七年级数学全等三角形

合集下载

初中数学-全等三角形

初中数学-全等三角形

常见几种构造全等的题型
常见几种构造全等的题型一:倍长中线构造全等
例14、已知:△ABC中,AM是中线.求证:AB+AC>2AM
解析:延长AM至A',使得A'M=AM,连接A'B
很容易得△AMC≌△A'MB,从而A'B=AC
利用三角形三边关系可得AB+A'B>AA'
B
从而得AB+AC>2AM
A
M
C
A'
例3、已知BE=CF,AB=CD, ∠B=∠C.问AF=DE吗? 解析:除了已知条件以外,有重叠边EF=FE,
那么BE+EF=CF+FE,即BF=CE
A BE
D FC
例4、已知AB=AC, ∠1=∠2,AD=AE,问⊿ABD≌⊿ACE.说明理由。
解析:除了已知条件以外,有重叠角∠BAE=∠EAB, C 那么∠1+∠BAE=∠2+∠EAB,即∠CAE=∠BAD
2020/9/15
全等三角形的性质与判定
全等三角形的判定方法:
(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS):三边对应相等的两个三角形全等. (4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.
∴∠EMP=∠PNF=2∠PAE=2∠PBF,∴∠PAE=∠PBF
2020/9/15
课堂总结
1、认识并掌握全等三角形的性质与判定 2、掌握全等三角形的证明思路 3、掌握构造全等来得到相关结论的几种常见题型

初中数学全等三角形

初中数学全等三角形

初中数学全等三角形
目录
1. 几何基础知识
1.1 点、线、面的概念
1.2 角的概念
1.3 直线、射线、线段的区别
2. 三角形的性质
2.1 三角形的定义
2.2 三角形的内角和为180°
2.3 等边三角形、等腰三角形、直角三角形的特点
3. 三角形的分类
3.1 依据边长分类
3.2 依据角度分类
4. 三角形的全等性质
4.1 全等三角形的定义
4.2 全等三角形的性质
4.3 证明全等三角形的方法
5. 三角形全等定理
5.1 SSS全等定理
5.2 SAS全等定理
5.3 ASA全等定理
6. 全等三角形的应用
6.1 利用全等三角形证明几何定理
6.2 利用全等三角形解决实际问题
7. 总结与拓展
7.1 总结全等三角形的重要性
7.2 拓展全等三角形的相关知识
以上是目录,接下来将根据目录内容展开写作。

七年级数学下册三角形全等的判定

七年级数学下册三角形全等的判定
AC=A′C′
∠C=∠C′ ∴△ABC ≌ △A′B′C′(ASA)
归纳
定理: 如果两个三角形中有两个角和其中一
个角的对边分别对应相等,那么这两个三
角形全等.简记为AAS(或角角边).
三角形全等的判定
(角边角)
(角角边)
如图,已知∠ABC=∠D,∠ACB=∠CBD,判
断图中的两个三角形是否全等,并说明理由.
2.当两个三角形的两条边及其中一边的
对角分别对应相等时,两个三角形未必
一定全等.
M
D
C
A
B
已知:如图,要得到△ABC ≌ △ABD,已经隐 含有条件是__A_B_=__A_B__根据所给的判定方法,在 下列横线上写出还需要的两个条件:
(1) AC=AD ∠CAB=∠DAB (SAS)
( 2 ) BC=BD ∠CBA=∠DBA (SAS)
三角形全等的判定
探究
先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB, B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下来,放到△ABC 上,它们全等吗?
画一个△A′B′C′,使A′B′=AB, A′C′=AC,B′C′=BC: (1)画B′C′=BC; (2)分别以点B′,C′为圆心,线 段AB,AC长为半径画弧,两弧相 交于点A'; (3)连接线段A′B′,A′C′.
如图:如果两个三角形有两个角及其中一个角的对 边分别对应相等,那么这两个三角形是否一定全等?
已知:∠A=∠A′,∠B=∠B′,AC=A′C′
求证:△ABC≌△A′B′C′
证明:∵∠A=∠A′,∠B=∠B′ 且∠A+∠B+∠C=180° 同理∠A′+∠B′+∠C′=180° ∴∠C=∠C′.

初一数学全等三角形的全章复习

初一数学全等三角形的全章复习

小学生元旦联欢会的主持词精选4篇小学生元旦联欢会主持词篇一主持词要根据活动对象的不同去设置不同的主持词。

我们眼下的社会,各种集会的节目都通过主持人来进行串联,快来参考主持词是怎么写的吧,以下是小编为大家整理的小学生元旦联欢会主持词(精选13篇),仅供参考,希望能够帮助到大家。

小学生元旦联欢会的主持词篇二甲:尊敬的各位领导﹑老师,乙:亲爱的同学们,大家,合:晚上好!甲:我是来自2020级的小鱼。

乙:我是来自2020级的小绿。

丙:我是来自2020级的小黄。

丁:我是来自2020级的小红。

甲:新年的钟声即将敲响,时光的车轮又留下了一道深深的印痕。

满天的雪花,是飞舞的音符,以思念谱成乐章,用祝福奏出所盼。

乙:没有松风的秋,雁去长空;没有飞雪的冬,乍暖还寒。

一夜高风凋碧树,凋不了青春不灭的火焰;满地余寒露凝香,凝不住你绝美的年华。

丙:在这烛光与微笑构成的舞台,在这笑声与歌声汇成的海洋,在这永恒与温馨筑就的圣地,我们欢聚在一起。

丁:光阴茬苒,我们即将迎来新的一年。

今天大家在这里欢聚一堂,迎接元旦的曙光。

这一刻是美好的,这一刻是温馨的,这一刻是充满激情的。

甲:台历翻去最后一页,20--年已经成为历史。

回首时光年轮上又一度春秋寒暑,我们不禁感慨万千。

乙:灿烂辉煌的20--年即将向我们告别,充满希望与奋进的20--年正微笑着向我们走来。

丁:在这辞旧迎新的日子里,就让我们用热情与激情来表达我们的喜悦,传达对新一年的憧憬。

丙:今晚,就让我们踏着歌声的翅膀,向着梦想――启航!甲:现在我宣布20--年庆元旦文艺晚会,合:现在开始!甲:首先请允许我为大家隆重介绍今晚到场的领导和嘉宾,--。

