω1==1.79m3/d>0.2m3/d所以宜采用机械格栅清渣(10)计算草图如下:▲二、污水提升泵房1.设计参数设计流量:Q=578.7L/s,泵房工程结构按远期流量设计2.泵房设计计算采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。
污水经提升后入旋流沉砂池,然后自流通过厌氧池、氧化沟、二沉池、砂滤池及接触池,最后由出水管道排入神仙沟。
各构筑物的水面标高和池底埋深见高程计算。
污水处理厂各构筑物的设计计算
污水处理厂各构筑物的设计计算一、入口工程入口工程主要包括进水渠、雨水泵站和进水泵。
1.进水渠:进水渠的设计计算包括流量计算、渠宽计算和渠深计算。
流量计算根据城市规划的污水排放量和人口数来确定,可以考虑平均日流量和最大日流量。
渠宽和渠深可以根据流量和水的流态来确定,常用的设计方法有曼宁公式和底坡公式。
2.雨水泵站:雨水泵站的设计计算包括泵的选型、管道的设计和扬程的计算。
泵的选型需要根据进水渠的流量和扬程来确定,应选择合适的泵来确保良好的运行效果。
管道的设计需要根据流量和水的流态来确定,一般采用常规排水设计的方法来计算管道的尺寸。
扬程可以通过海绵城市设计的方法来计算。
3.进水泵:进水泵的设计计算包括流量计算、泵的选型和管道的设计。
流量计算可以根据进水渠的流量来确定,一般采用曼宁公式或底坡公式来计算。
泵的选型需要根据流量和扬程来确定,应选择合适的泵来确保厂区的进水正常运行。
管道的设计可以根据流量和水的流态来确定,一般采用常规排水设计的方法来计算管道的尺寸。
二、初沉池初沉池是用来沉降和去除污水中的固体颗粒、悬浮物和浮物的设施。
初沉池的设计计算包括沉降速度的计算、池的尺寸计算和搅拌器的选型。
沉降速度可以通过实验或实测数据来确定,可以参考已有的设计规范进行计算。
池的尺寸要根据进水量和沉降速度来确定,一般采用水力停留时间和提取水平法来计算。
搅拌器的选型需要根据池的尺寸和搅拌需求来确定,应选择合适的搅拌器来确保污水中的固体颗粒和悬浮物均匀分布。
三、曝气池曝气池是用来提供氧气和增加曝气面积,促进生物降解污水中的有机物的设施。
曝气池的设计计算包括曝气池的尺寸计算、曝气量的计算和曝气器的选型。
曝气池的尺寸要根据进水量和曝气时间来确定,一般采用水力停留时间和曝气强度来计算。
曝气量可以根据进水量和污水中的有机负荷来确定,一般采用生物需氧量和化学需氧量来计算。
曝气器的选型需要根据曝气量和曝气剂的形式来确定,常见的曝气器有喷射曝气器、曝气罩和机械曝气器。
污水处理构筑物设计计算-
污水厂设计计算书第一章 污水处理构筑物设计计算一、泵前中格栅 1.设计参数:设计流量Q=5.0×104m 3/d443max 5.010 1.2 6.010/694/Z Q Q K m d L s =⨯=⨯⨯=⨯=栅前流速v 1=0.7m/s ,过栅流速v 2=0.9m/s 栅条宽度s=0.01m ,格栅间隙e=20mm 栅前部分长度0.5m ,格栅倾角α=60° 单位栅渣量ω1=0.05m 3栅渣/103m 3污水 2.设计计算(1)确定格栅前水深,本社既考虑流量较大,故设计两套格栅。
令31/20.347/Q Q m s ==。
根据最优水力断面公式21211vB Q =计算得:栅前槽宽10.93B m ==,则栅前水深10.930.4722B h m ===(2)栅条间隙数238.2n ===(取n=40)(3)栅槽有效宽度B=s (n-1)+en=0.01(40-1)+0.02×40=1.19m 选型:GH —1500,实际B=1.50m,电机功率1.1——1.5kw. (4)进水渠道渐宽部分长度111 1.500.940.772tan 2tan 20B B L m α--===︒(其中α1为进水渠展开角)(5)栅槽与出水渠道连接处的渐窄部分长度120.382L L m == (6)过栅水头损失(h 1)因栅条边为矩形截面,取k =3,则m g v k kh h 103.060sin 81.929.0)02.001.0(42.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/e )4/3 h 0:计算水头损失k :系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42 (7)栅后槽总高度(H )取栅前渠道超高h 2=0.3m ,则栅前槽总高度H 1=h+h 2=0.47+0.3=0.77m 栅后槽总高度H=h+h 1+h 2=0.47+0.103+0.3=0.87 (8)格栅总长度L=L 1+L 2+0.5+1.0+0.77/tan α=0.77+0.38+0.5+1.0+0.77/tan60° =3.09m(9)每日栅渣量31186400 1.25/100zQ w w m d k ==>0.2m 3/d所以宜采用机械格栅清渣 (10)计算草图如下:进水图1 中格栅计算草图二、污水提升泵房 1.设计参数设计流量:Q=694L/s ,泵房工程结构按远期流量设计 2.泵房设计计算采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。
污水处理厂毕业设计(含计算数据)..
