传热学第5.7章答案
传热学-第五版-中建工-课后答案详解
绪论思考题与习题(89P -)答案:1. 冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R Aλλ==2218.331012m --=⨯ 11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12. i R α 1R λ 3R λ 0R α 1f t −−→ q首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。
(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。
) 13.已知:360mm σ=、0.61()Wm K λ=∙ 118f t =℃ 2187()Wh m K =∙210f t =-℃ 22124()Wh m K =∙ 墙高2.8m ,宽3m求:q 、1w t 、2w t 、φ 解:1211t q h h σλ∆=++=18(10)45.92870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=14.已知:3H m =、0.2m σ=、2L m =、45λ=()W m K ∙ 1150w t =℃、2285w t =℃求:t R λ、R λ、q 、φ解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W ∙3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.已知:50i d mm =、 2.5l m =、85f t =℃、273()Wh m K =∙、25110Wq m =求:i w t 、φ()i w f q h t h t t =∆=-⇒iw f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq Wφππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()W c m K =∙、1'200w t =℃求: 1.2q 、'1.2q 、 1.2q ∆解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =∙、2285()Wh m K =∙、145t =℃2500t =℃、'2285()Wk h m K ==∙、1mm σ=、398λ=()Wm K ∙求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k ∙ 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h'100k kk-∆=⨯%8583.56 1.7283.56-==% 因为:1211h h,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学 第四版 (章熙民 任泽霈 著) 中国建筑工业出版社 课后答案
令m =
h 1 = 5.2432 1/ m 且 θ = t − t g ,则 θl = θ 0 , ch ( ml ) λδ
得到 l = 200mm , t g = 157.07 C , ∆t = 157.07 − 84 = 73.07 C ,
0
0
ξ=
157.07 − 84 × 100% = 46.52% 157.07
xc =
Rec ν 5 , Rec = 5 ×10 ,最后得到 u∞
⎛5 ⎞ Nu = ⎜ C Re 4 5 − 831⎟ Pr1 3 ,又因为已知 Nu = ( 0.0359 Re 4 5 − 831) Pr1 3 ,故 ⎝4 ⎠
传热学课后题答案及相关解题性
C = 0.02872 , Nu x ,t = 0.02872 Re x 4 5 ⋅ Pr1 3
23 题 分析 参考课本 P123 页(15)到(5-33)式。
⎛ d 2t ⎞ t = a − by + cy 2 ; y = 0, t = tw ; ⎜ 2 ⎟ = 0 ; y = δ t , t = t f 得到 ⎝ dy ⎠ w
t − tw θ y = = ,代入速度场和该温度场于能量积分方程 t f − tw θ f δ t
⎧−4ta + 2tb + 100 = 0 ⎪t − 4t + t + 500 = 0 ⎪a b c 第 7 题: ⎨ ⎪tb − 4tc + td + 500 = 0 ⎪ ⎩tc − 3td + 500 = 0
⎧ta ⎪t ⎪b ⎨ ⎪tc ⎪ ⎩td
= 133 = 216 = 240.3 = 245.8
⎞ ⎟ , τ = 328.07 s = 5.47 min ⎠
工程传热学 习题解答 华中科技大学 许国良版 (5-7章)
G1 J2 Eb2 (1/ 2 1)q1,2 Eb2 2.32104W / m2
————————————————————————————————————
第二种:一板温度为 527℃,一板为 27℃
(1)板 1 的本身辐射 E1 Eb1 0.8 5.67 10 8 18579 W / m2
则 A1 X 1,2 A2 X 2,1 ,因 X 1,2 1, 所以 X 2,1 A1 / A2 ,于是有:
