§9[1].3“动态”立体几何题

合集下载

立体几何动态问题

立体几何动态问题

立体几何的动态问题立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨 迹问题。

基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。

解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。

动点轨迹问题空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。

很少有题目会脱离这三个方向。

(注意:阿波罗尼斯圆,圆锥曲线第二定义)1.(2015·浙江卷8)如图11­10,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支式题 如图,平面α的斜线AB 交α于B 点,且与α所成的角为θ,平面α内有一动点C 满足∠BAC =π6,若动点C的轨迹为椭圆,则θ的取值范围为________.3.(2015春•龙泉驿区校级期中)在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持P A ⊥BD 1,则动点P 的轨迹所在的曲线是直线; ②若点P 到点A 的距离为,则动点P 的轨迹所在的曲线是圆;③若P 满足∠MAP =∠MAC 1,则动点P 的轨迹所在的曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为2:1,则动点P 的轨迹所在的曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在的曲线是抛物线. 其中真命题的个数为( )A .4B .3C .2D .14.(2018•温州模拟)已知线段AB垂直于定圆所在的平面,B,C是圆上的两点,H是点B在AC上的射影,当C 运动,点H运动的轨迹()A.是圆B.是椭圆C.是抛物线D.不是平面图形5.(2013•铁岭模拟)如图所示,△P AB所在的平面α和四边形ABCD所在的平面β互相垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6.若tan∠ADP﹣2tan∠BCP=1,则动点P在平面α内的轨迹是()A.椭圆的一部分B.线段C.双曲线的一部分D.以上都不是6.(2013•嘉兴二模)设m是平面α内的一条定直线,P是平面α外的一个定点,动直线n经过点P且与m成30°角,则直线n与平面α的交点Q的轨迹是()A.圆B.椭圆C.双曲线D.抛物线7.(2008•浙江)如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线8.(2015春•台州校级月考)AB是平面α的斜线段,长度为2,点A是斜足,若点P在平面α内运动,当△ABP的面积等于3 时,点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线9.(2016•浙江二模)在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,AB=AA1=2.若点M在△ABC所在平面上运动,且使得△AC1M的面积为1,则动点M的轨迹为()A.圆B.椭圆C.双曲线D.抛物线10.(2016•武汉校级模拟)如图,AB是平面α外的固定斜线段,B为斜足,若点C在平面α内运动,且∠CAB等于直线AB与平面α所成的角,则动点C的轨迹为()A.圆B.椭圆C.双曲线D.抛物线11.(2008年浙江·理10)如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线12.(2014年金华高二十校联考·文10)圆柱的轴截面ABCD是边长为2的正方形,M为正方形ABCD对角线的交点,动点P在圆柱下底面内(包括圆周),若直线BM与直线MP所成角为45°,则点P形成的轨迹为( ) A.椭圆的一部分B.抛物线的一部分C.双曲线的一部分D.圆的一部分13.(2014•杭州二模)在等腰梯形ABCD中,E,F分别是底边AB,BC的中点,把四边形AEFD沿直线EF折起后所在的平面记为α,p∈α,设PB,PC与α所成的角分别为θ1,θ2(θ1,θ2均不为零).若θ1=θ2,则满足条件的P所形成的轨迹是.BACDMPABP14.(2018秋•诸暨市校级期中)如图,在底面为平行四边形的四棱锥P﹣ABCD中,E,F分别是棱AD,BP上的动点,且满足AE=2BF,则线段EF中点的轨迹是()A.一条线段B.一段圆弧C.抛物线的一部分D.一个平行四边形15.(2015秋•太原期末)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,P为棱A1B1的中点,点Q在侧面DCC1D1内运动,给出下列结论:①若BQ⊥A1C,则动点Q的轨迹是线段;②若|BQ|=,则动点Q的轨迹是圆的一部分;③若∠QBD1=∠PBD1,则动点Q的轨迹是椭圆的一部分;④若点Q到AB与DD1的距离相等,则动点Q的轨迹是抛物线的一部分.其中结论正确的是(写出所有正确结论的序号).16.如图,长方体ABCD﹣A′B′C′D′中,AB=BC=,AA,上底面A′B′C′D′的中心为O′,当点E在线段CC′上从C移动到C′时,点O′在平面BDE上的射影G的轨迹长度为()A.B.C.D.17.(2016秋•温州期末)点P为棱长是2的正方体ABCD﹣A1B1C1D1的内切球O球面上的动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.B.C.D.18.(2018•宁波二模)已知棱长为1的正方体ABCD﹣A1B1C1D1中,E为侧面BB1C1C中心,F在棱AD上运动,正方体表面上有一点P满足=x(x≥0,y≥0),则所有满足条件的P点构成图形的面积为.19.(2017•定海区校级模拟)已知异面直线a,b所成角为60°,直线AB与a,b均垂直,且垂足分别是点A,B 若动点P∈a,Q∈b,|P A|+|QB|=m,则线段PQ中点M的轨迹围成的区域的面积是.20.(2017秋•赣州期末)如图,在等腰梯形ABCD中,CD=2AB=2EF=2a,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得平面BEFC⊥平面ADFE.若动点P∈平面ADFE,设PB,PC与平面ADFE 所成的角分别为θ1,θ2(θ1,θ2均不为0).若θ1=θ2,则动点P的轨迹围成的图形的面积为()A.B.C.D.翻折问题面(动问题)翻折问题的一线五结论.DF AE ⊥一线:垂直于折痕的线即五结论:1)折线同侧的几何量和位置关系保持不变;折线两侧的几何量和位置关系发生改变; 2--D HF D H F ''∠)是二面角的平面角;3D DF ')在底面上的投影一定射线上; 1、(2016年联考试题)平面四边形ABCD 中,AD=AB=2,CD=CB=5,且AD AB ⊥,现将△ABD 沿对角线BD 翻折成'A BD ∆,则在'A BD ∆折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为_______2.(2015年10月浙江省学业水平考试18)如图,在菱形ABCD 中,∠BAD=60°,线段AD ,BD 的中点分别为E ,F 。

2024年9-10月新高考数学名校模拟大题汇编:立体几何(解析版)

2024年9-10月新高考数学名校模拟大题汇编:立体几何(解析版)

2024年9-10月新高考数学名校大题汇编:立体几何大题必备基础知识梳理【知识点一:空间向量及其加减运算】(1)空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a也可以记作AB ,其模记为a或AB .(2)零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,AB=0.模为1的向量称为单位向量.(3)相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为-a .(4)空间向量的加法和减法运算①OC=OA+OB=a +b ,BA=OA-OB=a -b.如图所示.②空间向量的加法运算满足交换律及结合律a +b =b +a ,a +b +c =a +b +c【知识点二:空间向量的数乘运算】(1)数乘运算实数λ与空间向量a 的乘积λa 称为向量的数乘运算.当λ>0时,λa 与向量a方向相同;当λ<0时,向量λa 与向量a 方向相反.λa 的长度是a的长度的λ 倍.(2)空间向量的数乘运算满足分配律及结合律λa +b =λa +λb ,λμa =λμ a .(3)共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作a ⎳b.(4)共线向量定理对空间中任意两个向量a ,b b ≠0,a ⎳b的充要条件是存在实数λ,使a =λb.(5)直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP =OA +ta ①,其中向量a 叫做直线l 的方向向量,在l 上取AB =a ,则式①可化为OP =OA +tAB =OA +t OB -OA =1-t OA +tOB ②①和②都称为空间直线的向量表达式,当t =12,即点P 是线段AB 的中点时,OP =12OA +OB ,此式叫做线段AB 的中点公式.(6)共面向量如图8-154所示,已知平面α与向量a ,作OA=a,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.(7)共面向量定理如果两个向量a ,b不共线,那么向量p 与向量a,b共面的充要条件是存在唯一的有序实数对x ,y ,使p =xa +yb.推论:①空间一点P 位于平面ABC 内的充要条件是存在有序实数对x ,y ,使AP =xAB +yAC;或对空间任意一点O ,有OP-OA=xAB+yAC,该式称为空间平面ABC 的向量表达式.②已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP =xOA +yOB +zOC (其中x +y +z =1)的点P 与点A ,B ,C 共面;反之也成立.【知识点三:空间向量的数量积运算】(1)两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA =a ,OB =b ,则∠AOB 叫做向量a ,b 的夹角,记作a ,b ,通常规定0≤a ,b ≤π,如果a ,b =π2,那么向量a ,b 互相垂直,记作a ⊥b .(2)数量积定义已知两个非零向量a ,b ,则a b cos a ,b 叫做a ,b 的数量积,记作a ⋅b ,即a ⋅b =a b cos a,b.零向量与任何向量的数量积为0,特别地,a ⋅a =a 2.(3)空间向量的数量积满足的运算律:λa ⋅b =λa ⋅b ,a ⋅b =b ⋅a (交换律);a ⋅b +c =a ⋅b +a ⋅c(分配律).【知识点四:空间向量的坐标运算及应用】(1)设a =a 1,a 2,a 3 ,b=b 1,b 2,b 3 ,则a +b=a 1+b 1,a 2+b 2,a 3+b 3 ;a -b=a 1-b 1,a 2-b 2,a 3-b 3 ;λa=λa 1,λa 2,λa 3 ;a ⋅b=a 1b 1+a 2b 2+a 3b 3;a ⎳b b ≠0⇒a 1=λb 1,a 2=λb 2,a 3=λb 3;a ⊥b⇒a 1b 1+a 2b 2+a 3b 3=0.(2)设A x 1,y 1,z 1 ,B x 2,y 2,z 2 ,则AB =OB -OA=x 2-x 1,y 2-y 1,z 2-z 1 .这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标.(3)两个向量的夹角及两点间的距离公式.①已知a =a 1,a 2,a 3 ,b =b 1,b 2,b 3 ,则a =a 2=a 12+a 22+a 32;b =b2=b 12+b 22+b 32;a ⋅b=a 1b 1+a 2b 2+a 3b 3;cos a ,b =a 1b 1+a 2b 2+a 3b 3a 12+a 22+a 32b 12+b 22+b 32;②已知A x 1,y 1,z 1 ,B x 2,y 2,z 2 ,则AB=x 1-x 22+y 1-y 2 2+z 1-z 2 2,或者d A ,B =AB.其中d A ,B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的投影为a cos a ,b=a ⋅b b.【知识点五:法向量的求解与简单应用】(1)平面的法向量:如果表示向量n 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作n ⊥α,如果n⊥α,那么向量n叫做平面α的法向量.几点注意:①法向量一定是非零向量;②一个平面的所有法向量都互相平行;③向量n 是平面的法向量,向量m 是与平面平行或在平面内,则有m ⋅n =0.第一步:写出平面内两个不平行的向a=x 1,y 1,z 1 ,b=x 2,y 2,z 2 ;第二步:那么平面法向量n=x , y , z ,满足n ⋅a=0n ⋅b =0⇒xx 1+yy 1+zz 1=0xx 2+yy 2+zz 2=0.(2)判定直线、平面间的位置关系①直线与直线的位置关系:不重合的两条直线a ,b 的方向向量分别为a ,b.若a ∥b,即a =λb,则a ∥b ;若a ⊥b,即a ⋅b=0,则a ⊥b .②直线与平面的位置关系:直线l 的方向向量为a ,平面α的法向量为n ,且l ⊥α.若a ∥n ,即a =λn ,则l ⊥α;若a ⊥n ,即a ⋅n =0,则a ∥α.(3)平面与平面的位置关系平面α的法向量为n 1,平面β的法向量为n 2.若n 1∥n 2,即n 1=λn 2,则α∥β;若n 1⊥n 2,即n 1⋅n 2=0,则α⊥β.【知识点六:空间角公式】(1)异面直线所成角公式:设a ,b分别为异面直线l 1,l 2上的方向向量,θ为异面直线所成角的大小,则cos θ=cos a,b =a ⋅b a b.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n为平面α的法向量,θ为l 与α所成角的大小,则sin θ=cos a ,n=a ⋅na n.(3)二面角公式:设n 1,n 2分别为平面α,β的法向量,二面角的大小为θ,则θ=n 1 ,n 2 或π-n 1 ,n 2(需要根据具体情况判断相等或互补),其中cos θ =n 1 ⋅n 2n 1 n 2.【知识点七:空间中的距离】求解空间中的距离(1)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线a ,b 的公垂线的方向向量为n ,这时分别在a ,b 上任取A ,B 两点,则向量在n上的正射影长就是两条异面直线a ,b 的距离.则d =AB ⋅n |n |=|AB ⋅n ||n|即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(2)点到平面的距离A 为平面α外一点(如图),n为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|AH |=|AB |⋅sin θ=|AB |⋅|cos <AB ,n >|=|AB ||AB ⋅n |AB ⋅n =|AB ⋅n|nd =|AB ⋅n||n|【必考题型汇编】1.(湖南省长沙市2025届高三六校九月大联考解析第16题)如图,四边形ABCD 与四边形ADEF 均为等腰梯形,BC ⎳AD ,EF ⎳AD ,AD =4,AB =2,BC =EF =2,AF =11,FB ⊥平面ABCD ,M 为AD 上一点,且FM ⊥AD ,连接BD 、BE 、BM .(1)证明:BC ⊥平面BFM ;(2)求平面ABF 与平面DBE 的夹角的余弦值.方法提供与解析:(1)解析:因为FB ⊥平面ABCD ,又AD ⊂平面ABCD ,所以FB ⊥AD .又FM ⊥AD ,且FB ∩FM =F ,所以AD ⊥平面BFM .因为BC ⎳AD ,所以BC ⊥平面BFM .(2)解析:作EN ⊥AD ,垂足为N ,则FM ⎳EN .又EF ⎳AD ,所以四边形FMNE 是平行四边形,又EN ⊥AD ,所以四边形FMNE 是矩形,又四边形ADEF 为等腰梯形,且AD =4,EF =2,所以AM =1.由(1)知AD ⊥平面BFM ,所以BM ⊥AD .又AB =2,所以BM =1.在Rt △AFM 中,FM =AF 2-AM 2=10.在Rt △FMB 中,∴FB =FM 2-BM 2=3.由上可知,能以BM 、BC 、BF 所在的直线分别为x 轴、y 轴、z 轴建立如图所示空间直角坐标系.则A -1,-1,0 ,B 0,0,0 ,F 0,0,3 ,D -1,3,0 ,E 0,2,3 ,所以,AB =1,1,0 ,BF =0,0,3 ,BD =-1,3,0 ,BE=0,2,3 ,设平面ABF 的法向量为m=x 1,y 1,z 1 ,由m ⋅AB=0m ⋅BF =0,得x 1+y 1=0z 1=0 ,可取m =1,-1,0 ;设平面BDE 的法向量为n=x 2,y 2,z 2 ,由n ⋅BD=0n ⋅BE =0,得-x 2+3y 2=0-2y 2+3z 2=0 ,可取n=9,3,2 .因此,cos ‹m ,n›=m ⋅n m ⋅n=9-31+1⋅81+9+4=34747.依题意可知,平面ABF 与平面DBE 的夹角的余弦值为34747.2.(辽宁省沈阳市郊联体2024年高三上学期开学联考解析第17题)如图,已知斜三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C ⊥侧面AA 1B 1B ,侧面BB 1C 1C 是矩形,侧面AA 1B 1B 是菱形,∠BAA 1=60°,AB =2BC =2,点E ,F ,G 分别为棱AA 1,A 1C ,BB 1的中点.(1)证明:FG ⎳平面ABC ;(2)求二面角A 1-B 1C -E 的余弦值.方法提供与解析:解析:(1)证明:因为点E ,F ,G 分别为棱AA 1,A 1C ,BB 1的中点,连接EF ,EG ,则EF ⎳AC ,EG ⎳AB ,又因为EF ⊄平面ABC ,AC ⊂平面ABC ,所以EF ⎳平面ABC ,同理可得EG ⎳平面ABC ,因为EF ∩EG =E ,EF ⊂平面EFG ,EG ⊂平面EFG ,所以平面EFG ⎳平面ABC ,因为FG ⊂平面EFG ,所以FG ⎳平面ABC .(2)解:侧面BB 1C 1C 是矩形,所以BC ⊥BB 1,又因为平面BB 1C 1C ⊥平面AA 1B 1B ,平面BB 1C 1C ∩平面AA 1B 1B =BB 1,所以BC ⊥平面AA 1B 1B ,又BE ⊂平面AA 1B 1B ,因此BC ⊥BE .在菱形AA 1B 1B 中,∠BAA 1=60°,因此△AA 1B 是等边三角形,又E 是AA 1的中点,所以BE ⊥AA 1,从而得BE ⊥BB 1.如图,以B 为坐标原点,BE ,BB 1,BC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.因为AB =2BC =2,所以BE =AB sin60°=3,因此B 10,2,0 ,A 13,1,0 ,E 3,0,0 ,C 0,0,1 ,所以B 1C =0,-2,1 ,B 1E =3,-2,0 ,B 1A 1=3,-1,0 ,设平面EB 1C 的法向量为m=x 1,y 1,z 1 ,由m⊥B 1C,得-2y 1+z 1=0 ,令y 1=1,得m =23,1,2设平面A 1B 1C 的法向量为n=x 2,y 2,z 2 ,由n ⊥B 1Cn ⊥B 1A 1,得-2y 2+z 2=03x 2-y 2=0 ,令y 2=1,得n =33,1,2 ,cos ‹m ,n ›=m ⋅n m ⋅n =23+1+4193⋅163=171976,即二面角A 1-B 1C -E 的余弦值为171976.3.如图,在四棱柱ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,底面ABCD 为梯形,AD ⎳BC ,BC =4,AB =AD =DC =AA 1=2,Q 为AD 的中点.(1)在A 1D 1上是否存在点P ,使直线CQ ⎳平面AC 1P ,若存在,请确定点P 的位置并给出证明,若不存在,请说明理由;(2)若(1)中点P 存在,求平面AC 1P 与平面ABB 1A 1所成的锐二面角的余弦值.方法提供与解析:(1)解析:(几何法)存在,证明如下:在四棱柱ABCD -A 1B 1C 1D 1中,因为平面ABCD ⎳平面A 1B 1C 1D 1,所以可在平面A 1B 1C 1D 1内作C 1P ⎳CQ ,由平面几何知识可证△C 1D 1P ≅△CDQ ,所以D 1P =DQ ,可知P 是A 1D 1中点,因为C 1P ⊂平面AC 1P ,所以CQ ⎳平面AC 1P .即存在线段A 1D 1的中点,满足题设条件.满足条件的点只有一个,证明如下:当CQ ⎳平面AC 1P 时,因为CQ ⎳平面A 1B 1C 1D 1,所以过C 1作平行于CQ 的直线既在平面A 1C 1P 内,也在平面A 1B 1C 1D 1内,而在平面A 1B 1C 1D 1内过C 1只能作一条直线C 1P ⎳CQ ,故满足条件的点P 只有唯一一个.所以,有且只有A 1D 1的中点为满足条件的点P ,使直线CQ ⎳平面AC 1P .(2)解析:(坐标法)过点D 作DF ⊥BC ,垂足为F ,又因为DD 1⊥平面ABCD ,以D 为坐标原点,分别以DA ,DF ,DD 1所在直线为x 轴,y 轴,z 轴建立如图的空间直角坐标系D -xyz ,则A 2,0,0 ,P 1,0,2 ,C 1-1,3,2 ,A 12,0,2 ,B 3,3,0 ,P A =1,0,-2 ,PC 1 =-2,3,0 ,AB =1,3,0 ,AA 1=0,0,2设平面P AC 1的法向量为n=x ,y ,z ,则有n ⋅P A=0,n ⋅PC 1 =0,即x -2z =0,-2x +3y =0. 令x =23,得y =4,z =3,所以n=23,4,3 .设平面ABB 1A 1的法向量为m=x ,y ,z .则有AB ⋅m =0,AA 1 ⋅m =0,即x +3y =0,2z =0. 令x =3,得y =-1,z =0,所以m=3,-1,0 .所以cos n ,m =n ⋅m n m=6-4+0231=3131.故平面AC 1P 与平面ABB 1A 1所成的锐二面角的余弦值为3131.4.(福建泉州市2025届高中毕业班模拟检测(一)解析第16题)4:如图,在四棱锥P -ABCD 中,PD =PC =CB =BA =12AD =2,AD ⎳CB ,∠CPD =∠ABC =90°,平面PCD ⊥平面ABCD ,E 为PD 中点.(1)求证:PD ⊥平面PCA ;(2)点Q 在棱P A 上,CQ 与平面PDC 所成角的正弦值为63,求平面PCD 与平面CDQ 夹角的余弦值.方法提供与解析:(1)解析:由题意:BC =AB =2,∠ABC =90°,AC =AB 2+BC 2=22同理CD =22,又AD =4,CD 2+AC 2=AD 2,CD ⊥AC .而CD =22=PD 2+PC 2,即PC ⊥PD ,又平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,AC ⊂平面ABCD ,AC ⊥平面PCD ,PD ⊂平面PCD ,PD ⊥AC ,又PC ⊥PD ,且PC ⊂面PCA ,AC ⊂面PCA ,PC ∩AC =C ,PD ⊥平面PCA .(2)解析:以C 为原点,建立如图所示的空间直角坐标系,则C 0,0,0 ,A 0,22,0 ,D 22,0,0 ,P 2,0,2 ,所以CD =22,0,0 ,CP =2,0,2 ,P A=-2,22,-2 ,设PQ =λP A 0<λ<1 ,有CQ =CP +λP A=21-λ ,22λ,21-λ ,取面PCD 的一个法向量m =0,1,0 ,则cos CQ ,m =22λ41-λ 2+8λ2=63,λ=12,故CQ =22,2,22.令n=x ,y ,z 是平面CDQ 的一个法向量,则n ⋅CD =0n ⋅CQ =0,即22x =022x +2y +22z =0,令y =1,有n =0,1,-2 ,则cos ‹n ,m › =n ⋅m n m=55,故平面PCD 与平面CDQ 夹角的余弦值为55.5.(长沙市雅礼中学2025届高三上学期(9月)综合自主测试解析第17题)5:如图(1),在△ABC 中,CD ⊥AB ,BD =2CD =2AD =4,点E 为AC 的中点.将△ACD 沿CD 折起到△PCD 的位置,使DE ⊥BC ,如图(2).图(1)图(2)(1)求证:PB ⊥PC ;(2)在线段BC 上是否存在点F ,使得CP ⊥DF ?若存在,求二面角P -DF -E 的余弦值;若不存在,说明理由。

§9[1].3“动态”立体几何题

§9[1].3“动态”立体几何题

“动态”立体几何题本文所指的“动态”立体几何题,是指立体几何题中除了固定不变的的线线、线面、面面关系外,渗透了一些“动态”的点、线、面元素,给静态的立体几何题赋予了活力,题意更新颖,同时,由于“动态”的存在,也使立体几何题更趋灵活,加强了对学生空间想象能力的考查。

一、截面问题截面问题是立体几何题中的一类比较常见的题型,由于截面的“动态”性,使截得的结果也具有一定的可变性。

例1、用一个平面去截正方体,所得的截面不可能是( D ) A 六边形 B 菱形 C 梯形 D 直角三角形例2、已知正三棱柱A 1B 1C 1—ABC 的底面积为S,高为h,过C 点作三棱柱的与底面ABC 成α角的截面△MNC,(0<2πα<),使MN//AB ,求截面的面积。

分析:由于截面位置的不同,它与几何体的交线MN 可能在侧面A 1B 上,也可能在A 1B 1C 1上,由此得到两种不同的结果。

解:当交线MN 在侧面A 1B 内(或与A 1B 1重合时),S △MNC =αcos S;当MN 在底面A 1B 1C 1内时,arctan∴<<,2342παS hS △MNC =αα22sin 3cos 3h 。

BC 1BCNBC 1BC二、翻折、展开问题图形的翻折和展开必然会引起部分元素位置关系的变化,求解这类问题要注意对变化前后线线、线面位置关系、所成角及距离等加以比较,一般来说,位于棱的两侧的同一半平面内的元素其相对位置关系和数量关系在翻折前后不发生变化,分别位于两个半平面内的元素其相对关系和数量关系则发生变化。

不变量可结全原图型求解,变化了的量应在折后立体图形中来求证。

例3、下图表示一个正方体的展开图,图中AB 、CD 、EF 、GH 这四条直线在原正方体中相互异面的有( B )A 2对B 3对C 4对D 5对例4、从三棱锥P —ABC 的顶点沿着三条侧棱PA 、PB 、PC 剪开,成平面图形,得到△P 1P 2P 3,且P 1P 2=P 2P 3;CP 1P 32(1)在棱锥P-ABC 中,求证:PA ⊥BC ,(2)P 1P 2=26,P 1P 3=20,求三棱锥的体积。

