轧辊失效方式及其原因分析
轧辊爆裂原因
轧辊爆裂是轧制生产中常见的一种失效形式,可能会导致严重的生产事故和经济损失。
以下是几种可能导致轧辊爆裂的原因:
1. 轧辊材质不适:轧辊材质应该具有高的强度、韧性和耐磨性。
如果材料不符合轧辊的使用要求,则会引起轧辊疲劳失效和裂纹扩展,导致轧辊爆裂。
2. 轧辊表面缺陷:轧辊表面缺陷、裂纹、凹坑等缺陷也可能导致爆裂。
这些缺陷将在轧制过程中扩展并使轧辊破裂。
3. 轧辊使用过程中温度过高:过高的轧辊表面温度会使轧辊产生变形和热疲劳裂纹,最终导致轧辊爆裂。
4. 轧辊使用寿命过长:轧辊在使用过程中会不可避免地出现疲劳损伤和磨损,长期使用可能导致轧辊的强度减小,出现裂纹和爆裂。
5. 非正常操作:轧辊在使用过程中需要严格遵循规定的操作程序和参数范围。
如果操作不当,例如过多受力或者运转速度过快,就有可能导致轧辊疲劳损伤和爆裂。
综上所述,预防轧辊爆裂需要严格控制轧辊的材质、缺陷、温度、使用寿命和操作规范,定期检测和维修轧辊以及合理调整轧制过程参数等措施。
1420轧机弯辊缸失效分析与对策
1420轧机弯辊缸失效分析与对策
一、问题描述
二、失效原因分析
1.润滑不良:润滑不良会导致摩擦增大,加速零部件的磨损,从而导
致弯辊缸失效。
2.密封不严:密封不严会导致液压系统内部液压漏油,降低了液压系
统的工作效率,同时也会影响到了弯辊缸的正常运行。
3.缸体磨损:长时间使用或者操作不当会导致弯辊缸的缸体磨损,进
而导致其失效。
三、对策建议
1.加强润滑管理:定期检查加油润滑情况,确保润滑油的充足和质量。
严格按照润滑标准操作,确保润滑效果。
2.定期检查维护:定期检查弯辊缸的密封情况,及时更换密封件。
并
定期检查缸体磨损情况,根据情况进行修复或更换部件。
3.加强操作规范:员工在操作弯辊缸时,应按照操作规程进行操作,
避免操作不当导致的缸体磨损。
4.提高维护意识:定期对弯辊缸进行维护保养,确保设备长期稳定运行。
同时,员工应加强维护意识,发现问题及时报修,避免小问题演变成
大问题。
四、总结
1420轧机弯辊缸的失效会给生产带来不小的影响,因此对其进行定期维护和保养是非常重要的。
除了以上提到的对策建议外,还应加强员工培训,提高其维护技能和意识,确保设备的长期稳定运行。
只有全面加强对设备的维护管理,才能最大程度地减少设备失效带来的影响,提高生产效率和产品质量。
多辊轧机轧辊失效分析
发现问题
- 表面疲劳通常与长时间生产后的加工硬化共同产生 通常硬度会比原始 表面疲劳通常与长时间生产后的加工硬化共同产生,通常硬度会比原始 硬度高出4 HRc (40 Ld). 硬度高出
解决
磨辊恢复轧辊表面原始硬度
预防措施
1/ 磨辊后经常测量硬度 2/对易出现疲劳的轧辊区域进行表面硬度抽查 对易出现疲劳的轧辊区域进行表面硬度抽查
14
Fig. 3
辊身螺旋状断裂
轧辊应用类型 适用轧辊级别 说明
-由表面疲劳而产生的螺旋状断裂面 (图.2) -断面上可见数个同心扩展环状痕迹(B)
Fig. 1
全部 全部
可能的原因
磨削没有完全去除裂纹, 在过度的弯转力下发生扩展 裂纹可能因为以下因素产生: 表面疲劳 热疲劳 (因轧制事故或磨削而产生).
Fig. 1
补救措施
- 检查联轴器或轴套是否安装不妥或变形 - 适当增加硬度 - 确保机械部件安装妥当 Fig. 2
Fig. 3
Fig. 4
19
压痕
轧辊应用类型 适用轧辊级别 说明
- 辊身表面局部压痕
工作辊 全部
可能的原因
- 板带上有异物 - 工作辊硬度低或中间辊硬度偏高 - 局部过热造成软点
Fig. 1
Fig. 1 辊身纵向断裂面
- 热处理工序中回火过晚产生的裂纹造成的.
补救措施
做好轧辊使用工卡,严格记录生产中的异常情况 轧辊上机前,应完全去除裂纹,疲劳层或过热的区域. 做无损探伤测试以确保所有裂纹已经完全去掉了.
16
辊身纵向断裂
轧辊应用类型 适用轧辊级别 说明
- 因疲劳产生的断裂
全部 全部
- 如(A)图示平行于轴向的裂纹扩展而造成的.