乙:欢迎您的到来!丙:---。

丁:欢迎您的到来!甲:还有我们敬爱的--老师和--老师,乙:让我们用热烈的掌声来欢迎各位老师的到来!丁:今天啊,我们在开场前将会进行第一个抽奖环节的前奏!丙:没错!我们需要在场的观众拿出旁边已经为你们准备好的袋子,里面呢会有一张小纸条,请将你对20--年的新年愿望写在纸上,并写好你的姓名,待会儿会有同学去收集,我们将在晚会的最后从这些小纸条中抽出3位幸运儿,并且由主持人念出这3个新年愿望,而这3位幸运的同学也将获得奖品哦!大家快点动起来吧!甲:OK,相信你们已经写好了自己的新年愿望了吧,我们马上进入今晚的正轨了哟!乙:没错,接下来呢就让我们跟着--和--的歌声走进《下一站天后》。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。

遵循启发式教学原则,采用引探式教学方法。

用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

全等三角形教案6篇

全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。

七年级下册数学全等三角形模型

七年级下册数学全等三角形模型

七年级下册数学全等三角形模型一、全等三角形的概念。

1. 定义。

- 能够完全重合的两个三角形叫做全等三角形。

- 重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

- 例如,在△ABC和△DEF中,如果△ABC与△DEF能够完全重合,那么A与D、B 与E、C与F是对应顶点,AB与DE、BC与EF、AC与DF是对应边,∠A与∠D、∠B与∠E、∠C与∠F是对应角。

2. 表示方法。

- 全等用符号“≌”表示,读作“全等于”。

- 例如,△ABC≌△DEF,表示△ABC和△DEF全等。

书写时要注意对应顶点的字母写在对应的位置上。

二、全等三角形的性质。

1. 对应边相等。

- 如果△ABC≌△DEF,那么AB = DE,BC = EF,AC = DF。

- 例如,已知两个全等三角形的其中一条对应边的长度为5cm,那么另一个三角形中与之对应的边的长度也为5cm。

2. 对应角相等。

- 如果△ABC≌△DEF,那么∠A=∠D,∠B = ∠E,∠C=∠F。

- 在解决角度问题时,若两个三角形全等,已知一个三角形中的某个角的度数,就可以得出另一个三角形中对应角的度数。

三、全等三角形的判定模型(人教版七年级下册)1. SSS(边边边)模型。

- 判定条件:三边对应相等的两个三角形全等。

- 图形示例:- 如在△ABC和△DEF中,AB = DE,BC = EF,AC = DF,则△ABC≌△DEF。

- 应用举例:- 已知一个三角形的三边长度分别为3cm、4cm、5cm,另一个三角形三边长度也分别为3cm、4cm、5cm,根据SSS判定,这两个三角形全等。

2. SAS(边角边)模型。

- 判定条件:两边和它们的夹角对应相等的两个三角形全等。

- 图形示例:- 在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,则△ABC≌△DEF。

- 应用举例:- 若在△ABC中,AB = 5cm,∠A = 60°,AC = 4cm,在△DEF中,DE = 5cm,∠D = 60°,DF = 4cm,根据SAS判定,△ABC≌△DEF。

七年级下册数学直角三角形全等的判定

七年级下册数学直角三角形全等的判定

直角三角形全等的判定【知识要点】1.斜边、直角边(HL )①内容:有斜边和一直角边对应相等的两个直角三角形全等. ②作用:判定两个直角三角形全等.2.判定两个直角三角形全等的方法,共有五种:SSS 、SAS 、ASA 、AAS 、HL .判定两个三角形全等,必须有一组边对应相等.3.判定两个直角三角形全等时应先考虑利用斜边、直角边条件(即HL )来证,如不行再考虑用其他四种方法(其中SSS 没有必要).【典型例题】例1.我们知道:只有两边和一角对应相等的两个三角形不一定全等,你如何处理和安排这三个条件,使这两个三角形全等,请仿照方案(1),写出方案(2),(3),(4),你能行吗? 方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等.方案(2):方案(3):方案(4):例2.已知:如图所示,B 、E 、F 、C 在同一直线上,BC AF ⊥于F ,BC DE ⊥于E ,AB=DC ,BE=CF.求证:AB ∥CDA BFE CD例3. 如图,AE AB =,ED BC =,E B ∠=∠,CD AF ⊥,F 是垂足,试判断CF 与DF 有什么特殊的数量关系?并说明理由.例4.如图所示,Rt △ABC 中,∠ACB=90°,D 是AB 上一点,且BD=BC ,DE ⊥AB 交AC 于E.求证:CD ⊥BE.例5.如图,△ABC 中,AB=AC ,D 、E 分别是AC 、AB 上的点,M 、N 分别是CE 、BD 上的点,若AM ⊥CE ,AN ⊥BD ,AM=AN.求证:EM=DNBAE D BCM BN B例6. 如图a 所示,ABC ∆中,90=∠BAC ,AC AB =,AE 是过A 的一条直线,且点B 、C 在AE 的异侧,AE BD ⊥于D ,AE CE ⊥于E ,试说明: (1)CE DE BD +=.(2)若直线AE 绕A 点旋转到如图b 的位置时(BD <CE ),其余条件不变,问BD 与DE 、CE 的关系如何?说明理由.(3)若直线AE 绕A 点旋转到如图c 的位置时(BD >CE ),其余条件不变,则BD 与DE 、CE 的关系又怎样?ADBCE(c )【初试锋芒】1.下列条件中,能判定两个直角三角形全等的是( ) A 、一锐角对应相等 B 、两锐角对应相等 C 、一条边对应相等D 、两条直角边对应相等2.如图1,P 到AB 、AC 的距离PE PF =,则PAF PAE ∆≅∆的理由是( ) A 、HL B 、AAS C 、SSS D 、ASA3.如图2中,90=∠C ,BC AC =,AD 平分CAB ∠交BC 于D ,AB DE ⊥于E ,若cm AB 6=,则DEB ∆的周长( )A 、cm 5B 、cm 6C 、cm 7D 、cm 84.在A B C ∆和DEF ∆中,DE AB =,90=∠=∠D A ,只要再补充条件 、或 、或 , 就能说明DEF ABC ∆≅∆.5.如图,Rt △ABC 中,∠ACB=90°,CA=CB ,D 是AC 上的一点,E 在BC 的延长线上,且AE=BD ,BD 的延长线与AE 交于点F.求证:BF ⊥AE AFBPEC图1图26.如图,在四边形ABCD 中,BC>BA ,AD=DC ,BD 平分∠ABC. 求证:∠BAD+∠C=180°7.已知:如图所示,AC AD CE CD DCE ⊥=︒=∠,,90于A ,AC BE ⊥于B , 求证:AB+AD=AC8.如图,在ABC ∆中,高AD 、BE 交于点H ,M 、N 分别是BH 、AC 的中点,︒=∠45ABC . 求证:DM=DN .A DBN EHM【大展身手】1. 如图,△ABC 中,∠C=90°,AB=2AC ,M 是AB 的中点,点N 在BC 上,MN ⊥AB. 求证:AN 平分∠BAC2.如图,已知:BE ⊥CD ,BE=DE ,BC=DA ,求证:DF ⊥BC3.如图,已知AC=BD ,AD ⊥AC ,BC ⊥BD. 求证:AD=BC.B A21N MCB CDEFAC。