动态立体几何

动态立体几何

动态立体几何题型 在运动变化过程中利用方程探求动点的位置例 如图1所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB=√2,AF=1. 试在线段AC 上确定一点P ,使得PF 与BC 所成的角是60°,并加以证明.例 如图2,已知直三棱柱ABC-A 1B 1C 1 中,ABC=90°,AB=BC=a ,AA1 =2AB ,M 为CC 1 上的点.试问当M 在C 1C 上的什么位置时,B 1M 与平面AA 1C 1C 所成的角为30°题型2 在运动变化过程中建立函数关系,寻求相关角的变化范围.例 如图3,在三棱锥V-ABC 中,VC 底面ABC ,AC BC ⊥,D 是AB 的中点,且AC=BC=a , ∠VDC= θ (0<θ<2π)( 1) 求证: 平面VAB ⊥VCD; ( 2) 当角 变化时,求直线BC 与平面VAB 所成的角的取值范围.在运动变化过程中建立方程关系探究二面角的大小.例 如图4所示,在长方体ABCD-A 1B 1C 1D 1中,AD=AA1 =1,AB=2,点E 在棱AB 上移动,当AE 等于何值时,二面角D1-EC-D 的大小为4π.题型 在运动变化过程中,利用曲线定义探究动点轨迹.例 如图5,P 为四棱锥S-ABCD 的面SBC 内一点,若动点P 到平面ABCD 的距离与到点S 的 距离相等,则动点P 的轨迹是面SBC 内的 ( )A . 线段或圆的一部分B . 双曲线或椭圆的一部分C . 双曲线或抛物线的一部分D . 抛物线或椭圆的一部分1. 如图6,三棱锥P-ABC 的高PO=8,AC=BC=3,ACB=30°,M ,N 分别在BC 和PO 上,且CM=x ,PN=2x( x ∈( 0,3]) ,下列4个图像大致描绘了三棱锥N-AMC 的体积V 与x 的变化关系,其中正确的是2. 如图7,正方体ABCD-A 1B 1C 1D 1 的侧面ABB 1A 1 内有一动点P 到直线AA 1 和BC的距离相等,则动点P 的轨迹是 ( ) A . 线段 B . 椭圆的一部分C . 双曲线的一部分D . 抛物线的一部分3. 如图8,在正四面体A-BCD 中,点E 在棱AB 上,点F 在棱CD 上,使得AE CFEB FDλ==(λ>0) ,设f(λ) =λλαβ+ ,λα与λβ分别表示EF 与AC ,BD 所成的角,则 ( ) A .f(λ)是( 0,+∞) 上的增函数 B .f(λ)是( 0,+∞) 上的减函数C .f(λ)是(0,1) 上的递增函数,(1,+∞) 上的递减函数D .f(λ)是( 0,+∞) 上的常数函数4. 已知P 是棱长为1的正方体ABCD-A 1B 1C 1D 1 表面上的动点,且则动点P 的轨迹的长度是 .5. 如图9,正四面体ABCD 的棱长为1,棱AB//平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .6. 下列4个命题:○1在空间,存在无数个点到三角形各边的距离相等;○2在空间,存在无数个点到长方形各边的距离相等;○3在空间,既存在到长方体各顶点距离相等的点,又存在到它的各个面距离相等的点;○4在空间,既存在到四面体各顶点距离相等的点,又存在到它的各个面距离相等的点,其中真命题的序号是 ( 写出所有真命题的序号) .例 设正方体1A C -的棱长为1,P 为面对角线A1B1上的动点,Q 为棱AB 上的动点,求1C P PQ +的最小值.例 在长方体ABCD-A 1B 1C 1D 1中,11AB BC AA === ,点P 为对角线AC 1上的动点,点Q 为底面 ABCD 上的动点(点P ,Q 可以重合),则B 1P+PQ 的最小值为( )变式 在边长为2的正方体ABCD-A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD上移动,且满足11B P D E ⊥,则线段B 1P 的长度的最大值为( )变式 在棱长为的正方体ABCD-A 1B 1C 1D 1中,点E 、F 分别是棱BC 、CC 1的中点,P 是侧面BC 1B 1内一点,若A 1P//平面AEF ,则线段A 1P 长度的取值范围是( )例1 如图1已知在四面体ABCD中DA=DB=DC=且DA,DB.DC两两互相垂直,点O是 ABC的中心,将 DAO绕直线DO旋转一周, 则在旋转过程中直线DA与直线BC所成角的余弦的最大值是例2 如图4直线l⊥平面 垂足为O在 ABC中,∠ABC=2π,AB=2,BC=1.该直角三角形作符合下列条件的自由运动 A∈l,B∈α, 则C、O两点间的最大距离为 .例3 正方体ABCD-A 1B 1C 1D 1的棱长为2,MN是它的内切球的一条弦,把球面上任意两点之间的线段称为球的弦, P为正方体表面上的动点, 当弦MN最长时, PM PN ⋅的最大值为 .例5 如图8已知正四棱锥V-ABCD绕着AB任意旋转, AB⊂平面α.若AB=2,,点V在平面 上的射影为O, 则|CO|的最大值为 .例6 已知点EF分别是正方体ABCD-A 1B 1C 1D 1的棱ABAA1的中点点MN分别是线段D1E与C1F上的点则与平面ABCD平行的直线MN有 A0条 B1条 C2条 D无数条例7 正方体ABCD-A 1B 1C 1D 1中与直线AA1、BD、C1D1同时相交的直线有A1条 B2条 C3条 D无数条变式 已知正方形ABCDE是边AB的中点将△BCE沿CE折起至△B′CE 如图3若△B′CD为正三角形则EC与平面△B′CD所成角的余弦值是 .变式如图4在长方形中AB=1,BCABF沿BF折起使平面ABC⊥平面BCD.在平面ABC内过点A作AK⊥BC,K为垂足.设BK=t则t的取值范围是.变式2012浙江理-10已知矩形ABCDAB=1BC在的直线进行翻折在翻折过程中A.存在某个位置使得直线AC与直线BD垂直B.存在某个位置使得直线AB与直线CD垂直C.存在某个位置使得直线AD与直线BC垂直D.对任意位置三条直线AC与BDAB与CDAD与BC均不垂直变式如图5已知矩形ABCDAB=xBC=2.将△ABD沿矩形的对角线BD所在的直线进行翻折若在翻折过程中存在某个位置使得AB⊥CD,则x的取值范围是变式如图6已知矩形ABCD的两条对角线交点为EAB=xBC槡=2将△ABD沿矩形的对角线BD所在的直线进行翻折若在翻折过程中存在某个位置使得AB⊥CE则x的取值范围是.例1 若三棱锥A - B C D 的侧面△A B C 内一动点P 到底面B C D 的距离与到棱A B 的距离相等, 则动点P 的轨迹与△A B C 组成图形可能是( )例2 如图2 , 长方体 A B C D - A1 B1 C1 D1 中, 已知A B= A D =2 , A A1=3 , 棱A D 在平面α内, 则长方体在平面α内的射影所构成的图形面积的取值范围是.例3 如图3 所示, 球O 为边长为4 的正方体A B C D - A1 B1C1 D 的内切球,P 为球O 的球面上动点, M为B1 C1 中点, D P ⊥B M ,则点P 的轨迹周长为.例4 在矩形 A B C D 中, A B = 2 A D, E 为边A B 的中点, 将△ A D E 沿 直 线 D E 翻 折 成 △ A1 D E . 若 M 为线段A1 C 的中点, 则在△ A D E 翻折过程中, 下面4个命题中正确的是 .A 、B M 是定值. B 、 点 M 在某个球面上运动.C 、 存在某个位置, 使DE ⊥ A1 C . D 、 存在某个位置, 使 M B ∥平面 A1 D E .例 如图4 ABC中 B= 2AB=BC=2,P点 为AB上 一 动点, PD//BC交AC于D点并将PDA延PD对折至PDA′使 平 面PDA平 面PBCD.当 锥 形A′-PBCD体 积 最 大 时 求PA长.例1 如图1所示, 在正方体ABCD-A1B1C1D1中,点E 是棱CC1上的一个动点,平面BED1交棱AA1于点F ,则下列命题中为假命题的是( ).A.存在点E ,使得A1C1∥平面BED1FB.存在点E ,使得B1D ⊥平面BED1FC.对于任意的点E ,平面A1C1D ⊥平面BED1FD.对于任意的点E ,四棱锥B1-BED1F 的体积均不变例2 如图2,在正方体ABCDA1B1C1D1中,E 是棱DD1的中点,F 是侧面CDD1C1上的动点, 且B1F ∥面A1BE ,则BF 与平面CDD1C1所成角的正切值构成的集合是( ).A.{2}B. ⎪⎪⎩⎭C. {|2t t ≤≤D. 2t t ⎧⎫⎪⎪≤≤⎨⎬⎪⎪⎩⎭例3 设四面体的六条棱的长分别为1、1、1、1a ,且长为a 的棱异面,则a 的取值范围是( ).例4 如图5,在正方体ABCD-A1B1C1D1中,P 为底面ABCD 上的动点,PE ⊥A1C 于点E ,且PA=PE ,则点P 的轨迹是( ).A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分例6 如图7,三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=90°,PA=4,PB=PC=3, 则面ABC 上任一点到三个面的距离的平方和最小是例 1 已知正方体 ABCD − A1B1C1D1 的棱长为 3, 长为 2 的线段 MN 点一个端点 M 在 DD1 上运动, 另一个端点 N 在底面 ABCD 上运动, 则 MN 的中点 P 的轨迹与正方体的面所围成的几何体的体积为 .例 4: 在正方体 ABCD − A1B1C1D1 中, M 为 AD 的中点, O 为侧面 AA1B1B 的中心, P 为棱 CC1 上任意一点,则异面直线 OP 与 BM 所成的角等于 ( )A. 90◦B. 60◦C. 45◦D. 30◦策略四: 动中找定面例 4: 在正方体 ABCD − A1B1C1D1 中, M 为 AD 的中点, O 为侧面 AA1B1B 的中心, P 为棱 CC1 上任意一点,则异面直线 OP 与 BM 所成的角等于 ( )A. 90◦B. 60◦C. 45◦D. 30◦例设直线l 平面,过平面外一点A与l,都成30°角的直线有且只有 ( )A.1条 B.2条 C.3条 D.4条例如图7,在正方形ABCD中,E,F分别为线段AD,BC上的点,ABE=20°,CDF=30°.将 ABE绕直线BE CDF绕直线CD各自独立旋转一周,则在所有旋转过程中,直线AB与直线DF所成角的最大值为.例如图9,在正方体ABCDA1B1C1D1 中,M是棱DD1 的中点,O为底面ABCD的中心,P为棱A1B1上的任意一点,则直线OP与直线AM所成的角为 ( )A.4 B.3 C.2 D.不确定( 与点P的位置有关)例如图10,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC( 端点除外) 上一动点.现将 AFD沿AF折起,使平面ABD 平面ABC,在平面ABD内过点D作DK AB,K为垂足.设AK=t,则t的取值范围是.1.如图15,动点P在正方体ABCD-A1B1C1D1 的对角线BD1 上.过点P作垂直于平面BB1D1D的直线,与正方体表面相交于M,N.设BP=x,MN=y,则函数y=f( x)的图像大致是2.在正方体ABCD-A1B1C1D1 中,E,F分别为棱AA1,CC1 的中点,则在空间中与3条直线A1D1,EF,CD都相交的直线 ( )A.不存在 B.有且只有2条 C.有且只有3条 D.有无数条3.已知在矩形ABCD中,AB=1,BC= 2.将 ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中( )A.存在某个位置,使得直线AC与直线BD垂直 B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直 D.对任意位置,3对直线AC与BDAB与CDAD与BC 均不垂直5.已知正方体ABCD-A1B1C1D1 的棱长为a,定点M在棱AB上( 但不在端点A,B上) ,点P是平面ABCD 内的动点,且点P到直线A1D1 的距离与点P到点M的距离的平方差为a2,则点P的轨迹所在曲线为.6.如图17,正四面体ABCD的棱长为1,棱AB 平面,则正四面体上的所有点在平面内的射影构成的图形面积的取值范围是.7.已知点O在二面角α-AB-β的棱上,点P在内,且∠POB=45°.若对于α内异于点O的任意一点Q,都有∠POQ 45°,则二面角α-AB-β的大小是.例1 在正方体中 A B C D - A1 B 1 C 1 D 1, M 为B C的中点, 点 N 在四边形C D D1 C 1 及其内部运动.若MN⊥ A 1 C 1, 则点 N 的轨迹为( ) .A 线段;B 圆的一部分;C 椭圆的一部分;D 双曲线的一部分例 3 在棱长为 1 的正方体 A B C D - A1 B 1 C 1 D 1中, 点 E、 F 分别是棱 B C、 C C 1 的中点, P 是侧面B C C1 B 1 内一点, 若 A 1 P∥平面 A E F, 则线段 A1 P 长度的取值范围是( ) .例 5 正方体 A B C D - A1 B 1 C 1 D 1 中, E 是棱B1 C 1 的中点, 动点 P 在底面 A B CD 内, 且 P A 1 =A 1 E, 则点 P 运动形成的图形是( ) .A 线段;B 圆弧;C 椭圆的一部分;D 抛物线的一部分例如图1,AB是平面的斜线段,A为斜足,若点P在平面内运动,使得 ABP的面积为定值,则动点P的轨迹是 ( )A.圆 B.椭圆C. 1条直线 D.2条平行直线例如图2,正方体ABCD-A1B1C1D1,棱长为1,点M在棱AB上,且BM∶ AM= 1 ∶3,点P是平面ABCD上的动点,且动点P到直线A1D1 距离与动点P到M距离平方差为1,则动点P的轨迹是 ( )A.圆 B.抛物线 C.双曲线 D.直线例如图3,正方体ABCD-A1B1C1D1 中,点P在侧面BCC1B1 及其边界上运动,并且总是保持AP BD1,则动点P的轨迹是 ( )A.线段B1C B. BB1 中点与CC1 中点连成的线段C.线段BC1 D. BC 中点与B1C1 中点连成的线段例如图4,定点A和B都在平面内,点C是内异于A和B的动点,且PC AC.那么,动点C在平面内的轨迹是 ( )A.1条线段,但要去掉2个点 B.1个圆,但要去掉2个点C. 1个椭圆,但要去掉2个点 D.半圆,但要去掉2个点例如图5,在棱长为1的正方体ABCD-A1B1C1D1 中,若点P是棱上一点,则满足|PA| + |PC1| = 2 的点P的个数为.例1如图1已知在四面体ABCD中,DA=DB=DC=B、DC两两互相垂直,点O是 ABC的中心将 DAO绕直线DO旋转一周则在旋转过程中直线DA与直线BC所成角的余弦的最大值是。

高中数学 第一章立体几何初步 1.3 三视图练习 北师大版必修2-北师大版高一必修2数学试题

高中数学 第一章立体几何初步 1.3 三视图练习 北师大版必修2-北师大版高一必修2数学试题

§3三视图A组1.一个圆柱的三视图中,一定没有的图形是()A.矩形B.圆C.三角形D.正方形解析:一个圆柱,不论怎样放置,三视图均不可能出现三角形.答案:C2.若一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.三棱锥D.圆锥答案:A3.如图,空心圆柱体的主视图是()答案:C4.导学号62180016若一个几何体的三视图如图所示,则该三视图表示的组合体为()A.圆柱与圆锥B.圆柱与三棱锥C.圆柱与四棱锥D.四棱柱与圆锥答案:C5.一个几何体的三视图如图所示,则该几何体的直观图可以是()解析:由俯视图易知,只有选项D符合题意.故选D.答案:D6.如图所示的立体图形,都是由相同的小正方体拼成的.(1)图①的主视图与图②的图相同;(2)图③的主视图与图④的主视图.(填“相同”或“不同”)答案:(1)俯视(2)不同7.如图所示是一个圆锥的三视图,则该圆锥的高为 cm.解析:由三视图知,圆锥的母线长为3 cm,底面圆的直径为3 cm,所以圆锥的轴截面是边长为3 cm 的等边三角形,所以圆锥的高为(cm).答案:8.已知某组合体的主视图与左视图相同(如图1所示,其中AB=AC,四边形BCDE为正方形),则该组合体的俯视图可以是如图2所示的.(把你认为正确的图的序号都填上)图1图2解析:由主视图与左视图可得该几何体可以是由正方体与底面边长相同的四棱锥组合而成的,则其俯视图为图①;可以是由正方体与底面直径与底面正方形边长相同的圆锥组合而成的,则其俯视图为图④;可以是由圆柱与底面相同的圆锥组合而成的,则其俯视图为图③;可以是由圆柱与底面正方形边长等于圆柱底面直径的四棱锥组合而成的,则其俯视图为图②.答案:①②③④9.一个几何体的三视图如图所示,请画出它的实物图.解:由三视图可知,该几何体由正方体和四棱柱组成,如图所示.10.导学号62180017如图所示是一个零件的实物图,画出这个几何体的三视图.解:该零件由一个长方体和一个半圆柱拼接而成,并挖去了一个小圆柱(形成圆孔).主视图反映了长方体的侧面和半圆的底面、小圆柱的底面,左视图反映了长方体的侧面、半圆柱的侧面、小圆柱的侧面,俯视图反映了长方体的底面、半圆柱的侧面和小圆柱的侧面投影后的形状.它的三视图如图所示.B组1.如图①②③分别为三个几何体的三视图,根据三视图可以判断这三个几何体依次分别为()图①图②图③A.三棱台、三棱柱、圆锥B.三棱台、三棱锥、圆锥C.三棱柱、正四棱锥、圆锥D.三棱柱、三棱台、圆锥解析:图①②③对应的原几何体分别是三棱柱、正四棱锥、圆锥,故选C.答案:C2.导学号62180018将正方体(如图1-(1)所示)截去两个三棱锥,得到图1-(2)中的几何体,则该几何体的左视图为(如图2所示)()图1图2解析:左侧被截去的三棱锥的底面三条边中,有两条与正方体的棱重合,另一条应为正方形自左上到右下的对角线,是可见的;右侧被截去的三棱锥的底面的三条边中,有两条与正方体的棱重合,另一条应为正方形自右上到左下(从左面看)的对角线,是不可见的.故选B.答案:B3.如图所示,已知正三棱柱ABC-A1B1C1的底面边长为2,高为3,则其左视图的面积为()A.6B.3C.3D.6解析:由三视图的画法可知,该几何体的左视图是一个矩形,其宽为2sin 60°=,长为3,故面积S=3.答案:C4.已知一几何体的主视图与左视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有()A.①②③⑤B.②③④⑤C.①②④⑤D.①②③④解析:可以结合实物想象,对于①,可认为该几何体的最下部为棱柱,上部为两个圆柱;对于②,可认为该几何体的上部为两个棱柱,下部为圆柱;对于③,可认为该几何体的上部为圆柱,下部为两个棱柱;对于④,可认为该几何体的上部是底面为等腰直角三角形的棱柱,中间为一圆柱,底部为四棱柱;对于⑤,由原几何体最下部的两个视图可知,其俯视图不可能是一个三角形.答案:D5.如图所示,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.解析:根据三视图还原成实物图,即四棱锥P-ABCD,所以最长的一条棱的长为PB=2.答案:26.已知三棱锥的直观图及其俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一直角边长为2的直角三角形,则该三棱锥的主视图面积为.解析:三棱锥的主视图如图所示,故主视图的面积为×2×2=2.答案:27.下图是一个几何体的三视图,试画出其实物图.解:由几何体的三视图容易想到该几何体可以由正方体切割而得到,如图所示.俯视图8.导学号62180019一个棱长均为6的正三棱锥,其俯视图如图所示,求其主视图的面积和左视图的面积.解:作出正三棱锥的直观图如图所示,E为BD的中点,AO为三棱锥的高,由三棱锥的放置方式知,其主视图为三角形,底面边长为BD=6,其高等于AO,其左视图为三角形,底面边长等于CE(中线)的长,其高等于AO.在Rt△BCE中,BC=6,BE=3,得CE=3,CO=×CE=2.在Rt△ACO中,AC=6,CO=2,则AO==2,故主视图面积为×6×2=6,左视图的面积为×3×2=9.。

立体几何中的动点轨迹问题

立体几何中的动点轨迹问题

同理,在平面 AA1D1D 内满足条件的点的轨迹长度为52π.在平面 A1B1C1D1 内满足条件 的点的轨迹为以 A1 为圆心,A1F 为半径的14圆弧,长度为 2π×4×14=2π.同理,在平 面 ABCD 内满足条件的点的轨迹为以 A 为圆心,AE 为半径的圆弧,长度为 2π×3×14 =32π.故轨迹的总长度为52π+52π+2π+32π=172π.
的长度最小.因为 B1N1=D1N1= 5,B1D1=2 2,所以△B1N1D1 的边 B1D1 上的高为
52- 22= 3,则 S△B1N1D1=12×2 2× 3= 6,则当 B1N⊥D1N1 时,B1N 最
小,即 B1Nmin=2S△DB1N1N1 1D1=2
6=2 5
530.
总结 提炼
与平行有关的轨迹问题的解题策略 (1)线面平行转化为面面平行得轨迹; (2)平行时可利用法向量垂直关系求轨迹.
模型 3 动点保持等距关系
3 (2023·湖北联考节选)已知正方体 ABCD-A1B1C1D1 的棱长为 3,P 为正方体表 53
面上的一个动点,A1P=2 3,则点 P 的轨迹长度为___2__π__.
【解析】 如图,点 P 的轨迹一部分是在平面 ABB1A1,A1B1C1D1, ADD1A1 三个面内以 2 3为半径,圆心角为π6的三段圆弧,另一部分是 在平面 BCC1B1,CDD1C1,ABCD 三个面内以 3为半径,圆心角为π2 的三段圆弧.故点 P 的轨迹的长度为112×2π×2 3×3+14×2π× 3×3=523π.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9
配套精练
2 . 如 图 , 正 方 体 ABCD - A1B1C1D1 的 棱 长 为 2 , E , F 分 别 为

培优提能10 立体几何中的动态问题

培优提能10 立体几何中的动态问题

培优提能10 立体几何中的动态问题立体几何中的“动态问题”是指空间中的某些点、线、面的位置是不确定的或可变的一类开放性问题,解答此类问题应该动静结合、化动为静,找到相应的几何关系,具体有以下几种解决方法:(1)函数法:某些点、线、面的运动,必然导致某些位置关系或一些变量的变化.变量变化时会引发其他变量的变化,从而建立函数关系,将立体几何问题转化为函数问题来解.(2)解析法:我们常利用空间直角坐标系解决立体几何问题,即实现几何问题代数化.因此利用空间直角坐标系将空间图形中的若干元素坐标化后,借助向量进行运算和分析,是解决这类问题的常用方法. (3)等价转换法:动和静是相对的,在运动变化过程中,要善于寻找或构造与之相关的一些不变因素,将一些变化的点、线、面进行合理转换,实现变量与不变量的结合.培优点1 以静制动(旋转问题、射影问题)典例1 正四面体ABCD的棱长为1,棱AB∥平面α(如图),则四面体上的所有点在平面α内的射影构成的图形面积的取值范围是.解析:去掉与问题无关的面,将四面体看成是以AB为棱的二面角C-AB-D(二面角大小一定),用纸折出这个二面角,不妨将AB置于平面α内,将二面角绕AB 转动一周,观察点C,D 在平面α上的射影,可以发现点C,D 在平面α上的射影始终在AB 的射影的中垂线上.当CD ∥平面α时,四边形ABCD 的面积最大,为12(如图1).当CD ⊥平面α时,四边形ABCD 的面积最小,为√24(如图2),转动过程中C,D 在平面α上的射影从C,D 变化到C ′,D ′(如图3),故图形面积的取值范围是[√24,12]. 答案:[√24,12]在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.触类旁通1 如图,直线l ⊥平面α,垂足为O.正方体ABC D −A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1的中点P 的距离的最大值为 .解析:从题图中分化出4个点O,A,B1,P,其中△AOB1为直角三角形,固定A,B1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆,从而OP≤OQ+QP=12AB1+2=√2+2,当且仅当OQ⊥AB1,即点O,Q,P共线时,取到等号,此时直线AB1与平面α成45°角.答案:√2+2培优点2 动点轨迹(长度)问题典例2 在棱长为2√2的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD 的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为( )A.2√153B.4√33C.2√133D.4√23解析:如图,连接B1D1,因为E,F 分别为棱AB,AD 的中点,所以B 1D 1∥EF,则B 1,D 1,E,F 四点共面.连接A 1C 1,A 1D,设A 1C 1∩B 1D 1=M,A 1D ∩D 1F=N,连接MN,则点Q 的轨迹为线段MN,易得A 1D=√A 1D 12+DD 12=4,△A 1ND 1∽△DNF,且A 1D 1FD=2,所以A 1N=23A 1D=83.易知A 1C 1=C 1D=A 1D=4,所以∠C 1A 1D=60°,又A 1M=2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1Mcos 60°=529,所以MN=2√133,即点Q 的轨迹长度为2√133.故选C.空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆、圆锥曲线.很少有题目会脱离这三个方向.触类旁通2 (多选题)(2022·湖南郴州高三期末)如图,点P 是棱长为2的正方体ABCD-A 1B 1C 1D 1表面上的一个动点,则( AC )A.当点P 在平面BCC 1B 1上运动时,四棱锥P-AA 1D 1D 的体积不变B.当点P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是[π6,π2]C.当直线AP 与平面ABCD 所成的角为45°时,点P 的轨迹长度为π+4√2D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ∥平面B 1CD 1时,PF 长度的最小值是 √5解析:当P 在平面BCC 1B 1上运动时,点P 到平面AA 1D 1D 的距离不变,正方形AA 1D 1D 的面积不变,故四棱锥P-AA 1D 1D 的体积不变,故A 正确; 建立如图所示的空间直角坐标系,设P(x,2-x,0),0≤x ≤2,A 1(2,0,2),D 1(0,0,2),C 1(0,2,2),则D 1P →=(x,2-x,-2),A 1C 1→=(-2,2,0),设D 1P 与A 1C 1所成的角为θ(0≤θ≤π2),则cos θ=|cos<D 1P →,A 1C 1→>|=|D 1P →·A 1C 1→||D 1P →||A 1C 1→|=|x -1|√(x -1)2+3,因为0≤|x-1|≤1,当|x-1|=0时,θ=π2,当0<|x-1|≤1时,cos θ=|x -1|√(x -1)2+3=√1+3|x -1|2,0<cos θ≤12,则π3≤θ<π2,综上,π3≤θ≤π2,所以D 1P 与A 1C 1所成角的取值范围是[π3,π2],故B 错误;因为直线AP 与平面ABCD 所成的角为45°,若点P 在平面BCC 1B 1和平面DCC 1D 1内,因为∠B 1AB=45°,∠D 1AD=45°已为最大,不成立,在平面ADD 1A 1内,点P 的轨迹长度是AD 1=2√2,在平面ABB 1A 1内,点P 的轨迹长度是AB 1=2√2, 在平面A 1B 1C 1D 1内,如图所示,作PM ⊥平面ABCD,因为∠PAM=45°,所以PM=AM,又PM=AB,所以AM=AB,则A 1P=AB,所以点P 的轨迹是以A 1为圆心,以2为半径的四分之一圆,所以点P 的轨迹长度为14×2π×2=π,所以点P 的轨迹总长度为π+4√2,故C 正确; 建立如图所示的空间直角坐标系,设P(x,y,0),x,y ∈[0,2],B 1(2,2,2),D 1(0,0,2),C(0,2,0),F(2,1,2),则CB 1→=(2,0,2),CD 1→=(0,-2,2),FP →=(x-2,y-1,-2), 设平面B 1CD 1的法向量为n=(a,b,c),则{CD 1→·n =0,CB 1→·n =0,即{-2b +2c =0,2a +2c =0,令a=1,则n=(1,-1,-1), 因为PF ∥平面B 1CD 1,所以FP →·n=(x-2)-(y-1)+2=0,即y=x+1,所以|FP →|=√(x -2)2+(y -1)2+4=√2x 2-4x +8=√2(x -1)2+6≥√6,当x=1时,等号成立,故D 错误.故选AC.培优点3 翻折问题典例3 如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D,E,F 为圆O 上的点,△DBC,△ECA,△FAB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△FAB,使得D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积的最大值为 cm 3.解析:如图,连接OD,交BC于点G,由题意,知OD⊥BC,OG=√3BC.6设OG=x,则BC=2√3x,DG=5-x,×2√3x×3x=3√3x2,三棱锥的高h=√DG2-OG2=√25-10x,S△ABC=12则三棱锥的体积V=1S△ABC·h=√3x2·√25-10x=√3·√25x4-10x5.3),则f′(x)=100x3-50x4.令f′(x)=0,得令f(x)=25x4-10x5,x∈(0,52x=2.当x∈(0,2)时,f′(x)>0,f(x)单调递增;当x∈(2,5)时,f′2(x)<0,f(x)单调递减.故当x=2时,f(x)取得最大值80,则V≤√3×√80=4√15.所以三棱锥体积的最大值为4√15 cm3.答案:4√15在解决立体几何中的“动态”问题时,对于一些很难把握运动模型(规律)的求值问题,可以通过构建某个变量的函数,以数解形.触类旁通3 (1)(多选题)(2022·河北唐山高三期末)如图,四边形ABCD是边长为2的正方形,E为AB的中点,将△AED沿DE所在的直线翻折,使A与A′重合,得到四棱锥A′-BCDE,则在翻折的过程中( AB )A.DE⊥AA′B.存在某个位置,使得A′E⊥CDC.存在某个位置,使得A′B∥DED.存在某个位置,使四棱锥A′-BCDE的体积为1(2)(多选题)(2022·广东罗湖高三期末)在△ABC中,AB⊥BC,且AC=2,BC=1,若将△ABC沿AC边上的中线BD折起,使得平面ABD⊥平面BCD.点E在由此得到的四面体ABCD的棱AC上运动,则下列结论正确的为( BCD )A.∠ADC=π2B.四面体ABCD的体积为18C.存在点E使得△BDE的面积为14D.四面体ABCD外接球的表面积为13π3解析:(1)对于A,如图所示,过A′作A′O⊥DE,垂足为O,延长AO交BC于点F,因为DE⊥AO,且AO∩A′O=O,AO,A′O⊂平面A′AO,所以DE⊥平面A′AO,又因为A′A⊂平面A′AO,所以DE⊥AA′,A正确;对于B,取DC的中点G,连接EG,A′G,当A′在平面ABCD上的射影在直线EG上时,此时DC⊥平面A′EG,从而得到A′E⊥CD,B正确;对于C,连接A′B,因为点E∈平面A′BE,点D∉平面A′BE,所以直线A′B与DE是异面直线,所以不存在某个位置,使得A′B∥DE,C错误;对于D,由VA′BCDE =13×12×(1+2)×2×h=1,解得h=1,由A′O⊥DE,可得A′O=A′E·A′DDE =√5=√5,即此时四棱锥的高h∈(0,√5],此时√5<1,所以不存在某个位置,使四棱锥A′-BCDE的体积为1,D错误.故选AB.(2)对于A,取BD的中点M,连接CM,因为BC=CD=1,所以CM⊥BD,又平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,所以CM⊥平面ABD,则CM⊥AD,若∠ADC=π2,则AD⊥CD,所以AD⊥平面CBD,则AD⊥BD,显然不可能,A错误;对于B,易知△BCD的面积为√34,在平面ABD中,过A作BD的垂线,交BD的延长线于点H,易知AH=√32,因为平面ABD ⊥平面BCD,平面ABD ∩平面BCD=BD,所以AH ⊥平面BCD,即三棱锥A-BCD 的高为AH=√32,所以三棱锥A-BCD 的体积V=13×√34×√32=18,即四面体ABCD 的体积为18,B正确;对于C,显然当AC ⊥平面BDE 时,△BDE 的面积取得最小值,易知CD=1,DH=12,由余弦定理可得CH=√72,所以AC=√AH 2+CH 2=√102, 又四面体ABCD 的体积为18, 所以18=13×S ×√102,即S=3√1040<14, 且△BCD 的面积为√34>14,所以存在点E 使得△BDE 的面积为14,C 正确;对于D,设△BCD 与△ABD 的外心依次为O 1,O 2, 过O 1作平面BCD 的垂线l 1,过O 2作平面ABD 的垂线l 2,则四面体ABCD 的外接球球心O 为直线l 1与l 2的交点,延长CO 1交BD 于点M,则M 为BD 的中点,连接O 2M,则四边形MO 1OO 2为矩形,结合正弦定理可求得O 2M=√32,O 1C=√33, 所以四面体ABCD 的外接球半径为R=OC=√O 1O 2+O 1C 2=√O 2M 2+O 1C 2=√34+13=√1312,则四面体ABCD 外接球的表面积为S=4πR 2=4π×1312=13π3,D 正确.故选BCD.培优点4 动态最值问题典例4 (多选题)(2022·江苏常州高三期末)已知正方体ABCD-A 1B 1C 1D 1的棱长为3a,点M 是棱BC 上的定点,且BM=2CM,点P 是棱C 1D 1上的动点,则( )A.当PC 1=23a 时,△PAM 是直角三角形B.四棱锥A 1-PAM 体积的最小值为32a 3 C.存在点P,使得直线BD 1⊥平面PAM D.任意点P,都有直线BB 1∥平面PAM 解析:由已知及计算可得PC 1=23a,AM=√13a,AP=√2113a,MP=√943a,所以AP 2=MP 2+AM 2,所以△PAM 为直角三角形,A 正确;S △AA 1M =12×3a ×√13a=3√132a 2,当P 与C 1重合时,点P 到平面AA 1M 的距离最小,设点P 到平面AA 1M 的距离为h, 在B 1C 1上取M 1,使B 1M 1=2C 1M 1,sin ∠B 1M 1A 1=√13=ℎmin a,所以h min =√13a,所以V A 1PAM =V PAA 1M =13×S △AA 1M ×h ≥13×3√132a 2×√13a=32a 3,B 正确;因为BD 1⊥平面AB 1C,平面AB 1C 与平面PAM 不平行,所以BD 1与平面PAM 不垂直,C 错误;P 与C 1重合时,平面PAM 为平面C 1AM,BB 1∥CC 1,若BB 1∥平面PAM,则CC 1⊂平面C 1AM,与CC 1⊄平面C 1AM 矛盾,D 错误.故选AB.解决与空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:(1)从问题的几何特征入手,充分利用其几何性质去解决; (2)利用空间几何体的侧面展开图;(3)找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法,二次函数的配方法、公式法,函数有界法(如三角函数等)及导数法等.触类旁通4 (多选题)(2022·广东揭阳高三期末)如图所示,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M,N 分别是AD,CC 1的中点,P 是线段AB 上的动点,则下列说法正确的是( BD )A.平面PMN 截正方体所得的截面可以是四边形、五边形或六边形B.当点P 与A,B 两点不重合时,平面PMN 截正方体所得的截面是五边形C.△MPN 是锐角三角形D.△MPN 面积的最大值是√212解析:如图所示,当点P 与A,B 两点不重合时,将线段MP 向两端延长,分别交CD,CB 的延长线于点O,Q,连接NO,NQ 分别交DD 1,BB 1于R,S 两点,连接RM,SP,此时截面为五边形MPSNR,故B 正确;当点P 与点A 或点B 重合时,截面为四边形,不可能为六边形,故A 错误;考虑△MPN,当点P 与点A 重合时,MN=√6,PM=1,PN=3, 此时因为MN 2+PM 2<PN 2,故∠PMN 为钝角,故C 错误;当点P 与点B 重合时,点P 到直线MN 的距离取到最大值,△MPN 的面积取到最大值,此时MN=√6,BM=BN=√5,则MN 边上的高为√(√5)2-(√62)2=√142,△MPN的面积为12×√142×√6=√212,即最大值为√212,故D正确.故选BD.。