浅谈精轧工作辊失效形式及预防措施
浅谈精轧工作辊失效形式及预防措施(郑强)检修中心轧钢维护部摘要:通过对轧辊在生产中发生的各种失效形式进行分析,并作出相应的预防措施。
关键词:裂纹;剥落;断裂前言轧辊是热轧厂生产中最大的消耗性、关键性备件,不仅其消耗量大、价格昂贵,而且其性能和使用情况的好坏,直接影响生产的作业率和成本、产品的产量和质量、辊耗等。
轧辊消耗量是轧钢生产技术经济指标之一,是考核轧钢生产的主要内容。
因此,提高轧辊使用寿命,是轧钢生产提高生产效率、实现增产节约、降低消耗的有力措施。
使用中的轧辊,由于和轧件直接接触引起的接触应力、热应力、剪切应力、残余应力和轧辊本身的制造缺陷等原因,常常在正常使用周期内被迫提前下机,甚至非正常报废,这就需要我们通过各种失效形式做出相应的分析,并加以预防和解决。
1.裂纹裂纹是轧辊使用中最常见的一种失效形式,又分正常裂纹和非正常裂纹两种。
1.1正常裂纹正常裂纹又叫热裂纹,热裂纹属正常轧制下产生的裂纹,初期呈很细的网状均匀分布在轧辊的整个辊身上,深度较浅。
热裂纹是由于多次温度循环产生的热应力所造成的逐渐破裂,是发生于轧辊辊身上的一种微表面层现象。
此种裂纹是轧制过程中轧辊受接触应力、热应力、剪切应力、残余应力影响,当应力超过材料的疲劳极限时,轧辊表面产生严重应变,逐渐导致热疲劳裂纹的产生。
预防措施:1、合理控制冷却水量和冷却水的分布;2、合理分配各机架轧制负荷;3、合理控制换辊周期;4、合理控制磨削量;1.2非正常裂纹轧制中发生的打滑、粘钢、卡钢、堆钢、甩尾、甚至断水轧制等轧制事故,这些轧制事故会造成轧辊局部温度升高而产生热应力和组织应力,当轧辊应力值超过材料强度极限时便产生热冲击裂纹,形成轧辊辊身表面一条母线上或局部深度和开口度较大的裂纹。
通过修磨,轧辊表面裂纹消除后可以继续使用,但其使用寿命明显降低,并在以后的使用中易出现剥落事故。
预防措施:1、轧制条件应满足轧辊的使用技术要求;2、合理分配各机架轧制负荷;3、提高轧制操作技能,尽量减少打滑、粘钢、卡钢、堆钢、甩尾、甚至断水轧制等轧制事故的发生;4、轧线必须及时把事故原因的信息传递到磨辊间,以便于磨辊间针对事故原因制定有效的对事故轧辊进行严格的超声波、涡流探伤及磨削处理;2.剥落剥落是轧辊使用中比较严重的一种失效形式,是由于轧辊表面裂纹的扩展或轧辊本身内部缺陷造成的。
轧辊失效方式及其原因分析
轧辊失效方式及其原因分析轧机在轧制生产过程中,轧辊处于复杂的应力状态。
热轧机轧辊的工作环境更为恶劣:轧辊与轧件接触加热、轧辊水冷引起的周期性热应力,轧制负荷引起的接触应力、剪切应力以及残余应力等。
如轧辊的选材、设计、制作工艺等不合理,或轧制时卡钢等造成局部发热引起热冲击等,都易使轧辊失效。
轧辊失效主要有剥落、断裂、裂纹等形式。
任何一种失效形式都会直接导致轧辊使用寿命缩短。
因此有必要结合轧辊的失效形式,探究其产生的原因,找出延长轧辊使用寿命的有效途径。
1 、轧辊剥落(掉肉)轧辊剥落为首要的损坏形式,现场调查亦表明,剥落是轧辊损坏,甚至早期报废的主要原因。
轧制中局部过载和升温,使带钢焊合在轧辊表面,产生于次表层的裂纹沿径向扩展进入硬化层并多方向分枝扩展,该裂纹在逆向轧制条件下即造成剥落。
1.1 支撑辊辊面剥落支撑辊剥落大多位于轧辊两端,沿圆周方向扩展,在宽度上呈块状或大块片状剥落,剥落坑表面较平整。
支撑辊和工作辊接触可看作两平行圆柱体的接触,在纯滚动情况下,接触处的接触应力为三向压应力。
在离接触表面深度为 0.786b 处 ( b 为接触面宽度之半 ) 剪切应力最大,随着表层摩擦力的增大而移向表层。
疲劳裂纹并不是发生在剪应力最大处,而是更接近于表面,即在 Z 为 0.5b 的交变剪应力层处。
该处剪应力平行于轧辊表面,据剪应力互等定理,与表面垂直的方向同样存在大小相等的剪应力。
此力随轧辊的转动而发生大小和方向的改变,是造成接触疲劳的根源。
周期交变的剪切应力是轧辊损坏最常见的致因。
在交变剪切应力作用下,反复变形使材料局部弱化,达到疲劳极限时,出现裂纹。
另外,轧辊制造工艺造成的材质不均匀和微型缺陷的存在,亦有助于裂纹的产生。
若表面冷硬层厚度不均,芯部强度过低,过渡区组织性能变化太大,在接触应力的作用下,疲劳裂纹就可能在硬化过渡层起源并沿表面向平行方向扩展,而形成表层压碎剥落。
支撑辊剥落只是位于辊身边部两端,而非沿辊身全长,这是由支撑辊的磨损型式决定的。
轧辊失效形式
铸轧辊失效的形式:①热龟裂;②裂纹扩展快;③表面局部塑形变形;④断裂。
在轧制中,裂纹扩展速度快,有时纵向裂纹长300mm,深2-4mm,是辊套过早的失效,原因是:辊套热处理工艺不合格,内部较大的残余应力为消除,在轧制过程中,受铝液热应力与辊芯内冷却水冷应力的交替作用,加速了裂纹的生成和扩展。
辊套的正常失效按下公式计算:有效厚度=(Dmax-Dmin)/2 Dmax为铸轧辊的最大的外径,Dmin为最小外径,每次车磨4mm左右,直至有效厚度接近于零,此辊套就认为失效为重新更换。
辊芯失效形式:①水槽阻塞;②水槽破裂,辊芯的材质:42CrMo 辊芯硬度HB在500左右。
调质硬度范围为2000MPa<HB<4000MPa辊套:需具有良好的导热性,线性膨胀系数及弹性模数小,较高的抗拉强度、屈服强度及硬度,较好的耐热性、抗热疲劳及热变形等。
辊套粗糙度Ra为0.8-1.2μm。
辊套硬度HB为370-400左右,目前国内使用的辊套材质为PCrNi3Mou和32Cr3Mo1V钢。
冷却说的要求:水硬度:硬度总和不大于7. PH值:6-8 水压:0.4-0.6MPa悬浮物:不大于50PPM 水温:一般控制在15-28℃辊芯辊套热装时温度的计算:t=I/αD内·C 式中:I=σ+Δminσ-过盈量;Δmin-热装的最小间隔;α材料线膨胀系数过盈量配合量的经验公式为:过盈量一般为铸轧辊辊径的0.09%-0.11%。