一、污水处理工艺选择与可行性分析1、污水厂的设计规模近期污水量为2×104 m3/d,远期污水量为4×104 m3/d,其中生活污水和工业废水所占比例约为6:4。
污水厂主要处理构筑物拟分为二组,这样既可满足近期处理水量要求,又留有空地以二期扩建之用。
2、进出水水质由于进水不但含有BOD5,还含有大量的N,P所以不仅要求去除BOD5还应去除水中的N,P使其达到排放标准。
3、处理程度的计算1。
BOD5的去除率2 。
COD的去除率3。
SS的去除率4。
总氮的去除率5。
总磷的去除率4、本工程采用生物脱氮除磷工艺的可行性BOD5:N:P的比值是影响生物脱氮除磷的重要因素,氮和磷的去除率随着BOD5/N和BOD5/P比值的增加而增加。
理论上,BOD5/N>2。
86才能有效地进行脱氮,实际运行资料表明,BOD5/N>3时才能使反硝化正常进行。
在BOD5/N=4~5时,氮的去除率大于50%,磷的去除率也可达60%左右。
本工程BOD5/N=3,可以满足生物脱氮的要求。
对于生物除磷工艺,要求BOD5/P=33~100。
本工程BOD5/P等于36,能满足素之一,在碳化与硝化合并处理工艺中,硝化菌所占的比例很小,约5%。
一般负荷小于0。
15kg BOD5/kgMLSS。
d时,处理系统的硝化反认为处理系统的BOD5应才能正常进行。
根据所给定的污水水量及水质,参考目前国内外城市污水处理厂的设计及运转经验,对于生活污水占比例较大的城市污水而言,以下几种方法最具代表性:A2/O法、AB法、生物滤池、循环式活性污泥法(改良SBR)、氧化沟法.5、工艺比较及确定又要适当去除N,P故可采用SBR 城市污水处理厂的方案,既要考虑去除BOD5或氧化沟法,或A2/O法。
A A2/O法A2/O工艺即缺氧/厌氧/好氧活性污泥法, A2/O法处理城市污水的特点:运行费用较传统活性污泥法低,曝气池池容小,需气量少,具有脱氮除磷功能,BOD5和SS去除率高,出水水质较好,工作稳定可靠,有较成熟的设计、施工及运行管理经验,产泥量较传统活性污泥法少;污泥脱水性能较好;无需设初沉池;对水质和水温度化有一定适应能力;另外,从节省能耗的角度看,A2/O可以充分利,回收了部分硝化反应的需氧量,反硝化反应所用硝化液中的硝态氧来氧化BOD5产生的碱度可以部分补偿硝化反应消耗的碱度,因此对含氮浓度不高的城市污水可以不另外加碱来调节PH。
污水处理厂各构筑物的设计计算
第二章设计方案城市污水处理厂的设计规模与进入处理厂的污水水质和水量有关,污水的水质和水量可以通过设计任务书的原始资料计算。
2.1厂址选择在污水处理厂设计中,选定厂址是一个重要的环节,处理厂的位置对周围环境卫生、基建投资及运行管理等都有很大的影响。
因此,在厂址的选择上应进行深入、详尽的技术比较。
厂址选择的一般原则为:1、在城镇水体的下游;2、便于处理后出水回用和安全排放;3、便于污泥集中处理和处置;4、在城镇夏季主导风向的下风向;5、有良好的工程地质条件;6、少拆迁,少占地,根据环境评价要求,有一定的卫生防护距离;7、有扩建的可能;8、厂区地形不应受洪涝灾害影响,防洪标准不应低于城镇防洪标准,有良好的排水条件;9、有方便的交通、运输和水电条件。
由于该地夏季盛行东南风,冬季盛行西北风,所以,本设计的污水处理厂应建在城区的东北或者西南方向较好,最终可根据主干管的来向和排水的方便程度来确定厂区的位置。
根据设计原则和设计要求,本工程拟比选出一个投资省、运行费用低、技术成熟、处理效果稳定可靠、运行管理方便、要求操作运转灵活、技术设备先进、成套性好、便于分期实施的处理工艺。
从进、出水水质要求来看,本工程对出水水质要求较高,要求达到一级A 标准,不但COD、BOD指标要求高,还要求脱氮除磷,所以需从出水水质要求来选择处理工艺。
1、A2/O工艺A2/O脱氮除磷工艺(即厌氧-缺氧-好氧活性污泥法,亦称A-A-O工艺),它是在A p/O除磷工艺上增设了一个缺氧池,并将好氧池出流的部分混合液回流至缺氧池,具有同步脱氮除磷功能。
其基本工艺流程如图1所示:进水内回流图1 A2/O工艺基本流程图污水经预处理和一级处理后首先进入厌氧池,在厌氧池中的反应过程与A p/O生物除磷工艺中的厌氧池反应过程相同;在缺氧池中的反应过程与A n/O 生物脱氮工艺中的缺氧过程相同;在好氧池中的反应过程兼有A p/O生物除磷工艺和A n/O生物脱氮工艺中好氧池中的反应和作用。