立体几何中的动态问题

立体几何中的动态问题

ʏ江苏省泰州市姜堰区蒋垛中学 李 杰立体几何中的动态 问题,是指空间图形中的某些点㊁线㊁面的位置是不确定或可变的一类开放性问题,因其中某些点㊁线㊁面的位置不确定,往往成为同学们进行常规思考与转化的障碍㊂但又因其是可变的㊁开放的,更有助于同学们空间想象能力㊁综合思维能力与创新应用能力等的培养,成为高考数学试卷中创新命题的一个方向,备受各方关注㊂一㊁位置的确定问题图1例1 如图1,在梯形A B C D 中,A B ʊC D ,øB C D =2π3,四边形A C F E 为矩形,且C F ʅ平面A B C D ,A D =C D =B C =C F =1㊂(1)求证:平面E F D ʅ平面B C F ;(2)点M 在线段E F 上运动,求当点M 在什么位置时,平面M A B 与平面F C B 所成锐二面角的余弦值为34㊂解析:(1)因为A D =C D =B C ,A B ʊC D ,øB C D =2π3,所以øA D C =2π3,øD C A =øD A C =π6,则有øA C B =π2,所以A C ʅB C ㊂因为C F ʅ平面A B C D ,A C ⊂平面A B C D ,所以A C ʅC F ㊂又C F ɘB C =C ,C F ,B C ⊂平面B C F ,则A C ʅ平面B C F ㊂而E F ʊA C ,所以E F ʅ平面B C F ㊂而E F ⊂平面E FD ,所以平面EF D ʅ平面B C F ㊂(2)以C 为坐标原点,C A ,C B ,C F 所在图2直线分别为x 轴,y 轴,z 轴,建立如图2所示的空间直角坐标系C -x yz ㊂由于A D =C D =B C =C F =1,则A B =2,结合余弦定理有A C 2=A B 2+B C 2-2A B ㊃B C ㊃c o sπ3=3,所以A C =3,则E F=A C =3㊂设F M =λ(0ɤλɤ3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),所以A B ң=(-3,1,0),B M ң=(λ,-1,1)㊂设n =(x ,y ,z )为平面M A B 的一个法向量,则n ㊃A B ң=-3x +y =0,n ㊃B M ң=λx -y +z =0,令x =1,得n =(1,3,3-λ)㊂易知m =(1,0,0)为平面F C B 的一个法向量,所以|c o s <m ,n >|=|m ㊃n ||m ||n |=11ˑ1+3+(3-λ)2=34,解得λ=533或33,而0ɤλɤ3,所以λ=33,所以F M E F =13,即M 在线段E F 靠近点F 的三等分点处时,平面M A B 与平面F C B 所成锐二面角的余弦值为34㊂点评:要确定立体几何中的 动态 问题中对应动点的位置,合理引入参数,结合线段长度的变量,从代数的视角切入,利用向量的数量积加以转化,通过合理的逻辑推理与数学运算来求解对应的参数值,进而得以确定相应动点的位置情况㊂以 数 的运算形式来确定 形 的动态变化情况㊂二㊁轨迹的判定问题图3例2 如图3所示,在正方体A B C D -A 1B 1C 1D 1中,A B =2,E 为棱D D 1的中点,F 是正方形C D D 1C 1内部(含边界)的一个动点,且B 1F ʊ平面A 1B E ㊂(1)求动点F 的轨迹长度;(2)求平面A 1B E 与平面A B C D 夹角的71解题篇 创新题追根溯源 高考数学 2024年2月正切值㊂图4解析:(1)如图4,取C 1C的中点为P ,C 1D 1的中点为Q ,连接B 1P ,B 1Q ,P Q ㊂由于B 1P ʊA 1E ,B 1P ⊄平面A 1B E ,A 1E ⊂平面A 1B E ,所以B 1P ʊ平面A 1B E ㊂同理,证得P Q ʊ平面A 1B E ㊂而P Q ɘB 1P =P ,所以平面B 1P Q ʊ平面A 1B E ㊂而B 1F ʊ平面A 1B E ,所以B 1F ⊂平面B 1P Q ㊂而F ɪ平面C D D 1C 1,则知F ɪP Q ,即动点F 的轨迹为线段P Q ㊂而P Q =12C D 1=2,所以动点F 的轨迹长度为2㊂(2)由于平面A B C D ʊ平面A 1B 1C 1D 1,平面B 1P Q ʊ平面A 1B E ,所以平面A 1B E 与平面A B C D 的夹角即为平面A 1B 1C 1D 1与平面B 1P Q 的夹角㊂而平面A 1B 1C 1D 1与平面B 1P Q 的交线为B 1Q ,过点C 1作C 1H ʅB 1Q ,交B 1Q 于点H ,如图4,设H Q =a ,则1-a 2=4-(5-a )2,解得a =55㊂同理,过点P 作P G ʅB 1Q ,交B 1Q 于点G ,可得Q G =55,即点H 与点G 重合㊂所以øC 1H P 为所求二面角的平面角,则有t a n øC 1H P =C 1P C 1H =11-a2=52㊂点评:要判定立体几何中的 动态 问题中对应动点的轨迹及其相应问题,关键是结合立体几何中动点的变化规律,合理挖掘内涵,通过定义法㊁直接法㊁性质法及建系法等来分析与处理,进而得以解决㊂此类问题契合高考命题 在知识网络交汇处 的指导精神,外观上有着 看似立体几何,又似解析几何 的特点,成为高考命题中考查数学知识㊁数学能力与核心素养的好素材㊂图5三、最值的求解问题例3 如图5,在四面体A B C D 中,所有的面都是直角三角形,侧棱A B ʅ底面B C D ㊂(1)若A B =1,BC =2,C D图6=1,试求异面直线A C 与B D 所成角的余弦值㊂(2)如图6,若B D ʅC D ,A B =B D =C D =2,点P 在棱A C 上运动㊂试求әP B D 面积的最小值㊂解析:(1)如图7,以D B ,D C 为邻边作图7平行四边形B D C E ,连接A E ,则异面直线A C 与B D 所成的角为øA C E 或其补角㊂当B C ʅC D 时,A B =1,B C =2,C D =B E =1,由题可知,A E =A B 2+B E 2=12+12=2,A C =A B 2+B C 2=12+22=5,E C =B D =B C 2+C D 2=22+12=5,在әA C E 中,由余弦定理得c o søA C E =A C 2+E C 2-A E 22A C ˑE C =45,所以异面直线A C 与B D 所成角的余弦值为45㊂当B D ʅD C 时,A E =A B 2+B E 2=12+12=2,A C =A B 2+B C2=12+22=5,E C =B D =B C 2-C D 2=22-12=3,在әA C E 中,由余弦定理得c o s øA C E =A C 2+E C 2-A E 22A C ˑE C =155,所以异面直线A C 与B D 所成角的余弦值为155㊂综上可知,异面直线A C 与B D 所成角的余弦值为45或155㊂图8(2)如图8,作P Q ʅB C 于点Q ,Q M ʅB D 于点M ,连接P M ㊂在әA B C 中,因为A B ,P Q 都垂直于B C ,所以A B ʊP Q ,所以P Q ʅ平面B C D ㊂又B D ⊂平面BCD ,所以P Q ʅB D ㊂又因为Q M ʅB D ,P Q ɘQ M =Q ,P Q ,Q M ⊂平面P Q M ,所以B D ʅ平面P Q M ㊂又P M ⊂平面P Q M ,所以P M ʅB D ㊂81 解题篇 创新题追根溯源 高考数学 2024年2月设C Q =x ,C B =B D 2+C D 2=22,由P Q A B =C Q C B ,即P Q 2=x 22,得P Q =22x(0ɤx ɤ22)㊂在әB C D 中,由B Q B C =Q M C D ,即22-x22=Q M 2,得Q M =22-x2㊂在R t әP Q M 中,P M =P Q 2+Q M 2=x 22+(22-x )22=x 2-22x +4=(x -2)2+2ȡ2,当且仅当x =2时等号成立㊂所以S әP B D =12B D ㊃P M ȡ12ˑ2ˑ2=2,即әP B D 面积的最小值为2㊂点评:要求解立体几何中的 动态 问题中对应最值的问题,往往是利用动态问题中的不确定性,借助其中某一元素的变量来合理建立对应的函数关系式,利用函数㊁导数㊁基本不等式等知识来确定相应的最值,从而为确定空间几何体的长度㊁角度㊁表面积㊁体积等的最值问题指明方向,借助代数运算来迁移对应的逻辑推理㊂在实际解决立体几何中的 动态 问题时,经常借助逻辑推理进行推理论证,而当用逻辑推理的定性分析难度比较大或烦琐时,往往可以引进相关的参数,通过构建对应的方程㊁函数或不等式等进行代数定量计算,以算促证,巧妙破解,实现动态问题的代数 静 态转化与应用㊂(责任编辑 王福华)基于平面图形翻折 融入立体几何应用ʏ江苏省高邮中学 杨 欢基于平面图形翻折成立体几何问题,是立体几何应用中的一类重要题型,借助平面图形的翻折,由 二维 上升到 三维 ,进而依托平面图形的一些信息与关系来确定空间图形中的位置关系㊁数量关系等问题㊂具体解题时,要仔细审视由平面图形的 二维空间 翻折成立体图形的 三维空间 这一升维过程中,相应的边㊁角等数量,以及对应的平行㊁垂直等几何特征的变化规律,特别注意相应的点㊁直线㊁平面间的位置关系,以及线段的长度㊁角度的变化等情况,结合具体问题进行逻辑推理与数学运算㊂一、翻折过程中线面关系的判定对于平面图形的翻折,关键是合理构建翻折后的空间几何图形,从中识别对应的空间几何体的结构特征,并确定对应图形的点㊁线㊁面等要素之间的关系,通过合理的平行㊁垂直等关系进行逻辑推理与判定㊂图1例1 如图1,在矩形A B C D 中,满足A B =2A D ,E 是A B 的中点,沿D E 将әA D E 折起到әA 1D E ㊂(1)如果二面角A 1-D E -C 是直二面角,求证:A 1B =A 1C ;(2)如果A 1B =A 1C ,求证:平面A 1D E ʅ平面B C D E ㊂分析:(1)根据题设条件,在平面图形的翻折过程中,通过辅助线的构建,过点A 1作A 1M ʅD E 于点M ,利用线面垂直的转化来确定线线垂直,进而利用线面垂直的判定及线线垂直的转化来证明两线段的长度相等;(2)取BC 的中点为N ,从平面几何图形的结构特征入手,将线线垂直转化为线面垂直,进一步过渡得以证明面面垂直㊂图2解:(1)如图2,过点A 1作A 1M ʅD E 于点M ,则A 1M ʅ平面B C D E ,所以A 1M ʅB C ㊂又A 1D =A 1E ,则M 是D E 的中点㊂取B C 的中点为N ,连接MN ,A 1N ,则MN ʅB C ㊂又A 1M ʅB C ,A 1M ɘMN =M ,所以B C ʅ平面A 1MN ,即A 1N ʅB C ㊂又N 是B C 的中点,所以A 1B =A 1C ㊂(2)取B C 的中点为N ,连接A 1N ,由于A 1B =A 1C ,可得A 1N ʅB C ,取D E 的中点91解题篇 创新题追根溯源 高考数学 2024年2月。

立体几何中的动态问题

立体几何中的动态问题

微专题 核心素养(十四)直观想象与逻辑推理——立体几何中的动态问题1.立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等.2.一般是根据线、面平行,线、面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹(还可以利用空间向量的坐标运算求出动点的轨迹方程).[典例1] 在正方体ABCD ­A 1B 1C 1D 1中,点M ,N 分别是直线CD ,AB 上的动点,点P 是△最小值为π3,则点P 的轨A 1C 1D 内的动点(不包括边界),记直线D 1P 与MN 所成角为θ,若θ的迹是( )A .圆的一部分B .椭圆的一部分C .抛物线的一部分D .双曲线的一部分[解析] 把MN 平移到平面A 1B 1C 1D 1中,直线D 1P 与MN 所成角为θ,直线D 1P 与MN 所成角的最小值是直线D 1P 成角为π3,点P 在平面与平面A 1B 1C 1D 1所成角,即原问题转化为:直线D 1P 与平面A 1B 1C 1D 1所A 1B 1C 1D 1的投影为圆的一部分,因为点P 是△A 1C 1D 内的动点(不包括边界),所以点P 的轨迹是椭圆的一部分.故选B.[答案] B[典例2] (2020·石家庄一模)如图,四棱锥P ­ABCD 的底面是边长为2的正方形,P A ⊥平面ABCD ,且P A =4,M 是PB 上的一个动点(不与P ,B 重合),过点M 作平面α∥平面P AD ,截棱锥所得图形的面积为y ,若平面α与平面P AD 之间的距离为x ,则函数y =f (x )的图象是( )[解析] 过M 作MN ⊥AB ,交AB 于N ,则MN ⊥平面ABCD ,过N 作NQ ∥AD ,交CD 于Q ,过Q 作QH ∥PD ,交PC 于H ,连接MH ,则平面MNQH 是所作的平面α,由题意得2-x 2=MN4,解得MN =4-2x ,由CQ CD =QHPD .即2-x 2=QH 25,解得QH =5(2-x ),过H 作HE ⊥NQ ,在Rt △HEQ 中,EQ =HQ 2-HE 2=2-x , ∴NE =2-(2-x )=x ,∴MH =x . ∴y =f (x )=(x +2)(4-2x )2=-x 2+4(0<x <2).∴函数y =f (x )的图象如图.故选C. [答案] C[典例3] 如图,在棱长为2的正四面体A ­BCD 中,E ,F 分别为直线AB ,CD 上的动点,且|EF |= 3.若记EF 中点P 的轨迹为L ,则|L |等于________(注:|L |表示L 的测度,若L 为曲线、平面图形、空间几何体时,|L |分别对应长度、面积、体积).=3,此时EF 的中点P 在[解析] 如图,当E 为AB 中点时,F 分别在C ,D 处,满足|EF |EC ,ED 的中点P 1,P 2的位置上;当F 为CD 中点时,E 分别在A ,B 处,满足|EF |=3,此时EF 的中点P 在BF ,AF 的中点P 3,P 4的位置上,心为O ,圆的半径为12,则连接P 1P 2,P 3P 4相交于点O ,则四点P 1,P 2,P 3,P 4共圆,圆EF 中点P 的轨迹L 为以O 为圆心,以12为半径的圆,其测度|L |=2π×12=π.[答案] π[典例4] 已知平面ABCD ⊥平面ADEF ,AB ⊥AD ,CD ⊥AD ,且AB =1,AD =CD =2,ADEF 是正方形,在正方形ADEF 内部有一点M ,满足MB ,MC 与平面ADEF 所成的角相等,则点M 的轨迹长度为( )A.43 B .163C.49π D.83π [解析] 根据题意,以D 为原点,分别以DA ,DC ,DE 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系D ­xyz ,如图1所示,则B (2,1,0),C (0,2,0),设M (x,0,z ),易知直线MB ,MC 与平面ADEF 所成的角分别为∠AMB ,∠DMC ,均为锐角,且∠AMB =∠DMC ,所以sin ∠AMB =sin ∠DMC ⇒AB MB =CD MC,即2MB =MC ,因此2(2-x )2+12+z 2=x 2+22+z 2,整理得⎝⎛⎭⎫x -832+z 2=169,由此可得,点M 在正方形ADEF 内的轨迹是以点O ⎝⎛⎭⎫83,0,0为圆心,半径为43的圆弧M 1M 2,如图2所示,易知圆心角∠M 1OM 2=π3,所以l M 1M =π3×43=49π.故选C.[答案] C[课时过关检测]A 级——夯基保分练1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B .3015C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2),D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE=13AB ,则DC 1与平面D 1EC 所成角的正弦值为( ) A.33535B .277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B .23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A ­xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B .56C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1,GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.(多选)(2019·浙江高考改编)设三棱锥V ­ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P ­AC ­B 的平面角为 γ,则α,β,γ大小关系正确的是( )A .α>βB .α=βC .γ>βD.γ≥β解析:选AC 过B 作直线l ∥AC ,过P 作底面ABC 的垂线PD ,D 为垂足,过D 作DF⊥AB 于F ,作DE ⊥l 于E ,连接AD ,BD ,PF ,PE .由题意可知,二面角P ­AC ­B 的大小与二面角P ­AB ­C 的大小相等, 结合空间角的定义知∠PBE =α,∠PBD =β,∠PFD =γ, 在Rt △PEB 与Rt △PDB 中,由PE >PD 得sin α>sin β, ∴α>β(α,β均为锐角).故A 正确,B 错误;在Rt △PDB 与Rt △PDF 中,由PB >PF 得sin β<sin γ,∴γ>β(β,γ均为锐角).故C 正确;由于不存在PB =PF 的可能,故D 错误. 6.(多选)如图,在直三棱柱ABC ­A 1B 1C 1中,AC =BC =AA 1=2,∠ACB =90°,D ,E ,F 分别为AC ,AA 1,AB 的中点.则下列结论正确的是( )A .AC 1与EF 相交B .B 1C 1∥平面DEF C .EF 与AC 1所成的角为90°D .点B 1到平面DEF 的距离为322解析:选BCD 对选项A ,由图知AC 1⊂平面ACC 1A 1,EF ∩平面ACC 1A 1=E ,且E ∉AC 1.由异面直线的定义可知AC 1与EF 异面,故A 错误;对于选项B ,在直三棱柱ABC ­A 1B 1C 1中,B 1C 1∥BC .∵D ,F 分别是AC ,AB 的中点, ∴FD ∥BC ,∴B 1C 1∥FD .又∵B 1C 1⊄平面DEF ,DF ⊂平面DEF , ∴B 1C 1∥平面DEF .故B 正确;对于选项C ,由题意,建立如图所示的空间直角坐标系,则C (0,0,0),A (2,0,0),B (0,2,0),A 1(2,0,2),B 1(0,2,2),C 1(0,0,2),D (1,0,0),E (2,0,1),F (1,1,0). ∴EF ―→=(-1,1,-1),AC 1―→=(-2,0,2). ∵EF ―→·AC 1―→=2+0-2=0,∴EF ―→⊥AC 1―→, ∵EF 与AC 1所成的角为90°.故C 正确;对于选项D ,设向量n =(x ,y ,z )是平面DEF 的一个法向量. ∵DE ―→=(1,0,1),DF ―→=(0,1,0),∴由⎩⎪⎨⎪⎧ n ⊥DE ―→,n ⊥DF ―→,即⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DF ―→=0,得⎩⎪⎨⎪⎧x +z =0,y =0.取x =1,则z =-1,∴n =(1,0,-1), 设点B 1到平面DEF 的距离为d . 又∵DB 1―→=(-1,2,2),∴d =|DB 1―→·n ||n |=|-1+0-2|2=322,∴点B 1到平面DEF 的距离为322,故D 正确.故选B 、C 、D.7.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为________.解析:由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,由于侧面和底面垂直,由面面垂直的性质定理可得,B 到AC 的距离为3,C 到AB 的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4,cos AB 1―→,BC 1―→=AB 1―→·BC 1―→|AB 1―→|·|BC 1―→|=422·4=24,sin 〈AB 1―→,BC 1―→〉=1-⎝⎛⎭⎫242=144.故tanAB 1―→,BC 1―→=7.答案:78.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB=2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0),EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎨⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:29.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE­A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O ­xyz ,由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1),OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1), 则cos 〈m ,n 〉=m·n|m||n|=33.由图知二面角F ­OE ­A 为锐角, 所以二面角F ­OE ­A 的余弦值为33. 答案:3310.(一题两空)如图所示,在四棱锥P ­ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)则直线PB 与平面POC 所成角的余弦值为________; (2)则B 点到平面PCD 的距离为________. 解析:(1)在△P AD 中,P A =PD ,O 为AD 的中点,∴PO ⊥AD .又∵侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,∴PO ⊥平面ABCD . 在△P AD 中,P A ⊥PD ,P A =PD =2,∴AD =2. 在直角梯形ABCD 中,O 为AD 的中点,∴OA =BC =1, ∴OC ⊥AD .以O 为坐标原点,OC 所在直线为x 轴,OD 所在直线为y 轴,OP 所在直线为z 轴建立空间直角坐标系,如图所示,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),∴PB ―→=(1,-1,-1).∵OA ⊥OP ,OA ⊥OC ,OP ∩OC =O ,∴OA ⊥平面POC . ∴OA ―→=(0,-1,0)为平面POC 的法向量, cos 〈PB ―→,OA ―→〉=PB ―→·OA ―→|PB ―→||OA ―→|=33,∴PB 与平面POC 所成角的余弦值为63. (2)∵PB ―→=(1,-1,-1),设平面PCD 的法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP ―→=-x +z =0,u ·PD ―→=y -z =0.取z =1,得u =(1,1,1).则B 点到平面PCD 的距离d =|PB ―→·u ||u |=33.答案:(1)63 (2)3311.(2019·全国卷Ⅱ)如图,长方体ABCD ­A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B ­EC ­C 1的正弦值.解:(1)证明:由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊥平面ABB 1A 1, 故B 1C 1⊥BE .又BE ⊥EC 1,B 1C 1∩EC 1=C 1, 所以BE ⊥平面EB 1C 1.(2)由(1)知⊥BEB 1=90°.由题设知Rt⊥ABE ⊥Rt⊥A 1B 1E ,所以⊥AEB =45°,故AE =AB ,AA 1=2AB . 以D 为坐标原点,DA ―→的方向为x 轴正方向,|DA ―→|为单位长度,建立如图所示的空间直角坐标系D ­xyz , 则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB ―→=(1,0,0),CE ―→=(1,-1,1),CC 1=(0,0,2). 设平面EBC 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧CB ―→·n =0,CE ―→·n =0,即⎩⎪⎨⎪⎧x 1=0,x 1-y 1+z 1=0,所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 2,y 2,z 2),则⎩⎨⎧CC 1·m =0,CE ―→·m =0,即⎩⎪⎨⎪⎧2z 2=0,x 2-y 2+z 2=0, 所以可取m =(1,1,0). 于是cos n ,m=n ·m |n ||m |=-12. 所以二面角B ­EC ­C 1的正弦值为32. 12.[创新题型]如图,四棱锥P ­ABCD 的底面是平行四边形,且PD ⊥AB . (1)从下列两个条件中任选一个条件证明:AB ⊥平面P AD . ①O 是AD 的中点,且BO =CO ;②AC =BD .(2)在(1)条件下,若AD =2AB =4,P A =PD ,点M 在侧棱PD 上,且PD =3MD ,二面角P ­BC ­D 的大小为π4,求直线BP 与平面MAC 所成角的正弦值.解:(1)证明:选择条件②∵四边形ABCD 为平行四边形,且AC =BD , ∴四边形ABCD 为矩形,AB ⊥AD .又∵AB ⊥PD ,且AD ∩PD =D ,故AB ⊥平面P AD . 选择条件①在平行四边形ABCD 中,设N 是BC 的中点,连接ON ,如图,因为O 是AD 的中点,所以AB ∥ON .又BO =CO ,所以ON ⊥BC .所以AB ⊥BC ,又在平行四边形ABCD 中,BC ∥AD ,所以AB ⊥AD .又AB ⊥PD ,且PD ∩AD =D ,AD ⊂平面P AD ,PD ⊂平面P AD ,故AB ⊥平面P AD .(2)由(1)知AB ⊥平面P AD ,又AB ⊂平面ABCD , 于是平面P AD ⊥平面ABCD ,连接PO ,PN ,由P A =PD ,可得PO ⊥AD ,则PO ⊥BC ,又ON ⊥BC ,PO ∩NO =O ,所以BC ⊥平面PNO ,所以PN ⊥BC , 故二面角P ­BC ­D 的平面角为∠PNO ,则∠PNO =π4.由此得PO =AB =2.以O 为坐标原点,ON ,OD ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (0,-2,0),B (2,-2,0),C (2,2,0),P (0,0,2),由PD =3MD 可得M ⎝⎛⎭⎫0,43,23, 所以AC ―→=(2,4,0),AM ―→=⎝⎛⎭⎫0,103,23,BP ―→=(-2,2,2). 设平面MAC 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·AC ―→=0,n ·AM ―→=0⇒⎩⎪⎨⎪⎧ 2x +4y =0,10y +2z =0,令y =1,得⎩⎪⎨⎪⎧x =-2,z =-5,所以n =(-2,1,-5)为平面MAC 的一个法向量. 设直线BP 与平面MAC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪BP ―→·n |BP―→|·|n |=|4+2-10|23·30=1015, 故直线BP 与平面MAC 所成角的正弦值为1015. B 级——提能综合练13.(2018·全国卷Ⅱ改编)在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1夹角的余弦值为( )A.15 B .56C.55D.22解析:选C 法一:以D 为坐标原点,DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1―→=(-1,0,3),DB 1―→=(1,1,3),设异面直线AD 1与DB 1的夹角为α,则cos α=cos 〈AD 1―→,DB 1―→〉=⎪⎪⎪⎪⎪⎪-1+31+3·1+1+3=55. 法二:如图,连接A 1D 交AD 1于点E .取A 1B 1中点F ,连接EF ,则EF 綊12B 1D ,连接D 1F ,在△D 1FE 中,∠D 1EF 为异面直线AD 1与DB 1的夹角.由已知EF =12DB 1=1212+12+(3)2=52, D 1E =12AD 1=1,D 1F =12+⎝⎛⎭⎫122=52,所以cos ∠D 1EF =EF 2+ED 21-D 1F 22EF ·ED 1=55. 14.如图,在棱长为2的正方体ABCD ­A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为________.解析:如图,过E 作EE 1⊥B 1C 1于E 1,连接D 1E 1,过P 作PQ ⊥D 1E 1于Q ,在同一个平面EE 1D 1内,EE 1⊥E 1D 1,PQ ⊥D 1E 1,所以PQ ∥EE 1,又因为CC 1∥EE 1,所以CC 1∥PQ ,因为CC 1⊥平面A 1B 1C 1D 1,所以点P 到CC 1的距离就是QC 1的长度,所以当且仅当C 1Q ⊥D 1E 1时,所求的距离最小值为C 1Q =C 1D 1·C 1E 1D 1E 1=2×15=255. 答案:25515.已知在四棱锥P ­ABCD 中,平面PDC ⊥平面ABCD ,AD ⊥DC ,AB ∥CD ,AB =2,DC =4,E 为PC 的中点,PD =PC ,BC =2 2.(1)求证:BE ∥平面P AD ;(2)若PB 与平面ABCD 所成角为45°,点P 在平面ABCD 上的射影为O ,问:BC 上是否存在一点F ,使平面POF 与平面P AB 所成的角为60°?若存在,试求点F 的位置;若不存在,请说明理由.EH =12CD , 解:(1)证明:取PD 的中点H ,连接AH ,EH ,则EH ∥CD ,又AB ∥CD ,AB =12CD =2, ∴EH ∥AB ,且EH =AB ,∴四边形ABEH 为平行四边形,故BE ∥HA .又BE ⊄平面P AD ,HA ⊂平面P AD ,∴BE ∥平面P AD .(2)存在,点F 为BC 的中点.理由:∵平面PDC ⊥平面ABCD ,PD =PC ,作PO ⊥DC ,交DC 于点O ,连接OB ,可知O 为点P 在平面ABCD 上的射影,则∠PBO =45°.由题可知OB ,OC ,OP 两两垂直,以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系O ­xyz ,由题知OC =2,BC =22,∴OB =2,由∠PBO =45°,可知OP =OB =2,∴P (0,0,2),A (2,-2,0),B (2,0,0),C (0,2,0).设F (x ,y ,z ),BF ―→=λBC ―→,则(x -2,y ,z )=λ(-2,2,0),解得x =2-2λ,y =2λ,z =0,可知F (2-2λ,2λ,0),设平面P AB 的一个法向量为m =(x 1,y 1,z 1),∵P A ―→=(2,-2,-2),AB ―→=(0,2,0),∴⎩⎪⎨⎪⎧ m ·P A ―→=0,m ·AB ―→=0,得⎩⎪⎨⎪⎧2x 1-2y 1-2z 1=0,2y 1=0, 令z 1=1,得m =(1,0,1).设平面POF 的一个法向量为n =(x 2,y 2,z 2),∵OP ―→=(0,0,2),OF ―→=(2-2λ,2λ,0),∴⎩⎪⎨⎪⎧ n ·OP ―→=0,n ·OF ―→=0,得⎩⎪⎨⎪⎧2z 2=0,(2-2λ)x 2+2λy 2=0, 令y 2=1,得n =⎝⎛⎭⎫λλ-1,1,0. ∴cos 60°=|m ·n ||m ||n |=⎪⎪⎪⎪λλ-11+1·⎝⎛⎭⎫λλ-12+1, 解得λ=12, 可知当F 为BC 的中点时,两平面所成的角为60°.C 级——拔高创新练AB =3,BC =2AD =16.已知四棱锥P ­ABCD 的底面ABCD 是直角梯形,AD ∥BC ,AB ⊥BC ,2,E 为CD 的中点,PB ⊥AE .(1)证明:平面PBD ⊥平面ABCD ;(2)若PB =PD ,PC 与平面ABCD 所成的角为π4,试问“在侧面PCD 内是否存在一点N ,使得BN ⊥平面PCD ?”若存在,求出点N 到平面ABCD 的距离;若不存在,请说明理由.解:(1)证明:由四边形ABCD 是直角梯形,AB =3,BC =2AD =2,AB ⊥BC ,可得DC =2,∠BCD =π3,从而△BCD 是等边三角形,BD =2,BD 平分∠ADC .∵E 为CD 的中点,∴DE =AD =1,∴BD ⊥AE ,又∵PB ⊥AE ,PB ∩BD =B ,∴AE ⊥平面PBD .又∵AE ⊂平面ABCD ,∴平面PBD ⊥平面ABCD .(2)在平面PBD 内作PO ⊥BD 于O ,连接OC ,又∵平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD =BD ,∴PO ⊥平面ABCD .∴∠PCO 为PC 与平面ABCD 所成的角,则∠PCO =π4, ∴由题意得OP =OC =3,∵PB =PD ,PO ⊥BD ,∴O 为BD 的中点,∴OC ⊥BD .以OB ,OC ,OP 所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),C (0,3,0),D (-1,0,0),P (0,0,3),假设在侧面PCD 内存在点N ,使得BN ⊥平面PCD 成立,设PN ―→=λPD ―→+μPC ―→(λ,μ≥0,λ+μ≤1),由题意得N (-λ,3μ,-3(λ+μ-1)),BN ―→=(-λ-1,3μ,-3(λ+μ-1)),PC ―→=(0,3,-3),PD ―→=(-1,0,-3),由⎩⎪⎨⎪⎧ BN ―→·PC ―→=0,BN ―→·PD ―→=0得⎩⎪⎨⎪⎧3μ+3(λ+μ-1)=0,λ+1+3(λ+μ-1)=0, 解得λ=15,μ=25,满足题意,∴N 点到平面ABCD 的距离为-3(λ+μ-1)=235.。