辊芯尺寸在φ500mm-φ700mm,过盈量(mm)=辊芯尺寸x1/650辊芯尺寸在φ700mm-φ850mm, 过盈量(mm)=辊芯尺寸x1/700 当传递的轧制力矩一定时,辊套越薄,需要的过盈配合量越大。
辊套越薄所能产生的过盈压力越小,传递的轧制力矩越小。
对新辊(包括重新研磨的辊)进行热处理,首先用无水乙醇擦掉七表面的油污,后用自行配制的腐蚀溶液(只要成分是硝酸)均匀涂抹与辊面,待接近干燥,用清水洗净,此时辊面呈亮黑色,在轧辊完全干燥后,用800″砂纸沿轧制方向用力将其面的黑色物质打磨去掉。
轧辊轴承失效的原因
轧辊轴承失效的原因轧辊轴承在轧制过程中会承受高强度的载荷和摩擦,因此容易出现失效。
轧辊轴承失效的原因可以归纳为以下几个方面:1.疲劳失效:轧辊轴承在轧制过程中要承受循环荷载,容易导致金属材料发生疲劳失效。
这种失效通常表现为轴承表面起初小裂纹,然后逐渐扩展成肉眼可见的大裂纹,并最终导致断裂。
2.磨损失效:在轧制过程中,轧辊轴承表面会受到较大的摩擦力和磨损,导致轴承表面磨损严重。
磨损失效会导致轴承表面粗糙度增加、尺寸减小,从而影响轴承的正常运转。
3.轴承负荷过大:若轧辊轴承受到的荷载超过了其承载能力,会导致轴承瞬时失效。
这种失效通常表现为轴承出现塑性变形或微裂纹,从而导致轴承无法正常工作。
4.润滑失效:轧辊轴承在运行过程中需要有足够的润滑,以减少摩擦和磨损。
但若润滑不到位,或润滑剂质量不好,会使轴承表面形成焦炭、热膜和凝粘物,进而导致轴承失效。
5.温度过高:轧辊轴承在运转过程中会产生热量,若轴承供应的润滑不到位,会导致摩擦产生的热量积聚在轴承内部,从而使轴承体温度升高。
当轴承温度超过其耐热极限时,会引发轴承失效。
6.安装不当:轧辊轴承的安装也是影响其寿命的重要因素。
若安装不当,例如安装时存在过度负载、不适当的配合间隙或轴向载荷过大,会导致轴承失效。
此外,如果轴承安装时没有按照规定的工艺进行操作,也会影响其使用寿命。
针对以上原因,可以采取以下措施来延长轧辊轴承的寿命:1.选择合适的轴承:根据轧辊轴承的工作条件和载荷大小,选择合适的轴承类型、规格和材料,使其能够承受工作环境中的载荷。
2.加强润滑管理:采用合适的润滑方式和润滑剂,确保轧辊轴承在工作过程中有足够的润滑。
同时,定期检查和更换润滑剂,清洗轴承表面,以避免润滑失效引发的问题。
3.控制负荷:通过改变轧辊间距、调整轧机参数等方式,减少轧辊轴承受到的负荷。
同时,注意控制轧机的工作温度,避免轴承过热。
4.正确安装轴承:遵循正确的安装工艺,确保轧辊轴承按照规定的预压力安装,并检查轴承的配合间隙和轴向负荷是否符合要求。
马钢冷轧轧辊缺陷的分析及防范措施
马钢冷轧轧辊缺陷的分析及防范措施今天,随着工业的发展,越来越多的重要工业用钢,如马钢板材,在冷轧过程中,轧辊是一个非常重要的部件,随着轧辊的日益快速的寿命,轧辊的缺陷也会带来不利影响。
本文将从分析原因和防范措施两方面来探讨马钢冷轧轧辊缺陷的问题,为提高冷轧轧辊的使用寿命和质量提供参考。
一、马钢冷轧轧辊缺陷的分析1、损坏原因由于轧辊会在马钢冷轧过程中长期受到扭矩、温度、压力等不均匀的外界考验,而轧辊中各种元素的问题也会导致轧辊疲劳损坏,从而出现缺陷,如表面裂纹、磨损和烧伤等。
2、实际表现轧辊缺陷以表面裂纹为主,由此可知表面失效正是轧辊缺陷产生的原因之一,根据不同的裂纹形态,可以推断出轧辊的损伤原因,如圆柱形裂纹、锥形裂纹、Y字型裂纹等。
二、马钢冷轧轧辊缺陷的防范措施1、优化轧辊设计优化轧辊设计,使得轧辊具有较大的强度,同时增加轧辊表面的耐磨性,减少轧辊表面的损坏,使轧辊的使用寿命更长。
2、降低轧辊温度应控制轧辊的表面温度,并在较低的温度范围内进行轧制,以减少轧辊表面的烧伤,提高轧辊的使用寿命。
3、均匀保护润滑剂应给轧辊表面均匀的润滑,以确保轧辊的表面,同时保持充足的润滑剂分布,以减少轧辊噪声,平滑运行,减少轧辊磨损损坏,提高轧辊的使用寿命。
4、改善马钢材质应均匀改善马钢坯料的碳素含量,改善马钢冷硬度,使冷轧材料更加均匀,减少冷轧过程中烧伤、磨损等,提高冷轧轧辊使用寿命。
综上所述,马钢冷轧轧辊缺陷的分析及防范措施应及早采取有效的措施,以提高冷轧轧辊的使用寿命和质量,促进行业的健康发展。
首先,应优化轧辊的设计,降低轧辊温度,提供良好的润滑剂保护,同时改善马钢材质,以改善冷轧工艺,减少轧辊缺陷产生的可能。
热轧轧辊失效分析及预防措施
联 系人 : 占福, 3 岁 , 马 男, 7 博士生 , 轧钢工程师, 乌鲁木齐( 3 o 2 新疆八一钢铁股份有限公司 802 )
E-mai maf y t O 11 l z@b g. B.1 : C 3
~
36 按 制 造工 艺 分 为 铸 造 、 造 、 末 冶 金 、 .%; 锻 粉 喷
射成型 、 堆焊热喷涂等 ; 按结构分为整体辊 、 复合辊 、
镶 装辊 等 ;按 功 能分 为 连铸 辊 、热 轧辊 、冷轧 辊 、
S nm r 、 艺辊 、 道 等 e z i辊 工 辊 。
3 轧 辊 的 失 效 形 式
1 前 言
轧辊是使金属产生塑性变形的一种生产工具, 其在 实 际生产使 用 中 , 于一种 复杂 的应力 状态 , 处 如
轧 辊与 轧件 接 触加 热 、 辊水 冷 却 引起 的周期 性 热 轧 应力 、 轧制 负荷 引起 的接触 应力 、 剪切 应力 以及残 余 应力 等川 。如果轧 辊 的材质 、 加工 、 生产 、 操作 等工 艺
3 1 断 裂 .
