高三数学等差数列测试题 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .
47
B .
1629
C .
815
D .
45
2.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -
B .n
C .21n -
D .2n
3.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列
D .S 2,S 4+S 2,S 6+S 4必成等差数列
4.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231
n n a n b n =+,则2121S T 的值为( )
A .
13
15
B .
2335
C .
1117 D .
49
5.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8
B .13
C .26
D .162
6.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29
B .38
C .40
D .58
7.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11
B .12
C .23
D .24
8.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则12
15
a b =( ) A .
3
2
B .
7059
C .
7159
D .85
9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161
B .155
C .141
D .139
10.已知等差数列{}n a 的前n 项和n S 满足:21<
B .21m +
C .22m +
D .23m +
11.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之
和为( ) A .24
B .39
C .104
D .52
12.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237
n n S n T n =+,则6
3a b 的值为
( ) A .
5
11
B .38
C .1
D .2
13.已知数列{}n a 的前项和2
21n S n =+,n *∈N ,则5a =( )
A .20
B .17
C .18
D .19 14.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9
B .12
C .15
D .18
15.已知数列{}n a 的前n 项和()2
*
n S n n N =∈,则{}n
a 的通项公式为( )
A .2n a n =
B .21n a n =-
C .32n a n =-
D .1,12,2n n a n n =⎧=⎨≥⎩
16.在1与25之间插入五个数,使其组成等差数列,则这五个数为( ) A .3、8、13、18、23 B .4、8、12、16、20 C .5、9、13、17、21 D .6、10、14、18、22
17.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60
B .120
C .160
D .240
18.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项
B .133项
C .134项
D .135项
19.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫
+-= ⎪⎪⎝⎭⎝⎭
,数列{}n b 满足
1111n n n
b a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1
B .2
C .3
D .4
20.已知数列{}n a 的前n 项和为n S ,11
2
a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫
⎨
⎬⎩⎭
的前n 项和为n T ,则下列说法中错误的是( ) A .214
a =-
B .
648
211S S S =+