污水处理厂各构筑物的设计计算-污水处理构筑物的计算
《水污染控制工程》课程设计题目:孤岛新镇污水处理厂设计学院:专业班级:姓名:序号:指导教师:第一章设计任务及资料1.1设计任务孤岛新镇6.46万吨/日污水处理厂工艺设计。
1.2设计目的及意义1.2.1设计目的孤岛新镇位于山东省黄河入海口的原黄泛区内。
东径118050'~118053',北纬37064'~37057',向北15公里为渤海湾。
向东10公里临莱州,向南20公里为现黄河入海口,距东营市(胜利油田指挥部)约60公里,该镇地处黄河下游三角洲河道改流摆动地区内。
该镇附近区域为胜利油田所属的孤岛油田和两桩油田。
地下蕴藏着丰富的石油资源。
为了开发这些油田并考虑黄河下游三角洲的长远发展。
胜利油田指挥部决定兴建孤岛新镇,使之成为孤岛油田和两桩油田的生活居住中心和生产指挥与科研中心,成为一个新型的社会主义现代化的综合石油城。
根据该镇总体规划,该镇具有完备的社会基础和工程基础设施。
有完备的城市交通、给水排水、供电、供暖、电信等设施,并考虑今后的发展与扩建的需要。
因此,为保护环境,防治水污染问题,建设城市污水治理工程势在必行。
1.2.2设计意义设计是实现高等工科院校培养目标所不可缺少的教学环节,是教学计划中的一个有机组成部分,是培养学生综合运用所学的基础理论、基础知识以及分析解决实际问题能力的重要一环。
它与其他教学环节紧密配合,相辅相成,在某种程度上是前面各个环节的继续、深化和发展。
我国城市污水处理相对于国外发达国家、起步较晚。
近200年来,城市污水处理已从原始的自然处理、简单的一级处理发展到利用各种先进技术、深度处理污水,并回用。
处理工艺也从传统活性污泥法、氧化沟工艺发展到A/O、A2/O、AB、SBR、 CASS等多种工艺,以达到不同的出水要求。
虽然如此,我国的污水处理还是落后于许多国家。
在我们大力引进国外先进技术、设备和经验的同时,必须结合我国发展,尤其是当地实际情况,探索适合我国实际的城市污水处理系统。
污水处理厂构筑物计算书
第1章构筑物计算工艺流程图1.1设计流量总污水量为25000m3/d,选择变化系数为K Z=1.37,设计流量:Q max=K Z Q=1.37*0.405=0.555 (3-1)1.1格栅1.1.1设计说明格栅设在处理构筑物之前,用于阻截水中教导的悬浮物和漂浮物,回收部分纸浆纤维,保证了后续处理设施的正常运行。
格栅的截屋主要对水泵起保护作用,还可以去除部分悬浮物。
拟采用粗格栅,为了提高拦截悬浮物和漂浮物的效率,设有格栅(共两个,一备一用)、倾斜筛网,粗格栅在前,倾斜筛网在后。
1.1.2设计计算1、参数设定栅条断面取迎水面为圆形,栅条宽s=0.01m,栅条倾角α=600,栅条间隙b=25mm,过栅流速v=0.8m/s,栅前水深h=0.5m,设计流量K Z=1.36。
453.555.08.0025.060sin 555.0sin 0max ≈=⨯⨯⨯==bvh Q n α 1.84m 20tan 25.068.120111=-=-=tga B B l 490.081.928.060sin 025.001.031.84260sin 203420342=⨯⨯⨯⎪⎭⎫ ⎝⎛⨯⨯=⋅⋅⎪⎭⎫ ⎝⎛=g v b s k h β2、计算(1)粗格栅间隙数n(3-2)式中:Q max ——最大设计流量,m 3/s ; α——格栅倾角,度; b ——栅条间隙,m ;h ——栅前水深,m ;v ——污水的过栅流速,m/s(2)栅槽宽度B采用φ10的圆钢为栅条s =0.01m6m 8.145025.05101.0)1(=⨯+⨯=+-=bn n s B (3-3)式中:s ——栅条宽度,m 。
(3)通过格栅的水头谁是h 2设进水渠道款B 1=0.5m(3-4)格栅采用原型断面,则β=1.79,阻力增大系数去=3.(3-5)式中:g ——重力加速度,m/s 2;k ——格栅受污染堵塞使水头损失增大的倍数,一般去3;β——阻力系数,其数值与格栅条的断面几何形状有关,去=取圆形栅条。