不合理 , 就会使轧辊失效 , 出现剥落、 断裂、 辊面损伤 等情况, 任何一种失效形式都会直接导致轧辊寿命
缩短 , 至造 成轧 辊报废 , 甚 因此分 析轧辊 的失 效形 式
轧辊在 生产 中往 往会 发生 突然 断辊事 故 ,其 断
裂部位 主要 为工 作辊 的辊 身 、 颈及 轴头部 位 。 辊 断辊 因轧 制 不 同钢种 、 同品种 、 同 的生 产 工艺 条件 , 不 不 其断裂 部位 有所 不 同。 断裂形 式来 看 , 可能是 一 从 有 次性 的脆断 ,也 可能是 由于疲劳 裂纹 而导致 断辊 l 3 _ ,
可从 内因 、 因两 方面来 分 析 ( 图 1 。 外 如 )
冷轧辊的失效分析
冷轧辊的失效分析材料工程1306封骥2013153冷轧辊的失效分析冷轧辊是冷轧机的大宗消耗备品,其能否安全运行将直接影响着轧机的生产率、成材率以及成本控制。
由于冷轧辊从材质、制造工艺、使用、维护及失效等诸方面与热轧辊有着较大的差异,故对初次进行冷轧生产的单位、轧辊管理者及使用者来说,需要掌握冷轧辊的失效机理及预防措施,通过对冷轧辊失效机理的论述及案例的相关分析,提出降低轧辊消耗的预防措施。
失效:金属装备及其构件在使用过程中,由于压力、时间、温度和环境介质和操作失误等因素的作用,丧失其规定功能的现象。
失效分析:对装备及其构件在使用过程中发生各种形式失效现象的特征及规律进行分析研究,从中找出产生失效的主要原因及防止失效的措施,称为失效分析。
失效分析的一般过程①深入装备失效现场、广泛收集、调查失效信息,寻找失效构件及相关实物证据。
②对失效构件进行全面深入的宏观分析,通过种类认定推理,初步确定失效件的失效类型。
③对失效件及其相关证物展开必要的微观分析、理化检验,进一步查找失效的原因。
④通过归纳、演绎、类比、假设、选择性推理,建立整个失效过程及其失效原因之间的联系,进行综合性分析。
⑤在可能的情况下,对重大的失效事件进行模拟试验,验证因果分析的正确性。
一、冷轧辊失效机理冷轧辊特性:目前冷轧厂常用的冷轧辊材质有高碳铬铝系及高碳铬铝钒系,一般生产工艺过程为电渣重熔或钢包精炼——铸锭——锻造——球化退火——粗加-——探伤——调质——精加工——探伤——工频感应淬火——低温回火——精加工成品。
为确保优良的使用性能,其表层组织要求为细针马氏体、隐针马氏体+少量残余奥氏体+粒状碳化物。
冷轧工作辊工作时要承受高的轧制压力、冲击载荷、疲劳及磨损,需要有足够的强度抵抗大的弯深而均匀的表面硬化层及耐磨层,以获得良好的耐磨性;三是要有优良的表层抗裂性及抗剥落性能。
冷轧辊的失效形式:冷轧工作辊工作时处于复杂的应力状态。
受残余应力、接触应力、弯曲应力、扭转应力以及因温度分布不均引起的热应力等的影响,失效形式有早期磨损、粗糙化、略坑、勒痕、裂纹、剥落以及断裂,但工作层剥落是冷轧辊的主要失效形式,占到工作辊正常失效的50%以上,轧辊剥落往往造成轧辊彻底报废。
轧机上断辊的原因分析
断裂原因一、脆性断裂,此类轧辊断口形状较为平整,断口周围辊身表面较为齐整;二、韧性断裂,此类轧辊断口形状多呈"蘑菇头"状,断口附近的辊身均成粉碎状破碎。
将二者比对发现,此次断辊事故的断辊形式为韧性断裂。
脆性断裂和韧性断裂都是因为轧辊应力超过芯部强度造成的。
其产生原因与轧辊本身残余应力,轧制时机械应力以及轧辊热应力有关,特别是当辊身的表面和芯部的温差大时更容易产生。
这种温差可能由不良的辊冷却,冷却中断或在新的轧制周期开始时轧辊表面过热引起。
轧辊的这种表面和芯部间的巨大温差引起较大的热应力,当较大的热应力,机械应力以及轧辊的残余应力超过轧辊的芯部强度时引起断辊。
例如,轧辊表面和芯部间的温差在70℃时轧辊会增加100MPa的纵向热应力,温差越大,增加的热应力越大。
与产生脆性断口的轧辊相比较,产生韧性断口的轧辊的芯部材料韧性更好,更不容易出现断裂。
导致轧辊失效的应力共有四种:一、制造过程中的残余应力;二、轧制过程中的机械应力;三、轧制过程中轧辊的组织应力;四、轧辊内外温差造成的热应力。
如果是因为制造残余应力过大产生断裂,断辊通常发生在轧辊初始上机使用的前几次,且为开轧的前几块轧材。
此次断裂的轧辊已经上机轧制了四次,工作层消耗了14mm,因此不应是因制造残余应力形成的断裂。
如果是因为机械应力产生的断裂,需要很大的机械应力。
经粗略计算,如此大截面的高铬铸钢轧辊若被机械应力拉断,则需要100MN 以上的拉力,对于该轧辊工作的轧机来说这是不可能的。
轧辊受力最大的部位是传动端辊颈,如果材料的力学性能指标不足,正常轧制情况下首先损坏的是传动端辊颈。
从实际轧制和断辊情况来看,不是由于机械应力造成辊身断裂。
对组织应力影响最大的就是外层组织中残余奥氏体含量。
残余奥氏体在轧制温度,轧制压力和水冷的交变作用下,发生奥氏体向马氏体或贝氏体的转变,由于奥氏体的比容小,而马氏体的比容大,因而在组织转变的过程中伴随着体积的膨胀,会致使轧辊的工作层产生更大的压应力,芯部产生更大的拉应力,芯部应力一旦超过材料的强度,必然造成轧辊断裂。
热轧轧辊的失效原因及科学预防
热轧轧辊的失效原因及科学预防摘要轧辊的失效形式主要包括剥落、断裂、裂纹等,无论哪种失效都会影响轧辊的使用寿命。