高考数学专题四立体几何 微专题29 立体几何中的动态问题

高考数学专题四立体几何 微专题29 立体几何中的动态问题
形的面积为2π
√C.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线 √D.若D1N与AB所成的角为 π3,则点N的轨迹为双曲线
如图所示,对于A, 根据正方体的性质可知,MD⊥平面ABCD, 所以∠MND为MN与平面ABCD所成的角, 所以∠MND=4π,所以 DN=DM=12DD1=12×4=2, 所以点N的轨迹是以D为圆心,2为半径的圆,故A正确;
思维导图
内容索引
典型例题
热点突破
PART ONE
典型例题
考点一 动点的轨迹
典例1 (1)(多选)已知正方体ABCD-A1B1C1D1 的棱长为4,M为DD1的中点,N为四边形ABCD 所在平面上一动点,则下列命题正确的是
√A.若MN与平面ABCD所成的角为 π4,则点N的
轨迹为圆
B.若MN=4,则MN的中点P的轨迹所围成图
当 B 是 AC 的中点时,AB=BC= 6,
此时△SAB为等腰三角形,△ABC为等腰直角三角形,
将△SAB,△ABC沿AB展开至同一个平面,得到如
图2所示的平面图形,
取AB的中点D,连接SC,SD,CD,
则 SD=
22-
262=
210,
所以 sin ∠ABS=SSDB= 410, 所以 cos∠CBS=cos(90°+∠ABS)=-sin∠ABS=- 410,
此时点B与点Q重合,点P与点O1重合,故C正确;
对于D,当点P与点B1,点Q与点A重合时,
AP+PQ+QB1 的值为 3AP=3 12+22=3 5>2 3+ 5,故 D 错误.
考点二 折叠、展开问题
典例2 (多选)如图,在矩形ABCD中,M为BC的中点,将△ABM沿直线 AM翻折成△AB1M,连接B1D,N为B1D的中点,则在翻折过程中,下列 说法正确的是 A.存在某个位置,使得CN⊥AB1

立体几何之平面的性质 空间的两直线学案

立体几何之平面的性质 空间的两直线学案

§9.1平面的性质 空间的两直线知识要点平面基本性质的三条公理、三条推论,异面直线的概念。

基础训练1.给出下列四个命题①空间四点不共面,则其中任何三点不共线;②空间四点连成空间四边形,则这四点必不共面;③空间四点中有三点共线,则这四点必共面;④空间四点无任何三点共线,则这四点不共面,其中不正确的命题有 ( ) A .0个 B .1个 C .2个 D .3个2.两条直线的位置关系有 ( ) A .共面、异面、共点、不共点 B .相交、平行、异面、重合 C .平行、异面、相交、垂直 D .相交、平行、异面3.两条异面直线指的是 ( ) A .在空间不相交的两条直线 B .某平面内的一条直线和这个平面外的一条直线 C .分别位于两个不同平面内的两条直线 D .不同在任何一个平面内的两条直线 4.两两相交的四条直线可确定的平面的个数最多是_______个。

5.一个平面可把空间分成______个部分,两个平面可把空间分成_________个部分,三个平面可把空 间分成___________________个部分。

典型例题【例1】如图,空间四边形ABCD ,E 、F 、G 、H 为所在边上的点,且EH ∩FG=P ,求证:P 点在直线BD 上。

【例2】若互相平行的n 条直线l 1,l 2,…l n 都与直线l 相交,求证:l 1,l 2,…l n ,l 必共面。

【例3】已知△ABC 在平面α外,它的三边所在直线分别交α于P 、Q 、R ,求证:P 、Q 、R 三点共线。

归纳小结1.证明共面、共点、共线的基本方法是:共面——先由有关元素确定一个基本平面,再证其它的点(或线)在这个平面内(或分别过某些点、线确定若干个平面,再证这些平面重合);共点——先确定一个基本点,再证有关的直线通过该点;共线——先考虑两个平面的交线,再证有关的点都是这两个平面的公共点。

论证过程都要注意严密性与逻辑性。

2.证明两条直线异面,通常都使用反证法和定理——平面的一条斜线和平面内不过斜足的直线是异面直线A B A l E F G H P A BCQPRα· 《立体几何》练习一一、选择题:1.一条直线和这条直线外不共线的三个点能够确定的平面的个数是 ( ) A .1或3 B .4 C .1或3或4 D .32.异面直线a,b 分别在平面α和平面β上,α∩β=c ,则直线c ( ) A .与a,b 都相交 B .至多与a,b 中的一条相交 C .与a,b 都不相交 D .至少与a,b 中的一条相交 3.已知点P 、Q ∈平面α,点M ∈平面β,α∩β=l ,直线PQ ∩l =R ,过P 、Q 、M 的平面为γ,则β∩γ是直线 ( ) A .PM B .QM C .RM D .PQ4.直线a,b 与异面直线c,d 都相交,则a,b,c,d 四条直线可确定的平面的个数为 ( ) A .2个 B .3个 C .4个 D .3个或4个 二、填空题:5.四条直线顺次首尾相接,它们所在的直线最多可确定平面的个数是_______个。

高三一轮复习 立体几何全章 练习(9套)+易错题+答案

高三一轮复习 立体几何全章 练习(9套)+易错题+答案

第九章立体几何与空间向量第1节简单几何体的结构、三视图和直观图一、选择题1.如图是由哪个平面图形旋转得到的( A )解析:根据面动成体的原理即可解,一个直角三角形绕直角边旋转一周可以得到一个圆锥.一个直角梯形绕着直角腰旋转一周得到圆台.该几何体的上部分是圆锥,下部分是圆台,圆锥的轴截面是直角三角形,圆台的轴截面是直角梯形,所以这个几何图形是由直角三角形和直角梯形围绕直角边所在的直线为轴旋转一周得到.故选A.2.已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4, AB⊥AC,AA1=12,则球O的半径为( C )(A) (B)2 (C) (D)3解析:构建长方体的棱长分别为3,4,12.体对角线长为=13,外接球的半径为,故选C.3.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为( B )(A)8 (B)(C)(D)解析:若以4作为圆柱的高、2作为底面圆的周长,则圆柱轴截面面积为;若以2作为圆柱的高、4作为底面圆的周长,则圆柱轴截面面积为,所以此圆柱轴截面面积为.故选B.4.正四棱锥S-ABCD的底面边长为4,高SE=8,则过点A,B,C,D,S的球的半径为( C )(A)3 (B)4 (C)5 (D)6解析:由正四棱锥及其外接球的对称性,球心O在正四棱锥的高线SE上,球半径R=OS=OB,EB=BD=4.所以在直角三角形OEB中,由勾股定理得,(8-R)2+42=R2,解得R=5,故选C.5.三棱锥P-ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为( B )(A)16 (B)(C)(D)32解析:因为PA,PB,PC两两垂直,又因为三棱锥P-ABC的四个顶点均在半径为1的球面上,所以以PA,PB,PC为棱的长方体的对角线即为球的一条直径.所以16=PA2+PB2+PC2,因为PA=2PB,则这个三棱锥的三个侧棱长的和PA+PB+PC=3PB+PC,因为5PB2+PC2=16,设PB=4cos α,PC=4sin α,则3PB+PC=cos α+4sin α=sin(α+φ)≤=. 可知其最大值为,选B.6.已知一个四面体其中五条棱的长分别为1,1,1,1,,则此四面体体积的最大值是( B )(A) (B) (C) (D)解析:设四面体为P-ABC,则设PC=X,AB=,其余的各边为1,那么取AB 的中点D,那么连接PD,因此可知,AB垂直于平面PCD,则棱锥的体积可以运用以PCD为底面,高为AD,BD的两个三棱锥体积的和来表示,因此只要求解底面积的最大值即可.由于PD=CD=,那么可知三角形PDC的面积越大,体积越大,可知S△PDC=××sin θ≤=,也就是当PD垂直于CD时,面积最大,因此可得四面体的体积的最大值为××=,选B.二、填空题7.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为.解析:因为圆柱的侧面展开图是边长为6π和4π的矩形,①若6π=2πr,r=3,所以圆柱的表面积为4π×6π+2×πr2=24π2+18π;②若4π=2πr,r=2,所以圆柱的表面积为4π×6π+2×πr2=24π2+8π.答案:24π2+8π或24π2+18π8.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.解析:设球的半径为r,则V圆柱=πr2×2r=2πr3,V圆锥=πr2×2r=,V球=πr3,所以V圆柱∶V圆锥∶V球=2πr3∶∶πr3=3∶1∶2.答案:3∶1∶29.将4个半径都是R的球体完全装入底面半径是2R的圆柱形桶中,则桶的最小高度是.解析:由题意知,小球要分两层放置且每层两个,令下层两小球的球心分别是A,B,上层两小球的球心分别是C,D.此时,圆柱底面的半径=两小球半径的和,恰好使小球相外切,且与圆柱母线相切.圆柱的高=上层小球的上方半径+AB与CD间的距离+下层小球的下方半径=2R+AB与CD间的距离.令AB,CD的中点分别为E,F.很明显,四面体ABCD每条棱的长都是2R,容易求出:EC=ED,FA=FB,由EC=ED,CF=DF,得EF⊥CD.由FA=FB,AE=BE,得EF⊥AB.所以EF是AB与CD间的距离,所以圆柱的高=2R+EF.由勾股定理,有CE2+AE2=AC2,CE2=EF2+CF2.两式相减,消去CE,得AE2=AC2-EF2-CF2,所以EF2=AC2-AE2-CF2=(2R)2-R2-R2=2R2,所以EF=R.所以圆柱的高=2r+R=(2+)R.答案:(2+)R10.一个圆锥有三条母线两两垂直,则它的侧面展开图的圆心角大小为.解析:设母线长为l,因圆锥有三条母线两两垂直,则这三条母线可以构成以它们为侧棱、以底面边长为l的正三角形的正三棱锥,故由正弦定理得,圆锥的底面直径2R=,解得R=,因此可知侧面展开图的圆心角大小为π.答案:π11.若圆锥的侧面展开图是圆心角为180°,半径为4的扇形,则这个圆锥的表面积是.解析:因为圆锥的侧面展开图是圆心角为180°,母线长等于4,半径为4的扇形,则这个圆锥的表面积是底面积加上侧面积,扇形面积加上底面面积的和为12π.答案:12π12.若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是.解析:从长方体的一条对角线的一个端点A出发,沿表面运动到另一个端点B,有三种方案,如图是它们的三种部分侧面展开图,AB路程可能是:最短路程是.答案:三、解答题13.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,求a+b的最大值.解:如图,把几何体放到长方体中,使得长方体的体对角线刚好为几何体的已知棱,则长方体的体对角线A 1C=,则它的正视图投影长为A 1B=,侧视图投影长为A1D=a,俯视图投影长为A1C1=b,则a2+b2+()2=2·()2,即a2+b2=8,又≤,当且仅当“a=b=2”时等号成立.所以a+b≤4,即a+b的最大值为4.14.某几何体的三视图如图所示.(1)判断该几何体是什么几何体?(2)画出该几何体的直观图.解:(1)该几何体是一个正方体切掉两个圆柱后得到的几何体.(2)直观图如图所示.15.已知正三棱锥V-ABC的正视图和俯视图如图所示.(1)画出该正三棱锥的侧视图和直观图;(2)求出侧视图的面积.解:(1)如图.(2)侧视图中V A===2,则S △VBC=×2×2=6.第2节简单几何体的表面积与体积一、选择题1.如图所示是一个几何体的三视图,则该几何体的体积为( B )(A)16+2π(B)8+2π(C)16+π (D)8+π解析:由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此V=1×2×4+π×12×2=8+2π.故选B.2.一个三条侧棱两两互相垂直并且侧棱长都为a的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( B )(A)πa2(B)3πa2(C)6πa2(D)πa2解析:由题可知该三棱锥为一个棱长a的正方体的一角,则该三棱锥与该正方体有相同的外接球,又正方体的对角线长为a,则球半径为a,则S=4πr2=4π(a)2=3πa2.故选B.3.一个棱长都为a的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( A )(A)πa2(B)2πa2(C)πa2(D)πa2解析:如图,设O1,O2为棱柱两底面的中心,球心O为O1O2的中点.又直三棱柱的棱长为a,可知OO1=a,AO1=a,所以R2=OA2=O+A=,因此该直三棱柱外接球的表面积为S=4πR2=4π×=πa2,故选A.4.某几何体的三视图如图所示,则该几何体的体积为( D )(A) (B)2 (C) (D)解析:由三视图可知,该几何体的直观图为一个竖立的圆锥和一个倒立的圆锥组成,其体积为V=2×π×12×1=,选D.5.某四棱锥的三视图如图所示,则该四棱锥的体积是( C )(A)5 (B)2 (C) (D)解析:由三视图知,该四棱锥的底面是直角梯形,上底长为2,下底长为3,高为,四棱锥的高为h=2,故该四棱锥的底面积S=(2+3)×=,所以该四棱锥的体积V=Sh=××2=.6.已知边长为2的菱形ABCD中,∠A=60°,现沿对角线BD折起,使得二面角A BD C为120°,此时点A,B,C,D在同一个球面上,则该球的表面积为( C )(A)20π(B)24π(C)28π(D)32π解析:如图,分别取BD,AC的中点M,N,连接MN,则容易算得AM=CM=3,MN=,MD=,CN=,由图形的对称性可知球心必在MN的延长线上,设球心为O,半径为R,ON=x,则由题设可得解得x=,则R2=+=7,所以球面面积S=4πR2=28π,故选C.二、填空题7.一个圆柱的轴截面为正方形,则与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为.解析:令正方形的边长为a,则圆柱的侧面积S1=2π××a=πa2,与它同底等高的圆锥的侧面积S2=πrl=π××a=,则与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为.答案:8.球O与直三棱柱ABC-A1B1C1的各个面都相切,若三棱柱的表面积为27,△ABC的周长为6,则球的表面积为.解析:设内切球半径为r,那么直三棱柱的底面内切圆半径为r,棱柱的高为2r,由等面积法,则直三棱柱底面面积S 底=r×6=3r,由等体积法,V三棱柱=S底·2r=r·27,所以9r=6r2,解得r=.其表面积为4π×()2=3π.答案:3π9.已知母线长为6,底面半径为3的圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,则球的体积是 .解析:取圆锥的轴截面,则截面是边长为6的正三角形,正三角形的内切圆的圆心即为球心,R=6××,所以R=,所以V=πR3=4π.答案:4π10.棱长为a的正方体ABCD A 1B1C1D1的8个顶点都在球O的表面上,E,F 分别是棱AA1,DD1的中点,则过E,F两点的直线被球O截得的线段长为.解析:设过E,F两点的直线与球O交于M,N,所以△OMN,△OEF均为等腰直角三角形,所以OM=ON=R=a,点O到EF的距离为棱长一半,所以|MN|=2= a.答案: a11.四棱锥P-ABCD的各顶点都在同一球面上,且矩形ABCD的各顶点都在同一个大圆上,球半径为R,则此四棱锥的体积的最大值为.解析:点P到平面ABCD的最大距离为R,设矩形ABCD的长宽分别为x,y,则x2+y2=4R2,四棱锥P ABCD的体积V=xyR≤×=R3,当且仅当x=y=R时,V max=R3.答案:R312.设正四面体ABCD的棱长为a,P是棱AB上的任意一点,且P到平面ACD,BCD的距离分别为d1,d2,则d1+d2= .解析:根据题意,由于正四面体ABCD的棱长为a,各个面的面积为a2,高为a,所以V=×a2×a=×a2×(d1+d2),所以d1+d2= a.答案: a三、解答题13.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥加一个圆柱组成的,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=(2πa)·(a)=πa2,S圆柱侧=(2πa)·(2a)=4πa2,S圆柱底=πa2,所以S 表=πa2+4πa2+πa2=(+5)πa2.(2)沿P点所在母线剪开圆柱侧面,如图.则PQ===a,所以从P点到Q点在侧面上的最短路径长为a.14.如图,四棱锥P ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体NBCM的体积.(1)证明:由已知得AM=AD=2.如图,取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.所以AM=TN,又AD∥BC,故TN AM,所以四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)解:因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.取BC的中点E,连接AE.由AB=AC=3得AE⊥BC,AE==.由AM∥BC得M到BC的距离为,故S △BCM=×4×=2.所以四面体NBCM的体积V N-BCM=×S△BCM×=.15.如图所示,在空间几何体ADE BCF中,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是线段AE上的动点.(1)试确定点M的位置,使AC∥平面MDF,并说明理由;(2)在(1)的条件下,平面MDF将几何体ADE-BCF分成两部分,求空间几何体M-DEF与空间几何体ADM BCF的体积之比.解:(1)当M是线段AE的中点时,AC∥平面MDF.理由如下:连接CE交DF于点N,连接MN.因为M,N分别是AE,CE的中点,所以MN∥AC.又因为MN⊂平面MDF,AC⊄平面MDF,所以AC∥平面MDF.(2)将几何体ADE-BCF补成三棱柱ADE-B′CF,如图所示,三棱柱ADE-B′CF的体积为V=S△ADE·CD=×2×2×4=8,则几何体ADE-BCF的体积=-=8-×(×2×2)×2=.因为三棱锥M-DEF的体积=×(×2×4)×1=,所以=-=,所以两几何体的体积之比为∶=1∶4.第3节空间图形的基本关系与公理一、选择题1.设m,n是两条不同的直线,α,β是两个不同的平面( C )(A)若m∥α,n∥α,则m∥n(B)若m∥α,m∥β,则α∥β(C)若m∥n,m⊥α,则n⊥α(D)若m∥α,α⊥β,则m⊥β解析:设直线a⊂α,b⊂α,a∩b=A,因为m⊥α,所以m⊥a,m⊥b.又n∥m,所以n⊥a,n⊥b,所以n⊥α.故选C.2.下列命题中,错误的是( D )(A)平行于同一平面的两个不同平面平行(B)一条直线与两个平行平面中的一个相交,则必与另一个平面相交(C)如果两个平面不垂直,那么其中一个平面内一定不存在直线与另一个平面垂直(D)若直线不平行于平面,则此直线与这个平面内的直线都不平行解析:当直线l在平面α内,即l⊂α时,直线l不平行于平面α,但平面α内存在直线与直线l平行,可知D选项错误,故选D.3.下列四个命题:①若一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( D )(A)①和②(B)②和③(C)③和④(D)②和④解析:①显然错误,因为这两条直线相交才满足条件;②成立;③错误,这两条直线可能平行、相交,也可能异面;④成立,用反证法容易证明.故选D.4.若α,β是两个相交平面,则在下列命题中,真命题的序号为( C )①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线;②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直;③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线;④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.(A)①③(B)②③(C)②④(D)①④解析:若α⊥β且直线m⊥α,则在平面β内,一定存在与直线m平行的直线,所以①错误;若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直,故②正确;若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线,故③错误,④正确,故选C.5.设不在同一条直线上的A,B,C三点到平面α的距离相等,且A∉α,则( B )(A)α∥平面ABC(B)△ABC中至少有一条边平行于α(C)△ABC中至多有两条边平行于α(D)△ABC中只可能有一条边平行于α解析:因为A∉α,所以A,B,C均不在平面α内.当A,B,C三点在平面α的同侧时,α∥平面ABC,此时△ABC的三条边都平行于α,排除C,D;当A,B,C三点不在平面α的同侧时,易知△ABC中只有一条边平行于α,此时平面α和平面ABC相交,故选B.6.若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的( B )(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:因为l⊥m,m⊥α,所以l∥α或l⊂α.故充分性不成立.若l∥α,m⊥α,一定有l⊥m.故必要性成立.选B.二、填空题7.长方体ABCD-A1B1C1D1的底面是边长为1的正方形,点E在侧棱AA1上(不与A,A1重合),满足∠C1EB=90°,则异面直线BE与C1B1所成的角为,侧棱AA1的长的最小值为.解析:在长方体ABCD-A1B1C1D1中,CB⊥平面ABB1A1,所以∠CBE=90°,又C1B1∥BC,所以异面直线BE与C1B1所成的角为90°.连接BC1,设AA1=x,AE=m(m>0),则有BE2=1+m2,C1E2=(x-m)2+2,C1B2=1+x2,因为∠C1EB=90°,所以C1B2=C1E2+BE2,即1+x2=(x-m)2+2+1+m2,即m2-mx+1=0,所以x=m+≥2,当且仅当m=,即m=1时,“=”成立.答案:90° 28.四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A1-BCD,使平面A1BD⊥平面BCD,给出下列结论:(1)A1C⊥BD;(2)∠BA1C=90°;(3)四面体A1-BCD的体积为.其中正确的命题是.(把所有正确命题的序号都填上) 解析:若A1C⊥BD,因为BD⊥CD,A1C∩CD=C,所以BD⊥平面A1CD,所以BD⊥A1D.而由A 1B=AB=1,A1D=AD=1,BD=,得A1B⊥A1D,与BD⊥A1D矛盾,故(1)错.因为CD⊥BD,平面BCD⊥平面A1BD,所以CD⊥平面A1BD,则CD⊥A1B.又A1B⊥A1D,A1D∩CD=D,所以A1B⊥平面A1CD,则A1B⊥A1C,故(2)正确.由(2)知==×·A1D·DC·A1B=,故(3)错.答案:(2)9.在正方体ABCD A 1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有条.解析:在A1D1上任取一点P,过点P与直线EF作一个平面α,因为CD 与平面α不平行,所以它们相交,设α∩CD=Q,连接PQ,则PQ与EF必然相交.由点P的任意性,知有无数条直线与A1D1,EF,CD都相交.答案:无数10.如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形.∠ACB =90°,AC=6,BC=CC 1=,P是BC1上一动点,则CP+PA1的最小值为.解析:连接A1B,将△A1BC1与△CBC1同时展开形成一个平面四边形A1BCC1,则此时对角线CP+PA1=A1C达到最小,在等腰直角三角形△BCC1中,BC1=2,∠CC1B=45°,在△A 1BC1中,A1B==2,A1C1=6,BC1=2,所以A1+B=A1B2,即∠A1C1B=90°.对于展开形成的四边形A1BCC1,如图,在△A 1C1C中,C1C=,A1C1=6,∠A1C1C=135°,由余弦定理有,CP+PA 1=A1C===5.答案:511. 如图,三棱锥A BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.因为M为AD的中点,所以MK∥AN,所以∠KMC为异面直线AN,CM所成的角.因为AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理求得AN=DN=CM=2,所以MK=.在Rt△CKN中,CK==.在△CKM中,由余弦定理,得cos∠KMC===.答案:12.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE 翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是.①BM是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.解析:取DC中点F,连接MF,BF,MF∥A1D且MF=A1D,FB∥ED且FB=ED,所以∠MFB=∠A1DE.由余弦定理可得MB2=MF2+FB2-2MF·FB·cos∠MFB 是定值,所以M是在以B为圆心,MB为半径的球上,可得①②正确;由MF∥A1D与FB∥ED可得平面MBF∥平面A1DE,可得④正确;A1C在平面ABCD中的投影与AC重合,AC与DE不垂直,可得③不正确.答案:③三、解答题13.如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.解:如图所示,取AC的中点F,连接EF,BF,在△ACD中,E,F分别是AD,AC的中点,所以EF∥CD.所以∠BEF或其补角即为异面直线BE与CD所成的角.在Rt△EAB中,AB=AC=1,AE=AD=,所以BE=.在Rt△EAF中,AF=AC=,AE=,所以EF=.在Rt△BAF中,AB=1,AF=,所以BF=.在等腰三角形EBF中,cos∠FEB===.所以异面直线BE与CD所成角的余弦值为.14.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明:(1)如图所示,因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体ABCD-A1B1C1D1中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面.即D,B,F,E四点共面.(2)在正方体ABCD-A1B1C1D1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β.则Q是α与β的公共点,同理,P点也是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,则R∈α且∈β.则R∈PQ,故P,Q,R三点共线.15.在长方体ABCD A 1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上.(1)过P点在空间内作一条直线l,使l∥直线BD,应该如何作图?并说明理由;(2)过P点在平面A1C1内作一条直线m,使m与直线BD成α角,其中α∈(0°,90°],这样的直线有几条,应该如何作图?解:(1)连接B1D1,BD,在平面A1C1内过P点作直线l,使l∥直线B1D1,则l即为所求作的直线.因为直线B1D1∥直线BD,l∥直线B1D1,所以l∥直线BD.如图(1).(2)在平面A1C1内作直线m,使直线m与B1D1相交成α角,因为BD∥B1D1,所以直线m与直线BD也成α角,即直线m为所求作的直线,如图(2).由图(2)知m与BD是异面直线,且m与BD所成的角α∈(0,90°].当α=90°时,这样的直线m有且只有一条,当α≠90°时,这样的直线m 有两条.第4节直线、平面平行的判定与性质一、选择题1.若直线l∥平面α,直线a⊂平面α,则l与a的位置关系是( D )(A)l∥a (B)l与a异面(C)l与a相交 (D)l与a没有公共点解析:因为直线平行于平面,那么l与平面内的任何一条直线都没有公共点,因此l与a的位置关系是没有公共点,选D.2.下列条件能推出平面α∥平面β的是( D )(A)存在一条直线a,a∥α,a∥β(B)存在一条直线a,a⊂α,a∥β(C)存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α(D)存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:因为根据面面平行的判定定理可知,如果存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,则可以利用线线平行得到面面平行,选D.3.已知直线l,m,平面α,β,则下列命题中:①若α∥β,l⊂α,则l∥β②若α⊥β,l⊥α,则l∥β③若l∥α,m⊂α,则l∥m④若α⊥β,α∩β=l,m⊥l,则m⊥β,其中真命题有( B )(A)0个(B)1个(C)2个(D)3个解析:当两个平面平行时,一个平面上的线与另一个平面平行,故①正确;一条直线垂直于两个垂直平面中的一个平面,那么这条直线平行于或包含于另一个平面,故②不正确;④不正确;③中l,m的关系是不相交,故③不正确,故选B.4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( B )(A)①③(B)①④(C)②③(D)②④解析:对图①,构造AB所在的平面,即对角面,可以证明这个对角面与平面MNP平行,由线面平行的定义可得AB∥平面MNP;对图④,通过证明AB∥PN得到AB∥平面MNP;对于②,证MP中点为K,延长BA,KN则相交,所以BA与平面MNP相交,②错;对于③平面MNP与直线AB相交于点B,③错.故选B.5.类比平面几何中的定理“设a,b,c是三条直线,若a⊥c,b⊥c,则a∥b”,得出如下结论:①设a,b,c是空间的三条直线,若a⊥c,b⊥c,则a∥b;②设a,b是两条直线,α是平面,若a⊥α,b⊥α,则a∥b;③设α,β是两个平面,m是直线,若m⊥α,m⊥β,则α∥β;④设α,β,γ是三个平面,若α⊥γ,β⊥γ,则α∥β.其中正确命题的个数是( B )(A)1 (B)2 (C)3 (D)4解析:①错;②垂直于同一个平面的两条直线平行,正确;③垂直于同一条直线的两个平面平行,正确;④错;两个平面也可能相交.6.在空间中,下列命题正确的是( D )(A)平面α内的一条直线a垂直于平面β内的无数条直线,则α⊥β(B)若直线m与平面α内的一条直线平行,则m∥α(C)若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面β(D)若直线a与平面α内的无数条直线都垂直,则不能说一定有a⊥α解析:直线a与平面α内的任意直线都垂直,则有a⊥α,所以D正确.二、填空题7.点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB的中点,则EF= .解析:取BC的中点D,连接ED与FD,因为E,F分别是SC和AB的中点,点D为BC的中点所以ED∥SB,FD∥AC,而SB⊥AC,SB=AC=2,则三角形EDF为等腰直角三角形,则ED=FD=1,即EF=.答案:8.正四棱锥S ABCD的底面边长为2,高为2,E是边BC的中点,动点P 在这个棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为.解析:由题意知,点P的轨迹为如图所示的三角形EFG,其中G,F为其所在棱的中点,所以EF=BD=,GE=GF=SB=,所以轨迹的周长为+.答案:+9.将边长为2,一个内角为60°的菱形ABCD沿较短对角线BD折成四面体ABCD,点E,F分别为AC,BD的中点,则下列命题中正确的是.①EF∥AB;②EF⊥BD;③EF有最大值,无最小值;④当四面体ABCD的体积最大时,AC=;⑤AC垂直于截面BDE.解析:因为将边长为2,一个内角为60°的菱形ABCD沿较短对角线BD 折成四面体ABCD,点E,F分别为AC,BD的中点,则可知EF⊥BD,当四面体ABCD的体积最大时,AC=,AC垂直于截面BDE成立.答案:②④⑤10.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于A,C,过点P的直线n与α,β分别交于B,D且PA=6,AC=9,PD=8,则BD的长为.解析:因为平面α∥平面β,所以AB∥CD,①当P在两平面外时,==,所以=,所以BD=.②当P在两平面之间时,=,所以=,所以BD=24,所以BD的长为或24.答案:或2411.给出下列四个命题:①过平面外一点,作与该平面成θ角的直线一定有无穷多条;②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;③对确定的两条异面直线,过空间任意一点有且只有一个平面与这两条异面直线都平行;④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等.其中正确的命题序号为.解析:①中,成90度角的时候,就只有一条,因此错误.②中是线面平行的性质定理,显然成立.③不正确.④中,利用等角定理,可知成立. 答案:②④12.侧棱长为2的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40°,过A 作截面AEF,则截面△AEF周长的最小值为.解析:沿着侧棱VA把正三棱锥V ABC展开在一个平面内,则设VA的另一边为VA′,则AA′即为截面△AEF周长的最小值,且∠AVA′=3×40=120°.△VAA′中,由余弦定理可得AA′=6.答案:6三、解答题13.已知长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AB=4,AA1=2,点E 在棱C1D1上,且D1E=3.(1)试在棱CD上确定一点E1,使得直线EE1∥平面D1DB,并证明;(2)若动点F在底面ABCD内,且AF=2,请说明点F的轨迹,并探求EF 长度的最小值.解:(1)取CD的四等分点E1,使得DE1=3,则有EE1∥平面D1DB.证明如下:因为D1E∥DE1且D1E=DE1,所以四边形D1EE1D为平行四边形,则D1D∥EE1,因为DD1⊂平面D1DB,EE1⊄平面D1DB,所以EE1∥平面D1DB.(2)因为AF=2,所以点F在平面ABCD内的轨迹是以A为圆心,半径等于2的四分之一圆弧.因为EE1∥DD1,D1D⊥平面ABCD,所以E1E⊥平面ABCD,故EF==.所以当E1F的长度取最小值时,EF的长度最小,此时点F为线段AE1和四分之一圆弧的交点,即E1F=E1A-AF=5-2=3,所以EF==.即EF长度的最小值为.14.在正方体ABCD-A1B1C1D1中,棱长为2,E是棱CD的中点,P是棱AA1的中点,(1)求证:PD∥平面AB1E;(2)求三棱锥B-AB1E的体积.(1)证明:取AB1中点Q,连接PQ,则PQ为中位线,PQ A1B1,而正方体ABCD-A1B1C1D1,E是棱CD的中点,故DE A1B1,所以PQ DE,所以四边形PQED为平行四边形.所以PD∥QE,而QE⊂平面AB1E,PD⊄平面AB1E,故PD∥平面AB1E.(2)解:正方体ABCD-A1B1C1D1中,BB1⊥平面ABE,故BB1为高,BB1=2,因为CD∥AB,所以S△ABE=S△ABC=AB·BC=×2×2=2.故==BB1·S△ABC=.15.如图,在四面体PABC中,PA=PB,CA=CB,D,E,F,G分别是PA,AC,CB,BP的中点.(1)求证:D,E,F,G四点共面;(2)求证:PC⊥AB;(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,PC=,求四面体PABC的体积.(1)证明:依题意DG∥AB,EF∥AB,所以DG∥EF,DG,EF共面,从而D,E,F,G四点共面.(2)证明:取AB中点为O,连接PO,CO.因为PA=PB,CA=CB,所以PO⊥AB,CO⊥AB,因为PO∩CO=O,所以AB⊥平面POC,PC⊂平面POC,所以AB⊥PC.(3)解:因为△ABC和△PAB是等腰直角三角形,所以PO=CO=AB=1,因为PC=,OP2+OC2=PC2,所以OP⊥OC,又PO⊥AB,且AB∩OC=O,所以PO⊥平面ABC,=PO·S△ABC=×1×2×1×=.第5节直线、平面垂直的判定与性质一、选择题1.已知直线l,m和平面α, 则下列命题正确的是( C )(A)若l∥m,m⊂α,则l∥α(B)若l∥α,m⊂α,则l∥m(C)若l⊥α,m⊂α,则l⊥m(D)若l⊥m,l⊥α,则m∥α解析:A项中直线l与平面α可能平行,可能直线在平面内;B项中直线l,m平行或异面;C项中当直线垂直于平面时,直线垂直于平面内任意直线;D项中直线m与平面α平行或直线在平面内.2.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P ABC中共有直角三角形个数为( A )(A)4 (B) 3 (C) 2 (D) 1解析:因为PA⊥平面ABC,AB⊥BC,所以PA⊥AB,PA⊥AC,PB⊥CB,所以△ABC,△PBC, △ABP, △APC都是直角三角形,故选A.3.已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则( C )(A)n⊥β (B)n∥β,或n⊂β(C)n∥α或n⊂α(D)n⊥α解析:由题意画出图形,容易判断选项.由于直线m⊥n,m⊥α,α⊥β,选项A,中线面可能相交,也可能垂直,选项B中,n与β还可能相交,错误,选项D中,直线不能垂直于平面,故结合图象不难得到选项为C.4.正方体的棱长为1,C,D,M分别为三条棱的中点,A,B是顶点,那么点M到截面ABCD的距离是( B )(A)(B)(C)(D)解析:过M作AB的垂线MN交AB于N,连接CN.由于CM⊥AB,MN⊥AB,则AB⊥平面CMN,所以,M到面ABCD的距离h是直角三角形CMN的斜边CN上的高.由于BM=,CM=1,MN=,CN=,则结合=求得h=.故选B.。