《污水处理厂构筑物尺寸计算及高程布置1600字》
污水处理厂构筑物尺寸计算及高程布置目录污水处理厂构筑物尺寸计算及高程布置 (1)4.1平面布置 (1)4.1.1平面布置原则 (1)4.1.2构筑物平面尺寸 (1)4.2管网布置 (2)4.2.1管网布置原则 (2)4.2.2管道统计 (2)4.3高程布置 (3)4.3.1构筑物水力损失 (3)4.3.2管道水力损失 (3)4.3.3 高程计算 (4)4.1平面布置4.1.1平面布置原则(1)处理污水构筑物与生活、管理设施应分别集中布置,彼此保持适当距离,功能分区明确,布置得当。
办公区和生活区应分开布置,防止污水处理排放气体对人产生危害。
(2)污水管道采取适当坡度,依靠重力流向,按处理流程依次布置,避免管路交叉和迂回,保证水流通畅。
(3)处理构筑物之间的距离应满足管线敷设施工要求,对于特殊构筑物(如消化池)和其他构筑物之间的距离应符合国家《建筑设计防火规范》(GB50016-2006)及国家和地方相关防火规范规定。
(4)在设计处理厂过程时留出空地以便于未来改建或者加建,使污水处理厂长久运行。
(5)保证污水处理厂有足够的绿化面积,保障卫生条件,一般绿化面积不小于污水处理厂总面积的30%。
4.1.2构筑物平面尺寸根据以上设计书的计算,可总结出该污水处理厂主要构筑物的平面尺寸,便于污水处理厂平面图的绘制,具体数值参考下表4-1。
表4-1 主要构筑物平面尺寸构筑物名称尺寸数量粗格栅间L×B×H=10m×8m×4m 1间提升泵房L×B×H=15m×10m×4m 1间细格栅间L×B×H=10m×6m×4m 1间曝气沉砂池L×B×H=3.2m×3.2m×3.4m 2座A2/O生化池L×B×H=43m×10m×4.5m 1座辐流式沉淀池D×H=36m×7.7m 2座反硝化深床滤池L×B×H=6m×10m×4.85m 6组污泥浓缩池D×H=14m×4.9m 2座污泥脱水间L×B×H=10m×3m×4m 1间消毒池L×B×H=21m×20m×3m 2座加药间L×B×H=20m×10m×5m 1间传达室L×B×H=4m×4m×3m 1间办公室L×B×H=30m×15m×6m 1间宿舍L×B×H=50m×15m×6m 1间食堂浴池及开水房L×B×H=20m×15m×4m 1间锅炉房L×B×H=10m×5m×4m 1间仓库L×B×H=30m×15m×4m 1间4.2管网布置4.2.1管网布置原则(1)满足功能要求,实现经济实用。
污水处理站设计计算书
污水处理站设计计算书1 构筑物的计算平均流量Q=300m3/d=3.4 L/s=0.0034 m3/s 总变化系数Kz=2.3 则最大设计流量Q max=Q⨯Kz=690 m3/d =0.008m3/s1.1格栅1.1.1 主要技术标准⑴设计依据《污水综合排放标准》(GB8978-1996);《医院污水处理设计规范》(CECS07:88);《室外排水设计规范》(GBJ14-87);《医院污水排放标准》(GBJ48-1983)。
⑵设计参数栅条间隙:e=5mm=0.005m;栅条宽度s =5mm=0.005m;栅前水深为h=0.28m;过栅流速取0.8m/s;格栅倾角α=60°;小时变化系数K=2 。
1.1.2500B1111000B1H 2B 1设计计算⑴ 栅条间隙数 n=e h v⨯⨯0.0050.280.8⨯⨯取n=8式中 n ——栅条间隙数,个;Qmax ——最大设计流量,m3/s ; α——格栅倾角,为60°; v ——过栅流速,m/s ;e ——栅条间隙,m ; h ——栅前水深,m ;⑵ 栅槽宽度bnn S B +=)1-(=0.005(8-1)+0.005⨯8=0.04m⑶ 进水渠渐宽部分的长度设进水渠宽B 1=0.03m ,其渐宽部分展开角α1=200,则进水渠内流速为0.77m /s,在0.4~0.9 m /s 范围内,合乎要求。
所以,进水渠渐宽部分的长度:111a tan 2B B l -==0.040.032tan 20-⨯=0.014m式中 B 1——进水渠道宽度,取为0.42m ;1α——进水渠展开角,一般用20°。