七年级数学全等三角形复习

七年级数学全等三角形复习

全等三角形复习一、知识点梳理及示例一重新认识“全等形”与“全等三角形”.全等形和全等三角形,其实质是“完全重合”,也就是“形状相同,大小相等”,全等三角形是全等形中的一种,因此,从这个意义上,不难得到全等三角形的性质,对应边和对应角分别相等.在这里,要特别注意“对应”的问题,当我们用“≌”表示两个三角形全等时;对应字母一定要写在对应的位置,这样便于看出对应的元素是什么。

在学习了第十四章(轴对称)后,对全等形应有一个新的认识:成轴对称的两个图形一定是全等形,只是这时两个图形的位置特殊罢了.我们在解数学中的“折叠问题”时,用全等形的性质往往是个关键.二掌握证明三角形全等的分析要领,会用综合法书写证明过程.证明三角形全等时的分析方法与步骤:(1)仔细观察图形,找出欲证的两个全等三角形已知的直接相等条件,并把已知条件标注在图上,使条件在图上一目了然.(2)注意挖掘图形中的隐含条件,如公共边(角)、对顶角、等腰(边)三角形或正方形中的等角(边)等,这些条件虽然没有直接告诉,它们却是证明三角形全等必不可少的条件。

(3)对照判定三角形全等的五种方法(SSS,SAS,ASA,AAS,HL),看看三角形全等的条件是否具备了,如果不够,还需要找出哪些条件或创造哪些条件.有时,两个三角形全等的某些条件是必须证明的.常会遇到以下几种情况:①利用中点的定义证明线段相等;②利用角平分线的定义证明角相等;③利用垂直的定义证明角相等;④利用平行线的性质证明角相等;⑤利用三角形的内角和为180°证明角相等;⑥利用图形的和、差证明线段或角相等.经过正确分析之后,要把论证过程规X地写出来.本章要求我们能用综合法书写证明过程,这也是本章的一个重点.什么叫“综合法证明格式”?就是按照从题设(已知条件)出发,经过一步步推理论证,最后得到结论的格式来书写证明过程.例l如下图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,连接BF,DE,你能证明BF=DE吗?分析:①找出欲证的两个全等三角形:从图形及要证的结论来看,可考虑证明△BCF≌△DCE;②找出并标上已知条件:CE=CF,∠ECF=90°;③有没有隐含条件?有:BC=DC,∠BCD=90°,它们是正方形的边和角;④对照判定三角形全等的方法,还差什么条件?因为BF=DE是要证的,所以,可证∠BCF=∠DCE,而这个结论很容易证得.至此,分析过程顺利完成,书写格式如下:证明:∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∴∠BCD-∠DCF=∠ECF-∠DCF即∠BCF=∠DCE在△BCF和△DCE中,∵∴△BCF≌△DCE,∴BF=DE三理解“SSA”为什么不能判定两个三角形全等,防止误用SSA.在学习新课时,探究并得到了判定两个三角形全等的五种方法.并且知道判断两个三角形全等至少需要3个条件,其中至少有—个条件是边.但SSA却是个假命题,有些同学自觉或不自觉地应用它来证明三角形全等,这是不对的.例2如图,AC、BD交于E,AD=BC,∠C=∠D,试说明AC=BD.错解:在△ABD和△BAC中∴△ABD≌△BAC,∴AC=BD正确解法,在△ADE和△BCE中∴△ADE≌△BCE(AAS)∴AE=BE,DE=CE∴AE+CE=BE+DE,即AC=BDSSA为什么不能判定两个三角形全等呢?我们可以从下图中看出来,你能根据下图说明为什么吗?其实,HL中的3个条件就是SSA,为什么HL是正确的呢?这是由直角三角形的特殊性决定的.下面留一个问题请你解决,这样有助于我们更进一步地理解与掌握全等三角形的判定.探究:我们知道:“有两边和其中一边的对角对应相等的两个三角形全等”是个假命题.请你对三个条件或三角形的形状给些必要的限制,使得具备“SSA”三个条件的两个三角形全等.四你会判定两个特殊三角形全等吗?我们课本主要研究了一般三角形全等的4种判定方法,只有“HL”,是关于特殊三角形(即直角三角形)全等的判定;课本为什么不探究特殊三角形的全等条件呢?这是因为一般的方法适用特殊,这样也是为了减少我们的学习负担,集中精力学会一般的方法.我们共同来看下面一个例子.例3.下列说法:①一边相等的两个等腰直角三角形全等;②—腰和底对应相等的两个等腰三角形全等;③周长相等的两个等腰三角形全等;④一个钝角和它的一条邻边对应相等的两个等腰三角形全等.其中,正确的说法有( ).A.0个.B.1个C.2个D.3个分析与解:①的说法中相等的这—对边,没有指明是对应腰还是对应底,如果一个是底与另一个的腰相等,则不能得到两个等腰直角三角形全等.②的说法中,一腰和底对应相等,这就有两对边相等了,第三对边是不是相等呢?当然相等了,因为第三对边是腰,也应该相等,这样就符合“SSS”了。