高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)

高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)

一.方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口.求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围.对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题.具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证.二.解题策略类型一 立体几何中动态问题中的角度问题例1. 已知平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将ABD △折起到PBD △的位置,使得平面PBD ⊥平面BCD ,如图,若M ,N 均是线段PD 的三等分点,点Q 是线段MN 上(包含端点)的动点,则二面角Q BC D --的正弦值的取值范围为( )A .12,23⎡⎤⎢⎥⎣⎦B .14192⎡⎢⎣⎦C .24193⎡⎢⎣⎦D .11,32⎡⎤⎢⎥⎣⎦【来源】2021年浙江省新高考测评卷数学(第五模拟) 【答案】B【解析】在ABD △中,1AB =,2AD =,60BAD ∠=︒,所以由余弦定理得3BD =,所以222AB BD AD +=,所以AB BD ⊥,由翻折的性质可知,PB BD ⊥.又平面PBD ⊥平面BCD ,平面PBD 平面BCD BD =,所以PB ⊥平面BCD ,过点Q 作//QQ PB ',交BD 于点Q ',则QQ '⊥平面BCD ,所以QQ BC '⊥,过Q '作Q T BC '⊥,垂足为T ,连接QT ,则BC ⊥平面QQ T ',立体几何的动态问题所以QTQ '∠为二面角Q BC D --的平面角. 设2QD a =(1233a ≤≤),则QQ a '=,3DQ a '=,33BQ a '=-,()113322Q T BQ a ''==-,所以2222211(33)76322QT QQ Q T a a a a ⎡⎤''=+=+-=-+⎢⎥⎣⎦, 所以22222sin 136176373142QQ aQTQ QT a a a aa ''∠====⎛⎫-+-+-+ ⎪⎝⎭. 由二次函数的单调性知,21314y a ⎛⎫=-+ ⎪⎝⎭在12,33⎡⎤⎢⎥⎣⎦上的值域为19,164⎡⎤⎢⎥⎣⎦,所以221419sin ,2191314QTQ a ⎡⎤'∠=∈⎢⎥⎣⎦⎛⎫-+ ⎪⎝⎭,即二面角Q BC D --的正弦的取值范围为1419,219⎡⎤⎢⎥⎣⎦. 故选:B.【举一反三】1.(2020·黑龙江牡丹江一中高三(理))如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( ).A .23⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .33⎣⎦D .11,43⎡⎤⎢⎥⎣⎦【答案】A【解析】如图,设正方体棱长为1,()11101A PAC λλ=≤≤.以D 为原点,分别以DA ,DC ,1DD 所在直线为x ,y ,z 轴建立空间直角坐标系. 则11,,022O ⎛⎫ ⎪⎝⎭,()1,,1P λλ-,所以11,,122OP λλ⎛⎫=--⎪⎝⎭.在正方体1111ABCD A B C D -中,可证1B D ⊥平面11A BC , 所以()11,1,1B D =---是平面11A BC 的一个法向量.所以122211()()122sin cos ,1113163222OP B D λλθλλλ-----===⎛⎫⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以当12λ=时,sin θ30λ=或1时,sin θ取得最小值23. 所以23sin 3θ∈⎣⎦.故选A . 2.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是( )A .13 B .33 C .12 D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1, 设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0), D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=---,DB (1,=1,0),1DC (0,=1,1),设平面1DBC 的法向量n (x,=y ,z),则1n DB 0n DC 0x y y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=-,1B E //平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤=⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,=1,0),()()1221AB B E 1cos θAB B Ea 11c 1⋅∴==⋅-++-2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,322ac 2∴-≥,1222ac 3∴≤-,()()()222211sin θ11a c 2a c 3a 11c 1∴=-=-+-++-++-221123111a c 122ac 33=-=-≥-=++-. ∴直线1B E 与直线AB 所成角的正弦值的最小值是33.3.(2020·浙江台州中学高三)如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --,Q OR P --,R OP Q --的平面角为,,αβγ,则( )A .γαβ<<B .αγβ<<C .αβγ<<D .βαγ<<【答案】D【解析】分析:建立空间直角坐标系,对动点O 选取一个特殊位置,然后求出三个侧面的法向量,根据向量夹角的余弦值求得三个二面角的余弦值,比较后可得二面角的大小.详解:建立如图所示的空间直角坐标系E xyz -.考虑点O 与点A 重合时的情况.设正方体的棱长为1,则()()111,,0,Q ,0,0,R 01,0,O 0,0,132P ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭. 设平面OPQ 的一个法向量为1(,,)n x y z =,由111(,,)(,0,1)02211(,,)(,,0)02323x n OQ x y z z x y n PQ x y z ⎧⋅=⋅-=-=⎪⎪⎨⎪⋅=⋅--=--=⎪⎩,得322x y x z ⎧=-⎪⎪⎨⎪=⎪⎩,令2x =,得1(2,3,1)n =-.同理可得平面OPR 和平面OQR 的法向量分别为23(2,3,3),(6,3,7)n n ==. 结合图形可得:1323521cos cos ,,cos cos ,7471147n n n n αβ====⨯⨯12cos cos ,711n n γ==⨯∴cos cos cos γαβ<<,又0,,γαβπ<<,∴γαβ>>.故选D . 类型二 立体几何中动态问题中的距离问题【例2】(2020·山西高三)设点M 是棱长为2的正方体ABCD -A 1B 1C 1D 1的棱AD 的中点,点P 在面BCC 1B 1所在的平面内,若平面D 1PM 分别与平面ABCD 和平面BCC 1B 1所成的锐二面角相等,则点P 到点C 1的最短距离是( ) A 25B .22C .1D .63【答案】A【解析】如图,过点P 作1D M 的平行线交BC 于点Q 、交11B C 于点E ,连接MQ ,则PQ 是平面1D PM 与平面11BCC B 的交线,MQ 是平面1D PM 与平面ABCD 的交线.EF 与1BB 平行,交BC 于点F ,过点F 作FG 垂直MQ 于点G ,则有,MQ 与平面EFG 垂直,所以,EG 与MQ 垂直,即角EGF 是平面1D PM 与平面ABCD 的夹角的平面角,且sin EFEGF EG∠=, MN 与CD 平行交BC 于点N ,过点N 作NH 垂直EQ 于点H ,同上有:sin MNMHN MH∠=,且有EGF MHN ∠=∠,又因为EF MN AB ==,故EG MH =, 而2EMQ S EG MQ MH EQ ∆=⨯=⨯,故MQ EQ =,而四边形1EQMD 一定是平行四边形,故它还是菱形,即点E 一定是11B C 的中点, 点P 到点1C 的最短距离是点1C 到直线BE 的距离,以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立空间直角坐标系,()2,1,2E ,()2,0,0B , ()12,2,2C ,()0,1,2BE =, ()10,2,2BC =,∴点P 到点1C 的最短距离:22111||625||1()221()5||||58BE BC d BC BE BC =-=⨯-=⨯.故选:A .【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值. 【举一反三】1.(2020·四川高三(理))已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是( )A .33B .3C .233D .433【答案】C 【解析】【分析】,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,三棱锥S ABC -外接球就是正方体MNQB ADCS -的外接球,由正方体及球的几何性质可得点P 与N 重合时,点P 到平面ABC 的距离最大,求出平面ABC 的法向量,由点到直线的距离公式即可得结果. 【详解】三棱锥S ABC -,满足,,SA SB SC 两两垂直,且,,1SA SB SC =,∴如图,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()()()()()0,0,0,1,0,1,0,1,1,0,0,1,1,1,0B A C S N ,()()()1,0,1,0,1,1,1,1,0BA BC BN ===,设平面ABC 的法向量(),,n x y z =,则00n BA x z n BC y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1n =-,三棱锥S ABC -外接球就是棱长为1的正方体MNQB ADCS -的外接球,P 是三棱锥S ABC -外接球上一动点,∴由正方体与球的几何性质可得,点P 点与N 重合时,点P 到平面ABC 的距离最大,∴点P 到平面ABC 的距离的最大值为1102333BN n d n⋅++===.故选C. 2.已知四边形ABCD 是边长为5的菱形,对角线8BD =(如图1),现以AC 为折痕将菱形折起,使点B 达到点P 的位置.棱AC ,PD 的中点分别为E ,F ,且四面体PACD 的外接球球心落在四面体内部(不含边界,如图2),则线段EF 长度的取值范围为( )A .14,42⎛⎫ ⎪ ⎪⎝⎭B .141,2⎛⎫⎪ ⎪⎝⎭C .14,62⎛⎫⎪ ⎪⎝⎭D .()3,4【来源】江西省鹰潭市2021届高三高考二模数学(文)试题 【答案】A 【解析】由题意可知△APC 的外心1O 在中线PE 上, 设过点1O 的直线1l ⊥平面APC ,可知1l ⊂平面PED , 同理△ADC 的外心2O 在中线DE 上,设过点2O 的直线2l ⊥平面ADC ,则2l ⊂平面PED , 由对称性知直线12,l l 的交点O 在直线EF 上.根据外接球的性质,点O 为四面体PACD 的外接球的球心. 由题意得3,4EA PE ==,而2221111,4O A O E EA O A O E PE =++==所以178O E =. 令PEF θ∠=,显然02πθ<<,所以cos 4cos 4EF PE θθ==<. 因为1cos EF O EPE OEθ==, 所以172OE EF O E PE ⋅=⋅=, 又OE EF <,所以272EF >,即142EF >. 综上可知1442EF <<. 故选:A.3(2020广西柳州市模考)如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是( )A .当时,平面B .当为中点时,四棱锥的外接球表面为C .的最小值为D .当时,平面【答案】C【解析】对于,连结,,,则,,,设到平面的距离为,则,解得,∴.∴当时,为与平面的交点.∵平面∥平面, ∵平面,∴∥平面,故A 正确. 又由以上分析可得,当时,即为三棱锥的高,∴平面,所以D 正确. 对于B ,当为中点时,四棱锥为正四棱锥, 设平面的中心为,四棱锥的外接球为,所以,解得,故四棱锥的外接球表面积为,所以B 正确.对于C ,连结,,则, ∴,由等面积法得的最小值为,∴的最小值为.所以C 不正确.故选:C.类型三 立体几何中动态问题中的面积、体积问题【例3】(2020·河南高三(理))在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 是底面ABCD 所在平面内一动点,设1PD ,PE 与底面ABCD 所成的角分别为12θθ,(12θθ,均不为0),若12θθ=,则三棱锥11P BB C -体积的最小值是( ) A .92B .52C .32D .54【答案】C【解析】建系如图,正方体的边长为3,则(3E ,0,3)2,1(0D ,0,3),设(P x ,y ,0)(0x ,0)y ,则(3PE x =-,y -,3)2,1(PD x =-,y -,3),12θθ=,(0z =,0,1),12cos cos θθ∴=,即11||||||||||||PD z PE z PE z PD z =,代入数据,得:222233299(3)4x y x y =++-++,整理得:228120x y x +-+=,变形,得:22(4)4(02)x y y -+=, 即动点P 的轨迹为圆的一部分,过点P 作PF BC ⊥,交BC 于点F ,则PF 为三棱锥11P BB C -的高∴点P 到直线AD 的距离的最大值是2.则min 321PF =-=.1111119332212BB C BB B C S ∆=⋅⋅=⨯⨯=,1111193132213P BB C BB C V PF S -∆=⨯⨯⋅⋅=∴=故选:C .【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P到平面BCD 的距离的最大值,选择公式,可求最值. 【举一反三】1.(2020·四川高三期末)长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,P 为该正方体侧面11CC D D 内(含边界)的动点,且满足tan tan 22PAD PBC ∠+∠=.则四棱锥P ABCD -体积的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .22,33⎡⎤⎢⎥⎣⎦ C .40,3⎛⎤ ⎥⎝⎦D .24,33⎡⎤⎢⎥⎣⎦ 【答案】B【解析】如图所示:在RT PAD 中,tan PD PAD PD AD ∠==,在RT PBC 中,tan PCPBC PC BC∠==, 因为tan tan 22PAD PBC ∠+∠=,所以22PD PC +=.因为222PD PC CD +=>=,所以点P 的轨迹是以,C D 为焦点 222a =的椭圆. 如下图所示:2a =1c =,211b =-=,椭圆的标准方程为:2212x y +=.1(0,1)P联立22112x x y =⎧⎪⎨+=⎪⎩,解得:2y =.所以22()P -,32P . 当点P 运动到1P 位置时,此时四棱锥P ABCD -的高最长, 所以max 1112()21333P ABCD ABCD V S PO -=⨯⨯=⨯⨯=. 当点P 运动到2P 或3P 位置时,此时四棱锥P ABCD -的高最短,所以min 21122()23323P ABCD ABCD V S P D -=⨯⨯=⨯⨯=. 综上所述:2233P ABCD V -≤≤. 2.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14 B .23 C 151-D 51- 【答案】A【解析】设过A 与DE 垂直的线段长为a ,则tan AE α=,150tan 2α<<,1cos DE α=,sin a α=,则四棱锥A BCDE '-的高πsin sin sin sin cos 2h a βαααα⎛⎫=⋅=⋅-=⎪⎝⎭, 则111515tan 1sin cos 3222A BCDE V ααα'-⎛=⨯⨯-+⨯⨯ ⎝⎭)115tan sin cos 6ααα=⨯ )2115cos sin 6ααα=- )11152cos 21212αα=+- 115112cos 234412αα⎛⎫=+- ⎪ ⎪⎝⎭()11sin 2312αϕ=+-,15tan 15ϕ⎛⎫= ⎪ ⎪⎝⎭, ∴四棱锥A BCDE '-体积的最大值为1113124-=. 故选:A.3.(2020·重庆市松树桥中学校高三)如图,在单位正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,给出以下四个命题:①异面直线1A P 与1BC 间的距离为定值;②三棱锥1D BPC -的体积为定值;③异面直线1C P 与直线1CB 所成的角为定值; ④二面角1P BC D --的大小为定值.其中真命题有( ) A .1个 B .2个 C .3个 D .4个【答案】D【解析】对于①,异面直线1A P 与1BC 间的距离即为两平行平面11ADD A 和平面11BCC B 间的距离,即为正方体的棱长,为定值.故①正确.对于②,由于11D BPC P DBC V V --=,而1DBC S ∆为定值,又P ∈AD 1,AD 1∥平面BDC 1,所以点P 到该平面的距离即为正方体的棱长,所以三棱锥1D BPC -的体积为定值.故②正确.对于③,由题意得在正方体1111ABCD A B C D -中,B 1C ⊥平面ABC 1D 1,而C 1P ⊂平面ABC 1D 1,所以B 1C ⊥C 1P ,故这两条异面直线所成的角为90︒.故③正确;对于④,因为二面角P −BC 1−D 的大小,即为平面ABC 1D 1与平面BDC 1所成的二面角的大小,而这两个平面位置固定不变,故二面角1P BC D --的大小为定值.故④正确.综上①②③④正确.选D .类型四 立体几何中动态问题中的轨迹问题【例4】(2020南充高考一模)如图,直二面角AB αβ--,P α∈,C β∈,D β∈,且AD AB ⊥,BC AB ⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.一条直线D.两条直线【答案】A【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,设点(),P x y ,()30A -,,()3,0B ,AD AB ⊥,BC AB ⊥,则AD α⊥,BC α⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,Rt APDRt CPB∴∆∆,()()22223511023x y APAD BPBC x y ++∴====-+ ,即()()2222343x y x y ⎡⎤-+=++⎣⎦,整理得:()22516x y ++=,故点P 的轨迹是圆的一部分,故选A .【指点迷津】空间轨迹问题的求解策略:1.利用侧面展开或展到一个平面上寻求轨迹;2.利用圆锥曲线定义求轨迹;3.这辗转过程中动点的轨迹;4.利用函数观点探求轨迹 【举一反三】1.已知正方体1111ABCD A B C D -的棱长为23M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积63PMN S =△P 的轨迹长度为( )A .269π B .263π C .469π D .463π 【答案】B【解析】如图所示:连接11BC B C O =,因为四边形11BCC B 是正方形,所以11BC B C ⊥,因为11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以11D C ⊥1B C , 又11111,BC D C C BC =⊂平面11BC D ,11D C ⊂平面11BC D ,所以1B C ⊥平面11BC D ,所以11B C D B ⊥, 同理可知:11B A D B ⊥,又因为1B C ⊂平面1ACB ,1B A ⊂平面1ACB ,111B C B A B =,所以1D B ⊥平面1ACB ,根据题意可知:11136,26D B AB AB BC AC =====所以1ACB 为正三角形,所以160∠=︒B AC ,所以11326266322ACB S=⨯⨯⨯=,设B 到平面1ACB 的距离为h , 因为11B ACB B ABC V V --=,所以111133ACB ACBSh S BB ⋅⋅=⋅⋅,所以11ACB ACBSh SBB ⋅=⋅,所以()232323262342h ⨯⨯⨯=⨯,所以1123h D B ==,所以h BN =, 所以N 即为1D B 与平面1ACB 的交点,由题意可知:1D B ⊥平面1ACB ,所以MN PN ⊥,所以11262223PMNSMN PN PN PN =⋅=⋅⋅==,再如下图所示:在正三角形1ACB 中,高3sin 6026322AO AC =︒== 所以内切圆的半径16233r AO ==<,且623AN <=,取1B C 的两个三等分点,E F ,连接,EN FN ,所以1//,//NE AB NF AC ,所以NEF 是以PN 长度为边长的正三角形,所以P 的轨迹是以N 为圆心,半径等于263的圆,圆的周46π,在1ACB 内部的轨迹是三段圆弧,每一段圆弧的圆心角为60︒,所以对应的轨迹长度是圆周长的一半为63π,故选:B. 2、(2020贵阳高考模拟)在正方体1111ABCD A B C D -中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为( )A .直线B .椭圆C .圆D .抛物线 【答案】DF E P C 1B 1D 1A 1DCBA z yx3.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于( ) A .612π+B .2263π+ C .20123π+ D .22123π+ 【来源】安徽省合肥市2021届高三下学期第三次教学质量检测理科数学试题 【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱. 四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=; 又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.三.强化训练1.(2020·内蒙古高三期末)如图,棱长为1的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,则下列结论正确的是( ).①异面直线AD 与1CB 所成的角为45︒②11DC D M ⊥③三棱锥1M DCC -的体积为定值 ④1AM MD +的最小值为2. A .①②③ B .①②④C .③④D .②③④【答案】A【解析】①∵AD ∥BC ,∴异面直线AD 与1CB 所成的角即为BC 与1CB 所成的角, 可得夹角为45︒,故①正确;②连接1CD ,∵1DC ⊥平面A 1BCD 1,1D M ⊂平面A 1BCD 1, ∴11DC D M ⊥,故②正确;③∵1A B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1, 又△DCC 1的面积为定值12, 因此三棱锥M −DCC 1的体积1111326V =⨯⨯=为定值,故③正确; ④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP +PD 1的最小值, 在△D 1A 1A 中,∠D 1A 1A =135°, 利用余弦定理解三角形得111211135222AD cos =+-⨯⨯⨯︒=+<,故④不正确.因此只有①②③正确.故选:A .2.(2020河南省焦作市高三)在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为( )A .B .1C .D .2【答案】B【解析】以AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系如图所示,则C 1(4,4,4),设E (0,0,z ),z ∈[0,4],F (x ,0,0),x ∈[0,4],则|AF|=x .=(4,4,4﹣z ),=(x ,0,﹣z ).因为C 1E ⊥EF ,所以,即:z 2+4x ﹣4z =0,x =z ﹣.当z =2时,x 取得最大值为1.|AF|的最大值为1.故选:B .3.(2020·重庆巴蜀中学高三(理))棱长为2的正方体1111ABCD A B C D -中,N 为1CC 的中点,P 在底面ABCD 内运动,1D P 与平面ABCD 所成角为1θ,NP 与平面ABCD 所成角为2θ,若12θθ=,则AP 的最小值为( ) A .2 B .83C .4D .1【答案】A【解析】分析:先证明PD=2PC ,再在底面ABCD 内建立如图所示的直角坐标系,求出211680sin()99PA αϕ=-+,再利用三角函数的图象和性质求出|AP|的最小值. 【详解】设12θθθ==,所以12tan tan DD PD θθ==,1PC tan tan CN θθ==,所以PD=2PC. 在底面ABCD 内建立如图所示的直角坐标系,设点P(x,y),则2222(1)2(+1)x y x y -+=+整理得22516454(),cos ,sin 39333x y x y αα++=∴=-=, 所以2224841168011680(cos )(sin 2)sin()43339999PA αααϕ=-+-=-+≥-=, 即||2AP ≥,所以|AP|的最小值为2.故选:A4.已知三棱锥A BCD -的所有棱长均为2,E 为BD 的中点,空间中的动点P 满足PA PE ⊥,PC AB ⊥,则动点P 的轨迹长度为( ) A .1116πB 3πC 11πD 3π【来源】浙江省五校2021届高三下学期5月联考数学试题 【答案】C【解析】正四面体A BCD -2,建立空间直角坐标系如图所示,()()22,,2,2,2,0,0,2,222E C B ⎛⎫ ⎪ ⎪⎝⎭,设(),,P x y z ,()22,,2,,,22PE x y z AP x y z ⎛⎫=---= ⎪ ⎪⎝⎭,()2,2,PC x y z =---.由于PA PE ⊥,PC AB ⊥,所以00AP PE PC AB ⎧⋅=⎨⋅=⎩,即()()2220222220x x y y z z y z ⎧⎛⎫⎛⎫-+-+-=⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=⎪⎩,即22222202220x x y y z z y z ⎧-+-+-=⎪⎨⎪+-=⎩, 即2222223442420x y z y z ⎧⎛⎫⎛⎫⎛⎫⎪-+-+-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎪+-=⎪⎩, 22222234424x y z ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭表示球心为222,,442⎛⎫ ⎪ ⎪⎝⎭,半径为32R =的球. 20y z +-=表示垂直于yAz 平面的一个平面.所以P 的轨迹是上述平面截球面所得圆.球心222,,442⎛⎫ ⎪ ⎪⎝⎭到平面20y z +-=的距离为22222142411d +-==+, 所以截得的圆的半径2231114164r R d =-=-=, 所以截得的圆,也即P 点的轨迹的长度为11112242r πππ=⨯=. 故选:C5.(2020郑州一中高三期末)在三棱锥中,平面,M是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以:,在中,设外接圆的直径为,则:,所以:外接球的半径,则:,故选:C.(2020九江高三一模)在长方体中,,,分别是棱6.的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.B.C.D.【答案】C【解析】补全截面EFG为截面EFGHQR如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小, ∴三角形面积的最小值为,故选:C .7.(2020·浙江高三期末)在三棱锥P ABC -中,2,3PA PB PC AB AC BC ======,点Q 为ABC ∆ 所在平面内的动点,若PQ 与PA 所成角为定值θ,π(0,)4θ∈,则动点Q 的轨迹是 A .圆 B .椭圆C .双曲线D .抛物线【答案】B【解析】建立空间直角坐标系,根据题意,求出Q 轨迹方程,可得其轨迹.由题,三棱锥P ABC -为正三棱锥,顶点P 在底面ABC 的射影O 是底面三角形ABC 的中心,则以O 为坐标原点,以OA 为x 轴,以OP 为z 轴,建立如图所示的空间直角坐标系,根据题意可得1OA OP ==,设Q 为平面ABC 内任 一点,则()()()()()1,0,0,0,0,1,,,0,1,0,1,,,1A P Q x y PA PQ x y =-=- ,由题PQ 与PA 所成角为定值θ,π0,4θ⎛⎫∈ ⎪⎝⎭,则,221cos 21PA PQ x PA PQ x y θ⋅+==⋅++则()()22222cos11x y x θ++=+ ,化简得222cos22cos 2cos20x y x θθθ⋅+⋅-+= ,ππ0,,20,,cos 20,42θθθ⎛⎫⎛⎫∈∴∈> ⎪ ⎪⎝⎭⎝⎭故动点Q 的轨迹是椭圆.选B8.(2020·上海格致中学高三月考)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与AC '所成的角为45︒的点P 的个数为( )A .0B .3C .4D .6【答案】B 【解析】【分析】建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数.【详解】建立如图所示的空间直角坐标系,不妨设棱长1AB =,(1B ,0,1),(1C ,1,1). ①在Rt △AA C ''中,||tan 2||A C A AC AA '''∠'=='45A AC '∠'≠︒.同理AB ,AD 与AC '所成的角都为arctan 245≠︒.故当点P 位于(分别与上述棱平行或重合)棱BB ',BA ,BC 上时,与AC '所成的角都为arctan 245≠︒,不满足条件;②当点P 位于棱AD 上时,设(0P ,y ,1),(01)y ,则(1BP =-,y ,0),(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '-+=<'>=='+, 化为2410y y ++=,无正数解,舍去; 同理,当点P 位于棱A D ''上时,也不符合条件; ③当点P 位于棱B C ''上时,设(1P ,y ,0),(01)y , 则(0BP =,y ,1)-,(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '+=<'>=='+, 化为2410y y -+=,01y ,解得23y =-,满足条件,此时点(1,23,0)P -.④同理可求得棱C D ''上一点(532,1,0)P -,棱C C '上一点(1,1,324)P -. 而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个.故选:B 9.(2020上海交通大学附属中学高三)如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为( )A .B .C .D .不能确定【答案】C【解析】如图所示:∵PA ⊥平面ABC ,∴PD 与平面ABC 所成的角=∠PDA, 过点A 作AE ⊥BC ,垂足为E ,连接PE ,∵PA ⊥平面ABC ,∴PA ⊥BC ,∴BC⊥平面PAE ,∴BC⊥PE,在Rt△AED ,Rt△PAD ,Rt△PED 中:cos ,cos ,cos,∴coscoscos < cos ,又均为锐角, ∴,故选C.10.(2020·湖南长郡中学高三(理))在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,23AB =,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45π B .57πC .63πD .84π【答案】B【解析】分析:根据题意画出图形,结合图形找出ABC △的外接圆圆心与三棱锥P ABC - 外接球的球心,求出外接球的半径,再计算它的表面积.详解:三棱锥P ABC PA ABC 中,平面,-⊥ 设直线PQ 与平面ABC 所成角为θ ,如图所示;则3PAsinPQ PQ ,θ== 由题意且θ的最大值是3π3PQ=,,解得PQ =即PQ 的最小值为∴AQ ,即点A 到BC ,AQ BC ∴⊥,AB BC ∴== 6BC ;∴= 取ABC △的外接圆圆心为O ',作OO PA ' ,62120r sin ∴=︒,解得r =;O A ∴'=M 为PA 的中点,32OM O A PM ∴='==,由勾股定理得CP R === ∴三棱锥P ABC -的外接球的表面积是224457S R πππ==⨯⨯=.故选B.11.在直三棱柱111ABC A B C -中,底面ABC 是以B 为直角的等腰三角形,且3AB =,1AA =若点D 为棱1AA 的中点,点M 为面BCD 的一动点,则11 B M C M +的最小值为( )A .B .6C . D【来源】江西省赣州市2021届高三二模数学(理)试题 【答案】C【解析】由题意知,BC AB ⊥,111ABC A B C -为直三棱柱,即面ABC ⊥面11ABB A ,面ABC面11ABB A AB =,BC ⊂面ABC ,∴BC ⊥面11ABB A ,又BC ⊂面BCD , ∴面BCD ⊥面11ABB A .∴易得1B 关于平面BCD 对称点E 落在1A A 的延长线上,且AE =1A E =11 B M C M +的最小时,1C 、M 、E 三点共线.∴221111111||992735B M C M EM C M EC AC A E +=+≥=+=++=. 故选:C12.在棱长为2的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足433PA PB +=,则PD 的最大值为( ) A .3B .2103C .393D .2【来源】河南省鹤壁市2021届高三一模数学(文)试题 【答案】B【解析】如图所示,在平面ABC 内,4323PA PB +=>, 所以点P 在平面ABC 内的轨迹为椭圆,取AB 的中点为点O ,连接CO ,以直线AB 为x 轴,直线OC 为y 建立如下图所示的空间直角坐标系O xyz -,则椭圆的半焦距1c =,长半轴a =b ==所以,椭圆方程为()2233104x y z +==.点D 在底面的投影设为点E ,则点E 为ABC 的中心,11333OE OC ===, 故点E 正好为椭圆短轴的一个端点,23CE OC ==,则DE ==, 因为222PD DE EP =+,故只需计算EP 的最大值.设(),,0P x y ,则E ⎛⎫⎪ ⎪⎝⎭,则22222241543333EP x y y y y y y ⎛=+=-++=--+ ⎝⎭,当y ⎡=⎢⎣⎦时,2EP 取最大值,即22max516393939EP ⎛⎛=-⨯---+= ⎝⎭⎝⎭,因此可得2241640999PD ≤+=,故PD . 故选:B.13.在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是( )A .1B .54C D【来源】北京市朝阳区2021届高三一模数学试题 【答案】C【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,1A 、()1,0,0B 、()11,0,1B 、()1,1,0C 、()11,1,1C 、()0,1,0D 、()10,1,1D , 设点()1,,P t t ,其中01t ≤≤.①当0t =时,点P 与点B 重合,()1,1,0BD =-,()1,1,0AC =,()10,0,1AA =, 所以,0BD AC ⋅=,10BD AA ⋅=,则BD AC ⊥,1BD AA ⊥, 1AC AA A ⋂=,BD ∴⊥平面11AAC C ,此时平面α即为平面11AAC C ,截面面积为12S AA AC =⋅= ②当1t =时,同①可知截面面积为2S =③当01t <<时,()1,1,DP t t =-,()11,1,1AC =-, 1110DP AC t t ⋅=+--=,1A C PD ∴⊥,则1A C α⊂, 设平面α交棱1DD 于点()0,1,E z ,()1,0,CE z =-,10DP CE tz ⋅=-+=,可得11z t=>,不合乎题意. 设平面α交棱AB 于点(),0,0M x ,()1,1,0CM x =--,()110DP CM x t ⋅=---=,可得x t =,合乎题意,即(),0,0M t ,同理可知,平面α交棱11C D 于点()1,1,1N t -,()11,1,0A N t MC =-=,且1A N 与MC 不重合,故四边形1A MCN 为平行四边形,()11,1,1AC =-,()11,1,0A N t =-,1112112cos 322AC A N t CA N AC A N t t ⋅-∠==⋅⋅-+,则()()2211221sin 1cos 322t t CA N CA N t t -+∠=-∠=-+,所以,截面面积为()1221111362sin 2122242CA NS S AC A N CA N t t t ⎡⎤⎛⎫==⋅∠=-+=-+=<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦△. 综上所述,截面面积的最小值为62. 故选:C.14.如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足π6PAB ∠=,则点P 的轨迹为( )A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B【解析】建立如图所示的空间直角坐标系,设(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22223cos ,62(2)1121AB AP x y x y ⇒<>=⇒+-=⋅++ 所以点P 的轨迹是椭圆. 故选:B.15.已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是( )A .2B .233C .62D .1【答案】B【解析】A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ', 记d 为直线EB '与AC 之间的距离,则MT NT M T NT M N d ''+=+≥≥, 由//B E D C '',d 为E 到平面ACD '的距离, 因为111111333D ACE ACEV S '-=⨯⨯==⨯⨯=,而()21332346D ACE E ACD V V d d ''--==⨯⨯⨯=,故233d =, 故选:B.16.如图,ABC 是等腰直角三角形,AB AC =,点D 是AB 上靠近A 的三等分点,点E 是AC 上靠近C 的三等分点,沿直线DE 将ADE 翻折成A DE ',所成二面角A DE B '--的平面角为α,则( )A .A DB A EC α∠≥∠'≥' B .A EC A DB α∠≥∠'≥' C .A DB A EC α≥∠'∠≥'D .A EC A DB α≥∠'∠≥'【答案】B【详解】如图,在等腰直角三角形中,过B 作直线//l DE ,作BM ED ⊥交直线DE 于点M ,过C 作直线DE 的垂线,垂足为R ,交直线l 与T ,过A 作DE 的垂线,垂足为O ,且交l 于N ,不妨设3AB =,则1,2AD CE BD AE ====, 在直角三角形ADE 中,255AO ==, 因为BMD AOD ,故12AO AD BM BD ==,故455BM =,同理52522155DM DO ==⨯⨯= 所以45ON =,35BN OM ==,同理5RC OS ==65NT =.在几何体中连接,,A B A S A C ''',如图,因为,,A O DE NO DE '⊥⊥故NOA '∠为二面角A DE B '--的平面角,故NOA α'∠=,而A O NO O '⋂=,故DE ⊥平面AON ',所以TB ⊥平面AON ',而A N '⊂平面AON ',故BN A N '⊥.24162545162cos 4cos 55555A N αα'=+-⨯=-, 故216929164cos cos 5555A B αα'=-+=-,故29165cos 4155cos cos 21255A DB αα-+'∠==-⨯⨯, 同理14cos cos 55A EC α'∠=-,11cos cos cos 055A DB αα'∠-=--<,故cos cos A DB α'∠<,同理cos cos A EC α'∠<,33cos cos cos 055A DB A EC α''∠-∠=+>,故cos cos A DB A EC ''∠>∠,因为(),,0,A DB A EC απ''∠∠∈,故A EC A DB α''∠>∠>, 故选B.17.如图,棱长为2的长方体1111ABCD A B C D -中,P 为线段11B D 上动点(包括端点).则以下结论正确的为( )A .三棱锥1P A BD -中,点P 到面1A BD 2B .过点P 平行于面1A BD 的平面被正方体1111ABCD A BCD -3C .直线1PA 与面1A BD 所成角的正弦值的范围为36⎣⎦D .当点P 和1B 重合时,三棱锥1P A BD -3【来源】广东省普宁市2020-2021学年高三上学期期末数学试题 【答案】C【解析】对于A 中,由111142222323P A BD A PBD V V --==⨯=,1A BD 为等边三角形,面积为11226232A BD =⨯=△S ,设点P 到面1A BD 的距离为h ,由142333h ⨯=,求得23h =所以A不正确;对于B 中,过点P 平行于平面1A BD 的平面被正方体截得的多边形平面11B D C , 此时三角形11B D C 为边长为221226=232⨯B 不正确; 对于C 中,由正方体的结构特征和性质,可得点P 到平面1A BD 23当点P 在线段11B D 上运动时,1max 2PA =(P 为端点时),in 1m 2PA =设直线1PA 与平面1A BD 所成角为θ,则36sin ,33θ∈⎣⎦,所以C 正确;对于D 中,当点P 与1B 重合时,此时三棱锥为11B A BD -,设1B D 的中点为O ,因为11190B BD B A D ∠=∠=︒,可得11OA OB OD OB === 所以三棱锥1P A BD -的外接球的球心为1B D 的中点,其半径为3,所以三棱锥1P A BD -的外接球的体积为34(3)433ππ⨯=,所以D 不正确.故选:C.18.如图,在棱长为33的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足15213DP PB +=+,则直线1B P 与直线1AD 所成角的取值范围为( )(参考数据:43sin 53,sin 3755==)A .37,143⎡⎤⎣⎦B .37,90⎡⎤⎣⎦C .53,143⎡⎤⎣⎦D .37,127⎡⎤⎣⎦【来源】江西省景德镇一中2020-2021学年高三上学期期末考试数学(理)试题 【答案】B【解析】如图,建立空间直接坐标系,连结1B D ,交平面11A BC 于点O ,()0,0,0D ,()133,33,33B ,()133,0,33A ,()33,33,0B ,()10,33,33C ,()133,33,33DB =,()10,33,33A B =-,()133,0,33BC =-,110DB A B ⋅=,110DB BC ⋅=,111111,DB A B DB BC A B BC B ∴⊥⊥⋂=,,1DB ∴⊥平面11A BC ,根据等体积转化可知111111B A BC B A B C V V --=, 即()()23111311363332232B O ⨯⨯⨯⨯=⨯⨯,解得:13B O =, 13339B D =⨯=,16D O ∴=,11//AD BC ,∴异面直线1AD 与1B P 所成的角,转化为1BC 与1B P 所成的角,如图,将部分几何体分类出来,再建立一个空间直角坐标系,取1BC 的中点E ,过点O 作1//OF BC ,则以点O 为原点,1,,OF OE OB 为,,x y z 轴的正方向,建立空间直角坐标系(),,0P x y ,()10,0,3B ,()0,0,6D -,3326,22B ⎫⎪⎪⎭,13326,22C ⎛⎫ ⎪ ⎪⎝⎭,()1,,3B P x y =-,()136,0,0BC =-, 15213PB PD +=+,22229365213x y x y ++++=+2222936x y x y ++<++,即15PB =22925x y ∴++=,即2216x y +=,[]4,4x ∈-1111113644cos ,,555365B P BC x x B P BC B P BC ⋅-⎡⎤<>===-∈-⎢⎥⨯⎣⎦,因为异面直线所成的角是锐角,并设为θ,则4cos 0,5θ⎛⎤∈ ⎥⎝⎦,4sin 535=,4cos375∴=,37,90θ⎡⎤∴∈⎣⎦ 故选:B19.如图,在三棱锥D ABC -中,,1,1AD BC BC AD ⊥==.且2AB BD AC CD +=+=,则四面体ABCD 的体积的最大值为( )A .14B .212C .36D .524【来源】浙江省衢州市五校联盟2020-2021学年高三上学期期末联考数学试题 【答案】B【解析】作BE ⊥AD 于E ,连接CE ,如图,因为,AD BC ⊥,BE BC 再平面BEC 内相交,所以AD ⊥平面BEC , 因为CE ⊂平面BEC ,所以CE ⊥AD , 因为2AB BD AC CD +=+=,所以B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB +BD = AC +CD =2,显然ABD ACD ≅,所以BE =CE . 取BC 中点F ,,,BC E AD E F F ⊥∴⊥ 要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大, 因为BC 是定值,所以只需EF 最大即可,当△ABD 是等腰直角三角形时几何体的体积最大, 因为AB +BD = AC +CD =2,1AB ∴=,22222131121,(1)22222EB EF ⎛⎫⎛⎫⎛⎫∴=-==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以几何体的体积为11221132212⨯⨯⨯⨯=故选:B20.如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥A BCD -绕棱CD 旋转,设直线BE 与平面α所成的角为θ,则cos θ的取值范围为( )A .36⎤⎥⎣⎦B .5,16⎡⎤⎢⎥⎣⎦C .110,6⎡⎢⎣⎦D .330,6⎡⎢⎣⎦【来源】浙江省宁波市慈溪市2020-2021学年高三上学期期末数学试题 【答案】A【解析】取AD 的中点F ,连接EF 、BF ,如下图所示:。

高中立体几何试题及答案

高中立体几何试题及答案

高中立体几何试题及答案一、选择题(每题3分,共15分)1. 空间中,如果直线a与平面α平行,那么直线a与平面α内的任意直线b的位置关系是:A. 平行B. 异面C. 相交D. 垂直2. 一个正方体的棱长为a,那么它的对角线长度为:A. a√2B. a√3C. 2aD. 3a3. 已知一个圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. 2πr²hD. 3πr²h4. 一个球的半径为R,那么它的表面积是:A. 4πR²B. 2πR²C. πR²D. R²5. 空间中,如果两个平面α和β相交于直线l,那么直线l与平面α和平面β的位置关系是:A. 平行B. 垂直C. 相交D. 包含二、填空题(每题2分,共10分)6. 空间直角坐标系中,点A(2,3,4)到原点O的距离是________。

7. 一个正四面体的每个顶点都与其它三个顶点相连,那么它的边长与高之比为________。

8. 已知一个长方体的长、宽、高分别为l、w、h,那么它的体积是________。

9. 空间中,如果一个点到平面的距离是d,那么这个点到平面上任意一点的距离的最大值是________。

10. 一个圆柱的底面半径为r,高为h,它的侧面积是________。

三、解答题(共75分)11. (15分)已知空间直角坐标系中,点A(1,2,3),B(4,5,6),点C 在平面ABC内,且AC=BC=2,求点C的坐标。

12. (20分)一个圆锥的底面半径为3,高为4,求圆锥的全面积和表面积。

13. (20分)一个长方体的长、宽、高分别为5、3、2,求其外接球的半径。

14. (20分)已知一个球的表面积为4π,求该球的体积。

答案:一、选择题1. A2. B3. B4. A5. C二、填空题6. √(1²+2²+3²)=√147. √3:18. lwh9. d+R10. 2πrh三、解答题11. 点C的坐标可以通过向量运算求得,设C(x,y,z),则向量AC=向量BC,即(1-x,2-y,3-z)=(x-4,5-y,6-z),解得x=3,y=4,z=5,所以点C的坐标为(3,4,5)。