(a)
X 2,1
2(W
W / 2) / sin
s in
(b)
X 2,1
W 2H W
(c)
X 2,1
2H
W W
/ sin
7-3 解:第一种:两板温度都为 527℃。
(1)板 1 的本身辐射 E1 Eb1 0.8 5.67 10 8 (527 273)4 18579 W / m2
(2)
定性温度 t f
t
' f
t
'' f
2
45 ℃,物性参数与(1)相同,因为是被冷却,所以 n 取
0.3
Nu 0.023Re0.8 Pr0.3 hd
h 20 10 3 0.023 (3.95 10 4 )0.8 3.930.3 h 5294 .5W / m2 K 0.642
h 不同是因为:一个是被加热,一个是被冷却,速度分布受温度分布影响, Nu 不同。
5-9 解:
(1)
定性温度 t f
t
' f
t
'' f
2
45 ℃
查 45℃水的物性参数有:
990.2kg / m3 ,Cp 4.174kJ /(kg K), 0.642W /(m K),v 0.608106 m2 / s Pr 3.93, 601.4 106 kg / m s
传热学第五版部分习题解答(5-7章)
《传热学》第五版部分习题解答第五章5-13 解:本题应指出是何种流体外掠平板,设是水外掠平板。
由60=m t ℃,查附录3 饱和水的热物理性质表得:610478.0-⨯=v m 2/s ,99.2=r p561082.210478.015.09.0Re ⨯=⨯⨯=⋅=-∞v x u x 41.11015.0)1082.2(0.5Re 0.5321521=⨯⨯⨯⨯==---x xδ mm98.099.241.13131=⨯==--rt p δδ mm5-18 解:55230802=+=+=wf m t t t ℃ 由附录2 ,查得空气的热物性参数为:210865.2-⨯=λW/(m.K) 61046.18-⨯=v m 2/s , 697.0=r p5561051033.41046.188.010Re ⨯<⨯=⨯⨯=⋅=-∞v l u c 所以,此流动换热为层流换热。
923.0101046.18105Re 65=⨯⨯⨯=⋅=-∞u v x c c m46.6)697.0()105(923.010865.2332.0332.03121523121Re =⨯⨯⨯⨯⨯==-r c x h p c c λW/(m 2.K)94.6)697.0()1033.4(8.010865.2332.0332.03121523121Re=⨯⨯⨯⨯⨯==-r lh p l λW/(m 2.K)88.1364.922=⨯==l h h W/(m 2.K)2.555)3080(18.088.13=-⨯⨯⨯=∆=Φt hA W5-23 解: (注意:本题可不做)参考课本p126页(15)到(5-33)式。
2t a by cy =-+;0,w y t t ==;220wd t dy ⎛⎫= ⎪⎝⎭;,t f y t t δ==得到w f w f tt t yt t θθδ-==-,代入速度场和该温度场于能量积分方程()0tf wd t u t t dy a dx y δ⎛⎫∂-= ⎪∂⎝⎭⎰,并且设t δςδ=,略去ς的高阶项,可以得到ς的表达式,进而得到t δ的表达式。
传热学课后习题解答(20190506)
(1)当x= 3cm 时,
Re x
100 0.03 106 19.5
1.538105
0.87u Rex 0.2218
x 5.0 5 0.03 1.538105 1/2 0.383 Re x Pr1 3 t 0.429
w
(2)冬季时
tm
10
2
20
15
查空气的物性参数为
0.0255W /m k Pr 0.704
14.6110-6 m2 / s
1 1/ 288
15 273
Gr
gtH 3 2
2.49 1010
处于湍流区
hL
0.11
H
(Gr Pr)1/3
30 273
Gr
gtH 3 2
6.771 109
处于过渡区
hL
0.0292
H
(Gr Pr)0.39
2.646
Aht 43.26W
Q 43.62 243600 3769kJ
大空间自然对流 6-45
(1)夏季时
tm
35 2
25
30
查空气的物性参数为
Nux
hxl
9400.631
Stx
Nux Re x Pr
0.039
j Stx Pr 2/3 0.03
C f 2 j 0.06
第六章
• 相似理论 6-1
解:空气温度为20℃确定,υ1=15.06×10-6m2/s,Pr1=0.703,
传热学第五章 课后习题答案
车厢外表面温度为 20℃.试估算该火车所需的制冷负荷。
解:火车所需制冷热负荷 Q1 应等于车厢从外界吸收的热量 Q2,即 Q1= Q2
车厢表面换热面积 A = 12 × (9 × 3 + 9 × 2.5) × 2 = 11882
试计算 25℃的空气、水及 14 号润滑油达到的 Rec 数时所需的平板长度,取
u∞=1m/s。
解:由 Re =
∞
得 x=
Re
∞
(1)25℃的空气,v1 = 15.53 × 10−6 2 /,故
x1 =
Re 1 5 × 105 × 15.53 × 10−6
=
= 7.765m
=
= 156.85m
∞
1
5-11 试通过对外掠平板的边界层动量方程式,沿 y 方向做积分(从 y=0 到 y≥δ)
(如附图所示),导出下列边界层的动 + = 量积分方程。提示:在