因此,为延长轧辊使用寿命、降低轧辊消耗,必须要针对不同的失效原因,采取科学性、针对性的预防措施。
基于此,本文对轧辊失效的原因进行了阐述,并分析了科学的预防措施,旨在为提高轧辊的使用寿命,提升轧辊质量,提供参考借鉴。
关键词轧辊失效;应力;剥落;裂纹;预防1 轧辊常见失效形式及原因1.1 剥落剥落的发生不是瞬间的,而是需要一个疲劳的过程,轧辊的非正常失效形式中剥落占比达60%~70%,属于较为严重的生产事故,严重时会导致轧辊报废。
其主要形式及原因为:首先,马鞍形剥落。
在对薄而硬的带钢进行轧制时,由于压下比大,使得在承受较大负荷的作用下而产生交变应力、残留应力及热应力,会使拉应力变大,一旦超过轧辊芯部材质的疲劳极限,就会导致出现微裂纹。
裂纹的进一步蔓延,就会表现在辊身表面,致使产生马鞍形剥落。
其次,带状疲劳剥落。
轧辊局部过大超负荷运转时,当大于轧辊外层的抗剪切强度极限时,就会出现裂纹,在进行轧制过程中,持续的疲劳状态会引发裂纹的增多,致使辊身局部出现大面积剥落。
另外,对于服役期较长的工作辊和支承辊,中间磨损量大于两端磨损量,致使辊身两端交变剪应力不断增大,加速了疲劳破坏,从而产生带状疲劳剥落。
另外,表层/芯部结合层处脱落。
在发生轧制事故时,局部出现过大负荷,导致外部与芯部材质出现脱落,随着这一分割面的逐渐延伸,一旦达到临界尺寸,就会出现二次脱落。
这种形式的剥落出现通常有以下几种情况,表层和芯部间有氧化层残留,结合层留有杂质、碳化物或是气孔等。
1.2 断裂轧制过程中的断辊事故时有发生,断裂通常发生在辊身、辊颈及轴头部位。
当钢种以及生产工艺存在差异時,断裂的部位也会出现差异。
通常,断辊是由于疲劳裂纹所致,也可能会出现一次性脆断,具体分析如下:(1)内因在轧辊的材质内部存在缺陷时,引发轧辊断裂的可能性也会增大,例如,钢材球化率低、渗碳体数量过高、局部晶粒不均匀以及结构疏松等缺陷,非正常情况下的芯部组织致使机械性能降低,在承受的热应力大于材料抗拉强度时,轧辊内部的材质出现局部裂纹,裂纹逐步蔓延最终导致轧辊断裂。
轧辊失效分析
轧辊缺陷引发失效有三个原因:制造商轧机轧辊维护及管理(管理指磨辊)失效后数据收集要了解:1. 事故段的轧制压力,电压,水压等2. 事故发生时的操作情况3. 轧制废品种规格4. 对最后轧制的板卷暂时保存用于对事故产生原因分析失效分析要点1.辊身剥落为CVC形态,基本为表面缺陷较垂直延伸至结合层,四周快速发展2.剥落区一侧垂直,另一侧逐步过渡至表面,基本剥落区为出口3.多处小块掉肉,掉肉面为棘齿形态,是硬块疲劳裂纹造成4.弧形掉肩通常是支撑辊倒角设计不合理5.断口端面由内向外四周散射,是心部缺陷或强度不够造成的断裂6.近辊身端部环形剥落且在环形带为多元发展源,单侧异常超负荷制造厂轧辊质量引发事故分析元宝形大剥落1.结合层严重非金属夹渣引起的轧辊剥落蜂窝状且色发黑为非金属价夹渣:如,钢水渣,耐火砖,测温管等辅助材料的掉入大块的非金属夹渣只要存在于复合辊的结合层2.金属夹杂引发轧辊剥落剥落后表面发亮成块状,颗粒状:金属原料没有充分熔化,或非原料的金属夹入3.异常发展引发断辊(内部金属夹杂)微小的轧辊夹杂早期在辊身暴露会使轧制的板材产生凸块,使钢材表面质量受到影响4.辊身硬度不均匀形成裂纹—裂纹平行,斜纹,不规则如果裂纹未能磨削干净,会使裂纹扩展5.应力造成轧辊开裂,裂纹环带有的可贯穿整个轴向和颈开裂内应力过大引起的断辊和开裂内应力造成轧辊使用中轴向爆裂为两半(中心向四周扩撒)由于过大的残余内应力,径向断裂多从心部成中心附件,显示放射状痕迹,断面垂直于轧辊轴心,断面起源常位于辊身辊身表面和心部的最大温度差有关---产生残余应力危害:运输中爆裂在磨削过程中爆裂在使用过程中发生爆裂(处理时间长)制造商在热处理,调质处理后的严格按工业技术程序执行,出厂前做应力测试,以消除内应力。
可以买回新辊,放仓库先释放应力。
首次使用的轧制周期不要过长6.黑斑:石墨球化不良铸造时浇铸时间,速度不当造成元素分布不均匀引起7.内部缺陷扩展,引发大的剥落,剥落处可看见一处原地向四周发展预防:结合层缺陷,用UT测试8.工作层厚薄不均匀引发剥落,工作层(精轧)余量8MM, 但实际工作辊余量还要大些9.结合层碳化物平行发展引发轧辊轧制事故10.工作层强度降低(原因:石墨比较大)11.辊颈抗拉强度低造成断辊(牛眼状铁素体,保证轧辊强度)12.辊颈铸接不良,辊颈折断13.卡刚,异物掉入引发大剥落(轴向,径向产生裂纹)14.粘钢引起掉肉。
冷轧工作辊失效分析及其控制
冷轧工作辊失效分析及其控制
1. 前言
冷轧工作辊是冷轧轧机的关键部件,其失效会导致整个轧机停工,造成巨大的
经济损失。
因此,研究冷轧工作辊的失效原因及其控制方法,对于保障生产安全和提高生产效率具有重要意义。
2. 冷轧工作辊失效原因
2.1 疲劳裂纹
冷轧工作辊经过长期反复载荷作用后容易出现疲劳裂纹,引起辊套与轴颈接口
处局部应力增大,导致工作辊失效。
2.2 表面烧伤
在冷轧过程中,由于磨擦和压力等原因,工作辊表面容易出现高温,引起表面
烧伤,进而加速辊套材料的软化和疲劳裂纹的产生。
2.3 化学腐蚀
冷轧工作辊在冷轧过程中,由于长期浸泡在冷轧液中,易受化学物质的腐蚀,
导致表面出现蚀刻、穿孔等损伤,甚至引起裂纹。