立体几何 高中数学难点突破

立体几何  高中数学难点突破

专业专心专注高中数学难点突破之动态立体几何1如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为线段BC 1上的动点,下列说法正确的是()A.对任意点P ,DP ∥平面AB 1D 1B.三棱锥P -ADD 1的体积为13C.线段DP 长度的最小值为62D.存在点P ,使得DP 与平面ADD 1A 1所成角的大小为π3【解析】:连接DB ,DC 1,由BB 1∥DD 1,且BB 1=DD 1,得四边形DD 1B 1B 为平行四边形,∴DB ∥D 1B 1,由DB ⊄平面AB 1D 1,D 1B 1⊂平面AB 1D 1,得BD ∥平面AB 1D 1,同理DC 1∥平面AB 1D 1,又BD ∩DC 1=D ,可得平面DBC 1∥平面AB 1D 1,∵DP ⊂平面DBC 1,∴对任意点P ,DP ∥平面AB 1D 1,故A 正确;V P -ADD 1=V C 1-ADD 1=13×12×1×1×1=16,故B 错误;当P 为BC 1中点时,DP ⊥BC 1,此时线段DP 长度的最小值为(2)2-222=62,故C 正确;当P 在线段BC 1上运动时,DP 长度的最小值为62,最大值为2,则PC 长度的范围为22,1,而P 到平面ADD 1A 1的距离为定值1,则DP 与平面ADD 1A 1所成角的正切值∈[1,2].最大值小于3,则不存在点P ,使得DP 与平面ADD 1A 1所成角的大小为π3,故D 错误.故选:AC .2在棱长为3的正方体ABCD -A 1B 1C 1D 1中,M 是A 1B 1的中点,N 在该正方体的棱上运动,则下列说法正确的是()第1页共25页专注专心A.存在点N ,使得MN ∥BC 1B.三棱锥M -A 1BC 1的体积等于94C.有且仅有两个点N ,使得MN ∥平面A 1BC 1D.有且仅有三个点N ,使得N 到平面A 1BC 1的距离为3【解析】:对于A ,显然无法找到点N ,使得MN ∥BC 1,故A 错;对于B ,V M -A 1BC 1=V B -A 1MC 1=13S △A 1MC 1⋅B 1B =13×12×32×3×3=94,故B 正确;对于C ,如图所示N 1,N 2分别为B 1B ,B 1C 1中点,有MN 1∥平面A 1BC 1,MN 2∥平面A 1BC 1,故C 正确;对于D ,易证B 1D ⊥平面A 1BC 1,B 1D ⊥平面ACD 1,且B 1O 1=O 1O 2=O 2D =13B 1D =3,所以有点B 1,A ,C ,D 1,四点到平面A 1BC 1的距缡为3,故D 错.故选:BC .3已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为棱AD 上的动点,平面α过点E 且与平面A 1DC 1平行,则()A.B 1E ⊥CD 1B.三棱锥E -B 1C 1D 1的体积为定值C.D 1E 与平面A 1DC 1所成的角可以是π3D.平面α与底面ABCD 和侧面CDD 1C 1的交线长之和为22【解析】:对于A ,∵四边形CDD 1C 1为正方形,∴CD 1⊥C 1D ,∵B 1C 1⊥平面CDD 1C 1,CD 1⊂平面CDD 1C 1,∴B 1C 1⊥CD 1,又B 1C 1∩C 1D =C 1,B 1C 1,C 1D ⊂平面AB 1C 1D ,∴CD 1⊥平面AB 1C 1D ,∵B 1E ⊂平面AB 1C 1D ,∴B 1E ⊥CD 1,A 正确;对于B ,∵AD ∥A 1D 1∥B 1C 1,AD ⊄平面B 1C 1D 1,B 1C 1⊂平面B 1C 1D 1,∴AD ∥平面B 1C 1D 1,又E ∈AD ,∴点E 到平面B 1C 1D 1的距离即为AA 1=1,∴V E -B 1C 1D 1=13S △B 1C 1D 1⋅AA 1=13×12×1×1×1=16,B 正确;第2页共25页专业专心专注对于C ,以D 为坐标原点,DA,DC ,DD 1正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则A 1(1,0,1),D (0,0,0),C 1(0,1,1),D 1(0,0,1),则DA 1 =(1,0,1),DC 1=(0,1,1),设平面A 1DC 1的法向量n=(x ,y ,z ),则DA 1⋅n=x +z =0DC 1 ⋅n=y +z =0,令x =1,解得:y =1,z =-1,∴n =(1,1,-1),设E (λ,0,0)(0≤λ≤1),则D 1E=(λ,0,-1),∴|cos <D 1E ,n >|=|D 1E ⋅n||D 1E |⋅|n |=λ+13λ2+3,若D 1E 与平面A 1DC 1所成的角为π3,则|cos ‹D 1E ,n ›|=λ+13λ2+3=12,方程无解,∴D 1E 与平面A 1DC 1所成的角不能为π3,C 错误;将底面ABCD 和侧面CDD 1C 1沿CD 展开到同一平面,则E ,F ,G 三点共线且EG ∥AC ,∴EG =AC =2,D 错误.故选:AB .4在正方体ABCDA 1B 1C 1D 1中,N 为底面ABCD 的中心,P 为棱A 1D 1上的动点(不包括两个端点),M 为线段AP 的中点,则下列结论正确的是()第3页共25页专业专注专心A.CM 与PN 是异面直线B.|CM |>|PN |C.过P ,A ,C 三点的正方体的截面一定不是等腰梯形D.平面PAN ⊥平面BDD 1B 1【解析】:连接PC ,∵点M ∈PA ,PA ⊂平面PAC ,∴M 点在平面PAC上,∴CM ⊂平面PAC ,∵点N ∈AC ,AC ⊂平面PAC ,∴点N 在平面PAC 上,即PN ⊂平面PAC ,∴PN ,CM 不是异面直线,故A 错误;以D 为坐标原点,以DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系,记∠PAC =θ,则:PN 2=AP 2+AN 2-2AP •AN •cos θ=AP 2+14AC 2-AP ⋅AC cos θ,CM 2=AC 2+AM 2-2AC •AM cos θ=AC 2+14AP 2-AP ⋅AC cos θ,∵AP <AC ,CM 2-PN 2=34(AC 2-AP 2)>0,CM 2>PN 2,∴|CM |>|PN |,故B 正确;第4页共25页专业专心专注取C 1D 1的中点E ,连接CE ,PE ,则PE ∥AC ,PE =12AC ,如图,∴四边形PECA 是梯形,∵AP 2=A 1P 2+AA 21=C 1E 2+CC 21=CE 2,∴AP =CE ,∴此时四边形PECA 是等腰梯形,故C 错误;∵底面ABCD 是正方形,∴AC ⊥BD ,如图,∵DD 1⊥底面ABCD ,∴DD 1⊥AC ,∵DD 1∩BD =D ,∴AC ⊥平面DD 1B 1B ,又AC ⊂平面PAC ,∴平面PAC ⊥平面BDD 1B 1,∴平面PAN ⊥平面BDD 1B 1,故D 正确.故选:BD .5已知正方体ABCD -A 1B 1C 1D 1的棱长为1,下列结论正确的有()A.异面直线CA 1与B 1D 1所成角的大小为π3B.若E 是直线AC 上的动点,则D 1E ∥平面A 1BC 1C.与此正方体的每个面都有公共点的截面的面积最小值是32D.若此正方体的每条棱所在直线与平面α所成的角都相等,则α截正方体所得截面面积的最大值是3【解析】:如图1,由正方体的结构特征可知,A 1C 1是CA 1在上底面的射影,且B 1D 1⊥A 1C 1,∴CA 1⊥B 1D 1,即异面直线CA 1与B 1D 1所成角的大小为π2,故A 错误;第5页共25页专注专心由正方体结构特征可知,A 1D 1∥BC ,A 1D 1=BC ,得四边形BA 1D 1C 为平行四边形,可得A 1B ∥D 1C ,∵A 1B ⊂平面A 1BC 1,D 1C ⊄平面A 1BC 1,∴D 1C ∥平面A 1BC 1,同理可得D 1A ∥平面A 1BC 1,又D 1A ∩D 1C =D 1,则平面D 1AC ∥平面A 1BC 1,而D 1E ⊂平面D 1AC ,∴D 1E ∥平面A 1BC 1,故B 正确;平面A 1BC 1为一个与正方体的每个面都有公共点,且截面面积最小的面,其面积为S =12×2×2×sin60°=32,故C 正确;如图2,若此正方体的每条棱所在直线与平面α所成的角都相等,只需平面α与过同一顶点的三条棱所成角相等,设AP =AQ =AR ,则平面PQR 与正方体过顶点A 的三条棱所成角相等,若点E 、F 、G 、H 、M 、N 分别为相应棱的中点,可得平面EFGHMN ∥平面PQR ,且六边形EFGHMN 为正六边形,正方体棱长为1,则正六边形的边长为22,此时正六边形的面积为334,为截面最大面积,故D 错误.故选:BC .6在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为侧面BCC 1B 1(不含边界)内的动点,Q 为线段A 1C 上的动点,若直线A 1P 与A 1B 1的夹角为45°,则下列说法正确的是()A.线段A 1P 的长度为2B.33A 1Q +PQ 的最小值为1C.对任意点P ,总存在点Q ,使得D 1Q ⊥CPD.存在点P ,使得直线A 1P 与平面ADD 1A 1所成的角为60°【解析】:以D 为坐标原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,第6页共25页专业专心专注则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),设P (x 1,1,z 1),Q (x 2,y 2,z 2),由直线A 1P 与A 1B 1的夹角为45°,得到:A 1P =(x 1-1,1,z 1-1),A 1B 1 =(0,1,0),∵直线A 1P 与A 1B 1的夹角为45°,∴cos45°=A 1P ⋅A 1B 1 |A 1P |⋅|A 1B 1 |=1(x 1-1)2+1+(z 1-1)2,解得(x 1-1)2+(z 1-1)2=1,Q 为线段A 1C 上的动点,则A 1Q =λA 1C(0≤λ≤1),解得Q (1-λ,λ,1-λ).对于A ,|A 1P|=(x 1-1)2+(z 1-1)2+1=2,故A 正确;对于B ,过点Q 作平面ABCD 的垂线,垂足为R ,∵sin ∠ACA 1=AA 1A 1C =33,∴33A 1Q +PQ 的最小值等价于求QP -QR +1,∵|QR |=1-λ,|QP |=(1-λ+x 1)2+(λ-1)2+(1-λ-z 1)2,∴|QP |2=(1-λ-x 1)2+(λ-1)2+(1-λ-z 1)2≥(λ-1)2=|QR|2,当且仅当x 1=z 1=1-λ时成立,结合(x 1-1)2+(z 1-1)2=1,可得此时λ=22,故B 正确;对于C ,若D 1Q ⊥CP ,则由D 1Q =(1-λ,λ,-λ),CP =(x 1,0,z 1),得D 1Q ⋅CP=x 1(1-λ)-z 1λ=0,又(x 1-1)2+(z 1-1)2=1,∴λ2(λ-1)2+1z 21+2λλ-1-2 z 1+1=0,Δ=2λλ-1-2 2-4×λ2(λ-1)2+1×1=-8λλ-1,∵0≤λ≤1,∴Δ=2λλ-1-2 2-4×λ2(λ-1)2+1×1=-8λλ-1≥0,∴对任意点P ,总存在点Q ,使得D 1Q ⊥CP ,故C 正确;对于D ,平面ADD 1A 1的法向量为n=(0,1,0),若直线A 1P 与平面ADD 1A 1所成的角为60°,即直线A 1P 与平面ADD 1A 1的法向量成30°角,∴cos30°=A 1P ⋅n |A 1P |⋅|n |=1(x 1-1)2+1+(z 1-1)2,解得32=12,矛盾,故D 错误.故选:ABC .7在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别为棱BC ,CD ,CC 1的中点,P 是线段A 1C 1上的动点(含端点),则下列说法正确的有()第7页共25页专注专心A.PM ⊥BDB.异面直线BP 与AC 所成角的取值范围是π4,π2C.PE 与平面ABCD 所成角正切值的最大值为22D.过EF 作该正方体外接球的截面,所得截面的面积的最小值为38π【解析】:对于A ,在正方体ABCD -A 1B 1C 1D 1中,AA 1⊥底面ABCD ,∵BD ⊂平面ABCD ,∴AA 1⊥BD ,又AC ⊥BD ,且AC ∩AA 1=A ,AC ,AA 1⊂平面ACC 1A 1,∴BD ⊥平面ACC 1A 1,又PM ⊂平面ACC 1A 1,又PM ⊂平面ACC 1A 1,则PM ⊥BD ,故A正确;对于B ,当点P 与线段A 1C 1的端点重合时,异面直线BP 与AC 所成角取得最小值为π3,∴异面直线BP 与AC 所成角的取值范围是π3,π2,故B 错误;对于C ,点P 在平面ABCD 上的射影N 在AC 上,连接NE ,则∠PEN 是PE 与平面ABCD 所成的角,由正方体的棱长为1,则PN =1,tan ∠PEN =PN NE =1NE ,∴EN 的最小值即为E 到直线AC 的距离为24,∴tan ∠PEN 的最大值为124=22,故C 正确;对于D ,设EF ∩AC =H ,∵正方体外接球的球心为正方体中心O ,半径为R =32,过EF 作该正方体外接球的截面,截面的面积最小者是直径过EF 的圆面,第8页共25页专业专心专注OH 垂直于此圆面,设其半径为r ,AC ∩BD =Q ,∵OH 2=OQ 2+HQ 2,∴r 2=R 2-OQ 2-HQ 2=32 2-122-242=38,截面面积为πr 2=3π8,故D 正确.故选:ACD .8如图,在正方体ABCD -A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则()A.直线BD 1⊥平面A 1C 1DB.点P 到平面A 1C 1D 的距离为定值C.异面直线AP 与A 1D 所成角的取值范围是π3,π2D.直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为33【解析】:如图,对于A ,∵A 1C 1⊥B 1D 1,A1C 1⊥BB 1,B 1D 1∩BB 1=B 1,∴A 1C 1⊥平面BB 1D 1,∴A 1C 1⊥BD 1,同理,DC 1⊥BD 1,第9页共25页∵A1C1∩DC1=C1,∴BD1⊥平面A1C1D,故A正确;对于B,∵A1D∥B1C,A1D⊂平面A1C1D,B1C⊄平面A1C1D,∴B1C∥平面A1C1D,∵点P在线段B1C上运动,∴P到平面A1C1D的距离为定值,故B正确;对于C,当点P与线段B1C的端点重合时,异面直线AP与A1D所成角取得最小值为π3,故异面直线AP与A1D所成角的取值范围是π3,π2,故C正确,对于D,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,如图示:设正方体ABCD-A1B1C1D1中棱长为1,P(a,1,a),则D(0,0,0),A1(1,0,1),C1(0,1,1),DA1=(1,0,1),DC1=(0,1,1),C1P=(a,0,a-1),设平面A1C1D的法向量n=(x,y,z),则n⋅DA1=x+z=0n⋅DC1=y+z=0,取x=1,得n =(1,1,-1),∴直线C1P与平面A1C1D所成角的正弦值为:|n ⋅C1P||n |⋅|C1P|=13⋅a2+(a-1)2=13⋅2a-122+12,∴当a=12时,直线C1P与平面A1C1D所成角的正弦值的最大值为63,故D错误.故选:ABC.9在正方体ABCD-A1B1C1D1中,AB=1,点P在正方体的面CC1D1D内(含边界)移动,则下列结论正确的是()A.当直线B1P∥平面A1BD时,则直线B1P与直线CD1所成角可能为π4B.当直线B1P∥平面A1BD时,P点轨迹被以A为球心,54为半径的球截得的长度为12C.若直线B1P与平面CC1D1D所成角为π4,则点P的轨迹长度为π2D.当直线B1P⊥AB时,经过点B,P,D1的平面被正方体所截,截面面积的取值范围为62,2【解析】:对于A,如图,连接CB1,CD1,B1D1,由正方体性质知CB1∥DA1,第10页共25页专业专注专心专业专心专注同理可证CD 1∥平面A 1BD ,又CB 1∩CD 1=C ,∴平面A 1BD ∥平面CB 1D 1,由B ∈平面CB 1D 1,面CB 1D 1∩面CC 1D 1D =CD 1,且P 在正方体的面CC 1D 1D 内,∴要使直线B 1P ∥平面A 1BD ,则B 1P ⊂平面CB 1D 1,即P ∈CD 1,又△CB 1D 1是等边三角形,∴P 在CD 1上运动时,直线B 1P 与直线CD 1所成角为π3,π2,故A 错误;对于B ,由选项A 的分析得直线B 1P ∥平面A 1BD ,P 点轨迹为线段CD 1,取CD 1中点H ,连接AD1,AH ,∵△ACD 1是等边三角形,∴AH =AD 21-HD 21=2-12=62,以A 为球心,54为半径的球截CD 1的长度为254 2-62 )2=12,故B 正确;对于C ,由B 1C 1⊥平面CC 1D 1D ,由题意B 1D 1、B 1C 与面CC 1D 1D 夹角为π4,∴要直线B 1P 与平面CC 1D 1D 所成角为π4,则P 点轨迹是以C 1为圆心CD 1为半径的14圆,如图,∴点P 的轨迹长度为14×2π=π2,故C 正确;对于D ,若B 1P ⊥AB ,又AB ∥CD ,∴B 1P ⊥CD ,∵CD ⊥平面BB 1C 1C ,B 1∈平面BB 1C 1C ,又面BB 1C 1C ∩面CC 11D =CC 1,∴P 点轨迹为线段CC 1,过D 1作D 1E ∥BP ,交AA 1于E ,连接BE ,则截面BPD 1E 为平行四边形,如图,第11页共25页专注专心当P 与C 或C 1重合时,截面为矩形,此时面积最大,为2;当P 为CC 1的中点时,截面为菱形,此时面积最小,为12×3×2=62,∴截面面积的取值范围为62,2,故D 正确.故选:BCD .10如图,矩形ABCD 中,AB =2AD =2,E 为边AB 的中点,将△ADE 沿DE 翻折成△A 1DE ,若M 为线段A 1C 的中点,则在翻折过程中,下列结论中正确的是()A.翻折到某个位置,使得DA 1⊥ECB.翻折到某个位置,使得A 1C ⊥平面A 1DEC.四棱锥A 1-DCBE 体积的最大值为24D.点M 在某个球面上运动【解析】:对于A 选项,由题知A 1D ⊥A 1E ,若存在某个位置使得DA 1⊥EC ,由于A 1E ⋂EC =E ,故A 1D ⊥平面A 1EC ,即A 1D ⊥A 1C ,由于AB =2AD =2,故A 1C =3,由于在折叠过程中,A 1C ∈(1,5),所以存在某个位置,使得A 1C =3,故存在某个位置,使得DA 1⊥EC ,故A 选项正确;对于B 选项,若存在某个位置,使得AC ⊥平面A 1DE ,则有AC ⊥DE ,另一方面,在矩形ABCD 中,∠AED =π4,∠CAE ≠π4,故AC ⊥DE 不成立,所以B 选项错误;对于C 选项,四棱锥A 1-DCBE 体积的最大时,平面A 1DE ⊥平面ABCD ,由于△A 1DE 是等腰直角三角形,所以此时点A 1到平面DCBE 的距离为22,所以四棱锥A 1-DCBE 体积的最大值为V =13S BCDE ⋅22=13×12×(2+1)×1×22=24,故C 选项正确;对于D 选项,取DC 中点O ,连接OM ,由于M 为线段A 1C 的中点,所以OM ∥A 1D ,OM =12A 1D =12,所以M 在以点O 为球心的球面上,故D 选项正确.故选:ACD .第12页共25页专业专心专注11如图,已知正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是CD ,A 1B 1,DD 1,BC 的中点,则下列说法正确的有()A.E ,F ,M ,N 四点共面B.BD 与EF 所成的角为π3C.在线段BD 上存在点P ,使PC 1⊥平面EFMD.在线段A 1B 上任取点Q ,三棱锥Q -EFM 的体积不变【解析】:以点D 为坐标原点,建立如图所示的空间直角坐标系D -xyz ,令AB =2,则E (0,1,0),F (2,1,2),M (0,0,1),N (1,2,0),∴EF =(2,0,2),FM =(-2,-1,-1),MN =(1,2,-1),取向量m =(1,-1,-1),注意到m ⋅EF =m ⋅FM=m ⋅MN =0即平面EFM 和平面FMN 的法向量相同,据此可得E ,F ,M ,N 四点共面,选项A 正确;由于B (2,2,0),D (0,0,0),E (0,1,0),F (2,1,2),故BD =(-2,-2,0),EF =(2,0,2).由于BD ⋅EF =-4,|BD |=|EF |=8,第13页共25页专业专注专心故设BD 与EF 所成的角为θ,则|cos θ|=|BD ⋅EF ||BD |×|EF |=48=12,∴θ=π3,选项B 正确;对应选项C ,设P (m ,m ,0)(0≤m ≤2),G (0,2,2),∴PC 1=(-m ,2-m ,2),由于平面EFM 的法向量m=(1,-1,-1),故PC 1 ⋅m=-m +m -2-2≠0,据此可得选项C 错误;由于A 1(2,0,2),B (2,2,0),E (0,1,0),M (0,0,1),故A 1B =(0,2,-2),EM =(0,-1,1),∴A 1B ∥EM ,从而有直线A 1B ∥平面EFM ,点Q 到平面EFM 的距离为定值,选项D 正确.