边界层外边界上 vδ≠0。
∫ (∞ − )ຫໍສະໝຸດ = ( )传热学第五章答案
5-2 对于油、空气及液态金属,分别有 ≫ , ≅ , ≪ ,试就外标等温
平板的层流流动,画出三种流体边界层中速度分布和温度分布的大致图象(要
能显示出δ与 δx 的相对大小)。
解:三种流体边界层中速度和温度分布图像如下图所示
5-8 取外掠平板边界层的流动由层流转变为湍流的临界雷诺数(Rec)为 × ,
= 0.9375Pa
边界层中空气的物性温度取t =
20+120
2
= 70℃
传热学课后答案(完整版)
绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ=⇒ 1t R R A λλ==2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线 12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
传热学第五版课后习题答案
传热学习题_建工版V0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =︒及w1t 285C =︒ ,试求热流密度计热流量。
解:根据付立叶定律热流密度为:负号表示传热方向与x 轴的方向相反。
通过整个导热面的热流量为:0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m².k),热流密度q=5110w/ m², 是确定管壁温度及热流量Ø。
解:热流量 又根据牛顿冷却公式管内壁温度为:1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。
解:(1)由附录7可知,在温度为20℃的情况下, λ铜=398 W/(m·K),λ碳钢=36W/(m·K),λ铝=237W/(m·K),λ黄铜=109W/(m·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢(2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为:膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m·K)=0.0424+0.000137×20=0.04514 W/(m·K);矿渣棉: λ=0.0674+0.000215t W/(m·K)=0.0674+0.000215×20=0.0717 W/(m·K);由附录7知聚乙烯泡沫塑料在常温下, λ=0.035~0. 038W/(m·K)。
由上可知金属是良好的导热材料,而其它三种是好的保温材料。
传热学课后标记题目答案1-9
第一章1-8 热水瓶胆剖面的示意图如附图所示。
瓶胆的两层玻璃之间抽成真空,内胆外壁及外胆内壁涂了反射率很低的银。
试分析热水瓶具有保温作用的原因。
如果不小心破坏了瓶胆上抽气口处的密闭性,这会影响保温效果吗?解:保温作用的原因:内胆外壁外胆内壁涂了反射率很低的银,则通过内外胆向外辐射的热量很少,抽真空是为了减少内外胆之间的气体介质,以减少其对流换热的作用。
如果密闭性破坏,空气进入两层夹缝中形成了内外胆之间的对流传热,从而保温瓶的保温效果降低。
1-10 一炉子的炉墙厚13cm ,总面积为202m ,平均导热系数为1.04w/m.k ,内外壁温分别是520℃及50℃。
试计算通过炉墙的热损失。
如果所燃用的煤的发热量是2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤1-16为了说明冬天空气的温度以及风速对人体冷暖感觉的影响,欧美国家的天气预报中普遍采用风冷温度的概念(wind-chill temperature )。
风冷温度是一个当量的环境温度,当人处于静止空气的风冷温度下时其散热量与人处于实际气温、实际风速下的散热量相同。
从散热计算的角度可以将人体简化为直径为25cm 、高175cm 、表面温度为30℃的圆柱体,试计算当表面传热系数为()K m W 2/15时人体在温度为20℃的静止空气中的散热量。
如果在一个有风的日子,表面传热系数增加到()K m W 2/50,人体的散热量又是多少?此时风冷温度是多少?1-19 在1-14题目中,如果把芯片及底板置于一个封闭的机壳内,机壳的平均温度为20℃,芯片的表面黑度为0.9,其余条件不变,试确定芯片的最大允许功率。
解:()00014.0])27320()27385[(1067.59.04484241⨯+-+⨯⨯-=Φ-=辐射T T A σε P 辐射对流+ΦΦ=1.657W1-21 有一台气体冷却器,气侧表面传热系数1h =95W/(m2.K),壁面厚δ=2.5mm ,)./(5.46K m W =λ水侧表面传热系数58002=h W/(m 2.K)。
传热学课后答案(完整版)
绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h =,21h σλ= 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
第四版《传热学》课后习题答案解析