初中数学《全等三角形》优质课件

初中数学《全等三角形》优质课件

所以AB=DE,AC=DF,BC=EF.
F
它们的对应角分别相等,所以
∠A=∠D,∠B=∠E
∠ACB=∠DFE.
C E
D
试一试4:
先写出全等式,再指出它们的对应边 和对应角
∵△ABC≌△DEC
∴AB=DE,AC=DC, BC=EC
∴∠A=∠D, ∠B=∠E, ∠ACB= ∠DCE.
A
C D
规律四:一对最长的边是对应边 一对最短的边是对应边
E B
试一试5:
先写出全等式,再指出它们的对应边 和对应角
FF FFFFFFA
∵△ABC≌△FDE
∴AB=FD,AC=FE, BC=DE
C EEEEEEEEE ∴∠A=∠F,
∠B=∠D, ∠ACB= ∠FED.
DDDDDDDDD
B
规律五:一对最大的角是对应角 一对最小的角是对应角
1、请指出下列全等三角形的对应边和对应角
形吗?你能把它分成三个全等三角形吗?四个呢?
总结:寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边,
最小的边是对应边; (5)两个全等三角形最大的角是对应角,
最小的角是对应角;
作业:
1.习题1.1
2.思考: 下图是一个等边三角形,你能把它分成两个全等三角
所以BC=DE.
4、如图,已知ΔABE≌ΔACD,且∠1=∠2, ∠B=∠C,请指出其余的对应边和对应角.
A
分析:由ΔABE≌ΔACD以及
∠1=∠2, ∠B=∠C知:
B
2
D
∠ BAE与∠CAD是对应角,

北师大版七年级数学下册第四章 三角形3 第1课时 利用“边边边”判定三角形全等

北师大版七年级数学下册第四章  三角形3 第1课时 利用“边边边”判定三角形全等

解题思路:
A
先找隐含条件 公共边 AD
再找现有条件 AB = AC
最后找准备条件
B
D
C
BD = CD
D 是 BC 的中点
准备条件
解:因为 D 是 BC 中点,
A
指明 所以 BD = DC.
范围 在△ABD 与△ACD 中,
摆齐 根据
因为 AB = AC ,
BD = CD,
B
AD = AD ,
所以△ABD≌△ACD (SSS).
D
C
写出 结论
针对训练 1. (邻水县期末)如图,AB = DC ,若要用“SSS”证 明△ABC≌△DCB,需要补充一个条件, 这个条件是 AC = BD (填一个条
2. 如图,AB = AC,DB = DC,请说明∠B =∠C 成立的理由.
解:连接 AD.
A
在△ABD 和△ACD 中,
因为 AB = AC,DB = DC,
AD = AD,
所以△ABD≌△ACD .
D
所以∠B =∠C .
B
C
2 三角形的稳定性
由上面的结论可知,只要三角形三边的长度确定了,这 个三角形的形状和大小就完全确定了.
探究活动:请同学们动手用三根木条钉成一个三角形框 架,再用四根木条钉成框架,看看它们的形状能否改变?
大小和形状 固定不变
形状可以改变
三角形的稳定性 四边形具有不稳定性
在生活中,我们经常会看到应用三角形稳定性的例子. 你还能举出一些其他的例子吗?
针对训练
3. 如图,桥梁的斜拉钢索是三角形的结构,主要是为了
A. 节省材料,节约成本 B. 保持对称
(C )
C. 利用三角形的稳定性

烟台七年级数学第一章-三角形全等

烟台七年级数学第一章-三角形全等

第一章 三角形1.1 认识三角形知识点1:三角形及其有关概念1、三角形:由不在同一条直线上的三个点首位顺次相接组成的图形叫做三角形。

例1:如图所示,图中共有多少个三角形?请写出这些三角形并指出所有以E 为顶 点的三角形。

知识点2:三角形的内角和定理三角形三个内角的和等于180°。

几何语言:在△ABC 中,∠A+∠B+∠C=180° 题型一:利用三角形内角和求角度例1:在△ABC 中,若∠A=95°,∠B=40°,则∠C=_____________.例2:如图,在△ABC 中,∠ABC=∠ACB ,点P 为△ABC 内的一点,且∠PBC=∠PCA ,∠PBC=110°,则∠A 的大小为()A 40°B 50°C 60°D 70°跟踪练习:1:在△ABC 中,∠B=∠A+10°,∠C=∠B+10°,求△ABC 各内角的度数。

2:如图,EF//BC ,AC 平分∠BAF ,∠B=80°,求∠C 的度数。

A3:如图,已知∠B=40°,则∠BEF+∠BFE+∠A+∠C= ______________.知识点3:三角形分类题型一:按角判断三角形形状例1:若一个三角形的三个内角度数比为2:3:4,则这个三角形是()A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形跟踪练习:1:三角形三个内角满足∠A=21∠B=31∠C ,则这个三角形是() A 锐角三角形 B 直角三角形 C 钝角三角形 D 等腰三角形2:在△ABC 中,∠A -∠B = ∠C ,则△ABC 是()A 锐角三角形B 直角三角形C 钝角三角形D 无法确定知识点4:三角形按边分类及三边关系1、三角形按边分类2、三角形三边关系:任意两边之和小于第三边,任意两边之差大于第三边;注:判断技巧:两条最短边之和大于第三边;最长边与最短边之差小于第三边。