故选:ABD .12如图,在正方体ABCD -A 1B 1C 1D 1中,点E 是线段CD 1上的动点,则下列判断正确的是()A.无论点E 在线段CD 1的什么位置,三棱锥A 1-ABE 的体积为定值B.无论点E 在线段CD 1的什么位置,都有AC 1⊥B 1EC.当点E 与线段CD 1的中点重合时,B 1E 与AC 1异面D.若异面直线B 1E 与AD 所成的角为θ,则sin θ的最大值为33【解析】:A .如图所示:因为CD 1∥平面A 1ABB 1,所以点E 到平面A 1ABB 1的距离为BC ,而S △A 1AB =12×A 1A ×AB ,所以三棱锥A 1-ABE 的体积为V E -A 1AB =16×A 1A ×AB ×BC 是定值,故正确;B .如图所示:第14页共25页专业专心专注因为B 1C 1⊥平面C 1CDD 1,则B 1C 1⊥CD 1,又C 1D ⊥CD 1,且B 1C 1⋂C 1D =C 1,所以CD 1⊥平面B 1C 1DA ,则CD 1⊥AC 1,同理B 1D 1⊥AC 1,又CD 1⋂B 1D 1=D 1,所以AC 1⊥平面B 1D 1C ,又B 1E ⊂平面B 1D 1C ,所以AC 1⊥B 1E ,故正确;C.如图所示:当点E 与线段CD 1的中点重合时,B 1E ⊂平面AB 1C 1D ,AC 1⊂平面AB 1C 1D ,则B 1E 与AC 1相交,故错误;D.建立如图所示空间直角坐标系:设E (x ,2,2-x ),则B 1(2,0,2),A (0,0,0),D (0,2,0),所以AD =(0,2,0),B 1E =(x -2,2,-x ),则cos θ=|AD ⋅B 1E ||AD |⋅|B 1E |=2(2-x )2+4+x 2=22[(x -1)2+3],所以sin θ=1-cos 2θ=1-2(x -1)2+3,当x =1时,sin θ的最小值为33,故错误.故选:AB .13在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PA ⊥平面ABCD ,且PA =2.若点E ,F ,G 分别为棱AB ,AD ,PC 的中点,则()A.AG ⊥平面PBDB.直线FG 和直线AB 所成的角为π4C.当点T 在平面PBD 内,且TA +TG =2时,点T 的轨迹为一个椭圆D.过点E ,F ,G 的平面与四棱锥P -ABCD 表面交线的周长为22+6【解析】:将该正四棱锥补成正方体,可知AG 位于其体对角线上,则AG ⊥平面PBD ,故A 正确;设PB 中点为H ,则FG ∥AH ,且∠HAB =π4,故B 正确;∵TA +TG =2,∴T 在空间中的轨迹为椭圆绕其长轴旋转而成的椭球,又平面PBD 与其长轴垂直,∴截面为圆,故C 错误;第15页共25页专注专心设平面EFG 与PB ,PD 交于点M ,N ,连接PE ,EC ,PF ,FC ,EM ,MG ,GN ,NF,∵PA =BC ,AE =BE ,∠PAE =∠CBE ,∴△PAE ≌△CBE ,∴PE =CE ,而PG =GC ,故EG ⊥PC ,同理FG ⊥PC ,而FG ∩EG =G ,∴PC ⊥平面EFG ,而EM ⊂平面EFG ,则PC ⊥EM ,∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA ⊥BC ,∵BC ⊥AB ,PA ∩AB =A ,∴BC ⊥平面PAB ,∵EM ⊥平面PBC ,而PB ⊂平面PBC ,则EM ⊥PB ,∴BM =EM =22BE =22,同理,FN =DN =22,又PG =3,PM =22-22=322,则GM =GN =62,而EF =12BD =2,∴交线长为EF +EM +MG +GN +FN =22+6,故D 正确.故选:ABD .14如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M 在底面正方形ABCD 内运动,则下列结论正确的是()第16页共25页专业专心专注A.存在点M 使得A 1M ⊥平面D 1B 1CB.若A 1M =2,则动点M 的轨迹长度为2π2C.若A 1M ∥平面D 1B 1C ,则动点M 的轨迹长度为2D.若A 1M ⊂平面A 1DB ,则三棱锥B 1-MD 1C 的体积为定值【解析】:以点D 为坐标原点,DA 、DC 、DD 1所在直线分别为x、y 、z 轴建立如图所示的空间直角坐标系,则C (0,2,0)、B 1(2,2,2)、D 1(0,0,2)、A 1(2,0,2),设点M (x ,y ,0),其中0≤x ≤2,0≤y ≤2,设平面D 1B 1C 的法向量为m=(x 1,y 1,z 1),CD 1 =(0,-2,2),CB 1 =(2,0,2),则m ⋅CD 1=-2y 1+2z 1=0m ⋅CB 1 =2x 1+2z 1=0,取z 1=-1,则m =(1,-1,-1),A 1M =(x -2,y ,-2),若A 1M ⊥平面D 1B 1C ,则A 1M ∥m ,则x -2=-y =2,解得x =22,y =-2,不合乎题意,A 错;对于B 选项,若|A 1M |=(x -2)2+y 2+2=2,可得(x -2)2+y 2=2,则点M 在平面ABCD 内的轨迹是以点A 为圆心,半径为2的圆的14,所以,动点M 的轨迹长度为2π2,B 对;对于C 选项,若A 1M ∥平面D 1B 1C ,则A 1M ⊥m,则A 1M ⋅m=x -2-y +2=x -y =0,所以,点M 在底面ABCD 的轨迹为线段BD ,故点M 的轨迹长度为BD =2,C 错;对于D 选项,因为平面A 1BD ∩平面ABCD =BD ,若A 1M ⊂平面A 1BD ,则点M 的轨迹为线段BD ,因为BB 1∥DD 1且BB 1=DD 1,所以,四边形BB 1D 1D 为平行四边形,所以,BD ∥B 1D 1,∵M ∈BD ,则点M 到平面D 1B 1C 的距离为定值,又因为△D 1B 1C 的面积为定值,则V B 1-MD 1C =V M -D 1B 1C 为定值,D 对;故选:BD .15如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M 为D 1D 的中点,连接BM ,设BM 的中点为第17页共25页专业专注专心E ,动点N 在底面正方形ABCD 内(含边界)运动,则下列结论中正确的是()A.存在无数个点N 满足AN ⋅BM =0B.若AN =2NC ,则A 1,E ,N 三点共线C.若|NB |+|ND |=23,则|A 1N |的最大值为7D.若MN 与平面ABCD 所成的角为π3,则点N 的轨迹为抛物线的一部分【解析】:根据题意,依次分析选项,对于A ,连接BD 、AC ,易得AC ⊥BD 且AC ⊥DM ,则AC ⊥面BDM ,则有AC ⊥BM ,当N 在线段AC 上时,则有AN ⊥BM ,必有AN ⋅BM =0,故存在无数个点N 满足AN ⋅BM=0,A 正确;对于B ,若AN =2NC ,即AN =23AC ,A 1N =A 1A +23AB +23AD ,A 1E =A 1A +AB +12BM=A 1A +AB +12(BD +DM )=34A 1A +12AB +12AD ,则有A 1N =43A 1E ,即A 1,E ,N 三点共线,B 正确;对于C ,正方体ABCD -A 1B 1C 1D 1的棱长为2,则BD =22,若|NB |+|ND |=23,则N 的轨迹是以BD 为焦点的椭圆在正方形ABCD 内的部分,其中a =3,c =2,则b =a 2-c 2=1,故AN 的最大值为2+1,又由|A 1N |=|A 1A |2+|AN |2,则|A 1N |的最大值为7+22,C 错误;对于D ,MD ⊥底面ABCD 且MD =12,若MN 与平面ABCD 所成的角为π3,则ND =32,点N 的轨迹为圆的一部分,D 错误;故选:AB .16如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为正方形底面ABCD 内一动点,则下列结论正确的有()A.三棱锥B 1-A 1D 1P 的体积为定值第18页共25页专业专心专注B.存在点P ,使得D 1P ⊥AD 1C.若D 1P ⊥B 1D ,则P 点在正方形底面ABCD 内的运动轨迹是线段ACD.若点P 是AD 的中点,点Q 是BB 1的中点,过P ,Q 作平面α垂直于平面ACC 1A 1,则平面α截正方体ABCD -A 1B 1C 1D 1的截面周长为32【解析】:对于A ,P 在正方形底面ABCD 时,三棱锥P -A 1B 1D 1的高不变,底面积也不变,所以体积为定值,所以A 正确;对于B ,以D 为坐标原点,建立如图所示的空间直角坐标系,设P (x ,y ,0),则D 1(0,0,1),A (1,0,0),D 1P =(x ,y ,-1),AD 1=(-1,0,1),若D 1P ⊥AD 1,则D 1P ⋅AD 1=0,即x =-1,与题意矛盾,所以B 不正确;对于C ,DB1=(1,1,1),由D 1P ⊥B 1D 得x +y =1,所以P 的轨迹就是线段AC ,所以C 正确;对于D ,因为BD ⊥AC ,BD ⊥AA 1,所以BD ⊥平面ACC 1A 1,因为平面α⊥平面ACC 1A 1,所以BD ∥平面α,以BD 为参照线作出平面α与正方体各个侧面的交线,如图,易知每个侧面的交线均相等,长度为22,所以截面周长为32,所以D 正确.故选:ACD .17如图,在三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,BE ⊥AC ,E 为垂足点,F 为BD 中点,则下列结论正确的是()A.若AD 的长为定值,则该三棱锥外接球的半径也为定值第19页共25页专业专注专心B.若AC 的长为定值,则该三棱锥内切球的半径也为定值C.若BD 的长为定值,则EF 的长也为定值D.若CD 的长为定值,则EF ⋅CD的值也为定值【解析】:对于A :取AD 的中点O ,∵AB ⊥平面BCD ,DB ⊂平面BCD ,∴AB ⊥BD ,∴OB =12AD ,∵AB ⊥平面BCD ,DC ⊂平面BCD ,∴AB ⊥CD ,∵BC ⊥CD ,BC ∩AB =B ,∴CD ⊥平面ABC ,AE ⊂平面ABC ,∴CD ⊥AC ,∴OC =12AD ,∴O 为外接球的球心,AD 是直径,故A 正确;对于B :显然当AB 无限接近0时,内切球的半径趋于0,当AB =BC 时,可知内切球半径最大,故B 不正确;对于C :由A 可知CD ⊥BE ,又BE ⊥AC ,AC ∩CD =C ,∴BE ⊥平面ACD ,DE ⊂平面ACD ,∴BE ⊥ED ,∴EF =12BD ,若BD 的长为定值,则EF 的长也为定值,故C 正确;对于D :以C 点为原点,建立空间直角坐标系,如图,假设AB =2c ,BC =2b ,CD =2a ,则|BD |=(2b )2+(2a )2=2a 2+b 2,C (0,0,0),A (0,2b ,2c ),B (0,2b ,0),D (2a ,0,0),F (a ,b ,0),则CA=(0,2b ,2c ),∵E 在AC 上,∴设E (0,k •2b ,k •2c ),则BE=(0,(k -1)•2b ,k •2c ),∵BE ⊥AC ,∴BE ⊥CA,∴BE ⋅CA =(k -1)(2b )2+k (2c )2=0,解得k =b 2b 2+c2,∴E 0,2b 3b 2+c 2,2b 2cb 2+c 2,∴EF =a ,b (c 2-b 2)b 2+c 2,-2b 2c b 2+c2,CD =(2a ,0,0),∴|EF |=a 2+b (c 2-b 2)b 2+c 2 2+-2b 2c b 2+c22=a 2+b 2=12|BD |,EF ⋅CD =2a 2,∴若CD 的长为定值,则EF ⋅CD的值也为定值,故D 正确,故选:ACD .第20页共25页18如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BB 1C 1C (包含边界)内运动,则下列结论正确的有()A.直线BD 1⊥平面A 1C 1DB.二面角B 1-CD -B 的大小为π2C.过三点P ,A 1,D 的正方体的截面面积的最大值为2a 2D.三棱锥B 1-A 1C 1D 的外接球半径为3a【解析】:对于A ,连接B 1D 1,∵正方体ABCD -A 1B 1C 1D 1中,B 1D 1⊥A 1C 1,BB 1⊥平面A 1B 1C 1D 1,又A 1C 1⊂平面A 1B 1C 1D 1,∴BB 1⊥A 1C 1,又B 1D 1∩BB 1=B 1,∴A 1C 1⊥平面B 1D 1B ,∵BD 1⊂平面B 1D 1B ,∴A 1C 1⊥BD 1,同理,A 1D ⊥BD 1,∵A 1C 1∩A 1D =A 1,∴BD 1⊥平面A 1C 1D ,故A 正确;对于B ,由正方体性质得DC ⊥平面BB 1C 1C ,得DC ⊥B 1C ,DC ⊥CB ,∴二面角B 1-CD -B 为∠B 1CB =π4,故B 错误;对于C ,由对称性,P 在△B 1CC 1内与△B 1CB 内截面面积取最大值的情况相同,且当P 在B 1C 上时,截面即矩形A 1B 1CD ,面积2a 2,∴不妨设P 在△B 1CB 内(不包含B 1C 1),设截面交BB 1,BC 分别于M ,N ,则由正方体性质与面面平行的性质可得A 1D ∥B 1C ,MN ∥B 1C ,∴A 1D ∥MN ,∴截面为梯形A 1MND ,设MN∩BC1=I,B1C∩BC1=R,A1D∩AD1=Q,∵B1C⊥BC1,B1C⊥AB,AB∩BC1=B,∴B1C⊥平面ABC1D1,∴MN⊥平面ABC1D1,又QI⊂平面ABC1D1,∴MN⊥QI,即QI为梯形A1MND的高,设IR=t,则MN=2BI=2(BR-t)=2a-2t,∴SA1MND =12(MN+A1D)⋅QI=12(22a-2t)⋅a2+t2=2a-22t•a2+t2,下证a2+t2<a+22t,即a2+t2<a2+2at+12t2,∴t<22a成立,∴a2+t2<a+22t成立,∴SA1MND =2a-22t•a2+t2<2a-22t•a+22t=2a2-12t2<2a2,∴SA1MND <SA1B1CD=2a2,∴过三点P,A1,D的正方体的截面面积的最大值为S A1B1CD=2a2,故D正确;对于D,由题意得三棱锥B1-A1C1D的外接球即正方体ABCD-A1B1C1D1的外接球,其半径为体对角线BD1的一半,即32a,故D错误.故选:AC.19如图,平面四边形ABCD是由正方形AECD和直角三角形BCE组成的直角梯形,AD=1,∠CBE=π6,现将Rt△ACD沿斜边AC翻折成△ACD1(D1不在平面ABC内),若P为BC的中点,则在Rt△ACD翻折过程中,下列结论正确的是()A.AD1与BC不可能垂直B.三棱锥C-BD1E体积的最大值为612C.若A,C,E,D1都在同一球面上,则该球的表面积是2πD.直线AD1与EP所成角的取值范围为π6,π3【解析】:对于A选项:由AD⊥CD,则AD1⊥CD1,当AD1⊥D1B时,且D1B<AB,此时满足AD1⊥平面BCD1,因此AD1⊥BC,故A错误;对于B,取AC的中点O,连接OE,OD1,则OE=OD1=OA=OC=22,且OD1⊥AC,因为V C -BD 1E =V D 1-BCE ,当平面ACD 1⊥平面ABC 时,三棱锥C -BD 1E 体积的最大值,在Rt △BCE 中,∠CBE =π6,CE =1,则BE =3,此时V C -BD 1E =V D 1-BCE =13×12×1×3×22=612,所以三棱锥C -BD 1E 体积的最大值为612,故B 正确;对于C ,因为OE =OD 1=OA =OC =22,所以A ,C ,E ,D 1都在同一球面上,且球的半径为22,所以该球的表面积是4π×22 2=2π,故C 正确;对于D ,作AM ∥EP ,因为P 为BC 的中点,所有EP =1,EP AM =BE AB =BP BM ,所以AM =3+33=BM ,所以∠BAM =∠ABC =30°,所以∠MAC =15°,AD 1可以看成以AC 为轴线,以45°为平面角的圆锥的母线,所以AC 与AD 1夹角为45°,AC 与AM 夹角为15°,又D 1不在平面ABC 内,60°=45°+15°,30°=45°-15°,所以AD 1与AM 所成角的取值范围π6,π3,所以D 正确,故选:BCD .20在四棱锥P -ABCD 中,底面ABCD 为菱形,∠ABC =π3,PA ⊥平面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点,则()A.平面AEF ⊥平面PBCB.三棱锥C -PED 的体积为33C.EF 与平面ABCD 所成角的最小值为π6 D.AE 与PC 所成角的余弦值为14【解析】:对于D ,取BC 中点N ,连接AN ,EN ,则PC ∥EN ,故∠AEN 或其补角为AE 与PC 所成角,由于△ABC 为边长为2的等边三角形,则AN =3,AC =2,因此PB =PC =22+22=22,故EN =12PC =2,AN =12PB =2,在△AEN 中,由余弦定理可得cos ∠AEN =AE 2+EN 2-AN 22AE ⋅EN =(2)2+(2)2-(3)222×2=14,故AE 与PC 所成角的余弦值为14,D 正确;对于A ,由于F 为线段BC 上的动点,若F 移动到点B 时,此时考虑平面PAB 与平面PBC 是否垂直,若两平面垂直,则其交线为PB ,由于AE ⊥PB ,AE ⊂平面PAB ,则AE ⊥平面PBC ,EN ⊂平面PBC ,故AE ⊥EN ,这显然与D 选项矛盾,故平面PAB 与平面PBC 不垂直,A 错误;对于B ;取PA 中点为H ,则EH ∥AB ,AB ∥CD ,所以EH ∥CD ,CD ⊂平面PCD ,EH ⊄平面PCD ,故EH ∥平面PCD ,因此点E 到平面PCD 的距离与点H 到平面PCD 的距离相等,故V C -PED =V E -PCD =V H -PCD =V C -PHD =12V C -PAD =12V P -CAD =12×13×S △CAD ⋅PA ,因此V C -PED =16S △CAD ⋅PA =16×12×2×2×sin60°×2=33,故B 正确;对于C ,取AB 中点为M ,连接EM ,MF ,则EM ∥PA ,所以EM ⊥平面ABCD ,故∠EFM 为EF 与平面ABCD 所成角,在直角三角形EFM 中,EM =12PA =1,故当MF 长度最大时,∠EFM 最小,故当F 运动到与C 重合时,MF 最大值为3,此时∠EFM 最小为30°,故C 正确;故选:BCD .21如图,矩形ABCD 中,AD =2,AB =3,AE =2EB ,将△ADE 沿直线DE 翻折成△A 1DE ,若M 为线段A 1C 的点,满足CM =2MA 1 ,则在△ADE 翻折过程中(点A 1不在平面DEBC 内),下面四个选项中正确的是()A.BM ∥平面A 1DEB.点M 在某个圆上运动C.存在某个位置,使DE ⊥A 1CD.线段BA 1的长的取值范围是(5,3)【解析】:如图所示,在DC 上取一点N ,令CN =2ND ,连接NB ,在矩形ABCD 中,AB =CD 且AB ∥CD ,又因为AE =2EB ,CN =2ND ,所以EB =ND 且EB ∥ND ,所以四边形EBND 为平行四边形,所以NB ∥ED ,又因为NB ⊄平面ADE ,DE ⊂平面ADE ,所以NB ∥平面ADE ,又因为CN =2ND ,CM =2MA 1,所以NM ∥A 1D ,又因为NM ⊄平面ADE ,DA 1⊂平面ADE ,所以NM ∥平面ADE ,又因为NM ∩NB =N 且NM 、NB ⊂平面BMN ,所以平面BMN ∥平面ADE ,又因为MB ⊂平面BMN ,所以BM ∥平面A 1DE ,选项A 正确;由NB ∥ED ,NM ∥A 1D ,AD =AE =2,可得∠A 1DE =∠MNB =π4,由CN =2ND ,CM =2MA 1 可知,NM =23A 1D =43,而EB =ND =22,由余弦定理可知,BM 为定值,而B 为定点,故M 在以B 为圆心,BM 为半径的圆上运动,故选项B 正确;取ED 的中点H ,连接HA 1,HC ,在△A 1DE 中,AD =AE =2,所以DE ⊥A 1H ,假设DE ⊥A 1C 成立,A 1H 、A 1C ⊂平面A 1HC ,所以DE ⊥平面A 1HC ,又因为CH ⊂平面A 1HC ,所以DE ⊥CH ,而在△DHC 中,DH =2,DC =3CH =5,所以∠DHC ≠π2,故DE ⊥CH 不成立,所以假设不成立,该选项C 错误;在DC 上取一点A 2,令DA 2 =2A 2C ,在△ADE 翻折过程中,线段BA 1的最大值是A 1与A 点重合,此时BA 1=3,线段BA 1的最小值是A 1与A 2点重合,此时BA 1=5,又因为点A 1不在平面DEBC 内,所以线段BA 1的长的取值范围是(5,3),选项D 正确;故选:ABD .。