第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;wt -固体表面温度;ft -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
传热学课后习题答案
第一章1-3 宇宙飞船的外遮光罩是凸出于飞船船体之外的一个光学窗口,其表面的温度状态直接影响到飞船的光学遥感器。
船体表面各部分的表明温度与遮光罩的表面温度不同。
试分析,飞船在太空中飞行时与遮光罩表面发生热交换的对象可能有哪些?换热方式是什么? 解:遮光罩与船体的导热遮光罩与宇宙空间的辐射换热1-4 热电偶常用来测量气流温度。
用热电偶来测量管道中高温气流的温度,管壁温度小于气流温度,分析热电偶节点的换热方式。
解:结点与气流间进行对流换热 与管壁辐射换热 与电偶臂导热1-6 一砖墙表面积为12m 2,厚度为260mm ,平均导热系数为 1.5 W/(m ·K)。
设面向室内的表面温度为25℃,而外表面温度为-5℃,确定此砖墙向外散失的热量。
1-9 在一次测量空气横向流过单根圆管对的对流换热试验中,得到下列数据:管壁平均温度69℃,空气温度20℃,管子外径14mm ,加热段长80mm ,输入加热段的功率为8.5W 。
如果全部热量通过对流换热传给空气,此时的对流换热表面积传热系数为?1-17 有一台气体冷却器,气侧表面传热系数95 W/(m 2·K),壁面厚2.5mm ,导热系数46.5 W/(m ·K),水侧表面传热系数5800 W/(m 2·K)。
设传热壁可看作平壁,计算各个环节单位面积的热阻及从气到水的总传热系数。
为了强化这一传热过程,应从哪个环节着手。
1-24 对于穿过平壁的传热过程,分析下列情形下温度曲线的变化趋向:(1)0→λδ;(2)∞→1h ;(3) ∞→2h第二章2-1 用平底锅烧水,与水相接触的锅底温度为111℃,热流密度为42400W/m 2。
使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。
假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,计算水垢与金属锅底接触面的温度。
水垢的导热系数取为 1 W/(m ·K)。
解: δλtq ∆= 2.238110342400111312=⨯⨯+=⋅+=-λδq t t ℃2-2 一冷藏室的墙由钢皮、矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm 、152mm 及9.5mm ,导热系数分别为45 W/(m ·K)、0.07 W/(m ·K)及0.1 W/(m ·K)。
传热学答案 第5-6章
第5章5-8(1)换热类型:外掠平板强迫对流换热 (2)25℃时的物性参数(运动粘度):空气:s m /1053.1526-⨯=ν; 水: s m /109055.026-⨯=ν 14号润滑油::s m /107.31326-⨯=ν 临界Re 数:νcc x u ∞=Re ,所以∞⋅=u x c c νRe 空气: m u x c c 765.711053.15105Re 65=⨯⨯⨯=⋅=-∞ν 水: m u x c c 453.01109055.0105Re 65=⨯⨯⨯=⋅=-∞ν 14号润滑油:: m u x c c 85.1561107.313105Re 65=⨯⨯⨯=⋅=-∞ν 第6章6-7ndD nd D dn D nd D d d D d D d D d b a abb a ab d b a abb a ab d e e e e +-=+-⋅=-=+-⋅==≈+=+=+=222222)]44[4)4(;)()(44)3(;222)2(;2)(24)1(ππππππ6-14(1) 换热类型:管内强迫对流换热(2) 定性温度:流体平均温度t f =(115+65)/2=90℃ 物性参数(空气):sm s m kg K kg kJ c m kg m kg K m W p /1010.22690.0Pr ),/(105.21),/(009.1/0045.1,/972.0),/(0313.0266313--⨯==⋅⨯=⋅===⋅=νηρρλ 特征长度:管子内径m d 076.0=(3) 特征流速: s m d V A m u /012.54/076.0972.0022.00045.14/221=⨯⨯===∙∙πρπρρ 流态: )(1017236101.22076.0012.5Re 46湍流 =⨯⨯==-νud(4) 各种修正系数:直管, Cr=1;温差f w t t t -=∆=180-90=90℃>50℃,应进行温差修正; 管长未知,故先假定C 1=1(5) 选用公式:(气体被加热) 5.04.08.0][Pr Re 023.0wf T T Nu =(6) Nu 数与表面传热系数h:K m W Nu ⋅=++⨯⨯=25.04.08.0/48.43]18027390273[69.017236023.0)/(91.17076.00313.048.432K m W dNuh ⋅=⨯==λ(7) 由热平衡关系求管长L :kWt t c V t t c m f f p f f p 115.1)65115(009.1022099.0)'"()'"(11=-⨯⨯=-=-=Φ∙∙ρ 热平衡关系:)()()'"(f w f w f f p t t dLh t t hA t t c m -=-=-=Φ∙π所以: m t t d h L f w 897.2)90180(076.091.171115)(=-⨯=-Φ=ππ(8)验算管长6012.38076.0897.2 ==d L (不满足假定),故应进行入口效应修正 (9) 假定L 重新计算假定L=2.80m, ;080.1)/(17.0=+=L d c lh h 08.1'=,m Lt t d h L f w 682.208.1)(''==-Φ=π (与假定值不符)再假定L=2.67m,083.1)/(17.0=+=L d c l ;h h 083.1"=m Lt t d h L f w 675.2083.1)(""==-Φ=π, 与假定值基本相符,故:L=2.67m ;K m W h h ⋅=⨯==2/40.1991.17083.1083.1"6-16(1) 换热类型:管槽内(环形空间)强迫对流换热 (2) 定性温度:流体平均温度t f =(30+50)/2=40℃ 物性参数(水):)/(105.282)/(103.653,/10659.0,31.4Pr ),/(174.4,/2.992),/(635.066632s m kg s m kg s m K kg kJ c m kg K m W w p ⋅⨯=⋅⨯=⨯==⋅==⋅=---ηηνρλ 特征长度:当量直径m d D de 02.004.006.0=-=-= (3) 特征流速: s m d D m A m u /55.0)04.006.0(2.992857.04)(42222≈-⨯⨯=-==∙∙πρπρ 流态:)(101669210659.002.055.0Re 46湍流 =⨯⨯==-νude(4) 各种修正系数:管长未知,故先取C 1=1;直管,Cr=1温差f w t t t -=∆=100-40=60℃>30℃,故应进行温差修正(5) 选用公式:(液体被加热) 11.04.08.0][Pr Re 023.0wf Nu ηη=(6) Nu 数与表面传热系数h 计算:04.108]5.2823.653[31.416692023.011.04.08.0=⨯⨯⨯=Nu )/(27.343002.0635.004.1082K m W dNuh ⋅=⨯==λ(7) 由热平衡关系求管长l :W t t c m f f p 4.71542)3050(4174857.0)'"(=-⨯⨯=-=Φ∙热平衡关系:)()()'"(f w f w f f p t t dlh t t hA t t c m -=-=-=Φ∙π所以:m t t dh t t c m l t w f f p 766.2)40100(27.343004.0)3050(10174.4857.0)()'"(3=-⨯⨯⨯-⨯⨯⨯=--=∙ππ (8)验算管长602.13802.0766.2 ==de l (满足假定),所以所求管长即为m l 766.2= (9) 管子出口局部热流密度22/5.171/5.171513)50100(27.3430)"("m kW m W t t h q f w ==-⨯=-=6-16 另解: (1) ~ (3) 同前, 另有75.1Pr =w(4) 选用Gnielinski 公式: t c l d f f Nu ])(1[)1(Pr 8/7.121Pr)1000)(Re 8/(3/23/2+-+-= (5) Nu 数与表面传热系数h 计算:009.1)75.131.4()Pr Pr (0274.0)64.116692lg 82.1()64.1Re lg 82.1(01.001.022====-=-=--w t c f 设m l 75.2=,则038.1)75.202.0(1)(13/23/2=+=+l de 03.109009.1038.1)131.4(8/0274.07.12131.4)100016692()8/0274.0(3/2=⨯⨯-⨯+⨯-⨯=Nu)/(70.346102.0635.003.1092K m W dNuh ⋅=⨯==λ(6) 由热平衡关系求管长L :W t t c m f f p 4.71542)3050(4174857.0)'"(=-⨯⨯=-=Φ∙热平衡关系:)()()'"(f w f w f f p t t dlh t t hA t t c m -=-=-=Φ∙π所以:m t t dh l t w 74.2)40100(70.346104.04.71542)(=-⨯⨯⨯=-Φ=ππ(7)验算管长将管长的计算值(2.74m)与假定值(2.75m)比较,两者基本相同,即满足假定。
《传热学》课后题答案
29. 9.47KW;
hA )
q V [1 − e 4. T (τ ) = v hA
5. 1.52 和 0.7; 7. 14.4s 第 8 题:
ρCV
]
+tf ;
6. 1362.5 热电偶的时间常数远小于水银温度计;
119.05℃;
= Bi
hδ 39 × 0.003 = = 0.0024 < 0.1 ,故可采用集总参数法 λ 48.5 2haτ = = s 5.47 min , τ 328.07 λδ
30.4KW/ m2
182.4KW
3.⑴梯度 2000,-2000。⑵热流- 2 × 10 , 2 × 10 。 4.⑴4.5 KW/ m2 7.
2
a ∂ 2 ∂t ∂t = 2 (r ) ∂τ r ∂r ∂r t ( r ,τ ) = t 0 −λ
∂t =0 ∂r
8.