栅栏与出水渠道连接处的渠渐窄部分的长度:2l =12l =0.007m⑷ 通过格栅的水头损失阻力系数ζ值与栅条断面形状有关,本设计采用圆形断面,β=1.79ζ=β43s b ⎛⎫ ⎪⎝⎭=430.0051.790.005⎛⎫ ⎪⎝⎭=1.79计算水头损失αζsin 220gvh ==20.81.790.86629.8⨯⨯=0.05mh 1=h o k=0.15m式中 g ——重力加速度,9.8m /s 2;k ——系数,格栅受污物堵塞时水头损失增大倍数,一般采用3。
氧化沟工艺污水厂设计计算书
氧化沟工艺污水厂设计计算书设计计算书第一章构筑物设计计算第一节污水处理系统 1 格栅与提升泵 1.1 格栅设计计算 1.1.1 主要设计参数日均污水量:Q d 为15万m 3/d总变化系数K Z :1.3(平均日流量大于1000L/s 的K Z 为1.3)设计流量Q max =K z Q d =1.3*15万m 3/d =2.26m 3/s 栅条宽度S=10mm=0.01m (矩形断面)栅条间隙宽度b=20mm=0.02m 过栅流速 v=0.8m/s 栅前水深 h=1.2m格栅倾角α=60。
(α∈(45。
~75。
) 超高h=0.3m 1.1.2 设计计算由水力最优断面公式Q=(B1^2*v )/2得到B1=2.38,h=B1/2=1.19实际中取1.2计算(1)栅条的间隙数(分两组):49 实际数目为n-1=48个考虑格栅倾角的经验系数(2)栅槽宽度栅槽宽度B 一般比格栅宽0.2~0.3m 也可以不加,此取加0.2 每组栅槽宽B’=()10.2S n bn -++=0.01*(49-1)+49*0.05+0.2=1.66m 设每组栅槽间隔0.10m ,总长度栅槽宽度:B=2B’+0.10=3.42m 进水渠道渐宽部分的长度L1设进水渠宽B 1=2.1m ,其渐宽部分展开角度1α=20o (进水渠道内的流速为2.26/(2.38*1.2)=0.791m/s ,在0.4~0.9范围内,符合要求)L1=(B1-B2)/2tan 1α =1.43m栅槽与出水渠道连接处的渐窄部分长度L2=L1/2=0.715mh 损=0.0815m (3)栅后槽总高度H因粗格栅间隙较大,水利损失很少,可忽略不计设栅前渠道超高h 2=0.3m H=h 损+h 1+h 2=1.2+0.3=1.58(m) (4)格栅总长度(L )L=L1+L2+0.5+1.0+1.30/tanα=1.43+0.715+0.5+1.0+(1.2+0.30)/tan60° =4.51m(5)每日栅渣量(W )污水流量总变化系数为1.3,则每日栅渣量W=(Q max *W1*86400)/(K z *1000)=3m 3/d >0.2m 3/d 式中:Kz --总变化系数,取1.3; W ——每日栅渣量, m 3/d ;1 W ——栅渣量333m /10m 污水一般为每3 1000m 污水产3.31m 3; W>0.2m 3/d 所以采用机械清渣。
高程计算
3.5.2.2 污水处理构筑物高程布置设计计算
本设计污水处理厂的污水排入磁窑河,磁窑河洪水位较低,污水处理厂出水能够在洪水位时自流排出。
因此,在污水高程布置上主要考虑土方平衡,设计中以二沉池水面标高为基准,由此向两边推算其他构筑物高程。
由于河流最高水位较低,污水处理厂出水能够在洪水位时自流排出。
因此,在污水高程布置上主要考虑土方平衡,厂区地势平坦,地面标高为344.75m。
计算中以消毒池水面标高为基准,取为344.75m ,由此向两边推算其他构筑物高
3.5.2.3 污泥处理构筑物高程布置设计计算 (1)污泥处理构筑物高程布置设计计算 ①污泥管道水头损失 管道沿程水头损失:
86
.117.149.2⎪⎪⎭
⎫
⎝⎛⎪⎭⎫ ⎝⎛=H
f C v
D L h
管道局部损失:
g v h j 22
ξ
=
式中: CH ——污泥浓度系数; ξ——局部阻力系数; D ——污泥管管径(m ); V ——管内流速(m/s ); L ——管道长度(m )。
查计算表可知:污泥含水率97%时,污泥浓度系数 CH=71;污泥含水率95%时, 污泥浓度系数 CH=53。
污水处理构筑物设计计算
污水处理构筑物设计计算污水处理构筑物是用于处理和处理废水的设施,包括污水处理厂,废水处理设备和相关的流程和系统。