立体几何中的动态问题——动点、翻折、截取

立体几何中的动态问题——动点、翻折、截取

微难点9立体几何中的动态问题——动点、翻折、截取一、单项选择题(选对方法,事半功倍)1. 把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A. 90°B. 60°C. 45°D. 30°2. 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能是()A BC D3. 如图,在下列三个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面.在各正方体中,直线BD1与平面EFG的位置关系描述正确的是()①②③(第3题)A. BD1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②③B. BD1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有①C. BD1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②D. BD1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有③二、多项选择题(练—逐项认证,考—选确定的)4. 已知正方体ABCD-A1B1C1D1的棱长为2,平面α⊥AC1,则关于α截此正方体所得截面的判断正确的是()A. 截面形状可能为正三角形B. 截面形状可能为正方形C. 截面形状可能为正六访形D. 截面面积最大值为335. 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个结论,其中结论正确的是()图(1)图(2)(第5题)A. 水的部分始终呈棱柱状B. 水面EFGH的面积不改变C. 棱A1D1始终与水面EFGH平行D. 当容器倾斜到如图(2)时,BE·BF是定值6. (2020·淄博质检)在正方体ABCD-A1B1C1D1中,P,Q分别为棱BC和棱CC1的中点,则下列说法正确的是()A. BC1∥平面AQPB. 平面APQ截正方体所得的截面为等腰梯形C. A1D⊥平面AQPD. 异面直线QP与A1C1所成的角为60°三、填空题(精准计算,整洁表达)7. 已知一个空间几何体的所有棱长均为1 cm,其表面展开图如图所示,则该空间几何体的体积V=________cm3.(第7题)8. 如图所示,在边长为2的菱形ABCD中,若∠ADC=60°,现将△ADC沿AC边折到△APC的位置,则三棱锥P-ABC体积的最大值为________.(第8题)9. 如图,圆形纸片的圆心为O,半径为6 cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别以AB,BC,CD,DA为底边的等腰三角形,沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为________.(第9题)。

2024年高考真题分类汇编九 空间向量与立体几何

2024年高考真题分类汇编九 空间向量与立体几何
且 ⊥ ,以为坐标原点,, , 分别为, , 轴建立空间直角坐标系,
则 0,
可得⃗
1,0 , 1,
0,
1,
1,0 , 1,0,0 , 0,2,0 , 0,0,2 ,
2 , ⃗
1,
1,
2 , ⃗
1,0,
2 , ⃗
0,2,
2 ,
6 / 14
, , ,则
则 0,0,0 , 0,0,2 3 , 0,3 3, 0 , 3,3 3, 0 , 2,0,0 , 0,

2 3, 0 ,
因为是的中点,所以 4,2 3, 0 ,
所以⃗
3,3 3,
2 3 , ⃗
0,3 3,
2 3 , ⃗
4,2 3,
2 3 , ⃗
2,0,
1 1 0
分别取1
2
1,则1
⃗⋅⃗
|⃗|⋅|⃗|
则 cos⃗, ⃗
3、1
1、2
2 22
22 0

0,即⃗
1,3,1 、⃗
0,0,2 ,平面1 的法向量为⃗
1,3,1 ,
1 3
1 9 1⋅ 1 1
1,2
0
1,1,0 ,
2 22

11
故平面1 与平面1 1 的夹角余弦值为2 22;
设平面的法向量为⃗

1,则取
2,可得⃗
0,
2,则
则 cos⟨⃗, ⃗⟩

2,1 ,
1
5
2 0 ,
2 2 0
2,1,1 ,
1,可得⃗
⃗⋅⃗
|⃗|⋅|⃗|
0,

, , ,则 ⃗ ⋅
⃗ ⋅ ⃗
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“动态”立体几何题本文所指的“动态”立体几何题,是指立体几何题中除了固定不变的的线线、线面、面面关系外,渗透了一些“动态”的点、线、面元素,给静态的立体几何题赋予了活力,题意更新颖,同时,由于“动态”的存在,也使立体几何题更趋灵活,加强了对学生空间想象能力的考查。

一、截面问题截面问题是立体几何题中的一类比较常见的题型,由于截面的“动态”性,使截得的结果也具有一定的可变性。

例1、用一个平面去截正方体,所得的截面不可能是( D ) A 六边形 B 菱形 C 梯形 D 直角三角形例2、已知正三棱柱A 1B 1C 1—ABC 的底面积为S,高为h,过C 点作三棱柱的与底面ABC 成α角的截面△MNC,(0<2πα<),使MN//AB ,求截面的面积。

分析:由于截面位置的不同,它与几何体的交线MN 可能在侧面A 1B 上,也可能在A 1B 1C 1上,由此得到两种不同的结果。

解:当交线MN 在侧面A 1B 内(或与A 1B 1重合时),S △MNC =αcos S;当MN 在底面A 1B 1C 1内时,arctan∴<<,2342παS hS △MNC =αα22sin 3cos 3h 。

BC 1BCNBC 1BC二、翻折、展开问题图形的翻折和展开必然会引起部分元素位置关系的变化,求解这类问题要注意对变化前后线线、线面位置关系、所成角及距离等加以比较,一般来说,位于棱的两侧的同一半平面内的元素其相对位置关系和数量关系在翻折前后不发生变化,分别位于两个半平面内的元素其相对关系和数量关系则发生变化。

不变量可结全原图型求解,变化了的量应在折后立体图形中来求证。

例3、下图表示一个正方体的展开图,图中AB 、CD 、EF 、GH 这四条直线在原正方体中相互异面的有( B )A 2对B 3对C 4对D 5对例4、从三棱锥P —ABC 的顶点沿着三条侧棱PA 、PB 、PC 剪开,成平面图形,得到△P 1P 2P 3,且P 1P 2=P 2P 3;CP 1P 32(1)在棱锥P-ABC 中,求证:PA ⊥BC ,(2)P 1P 2=26,P 1P 3=20,求三棱锥的体积。

分析:(1)由展开的过程可知,A 、B 、C 分别是边P 1P 3、P 1P 2、P 2P 3的中点,故AB=21P 2P 3, AC =21P 1P 2,∴AB=AC 。

又P 1P 2=P 2P 3,∴在原图中取BC 中点H ,连AH 、PH ,可证AH ⊥BC ,PH ⊥BC ,∴BC ⊥面PAH ,即得PA ⊥BC 。

(2)由(1)知BC ⊥面PAH ,,在立体图中可知,PB=PC=AB=AC=13,BC=10,PH=HA=12, S △PAH=5119,∴V=31S △PAH ·BC=119350. 三、最值问题立体几何题中经常会涉及到角度、距离、面积、体积最大值、最小值的计算,很多情况下,我们可以把这类动态问题转化成目标函数,从而利用代数方法求目标函数的最值。

例5、(2002年全国高考)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ,(0<a<2). (Ⅰ)求MN 的长;(Ⅱ)当a 为何值时,MN 的长最小; 分析:(1)MN 的长随着M 、N 的移动而变化,若能建立适当的函数关系,转化成函数问题,便可利用函数知识求解。

略解:(1)过点M 作MO ⊥AB 交AB 于O ,连ON ,由题可得BC=1,AM=2-a ,AC=2,∵MO//BC ,∴22aAB AO AC AM BC MO -===,∴MO=22a -,又AB AOa FB FN =-=22,∴ON//AF ,同理求得ON=2a ∴在R t △MNO 中,HAEMN=21)22()2(22222+-=+⎪⎪⎭⎫ ⎝⎛-a c a 。

(2)由(1)得当a=22时,MN min =22。

四、探索型问题由于立体几何题中“动态”性的存在,使有些问题的结果变得不可确定,探索型问题正好通过这种“动态性”和不确定性考查学生的发散性思维。

例8、已知矩形ABCD ,PA ⊥平面AC 于点A ,M ,N 分别是AB 、PC 的中点,(1)求证MN ⊥AB ;(2)若平面PDC 与平面ABCD 所成的二面角为θ,能否确定θ,使得直线MN 是异面直线AB 与PC 的公垂线?若能确定,求出θ的值,若不能确定,说明理由。

分析:(1)取CD 中点H ,可证AB 垂直平面MNH ,故AB ⊥MN ;(2)由题可得二面角θ即∠PDA ,随着θ的变化,MN 与AB 的垂直关系不变,但与PC 所成的角将随着变化。

设MN ⊥PC ,连PM 、MC ,∵N 是中点,∴PM=MC ,又∵AM=MB , ∠PAM=∠CBM=900,∴△PAM ≌△CMB ,∴PA=CB ,即PA=AD ,此时θ=450。

可见只要当θ=450时,MN 即为异面直线AB 与PC 的公垂线。

例9、如图,△ABC 是正三角形,AD 和CE 都⊥平面ABC ,且AD=AB=1,CE=1/2,问:能否在线段BD 上找到一点F ,使AF ⊥平面BDE ?分析:由于点F 的移动,使AF 与平面BDE 的位置关系随之变化,若AF ⊥平面BDE ,则AF ⊥BD ,又∵DA=AB ,∴F 为BD 中点,这使我们想到BD 的中点即为所求。

解:取BD 中点F ,AB 中点G ,连EF 、CG 、FG ,则四边形EFGC 为矩形,∴CGFG ,又△ABC 为正三角形,∴CG ⊥AB ,∴CG ⊥面ABD ,CG ⊥AF ,∴EF ⊥AF ,∴AF ⊥面BDE 成立。

五、其它类型利用三垂线定理、射影定理、线线、线面垂直的性质等在动态问题中提炼一些不变的、“静态”的量,从而达到解题的目的。

例10、在三棱柱ABC —A 1B 1C 1中,AA 1=AB=AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,点P 在A 1B 1上,则直线PQ 与直线AM 所成的角等于( D )A 300B 450C 600D 900分析:虽然点P 的具体位置不定,但PQ 在平面A 1C 上的射影是一条定直线A 1H ,在正方形ACC 1A 1中AM ⊥A 1H ,故由三垂线定理得BQ ⊥AM 。

例11、正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是 。

CAP HAC DEBCB 1C 1QMACA C 1D分析:点P 是在正方体的右侧面这样的一个区域中运动,这使两条线段BD 1与AP 的位置关系比较复杂,但BD 1是正方体的体对角线,它在各个侧面上的射影与这个侧面的另一条对角线互相垂直,故由三垂线定理可证得BD 1⊥平面AB 1C ,因此当点P 在线段B 1C 上运动时,由线面垂直的性质得BD 1⊥AP 恒成立,即线段P 的轨迹是线段B 1C 。

例12、在棱长为1的正方体ABCD —ABCD 中,若G 、E 分别是BB 1、C 1D 1的中点,点F 是正方形ADD 1A 1的中心。

则四边形BGEF 在正方体侧面及底面共6个面内的射影图形面积的最大值是 。

分析:可得四边形BGEF 在前后侧面上的射影相等且等于41;在左右侧面上的射影相等且等于81;在上下底面的射影相等且等于83,所以射影图形面积的最大值为83。

八年级数学竞赛辅导之正方形1.如图,长方形内有两个相邻的正方形,面积分别为2和8,图中阴影部分的面积为___________。

953351016第7题4321第1题图 第2题图 第3题图 第4题图 2.如图,16×9的矩形分成四块后可拼成一个正方形,该正方形的周长为_________.3.如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间坚排若干个,则k 的值为( )。

(A )6 (B )8 (C )10 (D )124.如图,正方形ABCD 的边长为1,点M 、N 分别为BC 、CD 上的动点,且满足△CMN 的周长为2,则∠MAN =_______度.5.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cmABC DD 1 A 1 C 1B 1E FGNMFEDC BA第5题图 第6题图 第7题图 第8题图6.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为( )A.B.C .3 D7.如图,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值为( )A .22 B .21 C .23 D .328.如图,在四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于E ,S ABCD =8,则BE 的长为( )A .2B .3C .3D .229.如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若∠EAF =50°,则∠CME +∠CNF = .第9题图 第10题图 第11题图 第12题图 10.如图,在Rt △ABC 中,∠ACB =90°,AC =3,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O ,OC =24,则BC 边的长为 .11.如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为7㎝2和11㎝2,则 △CDE 的面积等于 cm 2.12.如图,将边长为12cm 的正方形ABCD 折叠,使得A 点落在边CD 上的E 点,然后压平得折痕FG ,若GF 的长为13cm ,则线段CE 的长为 . 13.如图,正方形ABCD 中,P 、Q 分别是BC 、CD 上的点,若∠PAQ =45°,∠BAP =20°,则∠AQP =( )A .65°B . 60°C .35°D .70°A BCDEFGF E DCBA ABCDEF第13题图 第14题图 第15题图 第16题图14.如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE =a ,AF =b ,若S EFGH =32,则a b -等于( ) A .22 B .32 C .23 D .3315.如图,在正方形ABCD 中,CE GF ⊥.若10cm CE =,则GF = .16.若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF =AE ,则BM 的长为 . 17.如图 ,ABCD 是正方形.G 是 BC 上的一点,DE ⊥AG 于 E ,BF ⊥AG 于 F .求证:DE EF FB =+.18.已知:在正方形ABCD 中,点E 在AB 上且CE =AD +AE ,F 是AB 的中点,求证:∠DCE =2∠BCF.FE DC B A19.如图,正方形ABCD 中,E 、F 为BC 、CD 上两点,且∠EAF =45°,①求证:EF =BE +DF . ②以上命题的逆命题是否成立?③若AB =12,求△CEF 周长.④若AB =12,EF =10,求△AEF 面积.⑤求△ADF 面积.DC B AFE20.如图,BF 平行于正方形ADCD 的对角线AC ,点E 在BF 上,且AE =AC ,CF ∥AE ,求∠BCF .A CDEFA DE FCG B21.如图,ABCD 是正方形,AB =1,∠AOx =30°,求点B 坐标.22.数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o ,且EF 交正方形外角∠DCG 的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE =EF .在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.23.如图,分别以△ABC 的三边向形外作正方形ABDE 、BCFG 、ACMN ,直线OP ⊥AB ,①求证:OP 平分FM ;②以上命题的逆命题成立吗?为什么?A D FCGE B图1A D F C GE B 图2AD FC GB图3PONMGFE D CB A24.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)25.如图,正方形ABCD 被两条与边平行的线段EF 、GH 分割成4个小矩形,P 是EF 与GH 的交点,若矩形PFCH 的面积恰是矩形AGPE 面积的2倍,试确定∠HAF 的大小,并证明你的结论.D 图② 图③ D 图①。

相关文档
最新文档