北师版七年级下册数学 第4章 三角形 用三边关系判定三角形全等

北师版七年级下册数学 第4章 三角形  用三边关系判定三角形全等
知识点 1 判定两个三角形全等的基本事实:“边边边”
1. 只给一个条件(一组对应边相等或一组对应角相等). ①只给一条边:
②只给一个角:
60°
60°
知1-导
可以发现按这些 条件画的三角形 都不能保证一定 全等.
60°
2. 给出两个条件: ①一边一内角:
知1-导
30° ②两内角:
30°
30°
30°50°
∴△ABC≌△A′B′C′(SSS).
B′
知1-导
A
C A′
C′
知1-讲
例1 如图,已知点A,D,B,F在一条直线上,AC=FE, BC=DE,AD=FB.试说明:△ABC≌△FDE.
导引: 欲说明△ABC≌△FDE,已知AC=FE, BC=DE,需说明AB=FD,然后根据 “SSS”可得结论.由AD=FB,利用等 式的性质可得AB=FD,进而得解.
两个三角形全等的判定1: 三边对应相等的两个三角形全等. 简写为“边边边”或“SSS”. 注:这个定理说明,只要三角形的三边的长度确定 了,这个三角形的形状和大小就完全确定了,这也 是三角形具有稳定性的原理.
用符号语言表达:
在△ABC和△A′B′C′中,
AB= A′B′,
A∵C= A′C′,
B
BC= B′C′,
知2-讲
总结
知2-讲
在本例中,有两组相等线段,可作辅助线构造有 公共边的两个三角形,利用“SSS”说明两个三角形全 等.
知2-练
1 如图,AB=DE,AC=DF,BC=EF,则∠D 等于( D ) A.30° B.50° C.60° D.100°
知2-练
2 如图,已知AE=AD,AB=AC,EC=DB,下 列结论: ①∠C=∠B;②∠D=∠E;③∠EAD= ∠BAC;④∠B=∠E. 其中错误的是( D) A.①② B.②③ C.③④ D.只有④

【初中数学知识点解析】构造全等三角形的五种常用方法

 【初中数学知识点解析】构造全等三角形的五种常用方法

方法4 倍长中线法 4.如应图,在△ABC中,D为BC的中点.
(1)求证:AB+AC>2AD; (2)若AB=5,AC=3,求AD的取值范围.
(1)证明: 延长AD至点E,使DE=AD,连接BE. ∵D为BC的中点, ∴CD=BD. 又∵AD=ED,∠ADC=∠EDB, ∴△ADC≌△EDB. ∴AC=EB. ∵AB+BE>AE, ∴AB+AC>2AD.
∴∠B=∠ADG=90°.
在△ABE与△ADG中,
方法5 截长(补短)法
5.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=
∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图
中线段BE,EF,FD之间的数量关系并证明.
AB=AD,
∠B=∠ADG=90°,
BE=DG,
要点提示
在进行几何题的证明或计算时,需要在图形中添加一些 辅助线,辅助线能使题目中的条件比较集中,能比较容易找 到一些量之间的关系,使数学问题较轻松地解决.
常见的辅助线作法有:翻折法、构造法、旋转法、倍长中 线法和截长(补短)法,目的都是构造全等三角形.
方法1 翻折法
1.如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D. 求证:∠2=∠1+∠C. 证明:如图,延长AD交BC于点F.(相当于将AB边向下翻
方法3 旋转法
3.如图,在正方形ABCD中,E为BC边上一点,F为CD边上一点, BE+DF=EF,求∠EAF的度数.
∴△ABH≌△ADF. ∴AH=AF,∠BAH=∠DAF. ∴∠BAH+∠BAF=∠DAF+∠BAF, 即∠HAF=∠BAD=90°. ∵BE+DF=EF, ∴BE+BH=EF,即HE=EF. 在△AEH和△AEF中,

著名机构七年级数学春季班讲义10全等三角形的判定及性质(教师)

著名机构七年级数学春季班讲义10全等三角形的判定及性质(教师)