在设计污水处理构筑物时,需要进行一系列的计算和考虑,以确保其能够有效地处理和处理污水。
下面将从污水处理进程的计算,处理设备的设计和污水处理构筑物的尺寸计算等方面进行详细介绍。
1.污水处理进程的计算污水处理进程的计算是设计污水处理构筑物的关键步骤之一、常见的污水处理进程包括初沉池、曝气池、沉淀池和滤池。
根据处理对象和水质情况,可以选择适当的进程。
针对每个处理过程,需要计算并确定相关参数,如进水流量、水质要求、处理时间等。
这些参数将用于后续处理设备和构筑物的设计。
2.处理设备的设计处理设备的设计是污水处理构筑物设计中的重要部分。
根据所选进程,需要设计并选择合适的处理设备,如曝气装置、沉降装置和滤料等。
设计处理设备时需要考虑以下参数:处理能力、水质要求、设备尺寸和材料选择等。
经过计算和考虑后,可以确定合适的处理设备及其相关参数。
3.污水处理构筑物的尺寸计算污水处理构筑物的尺寸计算是确保构筑物能够满足处理要求的关键步骤。
根据处理过程和处理设备的设计结果,计算构筑物的长度、宽度、深度等参数。
在计算尺寸时需要考虑的因素包括:进水流量、水质要求、处理时间、污水稀释等。
通过这些计算,可以确定构筑物的尺寸和形状,以满足处理要求。
4.结构设计和材料选择在进行污水处理构筑物设计时,还需要进行结构设计和材料选择。
结构设计包括计算构筑物的承载能力和稳定性,确保其能够承受污水处理过程中的各种荷载。
材料选择需要考虑其抗腐蚀性、耐久性和可维护性等因素,以确保构筑物的长期使用。
常用的材料包括混凝土、钢筋和塑料等。
总结:污水处理构筑物设计计算是设计污水处理设施的重要步骤,需要进行一系列的计算和考虑。
从污水处理进程的计算、处理设备的设计到污水处理构筑物的尺寸计算等方面,均需要综合考虑水质要求、处理能力和结构稳定性等因素,以确保构筑物的有效处理废水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水厂设计计算书第一章污水处理构筑物设计计算一、泵前中格栅1.设计参数:设计流量Q=2.6×104m3/d=301L/s栅前流速v1=0.7m/s,过栅流速v2=0.9m/s栅条宽度s=0.01m,格栅间隙e=20mm栅前部分长度0.5m,格栅倾角α=60°单位栅渣量ω1=0.05m3栅渣/103m3污水2.设计计算(1)确定格栅前水深,根据最优水力断面公式21211vBQ=计算得:栅前槽宽mvQB94.07.0301.022111=⨯=,则栅前水深mBh47.0294.021===(2)栅条间隙数6.349.047.002.060sin301.0sin21=⨯⨯︒==ehvQnα(取n=36) (3)栅槽有效宽度B=s(n-1)+en=0.01(36-1)+0.02×36=1.07m (4)进水渠道渐宽部分长度mBBL23.020tan294.007.1tan2111=︒-=-=α(其中α1为进水渠展开角)(5)栅槽与出水渠道连接处的渐窄部分长度mLL12.0212==(6)过栅水头损失(h1)因栅条边为矩形截面,取k =3,则m g v k kh h 103.060sin 81.929.0)02.001.0(42.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/e )4/3 h 0:计算水头损失k :系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42 (7)栅后槽总高度(H )取栅前渠道超高h 2=0.3m ,则栅前槽总高度H 1=h+h 2=0.47+0.3=0.77m栅后槽总高度H=h+h 1+h 2=0.47+0.103+0.3=0.87 (8)格栅总长度L=L 1+L 2+0.5+1.0+0.77/tan α=0.23+0.12+0.5+1.0+0.77/tan60° =2.29m(9)每日栅渣量ω=Q 平均日ω1=05.0105.1106.234⨯⨯⨯ =0.87m 3/d>0.2m 3/d(10)计算草图如下:进水αα1α图1 中格栅计算草图二、污水提升泵房1.设计参数设计流量:Q=301L/s,泵房工程结构按远期流量设计2.泵房设计计算采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。