∂T ∂ 2T εσ T 4U =a 2 + b ∂τ fρC p ∂x T = T0
d 2t t =a − by + cy 2 ;= y 0, = t tw ; 2 = 0 ; = y δ= t f 得到 t ,t dy w t − tw y θ ,代入速度场和该温度场于能量积分方程 = = t f − tw θ f δ t ∂t δ d δt u ( t f − t )dy = a ,并且设 ς = t ,略去 ς 的高阶项,可以得到 ς 的表达式,进而得到 δ t 的 ∫ 0 δ dx ∂y w
得到 l = 200mm , t g = 157.07 C , = ∆t 157.07 = − 84 73.07 C ,
0
= ξ
157.07 − 84 ×100% = 46.52% 157.07
传热学课后答案【第五版】
绪论思考题与习题(89P -)答案:1. 冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
6. 夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R Aλλ==2218.331012m --=⨯ 11.q t λσ=∆ c o n s t λ=→直线 c o n s t λ≠ 而为λλ=(t )时→曲线12. i R α 1R λ 3R λ 0R α 1f t −−→ q首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。
(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。
) 13.已知:360mm σ=、0.61()Wm K λ=∙ 118f t =℃ 2187()Wh m K =∙210f t =-℃ 22124()Wh m K =∙ 墙高2.8m ,宽3m求:q 、1w t 、2w t 、φ 解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=14.已知:3H m =、0.2m σ=、2L m =、45λ=()W m K ∙ 1150w t =℃、2285w t =℃求:t R λ、R λ、q 、φ解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W ∙ 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.已知:50i d mm =、 2.5l m =、85f t =℃、273()Wh m K =∙、25110Wq m =求:i w t 、φ()i w f q h t h t t =∆=-⇒iw f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq Wφππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()W c m K =∙、1'200w t =℃求: 1.2q 、'1.2q 、 1.2q ∆ 解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =∙、2285()Wh m K =∙、145t =℃2500t =℃、'2285()Wk h m K ==∙、1mm σ=、398λ=()Wm K ∙求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k ∙ 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h'100k kk-∆=⨯%8583.56 1.7283.56-==% 因为:1211h h,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
传热学课后答案【第五版】[精]【完整整合版】
绪 论思考题与习题(89P -)答案:1. 冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12. i R α 1R λ 3R λ 0R α 1f t −−→ q首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。
(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。
) 13.已知:360mm σ=、0.61()Wm K λ=• 118f t =℃ 2187()Wh m K =•210f t =-℃ 22124()Wh m K =• 墙高2.8m ,宽3m求:q 、1w t 、2w t 、φ 解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=14.已知:3H m =、0.2m σ=、2L m =、45λ=()W m K • 1150w t =℃、2285w t =℃求:t R λ、R λ、q 、φ解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W •3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.已知:50i d mm =、 2.5l m =、85f t =℃、273()Wh m K =•、25110Wq m =求:i w t 、φ()i w f q h t h t t =∆=-⇒i w f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq Wφππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()W c m K =•、1'200w t =℃求: 1.2q 、'1.2q 、 1.2q ∆解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()Wm K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
传热学第5.7章答案
第七章 凝结与沸腾换热1.凝液量:m=0.0116(kg/s)2.水平放置时,凝水量m=0.0166(kg/s)3.壁温t w =1000 , h=12029 w/(m 2·k)4.向下高度 局部换热系数w/(m 2·k) 平均换热系数w/(m 2·k) X=0.1m X=0.5m X=1.0m9763 6529 549013015 8704 73195.此时管下端液膜内已出现紊流。
H=6730 w/(m 2·k)6.竖壁高 h=9.2 mm7.单管与管束平均表面传热系数之比:管束单h h =2.18.凝结水量 m=5.14⨯10-3 (kg/s) 9.考虑过冷度时,m=5.12⨯10-3(kg/s)相差:%39.0%10014.512.514.5=⨯- 10.管长 m L 1= ,管长减少量315.115.1=- 11.凝结表面传热系数 h=700.2 w/(m 2·k) 凝液量:m=5.242⨯10-3(kg/s) 12. 管长能缩短13.用于水时, h=5341.1 w/(m 2·k)与11题相比换热系数倍率63.72.7001.5341= 15.氟利昂 12: φ=42143(W ) 氟利昂 22: φ=50810(W ) 差异:20.6%16.用电加热时,加热方式是控制表面的热流密度。
而采用蒸汽加热则是壁面温度可控的情形。
由大容器饱和沸腾曲线可知,当加热功率q 稍超过max q 值时,工况将沿max q 虚线跳至稳定膜态沸腾线,使壁面温度飞升,导致设备烧坏。
总之,电加热等依靠控制热流来改变工况的设备,一旦热流密度超过峰值,工况超过热流密度峰值后,沸腾温差将剧烈上升到1000℃左右,壁温也急剧升高,发生器壁烧毁现象。
采用蒸气加热时,工况点沿沸腾曲线依次变化。
不会发生壁面温度急剧上升情况。
18.由式(7)tT R s∆=υγρσ2min ,在一定的s T t ,,,,υργσ∆五个量中,只有υρ随压强变化最大,P 增加时,υρ的增加值将超过T s 的增值和γ的减少,最终使R min 随P 的增加而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 凝结与沸腾换热
1.凝液量:m=(kg/s)
2.水平放置时,凝水量m=(kg/s)
3.壁温t w =1000 , h=12029 w/(m 2·k)
4.