全等三角形的判定及性质课时目标1. 理解全等三角形的概念及性质,并灵活运用;2. 掌握全等三角形的判定方法,并熟练应用于证明题.知识精要1. 全等形能够重合的两个图形叫做全等形.2. 全等三角形(1)两个三角形是全等形,就说它们是全等三角形.(2)两个全等三角形,经过运动后一定能够重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角.注:(1)全等三角形不一定是两个图形之间的关系,还可能是多个图形之间的关系. (2)全等图形也可以看作是把图形翻折,旋转、平移等变换而得到的图形;反过来说,两个全等图形经过这样的变换一定能够重合.3. 全等三角形的性质(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;4. 确定三角形形状和大小的三个元素有四种情况(1)两角及夹边(2)两边及其夹角(3)三边(4)两角及其中一角的对边注:知道两边及其中一边的对角时,一般不能确定三角形的形状,大小.5. 全等三角形的判定判定1:在两个三角形中,如果有两条边及它们的夹角对应相等地,那么这两个三角形全等.(两边及其夹角对应相等的两个三角形全等SAS)判定2:在两个三角形中,如果有两个角及它们的夹边对应相等地,那么这两个三角形全等.(两角及其夹边对应相等的两个三角形全等ASA)判定3:在两个三角形中,如果有两个角及其中一个角的对边对应相等,那么这两个三角形全等(两角及其中一角的对边相等的两个三角形全等AAS)DBEDB判定4:在两个三角形中,如果有三条边对应相等,那么这两个三角形全等(三边对应相等的两个三角形全等SSS )热身练习1. AC 与BD 交于点O ,且AB ∥CD ,AO=CO ,OB=OD ,AB=CD. 求证:△ABD ≌△ACE. 证明:在△ABD 和△ACE 中,⎪⎩⎪⎨⎧===)()()(已知已知已知CD AB OD OB CO AO∴△ABD ≌△ACE (SSS )2. 已知△ABD ≌△ACE ,AD=3cm ,BD=1cm ,BC=6cm ,求△ADE 的周长. 解:∵△ABD ≌△ACE∴AE=AD=3cm ,CE=BD=1cm 又∵BC=6cm ∴DE=4cm ∴ADE C ∆=10cm3. 已知△ABC ≌△DBC ,如果∠ABC=72°,∠ACB=45° (1)求∠D 的度数. (2)求∠ABD 的度数. 解:∠A=180°-72°-45°=63°∵△ABC ≌△DBC∴∠D=∠A=63°(全等三角形的对应角相等) 同理:∠DBC=∠ACB=45° ∴∠ABD=72°-45°=27°4. 在水平桌面上放置了一块三角形木块,∠A=30°,∠B=90°,AC=2cm ,经过AECBDBEDBDCA运动后△ABC 到A B C '''∆的位置. (1)求ACB '∆的度数.(2)点A 的运动路线是什么图形?求出它的长度. 解:(1)60°(2)运动路线是圆弧:ππ342231=⋅⋅=l5. 已知AD=AE ,∠ADB=∠AEC ,BE=DC (1)试说明:△ABE ≌△ACD. (2)AB 与AC 相等吗?为什么? 证明: 在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=DC BE AEC ADB AEAD∴△ABE ≌△ACD (SAS) ∴AB=AC(全等三角形的对应边相等)6. 已知AC ∥BE 且AC=BE ,点B 是AD 的中点,试说明△ABC ≌△BDF. 证明:∵AC ∥BE ∴∠A=∠EBD ∵AC=BE ,AB=BD ∴△ABC ≌△BDF (SAS )7. 已知AD=AE ,∠ADC=∠AEBCBDA (1)△ADC 和△AEB 全等吗?为什么? (2)BD 与CE 相等吗?为什么? 解:(1)△ADC ≌△AEB 全等, 证明略(ASA ) (2)∵△ADC ≌△AEB ∴AB=AC∴AB -AD=AC -AE即 BD=CE精解名题例1 △ABC ≌△DEF ,∠A=30°,∠B=50°,BF=2,求∠DFE 的度数与EC 的长.解:∵△ABC ≌△DEF∴∠DEF=∠ACB=180°-30°-50°=100° EC=BF=2例2 P 为∠AOB 的平分线OC 上任意一点,PE ⊥OA 于E ,PF ⊥OB 于F ,求证:OP 是EF 的垂直平分线. 证明:易证 △OEP ≌△OFP (AAS ) ∴OE=OF∴△OME ≌△OMF ∴EM=FM ,∠OME=90° ∴OP 是EF 的垂直平分线例3 在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,求证:BC=AC+AD. 证明:在BC 上截取EC=ACFBO∵CD 是∠ACB 的平分线 ∴∠DCB=∠DCA易证△DEC ≌△ACD (SAS ) ∴∠A=∠DEC=2∠B ,AD=DE ∴∠BDE=∠B ∴BE=DE=AD ∴BC=AC+AD例4 △ABC 是边长为1的等边三角形,△BDC 是顶角为∠BDC=120°的等腰三角形,以D 为顶点作一个60°,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形面一个△AMN ,求△AMN 的周长. 解:延长NC 到L ,使CL=BM ,连接DL先证BDM DCL ≅V V (SAS ) DMN DLN ≅V V (SAS ) ∴MN NL NC CL NC BM ==+=+ ∴AMN C AM AN MN =++V AM BM AN NC =+++= 2巩固练习1. 如图,△ABC ≌△ DEF ,这两个三角形的对应边是 AB 与 AC , BC 与 DE , CA 与 FE .ACDBA(1题图)2. △ABC≌△DEF,那么∠A=∠D3. △ABC以点B为旋转中心,A旋转到E,CDA B D CB(3题图) (4题图)4. AD,BE,CF是△ABC的高,沿AD翻折,点F与点E,点B与点C重合,那么图中全等的三角形有( D )A. 3对B. 5对C. 6对D. 7对5. 给定一个三角形的六个元素中的下列条件画三角形,所画的三角形的大小形状可能不唯一确定的是( D )A. 两角及夹边B. 两角及其中一个角的对边C. 两边及夹角D. 两边及其中一条边的对角6. 下列判断错误的是( A )A. 全等三角形的所有边都相等B. 全等形的周长、面积一定对应相等C. 已知三角形的两条边及其中一条边的对角,所画的三角形不一定是唯一的D.确定一个三角形至少要有一个元素是边7. 下列判断中错误的是( C )A. 成轴对称的两个图形全等B. 成中心对称的两个图形全等C.两个正方形一定是全等形 D. 运动后能重合的两个三角形全等8. 已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,EEBAED CB求∠DFB 和∠DGB 的度数. 解:∠DFB =90°,∠DGB =65°9. 已知:△ABD ≌△ACE.求证:∠EBO ≌∠DCO. 证明:∵△ABD ≌△ACE ∴∠D=∠E ,DC=BE ∵∠DOC=∠BOE ∴∠EBO ≌∠DCO (AAS )10. 已知BE=CD ,∠ADE=∠AED ,∠B=∠C 解:∵BE=CD∴BD=EC ∵∠ADE=∠AED ∴∠ADB=∠AEC 又∵∠B=∠C∴△ABD ≌△ACE (ASA )自我测试1. 如图1,已知△ABC ≌ △CDA ,则对应边是 AB 和CD ,BC 和DA , AC 和CA , 对应角是 ∠ABC 和∠CDA ,∠BCA 和∠DAC , ∠BAC 和∠DCA .DC图2 图32. 已知ABC∆≌'''CBA∆,A与'A,B与'B是对应顶点,ABC∆的周长为10cm,AB =3cm,BC =4cm.则''BA= 3 cm,''CB= 4cm,''CA= 3 cm.3. 已知ABC∆≌DEF∆,A与D,B与E分别是对应顶点,︒=∠52A,︒=∠67B,BC =15cm,则F∠= 61°,FE = 15 cm.4. 填空题:(1)如图2,已知AC =DB,要使ABC∆≌DCB∆,需增加一个条件是AB=CD等. (2)如图3,已知ABC∆中,090=∠C,AM平分CAB∠,CM =20cm那么M到AB的距离是20cm.(3)如图4,AB =EB,∠1=∠2,∠ADE =120°,AE、BD相交于F,则∠3的度数为30°.(4)如图5,已知:∠1 =∠2,∠3 =∠4,要证BD =CD,需先证△AEB ≌△AEC,根据是ASA ,再证△BDE ≌△BCE ,根据是SAS .(5)如图6,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,BC =AE.若AB = 5,则AD = 5 .5. 如图,D在AB上,E在AC上,AB=AC,B=C∠∠,求证:AD=AE.证明:先证△AEB ≌△ADC(ASA)∴AD=AE(全等三角形的对应边相等)图1E图5 图6图4AACDFEAB6. 如图,DF=AE ,AE ⊥BC ,DF ⊥BC ,CE=BF.求证:∠A=∠D. 证明:先证△CDF ≌△BAE (SAS)∴∠A=∠D(全等三角形的对应角相等)7. 如图,已知:在梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F. 求证:△ABE ≌△FCE. 证明:∵AB//CD∴∠FCE=∠B ,∠F=∠EAB 又E 是BC 的中点 ∴CE=BE∴△ABE ≌△FCE (AAS)8. 求证:△ABE ≌△FCE 如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,求证:BE=CD. 证明:∵BE ⊥CE ,AD ⊥CE ∴∠E=∠CDA=90°EFDCBA∴∠BCE+∠EBC=90°∵∠ACB=90°∴∠BCE+∠ACD=90°∴∠EBC=∠ACD∴△CBE≌△ACD(AAS)∴BE=CD(全等三角形的对应边相等)9. 已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上.求证:(1)△ACD≌△BCE (2)CF=CG (3)△FCG是等边三角形证明:(1)△ACD≌△BCE (SAS)(2)∵△ACD≌△BCE∴∠ADC=∠BEC∴△CDG≌△CEF(ASA)∴CF=CG(3)∵CF=CG,∠ACE=60°∴△FCG是等边三角形G F。