3. 冷轧工作辊失效控制方法
3.1 合理选择材料
冷轧工作辊应选择高强度、高韧性、耐疲劳、耐磨损的材料以提高其使用寿命。
3.2 加强表面保护
冷轧工作辊表面应进行抛丸喷砂处理,形成均匀的抗疲劳层,延长工作辊的使
用寿命。
3.3 加强冷轧液管理
严格控制冷轧液的PH值、温度、浓度等参数,并及时更换冷轧液,减少化学
腐蚀。
4. 结论
冷轧工作辊失效是制约冷轧工艺高效稳定发展的主要障碍。
在实际生产过程中,可以通过合理材料选择、加强表面保护以及加强冷轧液管理等多种方法,有效控制冷轧工作辊失效,延长轧机设备使用寿命,降低生产成本,提高经济效益。
马钢冷轧轧辊缺陷的分析及防范措施
马钢冷轧轧辊缺陷的分析及防范措施
马钢冷轧轧辊缺陷已成为冷轧工艺中的一个严重问题,严重影响操作和生产效率,并影响质量。
本文旨在分析轧辊缺陷及其发生原因,以及探讨有效防范措施。
1、轧辊缺陷分析
轧辊缺陷是指轧辊磨损,型面凹陷,表面裂纹,焊接部失效等现象。
它们的存在会影响轧辊的正常使用,影响冷轧过程的质量,缩短轧辊的使用寿命,并增加维修成本。
在实际生产中,轧辊缺陷常见原因主要有:
(1)轧辊质量不合格:因结构设计不合理,选用和制备材料不合格,加工工艺不合格等原因,提高了轧辊缺陷的可能性。
(2)轧辊磨损:由于滚压过程中的轧辊振动、局部过热、轧件本身结构不均匀等原因,导致轧辊表面磨损等缺陷的产生。
(3)焊接失效:由于焊接技术不足或焊缝质量不合格等原因,造成焊缝失效或断裂,从而使轧辊表面出现缺陷。
2、防范措施
(1)增强轧辊质量控制:在轧辊的设计、加工、焊接、组装等各个方面都应严格把关,加强对轧辊质量的控制,以确保轧辊质量稳定,减少轧辊缺陷。
(2)提高滚压过程控制:应采用合理的滚压参数,加强对滚压压力、温度及轧件材料等的控制,适当减小滚压力,以降低滚压过程中轧辊的磨损,防止轧辊损坏。
(3)加强焊接质量控制:应按照焊接技术标准,严格把关焊接技术操作,确保焊接缝的质量符合要求,避免轧辊出现焊接失效的缺陷。
3、结论
轧辊缺陷是影响工艺效率和产品质量的主要因素,应采取有效的措施来防范和消除其存在。
针对轧辊缺陷的发生,应加强轧辊的质量控制,提高滚压过程的控制,加强焊接质量控制,以最大程度地减少轧辊缺陷及其造成的损失。
轧辊失效指南分析
目录第一章剥落1. 1马鞍形剥落1.2挤压裂纹和带状疲劳剥落1.3外层/芯部结合层处剥落1.4外层/芯部接合层工作层厚度不够1. 5辊肩脱落第二章热裂纹2.1带状热裂纹2.2梯状热裂纹2.3局部热裂纹第三章机械事故损伤3.1冲击过载造成轴承部位断裂3.2弯矩引起的轴承部位断裂3.3传动端扭矩引起辊颈折断3. 4辊承磨损及烧死引起的辊颈折断3.5热(应力)折断第四章表面及次表面(皮下)缺陷4. 1针孔和气孔4.2夹杂4.3硬点和软点第五章轧制过程中辊面状态5. 1表皮剥落5.2大块带状剥落5.3粘钢5. 4带边边缘磨损5. 5划伤/机械碰伤印痕前言1.目前,对任何成熟的轧制过程、轧制工艺,都可有不同的轧辊材质选择。
这些轧辊在正常的轧制条件下,可以顺利得用到报废直径。
然而,为了得到这一结果,正确的轧辊管理是非常必要的,这当中包括轧制周期长短的确定,良好的磨辊程序及无损检测手段。
除此之外,轧辊磨损轮廓的测量记录,工作硬化层的检测对轧辊服役期的增加也会是有益的。
2.在确定宽带钢工作辊材质时,轧辊制造厂家需要知道相关的轧制条件,其中包括精轧段机(架)的数量,轧辊服役的架次,带宽单位宽度上的轧制力,轧辊工作部位的最大预弯度,这些要素决定了复合轧辊芯部和外层材质的选择。
3.尽管轧辊制造商和用户都谨慎行事,还会发生轧辊失效,导致轧辊部分或全部损失,甚至损坏到轧机设备。
这些轧辊失效的原因都是与制造或使用相关的。
4.轧辊断裂的形貌往往用于鉴定断裂的原因。
一般来说,断裂可以是由负荷超载还是疲劳所引发的。
疲劳断裂初始从裂纹开始,逐渐延展,形成典型的断裂面。
这种断裂面相对平滑,呈现多条抑制线,一旦疲劳裂面达到临界大小,剩余的截面便突发破裂。
疲劳断裂的典型例子有支撑辊剥落、支撑辊颈折断,还有二辊式轧机的工作辊从内圆角区域处的断裂(应力腐蚀也会是引发原因之一)。
5.工作辊辊颈由于弯曲或扭矩过大引起的折断往往是自发性的。
这主要发生在负荷超载时所引发的辊颈折断。
轧辊各种剥落失效原因分析
轧辊各种剥落失效原因分析:
1原材料缺陷:轧辊在冶炼、浇注、锻造过程中,出现液析C、带状C、块状C、网状C、树枝状C等缺陷,这些缺陷存在于轧辊中,若超过一定的量,将导致轧辊使用过程中出现剥落。
2轧辊调质余量不足:轧辊调质前的加工余量与轧辊的最终使用性能有很大的关系,在轧辊的冷加工工艺中加工余量一般控制在3~4mm,过大或过小都易造成轧辊辊面质量的下降,从而导致轧辊在使用过程中出现剥落。
3淬火工艺不合理:轧辊淬火是轧辊生产工艺中最重要的环节,淬火不合理,会导致轧辊淬火后轧辊表面晶粒粗化。
C的分布和表面隐晶状M组织不理想,如出现针状M或C 分布不均匀等组织,从而使轧辊在使用过程中出现剥落。
4淬火软点:轧辊淬火时由于冷速不够,使轧辊辊面淬后得不到全M组织,而出现珠光体类型的组织,致使轧辊辊面出现软点,并最终导致轧辊在使用过程中出现剥落。