5.此时管下端液膜内已出现紊流。
H=6730 w/(m 2·k)
6.竖壁高 h= mm
7.单管与管束平均表面传热系数之比:管束
单h h =
8.凝结水量 m=⨯ (kg/s) 9.考虑过冷度时,m=⨯(kg/s)
相差:
%39.0%10014
.512
.514.5=⨯- 10.管长 m L 1= ,管长减少量31
5
.115.1=
- 11.凝结表面传热系数 h= w/(m 2·k) 凝液量:m=⨯(kg/s) 12. 管长能缩短
13.用于水时, h= w/(m 2·k)
与11题相比换热系数倍率
63.72
.7001
.5341= 15.氟利昂 12: φ=42143(W ) 氟利昂 22: φ=50810(W ) 差异:%
16.用电加热时,加热方式是控制表面的热流密度。
而采用蒸汽加热则是壁面温度可控的情形。
由大容器饱和沸腾曲线可知,当加热功率q 稍超过max q 值时,工况将沿max q 虚线跳至稳定膜态沸腾线,使壁面温度飞升,导致设备烧坏。
总之,电加热等依靠控制热流来改变工况的设备,一旦热流密度超过峰值,工况超过热流密度峰值后,沸腾温差将剧烈上升到1000℃左右,壁温也急剧升高,发生器壁烧毁现象。
采用蒸气加热时,工况点沿沸腾曲线依次变化。
不会发生壁面温度急剧上升情况。
18.由式(7)t
T R s
∆=
υγρσ2min ,在一定的s T t ,,,,υργσ∆五个量中,只有υ
ρ随压强变化最大,P 增加时,υρ的增加值将超过T s 的增值和γ的减少,最终使R min 随P 的增加而减小。
19.h=⨯ w/(m 2·k) 20. h=67140 w/(m 2·k)
21.温度降为183℃ h=1585 w/(m 2·k) 与自然对流相比较,
485.01585
769
==
沸腾
自然对然h h 22.Q= w/(m 2·k) ,t w =℃
23.0115.0, w C
第五章 对流换热分析
1. 影响对流换热的因素有流体种类、速度、物理性质、表面温度、环境温度、形状、尺寸、位置、表面状况.....等等,试以你的感性认识举例说明这些因素的存在。
答:①日常生活中,蒸汽换热与水换热,其种类不同,物理性质也不同,则换热效果也明显不同。
②在晴朗无风的天气里与有风的天气里晒衣服,其流体速度不同,衣服晒干的时间也是不同的,说明换热效果有不同。
③一杯水放在空气装配能够与放在冰箱里,环境温度不同,其换热效果有是不同的。
④板式换热器与肋片式换热器形状不同,定性尺寸也不同,换热效果也不同。
⑤粗糙管与光滑管的换热效果也是不一样的。
⑥换热器放在窗下面与放在墙角换热效果是不一样的。
2.试设想用什么方法可以实现物体表面温度恒定、表面热流恒定的边界条件
答:加热水使其在沸腾状态,放一物体在沸腾水中,此状况下物体表面温度可认为是恒定的。
将一物体外层包裹一层绝热材料,再将物体连入一恒定电流的加热器中,则其物体可认为是表面热流恒定。
3.试就自然界和日常生活中的对流换热现象举例,说明哪些现象可以作为常壁温或者常热流边界条件来处理哪些现象可以近似地按常壁温或常热流处理
答:在冰箱内层结了一层冰,与冰箱内物体换热,此时,冰箱内壁是常壁温的。
电炉加热可视为常热流。
水壶烧开水,可近似认为是恒热流的加热方式。
暖壶装满热水内壁可近似认为是常壁温的。
5. 沸腾水与常温水的温度有没有数量级差别如果厚度相比是否可以认为是1与§之比
答:沸腾水与常温水的温度没有数量级差别。
如果流体外掠长度只有1mm 的平板,那么它的板长与边界厚度相比是可以认为是1与§之比。
6.对流换热过程微分方程式与导热过程的第三类边界条件表达式两者有什么不同之处
答:对流换热过程微分方程式:,(
)x w x x
t
h t y
① 导热过程的第三类边界条件表达式为: h (t |s - t |f )=-
(
)s t
n
② ①式中为x 点贴壁处流体的温度梯度,k/m 。