污水经提升后入平流沉砂池,然后自流通过厌氧池、氧化沟、二沉池及接触池,最后由出水管道排入神仙沟。
各构筑物的水面标高和池底埋深见第三章的高程计算。
污水提升前水位-5.23m(既泵站吸水池最底水位),提升后水位3.65m(即细格栅前水面标高)。
所以,提升净扬程Z=3.65-(-5.23)=8.88m水泵水头损失取2m从而需水泵扬程H=Z+h=10.88m再根据设计流量301L/s=1084m3/h,采用2台MF系列污水泵,单台提升流量542m3/s。
采用ME系列污水泵(8MF-13B)3台,二用一备。
该泵提升流量540~560m3/h,扬程11.9m,转速970r/min,功率30kW。
占地面积为π52=78.54m2,即为圆形泵房D=10m,高12m,泵房为半地下式,地下埋深7m,水泵为自灌式。
计算草图如下:±0.00中格栅进水总管吸水池最底水位图2 污水提升泵房计算草图三、泵后细格栅1.设计参数:设计流量Q=2.6×104m3/d=301L/s栅前流速v1=0.7m/s,过栅流速v2=0.9m/s栅条宽度s=0.01m,格栅间隙e=10mm栅前部分长度0.5m,格栅倾角α=60°单位栅渣量ω1=0.10m3栅渣/103m3污水2.设计计算(1)确定格栅前水深,根据最优水力断面公式21211vB Q =计算得栅前槽宽m v Q B 94.07.0301.022111=⨯=,则栅前水深m B h 47.0294.0211=== (2)栅条间隙数2.689.047.001.060sin 301.0sin 21=⨯⨯︒==ehv Q n α (取n=70)设计两组格栅,每组格栅间隙数n=35条(3)栅槽有效宽度B 2=s (n-1)+en=0.01(35-1)+0.01×35=0.69m 所以总槽宽为0.69×2+0.2=1.58m (考虑中间隔墙厚0.2m ) (4)进水渠道渐宽部分长度m B B L 88.020tan 294.058.1tan 2111=︒-=-=α(其中α1为进水渠展开角)(5)栅槽与出水渠道连接处的渐窄部分长度m L L 44.0212== (6)过栅水头损失(h 1)因栅条边为矩形截面,取k=3,则m g v k kh h 26.060sin 81.929.0)01.001.0(42.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/e )4/3 h 0:计算水头损失k :系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42 (7)栅后槽总高度(H )取栅前渠道超高h 2=0.3m ,则栅前槽总高度H 1=h+h 2=0.47+0.3=0.77m栅后槽总高度H=h+h 1+h 2=0.47+0.26+0.3=1.03 (8)格栅总长度L=L 1+L 2+0.5+1.0+0.77/tan α=0.88+0.44+0.5+1.0+0.77/tan60°=3.26m(9)每日栅渣量ω=Q 平均日ω1=1.0105.1106.234⨯⨯⨯ =1.73m 3/d>0.2m 3/d所以宜采用机械格栅清渣 (10)计算草图如下:α图3 细格栅计算草图α进水四、沉砂池采用平流式沉砂池 1. 设计参数设计流量:Q=301L/s (按2010年算,设计1组,分为2格) 设计流速:v=0.25m/s 水力停留时间:t=30s2. 