北师大数学七年级下册第三章-全等三角形

北师大数学七年级下册第三章-全等三角形

第02讲_全等三角形知识图谱全等三角形知识精讲一.全等的概念与性质三点剖析一.考点:全等的概念,全等三角形的性质二.重难点:全等三角形的性质三.易错点:利用全等的性质时容易忽略对应关系,导致找错对应边或对应角.全等图形例题1、 下列图形中,与右图全等的是( )全等图形(1)能够完全重合的两个图形就是全等图形(2)平移、旋转、对称前后的图形是一组全等图形四边形四边形全等多边形(1)相互重合的顶点为对应点,相互重合的边为对应边,相互重合的 角为对应角 (2)对应边、对应角分别相等全等三角形的性质 (1)对应边相等 ( 2)对应角相等(3)对应边上的高相等 (4)周长、面积相等易错点:1.利用全等的性质时注意不要找错对应边或对应角A B C DA.A选项B.B选项C.C选项D.D选项【答案】A【解析】观察图形上实心点与空心点的位置得出全等图形即可,原图与选项A全等.例题2、下列说法中,错误的是()A.全等三角形的周长相等B.全等三角形的对应角相等C.全等三角形的面积相等D.面积相等的两个三角形全等【答案】D【解析】暂无解析随练1、用两个全等的直角三角形(非等腰直角三角形)拼成凸四边形,拼法共有()A.3种B.4种C.5种D.6种【答案】B【解析】拿两个“90︒,60︒,30︒”的三角板试一试即可得.随练2、如图,ADE BDE≌,若ADC∆∆∆的周长为12,AC的长为5,则CB的长为()A.8B.7C.6D.5【答案】B【解析】解:∵ADE BDE∆≅∆,∴DA DB=,AC=,∴7BC=,故选B.=++=++=+=,又5ADC∆的周长12AC CD AD AC CD BD AC BC随练3、下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=___________.【答案】27cm【解析】因为AB=3cm,所以CD=2AB=6cm,所以AF=3AB+3CD=3×3+3×6=27(cm).全等三角形的性质例题1、下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】全等三角形的对应边相等,对应角相等.同时,全等三角形对应边上的高、对应边上的中线,对应角的角平分线也分别相等,一定要注意“对应”二字.例题2、如图,在△ABC中,AB=AC,E、D分别为AB、AC边上的中点,连接BD、CE交于O,此图中全等三角形的对数为()对.A.4B.3C.2D.1【答案】B【解析】∵AB=AC,∴∠EBC=∠DCB,∵AE=BE,AD=DC,∴BE=DC,∵BC=CB,∴△EBC≌△DCB,∴∠ECB=∠DBC,∴∠EBO=∠DCO,∵BE=CD,∴∠BOE=∠COD,∴△BOE≌△COD,∵∠A=∠A,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE,共有3对全等三角形.例题3、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C【答案】A【解析】暂无解析例题4、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB =∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.例题5、 如图,△ABC 一个等腰三角形,其中AB =A C .分别以AB ,AC 为腰向外作等腰三角形△ADB 和△ACE ,且∠BAD =∠CAE =84°,连接CD 和BE ,相交于点F ,连接AF ,则∠AFD 的度数为________.【答案】 48°【解析】 暂无解析随练1、 下列四个命题中,真命题的是( ) A.相等的圆心角所对的弧相等 B.同旁内角互补 C.平行四边形是轴对称图形 D.全等三角形对应边上的高相等 【答案】 D【解析】 A 、在同圆或等圆中,相等的圆心角所对的弧相等; B 、两直线平行,同旁内角互补; C 、平行四边形是中心对称图形; D 、全等三角形对应边上的高相等 随练2、 已知∆≅∆ABC DEF ,DEF ∆的周长为32cm ,9cm 12cm DE EF ==,,则AB =________,BC =________,AC =________【答案】 9cm ;12cm ;11cm【解析】 由于∆≅∆ABC DEF ,所以AB 与DE 、AC 与DF 、BC 与EF 分别是对应边,即AB DE =,AC DF =,BC EF =.又DEF ∆的周长为32cm ,9cm 12cm DE EF ==,,则()3291211cm DF =--=.因此9cm AB =,12cm BC =,11cm AC =随练3、 如图ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =,求DFE ∠的度数与EC 的长.【答案】 =100DFE ∠︒,2EC =.【解析】 在ABC ∆中,180ACB A B ∠=︒-∠-∠.又∵30A ∠=︒,50B ∠=︒ ∴1803050100ACB ∠=︒-︒-︒=︒∵ABC DEF ∆≅∆,∴ACB DFE ∠=∠,∴=100DFE ∠︒, ∵BC EF =,∴BC CF EF CF -=-, ∴2EC =全等三角形的判定知识精讲一.全等三角形的判定方法:FE DCBA二.思路点拨边边角(SSA )不能证明两个三角形全等常见全等图形共线三等角模型4.“AAS ”与“ASA ”易混,要注意区分“边”“角”的位置关系5. 错用“AAA ”,“SSA ”证三角形全等.三点剖析一.考点:全等三角形的判定二.重难点:全等三角形的判定三.易错点:1.边边角(SSA )在一般情况下是不能证明两个三角形全等的; 2.斜边、直角边定理(HL)必须是在直角三角形中才能使用;3.在使用判定定理证明两个三角形全等时要注意条件的顺序必须和判定定理要求的一样.SSS例题1、 如图,AB AC =,AD AE =,BE CD =,求证:ABD ACE ∆∆≌.【答案】 见解析【解析】 由SSS 可得ABD ACE ∆∆≌.随练1、 已知:如图,AC=EC ,E 、A 、D 在同一条直线上,∠1=∠2=∠3.试说明:△ABC ≌△EDC .A BCABCDDABCE90°CEDA BD E CBA【答案】 见解析【解析】 证明:∵∠1=∠2,∴∠1+∠ACD=∠2+∠ACD ,∴∠ACB=∠ECD , ∵∠1=∠3,∠4=∠5,∴∠B=∠D , 在△ABC 和△CDE 中,,∴△ABC ≌△EDC (AAS ).SAS例题1、 已知:如图,E 为BC 上一点,AC ∥BD ,AC BE =,BC BD =. 求证:AB DE =【答案】 见解析【解析】 证明:∵AC ∥BD ,∴C CBD ∠=∠ 在△ACB 和△EBD 中: AC BE C CBD BC BD =⎧⎪∠=∠⎨⎪=⎩,∴△CBM ≌△DBM (SAS ),∴AB DE =. 例题2、 已知AB =AC ,AD =AE ,∠BAC =∠DAE ,直线BD 、CE 交于点G ,(1)如图1,点D 在AC 上,求证:∠BGC =∠BAC ; (2)如图2,当点D 不在AC 上,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
D
O
A
B
二.如图,BD是长方形ABCD的一条对角线。
(1) △ABD与△CDB全等吗?你是怎样知道的? (2) 如果你认为△ABD与△CDB全等,请用符号
表示,并说出它们的对应边和对应角。
D
C
A
B
归纳小结,布 置作业
通过这节课的学习,你有 什么收获?
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
明理由。
A
解: ∵AD平分∠BAC
12
D B(C)
∴ ∠1= ∠2, 因此将图形沿AD对折时,射线AC与射线AB重合 ∵AB=AC
∴点C与点B重合,也就是△ABD与△ACD重合
C
∴ △ABD ≌ △ACD
∴BD=CD (全等三角形的对应边相等)
∠B=∠C (全等三角形的对应角相等)
变式练习,扩展新知
一、选择题
△ABC≌ △BAD,A和B、C和D是对应点,如果 AB=5cm,BD=4cm,AD=6cm,那么BC的长是
(A )
(A)6cm (B)5cm (C)4cm ( D)无法确定 在上题中, ∠CAB的对应角是( B ) (A)∠DAB (B) ∠ DBA (C) ∠ DBC (D) ∠ CAD
全等三角形的性质
全等三角形的对应边相等,对应角相等。
∵△ABC≌ △DFE
∴ AB=DF, BC=FE, AC=DE
(全等三角形的对应边相等)
∠ A= ∠ D, ∠ B= ∠ F ,
∠ C= ∠ E