由近壁面的温度场确定,为流体的导热系数,q x 为对流换热量,是随着x 的变化而变化的,而②中是确定的。
②式中的是传热体的导热系数,由传热材料决定。
7.流体外掠平板,在温度条件不变的情况下,主流速度增加时,它的局部和平均表面传热系数都增加,试从换热原理进行分解释。
答:主流速度增加时,速度边界层厚度减小,在温度条件不变时即使温度条件不变,热边界层厚度减小,增加了边界层内的温度梯度,从而局部和平均表面传热系数都增加。
8.在相同温度及速度条件下,不同Pr 流体外掠平板时的温度及速度边界层厚度、速度及温度梯度及平均表面传热系数等有何差异 答:Pr 大的流体,温度边界层厚度小于速度边界层厚度,温度梯度速度大于速度梯度,则平均表面传热系数将较大。
10.导出外掠平板层流边界层在距前缘x距离内的平均厚度表达式。
2
22
2222
2
,,,0...................u u u u v x y y u u x
x y
u v
x
y u u v
v x x
u u u u v x y y u u u u u x x
u u x x
解:由外掠平板流动的动量微分方程由于而由连续性方程
可知,因此,动量微分方程式中各项的数量级如下:,,在边界层内,粘性力项与惯性力项具有相同数量级,
即 即2/1
e u x x R 所以
11. 为什么Pr 《1时,则δt 》δ,试分析在δt >δ区域内的流动及换热的机制。
答:1
3Pr ,Pr 1,>>t
t δδδδ
-≈<<由公式,
此时在边界层内热量扩散强度远大于动量扩散。
12.m 31047.1-⨯=δ 13.m t 41078.9-⨯=δ
14.局部表面传热系数:2.22731.0==m x h w/(m 2·k)
2.16082.0==m x h w/(m 2·k) 1312
3.0==m x h w/(m 2·k) 2.107145.0==m x h w/(m 2·k)
平均表面 h = w/(m 2·k) 15.m 3max 1054.2-⨯=δ
16.34
22.0376.0δ
δν
x y x y u -=∞ 注:∞=u x νδ64.4
3max 103.1-⨯=νs
= m
全板长为层流: h= W/
)(556W =φ
= m
紊流换热系数关联式:h=24289 W/(m 2·k) )(971577W =φ =,全板长流动层流
h= W/(m 2·K ),()W 13020=θ 21.∞
=U x
νδ46
.3
22.3
15
4
02872.0r e Ux P R N =
23.w f
W dt b
h t dy t t λλ⎛⎫
=-
= ⎪
∆-⎝⎭ 5-24 由边界层能量微分方程式直接导出能量积分方程式。
解:常物性不可压缩流体,忽略粘性耗散,二维的边界层能量微分方程表示为:
2
22
2
,t
t
t
t
t
y y t t t u a x
y y
t t
t
u dy dy a x
y y d u t utdy
t dy t
t
dy
a dx
x
y
y
u
u
dy y x
x
d
u utdy t
dy t dx x t
t
t
t
t
00
同样,上式在y 方向上对整个温度边界层厚度积分,得
进一步可写为由连续性方程知
,代入上式得:0
00
),)t y y w y u u
t dy t dy
a x x y
d t
u t
t dy a dx y
t t d u
dy a
dx
y
t t t
t
0000
整理得(取过余温度上式变为:(即此为边界层能量积分方程。
225.()⎪⎭
⎫ ⎝⎛++
-=+20
2
022
2n f w N b r a t t λπφ
26. Q=
27. h=104 W/(m 2·k) 28. h 2= W/(m 2·k) 29.W 8.296=φ 30.使22
1
1G d d G =
31. h= W/(m 2·k)。