设计计算 (1)沉砂池长度:L=vt=0.25×30=7.5m(2)水流断面积:A=Q/v=0.301/0.25=1.204m 2(3)池总宽度:设计n=2格,每格宽取b=1.2m>0.6m ,池总宽B=2b=2.4m(4)有效水深:h 2=A/B=1.204/2.4=0.5m (介于0.25~1m 之间)(5)贮泥区所需容积:设计T=2d ,即考虑排泥间隔天数为2天,则每个沉砂斗容积354511126.0105.1232103.1102m K TX Q V =⨯⨯⨯⨯⨯== (每格沉砂池设两个沉砂斗,两格共有四个沉砂斗) 其中X 1:城市污水沉砂量3m 3/105m 3,K :污水流量总变化系数1.5(6)沉砂斗各部分尺寸及容积:设计斗底宽a 1=0.5m ,斗壁与水平面的倾角为60°,斗高h d =0.5m , 则沉砂斗上口宽:m a h a d 1.15.060tan 5.0260tan 21=+︒⨯=+︒=沉砂斗容积:322211234.0)5.025.01.121.12(65.0)222(6m a aa a h V d =⨯+⨯⨯+⨯=++=(略大于V1=0.26m3,符合要求)(7)沉砂池高度:采用重力排砂,设计池底坡度为0.06,坡向沉砂斗长度为m a L L 65.221.125.7222=⨯-=-=则沉泥区高度为h 3=h d +0.06L 2 =0.5+0.06×2.65=0.659m池总高度H :设超高h 1=0.3m ,H=h 1+h 2+h 3=0.3+0.5+0.66=1.46m(8)进水渐宽部分长度:m B B L 43.120tan 94.024.220tan 211=︒⨯-=︒-=(9)出水渐窄部分长度:L 3=L 1=1.43m(10)校核最小流量时的流速:最小流量即平均日流量Q 平均日=Q/K=301/1.5=200.7L/s则v min =Q 平均日/A=0.2007/1.204=0.17>0.15m/s ,符合要求(11)计算草图如下:进水图4 平流式沉砂池计算草图出水五、厌氧池 1.设计参数设计流量:2010年最大日平均时流量为Q ′=Q/K h =301/1.3=231.5L/s ,每座设计流量为Q 1′=115.8L/s ,分2座水力停留时间:T=2.5h 污泥浓度:X=3000mg/L 污泥回流液浓度:X r =10000mg/L考虑到厌氧池与氧化沟为一个处理单元,总的水力停留时间超过15h ,所以设计水量按最大日平均时考虑。
2.设计计算(1)厌氧池容积:V= Q 1′T=115.8×10-3×2.5×3600=1042m 3(2)厌氧池尺寸:水深取为h=4.0m 。
则厌氧池面积:A=V/h=1042/4=261m 2厌氧池直径:2.1814.326144=⨯==πAD m (取D=19m ) 考虑0.3m 的超高,故池总高为H=h+0.3=4+0.3=4.3m 。
(3)污泥回流量计算: 1)回流比计算R =X/(X r -X )=3/(10-3)=0.43 2)污泥回流量Q R =RQ 1′=0.43×116=49.79L/s=4302m 3/d六、氧化沟 1.设计参数拟用卡罗塞(Carrousel )氧化沟,去除BOD 5与COD 之外,还具备硝化和一定的脱氮除磷作用,使出水NH 3-N 低于排放标准。
氧化沟按2010年设计分2座,按最大日平均时流量设计,每座氧化沟设计流量为Q 1′=3.12106.24⨯⨯=10000m 3/d=115.8L/s 。
总污泥龄:20dMLSS=3600mg/L,MLVSS/MLSS=0.75 则MLSS=2700 曝气池:DO =2mg/LNOD=4.6mgO 2/mgNH 3-N 氧化,可利用氧2.6mgO 2/NO 3—N 还原 α=0.9 β=0.98其他参数:a=0.6kgVSS/kgBOD 5 b=0.07d -1脱氮速率:q dn =0.0312kgNO 3-N/kgMLVSS ·d K 1=0.23d -1 Ko 2=1.3mg/L 剩余碱度100mg/L(保持PH ≥7.2):所需碱度7.1mg 碱度/mgNH 3-N 氧化;产生碱度3.0mg 碱度/mgNO 3-N 还原硝化安全系数:2.5 脱硝温度修正系数:1.08 2.设计计算(1)碱度平衡计算:1)设计的出水5BOD 为20 mg/L ,则出水中溶解性5BOD =20-0.7×20×1.42×(1-e -0.23×5)=6.4 mg/L2)采用污泥龄20d ,则日产泥量为:8.550)2005.01(1000)4.6190(100006.01=⨯+⨯-⨯⨯=+m r bt aQS kg/d设其中有12.4%为氮,近似等于TKN 中用于合成部分为: 0.124⨯550.8=68.30 kg/d 即:TKN 中有83.610000100030.68=⨯mg/L 用于合成。