5淬硬层深度浅:Cr5轧辊辊面淬硬层一般为30~35mm,而在有些情况下由于热处理工艺和设备方面的原因,生产的轧辊辊面淬硬层深度浅,从而使轧辊表面的压应力和芯部的拉应力位置接近,致使轧辊在使用过程中出现剥落。
6残A量过多:轧辊淬火后辊面组织为M+粒状C+残余A,残余A的最佳控制量一般为6%~8%,当其数量超过12%时,会严重影响辊面质量,造成辊面硬度下降,出现软点而且由于残余A组织的转变,易使轧辊内拉应力逐渐增加,从而使轧辊表面出现剥落。
(钢讯)。
轧辊失效的原因及防治措施
轧辑失效的原因及防治措施轧辐的损坏形式多种多样,典型形式及失效原因如下:1、轧辑磨损分三类:机械磨损是由轧辐表面与轧件摩擦引起的;热磨损是由高温作用使其表层软化、熔化或蒸发引起的;腐蚀磨损是由轧辐表面水分的化学作用、电化学作用、氧化作用等引起表面材料损失和迁移。
2、轧辐裂纹轧制中发生堆钢、卡钢、追尾等事故,致使其局部温度急剧升高,产生的热应力和组织应力超过极限,形成热裂纹;轧制延伸形成舌头,其温度低于中部轧件,会产生热应力以及轧制应力突变,形成冲击裂纹;轧制中,由于氧化铁皮叠轧,导卫划痕等原因也会形成裂纹。
3、轧辐剥落裂纹的形成和扩展加快,到达一定长度和深度后,会导致剥落。
4、轧辑断裂1)辐轴铸造缺陷轧辐离心铸造中,因离心震动产生成分和组织层状偏析,形成裂纹迅速扩展,造成轧辐断裂。
2)轧辐组织缺陷化学成分不合格、冷却速度不当会导致成分偏析、渗碳体过高等缺陷,只是机械性能下降,最终导致断裂。
3)加工工艺轧辐在锻造时压力过小或变形不合理造成轧辐芯部未锻透,形成穿晶裂纹。
其防治措施为:1、轧辐选用耐磨又抗热裂纹的材质,采取相应的热处理及物流化学处理措施,使组织均化,表面耐磨性增加。
2、轧辑在上轧机前进行硬度、超声波等综合检验,确保其无裂纹等缺陷。
3、轧辐车削时,将残留氧化层及裂纹彻底清除,以减少轧辐表面裂纹及剥落产生。
4、合理安排换辐周期,选配轧辐,制定详细的轧辐车修方案,将车修量控制在要求范围内。
5、合理布置冷却水喷射范围和控制冷却水量,确保轧辐冷却温度控制在正常范围内。
6、加强设备点检,预防轧钢设备事故,减少导致卡钢、堆钢、追尾等事故发生。
严格控制轧制温度,杜绝低温钢通过轧机,避免轧制力过载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轧辊失效方式及其原因分析
摘要:介绍了轧辊存在剥落、断裂、裂纹等几种失效方式,并重点分析了轧辊剥落和断裂产生的机理,为分析生产实践中轧辊失效原因和采取相应改进措施以提高轧辊使用寿命提供了依据。
关键词:轧辊;失效原因;剥落;断裂;裂纹
1 前言
轧机在轧制生产过程中,轧辊处于复杂的应力状态。
热轧机轧辊的工作环境更为恶劣:轧辊与轧件接触加热、轧辊水冷引起的周期性热应力,轧制负荷引起的接触应力、剪切应力以及残余应力等。
如轧辊的选材、设计、制作工艺等不合理,或轧制时卡钢等造成局部发热引起热冲击等,都易使轧辊失效。
轧辊失效主要有剥落、断裂、裂纹等形式。
任何一种失效形式都会直接导致轧辊使用寿命缩短。
因此有必要结合轧辊的失效形式,探究其产生的原因,找出延长轧辊使用寿命的有效途径。
2 轧辊的失效形式
2.1 轧辊剥落
轧辊剥落为首要的损坏形式,现场调查亦表明,剥落是轧辊损坏,甚至早期报废的主要原因。
轧制中局部过载和升温,使带钢焊合在轧辊表面,产生于次表层的裂纹沿径向扩展进入硬化层并多方向分枝扩展,该裂纹在逆向轧制条件下即造成剥落。
2.1.1支撑辊辊面剥落支撑辊剥落大多位于轧辊两端,沿圆周方向扩展,在宽
度上呈块状或大块片状剥落,剥落坑表面较平整。
支撑辊和工作辊接触可看作两平行圆柱体的接触,在纯滚动情况下,接触处的接触应力为三向压应力,如图1所示。
在离接触表面深度(Z)为0.786b处(b为接触面宽度之半)剪切应力最大,随着表层摩擦力的增大而移向表层。
图1 滚动接触疲劳破坏应力状态
疲劳裂纹并不是发生在剪应力最大处,而是更接近于表面,即在Z为0.5b的交变剪应力层处。
该处剪应力平行于轧辊表面,据剪应力互等定理,与表面垂直的方向同样存在大小相等的剪应力。
此力随轧辊的转动而发生大小和方向的改变,是造成接触疲劳的根源。
周期交变的剪切应力是轧辊损坏最常见的致因。
在交变剪切应力作用下,反复变形使材料局部弱化,达到疲劳极限时,出现裂纹。
另外,轧辊制造工艺造成的材质不均匀和微型缺陷的存在,亦有助于裂纹的产生。
若表面冷硬层厚度不均,芯部强度过低,过渡区组织性能变化太大,在接触应力的作用下,疲劳裂纹就可能在硬化过渡层起源并沿表面向平行方向扩展,而形成表层压碎剥落。
支撑辊剥落只是位于辊身边部两端,而非沿辊身全长,这是由支撑辊的磨损型式决定的。
由于服役周期较长,支撑辊中间磨损量大、两端磨损量小而呈U 型,使得辊身两端产生了局部的接触压力尖峰、两端交变剪应力的增大,加快了疲劳破坏。
辊身中部的交变剪应力点,在轧辊磨损的推动作用下,逐渐往辊身内
部移动至少0.5mm,不易形成疲劳裂纹;而轧辊边部磨损较少,最大交变剪应力点基本不动。
在其反复作用下,局部材料弱化,出现裂纹。
轧制过程中,辊面下由接触疲劳引起的裂纹源,由于尖端存在应力集中现象,从而自尖端以与辊面垂直方向向辊面扩展,或与辊面成小角度以致呈平行的方向扩展。