全等三角形的对应角相等
应用新知, 体验成功
例 如图, AD平分∠BAC,AB=AC,△ABD与 △ACD全等吗?BD与CD相等吗?∠B与∠C呢?请说
(4) 两个全等三角形的面积相等 ( √ )
(5) 半径相等的两个圆是全等图形( √ )
你还能说出生活中的其 它一些全等图形吗?
它们会全 等吗?
试一试,摆一摆
任意剪两个全等的三角形,摆一摆它 们的位置,使其符合下列图形
C
B
C
BD
C
O
O
A
A
D
D
A
B
A
D
B如果△ABC与△CDEFE会互相重合, F 顶点A与顶点_D__重合,顶点B与顶点_E__ 重合,顶点C与顶点_F__重合。
AB边与__D_E__ 边重合, BC边与 __E_F__ 边重合,AC边与_D__F__边重合。
∠A与_∠_D___重合,∠B与 _∠_E___重合, ∠C与 ___重∠合F 。
A
D
B
F
C
E
两个全等三角形重合时,互相重合 的顶点叫对应顶点,互相重合的 边叫做对应边,互相重合的角叫 做对应角。
“全等”用符号“≌ ” 表示
比如△ABC≌△DFE
读做“三角形ABC全等于三角形DEF”
记两个全等三角形时,通常把表示对应顶点的 字母写在对应的位置上。
试一试,摆一摆
用符号来表示两个全等三角形,并指出它们 的对应顶点、对应边、对应角
O
O
A
D
A
D
全等三角形对应角所对的边是对应边, 对应边所对的角是对应角。
两个全等三角形的 位置变化了,对应边、 对应角的大小有变化吗? 由此你能得到什么结论?
七年级数学全等三角形
下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)能够重合的图形叫做(全4)等图形 能够重合的两个三角形叫做全等三角形
小试身手
判断下列说法是否正确,并说明理由:
(1) 边长相等的正方形都是全等图形; (√ ) (2) 同一面中华人民共和国国旗上,4个小
五角星都是全等图形. (√) (3) 面积相等的两个三角形是全等三角形(错误)
相关文档
最新文档