两者相互作用,随着裂纹扩展,最终造成剥落。
支撑辊剥落主要出现在上游机架,为小块剥落,在轧辊表面产生麻坑或椭球状凹坑,分布于与轧件接触的辊身范围内。
有时,在卡钢等情况下,则出现沿辊身中部轴向长达数百毫米的大块剥落。
2.1.2 工作辊辊面剥落工作辊剥落同样存在裂纹产生和发展的过程,生产中出现的工作辊剥落,多数为辊面裂纹所致。
工作辊与支撑辊接触,同样产生接触压应力及相应的交变剪应力。
由于工作辊只服役几个小时即下机进行磨削,故不易产生交变剪应力疲劳裂纹。
轧制中,支撑辊与工作辊接触宽度不到20mm,工作辊表面周期性的加热和冷却导致了变化的温度场,从而产生显著的周期应力。
辊面表层受热疲劳应力的作用,当热应力超过材料的疲劳极限时,轧辊表面便产生细小的网状热裂纹,即通称的龟裂。
轧制中发生卡钢等事故,造成轧辊局部温度升高而产生热应力和组织应力。
轧件的冷头、冷尾及冷边引起的显著温差,同样产生热应力。
当轧辊应力值超过材料强度极限时产生热冲击裂纹。
在轧制过程中,带钢出现甩尾、叠轧时,轧件划伤轧辊,亦可形成新的裂纹源。
另外,更换下来的轧辊,尤其上游机架轧辊,多数辊面上存在裂纹,应在轧辊磨削时全部消除。
如轧辊磨削量不够,裂纹残留下来,在下一次使用时这些裂纹将成为疲劳核心。
轧辊表面的龟裂等表层裂纹,在工作应力、残余应力和冷却
引起的氧化等作用下,裂纹尖端的应力急剧增加并超过材料的允许应力而朝轧辊内部扩展。
当裂纹发展成与辊面成一定的角度甚至向与辊面平行的方向扩展,则最终造成剥落。
2.2 轧辊断裂
轧辊在工作过程中还常常发生突然断辊事故,其断裂部位主要为工作辊的孔型处、辊颈处、辊脖与辊颈交界处。
因轧制钢种、品种与生产工艺条件差异,各断裂部位所占比例不同。
断辊可以是一次性的瞬断,也可以是由于疲劳裂纹发展而致。
根据柯垂尔脆断条件:(τD/2 +K)K≥4Gγ时,才发生脆断。
其中τ ——应力;
D——晶粒直径;
K——系数;
G——材料的弹性模量;
γ——有效表面能。
也就是说,当τ和D较大时,易发生脆性断裂,脆性断裂的断面总体平齐。
对高铬复合铸铁轧辊,如果轧辊热处理回火不充分,外层组织中会含有大量马氏体、残余奥氏体,导致轧辊铸态应力较高,亦即τ值增大;τ与D的增大,是轧辊断裂的内因。
轧制机械应力、热应力的叠加是造成辊断裂的外因。
锻造工艺不当也会导致轧辊脆性断裂。
如终锻温度过低,易形成位于轧辊心部附近其形貌具有“人”字形特征的裂纹。
若加上在终锻时控制不当,很容易造成穿晶型裂纹。
在锻造变形时,热加工压力过小,变形不合理造成心部未锻透,仅钢材表面产生塑性变形而内部产生拉应力,当此拉应力超过该区的金属强度时,
即可引起内部横裂。
脆性断裂总是以轧辊内部存在的裂纹作为裂纹源。
如果轧辊内部存在大量裂纹,在服役过程中,裂纹尖端产生应力集中而快速扩展连接,形成一个较大的裂纹,这种裂纹在交变应力作用下,由内向外逐渐扩大,当裂纹大到一定程度时就发生疲劳断裂。
轧辊组织缺陷也会导致轧辊断裂,轧辊芯部组织不正常(球化率低,渗碳体数量过高等)导致机械性能显著下降。
这种轧辊使用时,由于芯部组织不正常,在热应力的作用下,较薄弱处先被拉裂,然后裂纹迅速扩展,也会导致轧辊断裂。
轧辊铸造缺陷是轧辊辊颈断裂的另一个原因。
如果辊颈截面存在铸造缺陷组织:较多大面积粗条状、网状渗碳体,心部疏松孔洞区等,都会使材料内应力增大,力学性能下降。
因此在辊身发生碰撞时,在外加震动应力与内应力的交互作用下,以脆性相和一些缺陷为核心,萌生出裂纹。
由于材料较脆,裂纹便立即扩展产生瞬间断裂。
除上述原因外,造成轧辊断裂的因素还有很多:简单的机械性过载;设计和加工不当,对于截面尺寸发生变化的部位,未设计足够的圆角或精密加工,致使应力集中;辊面和辊颈硬度相差过大;辊颈的直径过小,强度不够等都有可能导致轧辊断裂。
2.3 轧辊裂纹
轧辊裂纹是由于多次温度循环产生的热应力所造成的逐渐破裂,是发生于轧辊表面薄层的一种微表面层现象。
轧制时,轧辊受冷热交替变化剧烈,从而在轧辊表面产生严重应变,逐渐导致热疲劳裂纹的产生。
此种裂纹是热循环应力、拉应力及塑性应变等多种因素形成的,塑性应变使裂纹出现,拉应力使其扩展。
2.4 缠辊
热轧生产中,由于钢料加热温度不均,阴阳面温差大,卫板安装不稳,造成缠辊。
经常出现在轧制矿用支撑钢、矿用工字钢及轻轨的过程中。
有些缠辊经轧辊车削车间处理后可以使用,但修复量大,会严重减少轧辊的轧出量。
缠辊严重时报废,还可能影响到另外一(两)支轧辊,造成整套轧辊的报废。
因此,在孔型设计时,应着重考虑压力的配置,使钢料从孔型中平直出口;牢固安装卫板;保证钢料加热温度均匀,以防止缠辊现象发生。
2.5 粘辊
在冷轧过程中,如果出现钢带漂移、堆钢、波浪折叠,且由于高压出现瞬间高温时,极易形成钢带与轧辊粘接,致使轧辊出现小面积损伤。
通过修磨,轧辊表面裂纹消除后可以继续使用,但其使用寿命明显降低,并在以后的使用中易出现剥落事故。
3 结语
轧辊的损坏由多种因素相互影响和相互作用引起,其损坏形式也多样。
但只要了解轧辊损坏原因,针对具体的轧机系统、损坏形式采取相应措施,轧辊失效可以得到有效控制,可以最大限度降低辊耗,从而提高轧辊的使用寿命,提高轧钢生产效率。