材料力学2013典型例题综述
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)AD杆的最大切应力 D a
Me C a
2Me B 2a 3Me
3Me A
max
Tmax 69.7MPa Wt
(2)扭转角 CA 2Me
CA BA CB
3 M e 2a M e a 180 ( ) 2.33 GI p GI p π
Me
+
例题6 图示的简支梁,在全梁上受集度为q的均布荷载用.试作
此梁的剪力图和弯矩图.
解: (1) 求支反力
A
q
B
x
FRA FRB
ql 2
FRA
Fra Baidu bibliotek
l
FRB
(2)列剪力方程和弯矩方程.
ql FS ( x ) FRA qx qx (0 x l ) 2 x qlx qx 2 M ( x ) FRA x qx (0 x l ) 2 2 2
矩为Fa;
A
B
C a
2a
(2)求惯性矩,抗弯截面系数
( 3cm )( 2cm )3 (1.4cm )( 2cm )3 Iz 1.07cm 4 12 12 Iz 1.07cm 4 Wz 1.07cm 3 ymax 1cm Fa Wz [σ ]
(3)求许可载荷
+
M max Wz [σ ]
Ⅲ Ⅱ Ⅰ
F3
D Ⅲ l3 C l2 Ⅱ B
F2
Ⅰ l1 A
F1
Ⅲ
Ⅱ
Ⅰ
FRD
C
F3
D
Ⅲ l3
F2
Ⅱ
l2
F1
Ⅰ
A
B
l1
解:求支座反力 FRD = -50kN (1)Ⅰ-Ⅰ、Ⅱ-Ⅱ、III-III 截面的轴力并作轴力图
FN1
F1
F1 FN1 0 FN1 20kN ( )
Ⅲ
Ⅱ
Ⅰ
FRD
C
FN 3 l3 -4 1.58 10 m uB ΔlCD Δl BC -0.3mm EA3
-4
Δl AD Δl AB Δl BC ΔlCD -0.47 10 mm
例题5 图示等直杆,已知直径d=40mm,a=400mm,材料的剪切弹性
模量G=80GPa,DB=1°. 试求:
AB段
FN1 =20kN (+) FN2 =-15kN ( - ) FN3 =- 50kN ( - )
max = 176.8MPa
发生在AB段.
Ⅲ
Ⅱ
Ⅰ
FRD
C
F3
D Ⅲ l3 Ⅱ l2 B
F2
Ⅰ l1
F1
A
(3) B截面的位移及AD杆的变形
Δl AB
ΔlCD
FN1l1 FN 2 l2 -4 -4 2.53 10 m Δl BC 1.42 10 m EA1 EA2
FN3 =- 50kN (-)
Ⅲ
Ⅱ
Ⅰ
FRD
C
F3
D Ⅲ l3 Ⅱ l2 B
F2
Ⅰ l1 A
F1
(2) 杆的最大正应力max
FN1 AB 176.8MPa ( ) A1 F BC段 BC N 2 74.6MPa ( ) A2 FN 3 DC段 DC 110.5MPa ( ) A3
A
B
x
面上的弯矩值为最大
FRA
ql/2
l
FRB
ql M max 8
2
+
ql/2
但此截面上 FS= 0 两支座内侧横截面上 剪力绝对值为最大
+
l/2
ql 8
2
FS max
ql 2
例题1 螺栓压板夹紧装置如图所示.已知板长3a=150mm,压板 材料的弯曲许用应力[]=140MP.试计算压板传给工件的最大允 F F F R B 许压紧力F. RA 解:(1)作出弯矩图的最大弯
0
x
q
wmax B
梁的转角方程和挠曲线方程 A 分别为
A
W z [σ ] F 3kN a
φ14 φ30
20
Fa
例题2 图示一抗弯刚度为 EI 的简支梁,在全梁上受集度为q 的
均布荷载作用.试求此梁的挠曲线方程和转角方程,并确定其 max 和 wmax
q A l B
q
解:由对称性可知,梁的两 个支反力为
A x
B
FRA FRB
ql 2
FRA
l
FRB
此梁的弯矩方程及挠曲线微分方程分别为
ql q 2 M ( x) x x 2 2 ql q 2 EIw x x 2 2
ql 2 q 3 EIw x x C 4 6
ql 3 q 4 EIw x x Cx D 12 24
边界条件x=0 和 x=l时, w
F3
D Ⅲ l3 Ⅱ l2 B
F2
Ⅰ l1 A
F1
FRD
FN3 FN2
F2
F1
FN 3 FRD 0 FN 3 50kN ( )
F1 F2 FN 2 0 FN 2 15kN ( )
Ⅲ
Ⅱ
Ⅰ
FRD
C
F3
D Ⅲ l3 Ⅱ l2 B
F2
Ⅰ l1 A
F1
20
+
50
15
FN1 =20kN (+) FN2 =-15kN (-)
(1) AD杆的最大切应力; (2)扭转角 CA 解:画扭矩图 Me D a C a 2Me B 2a 3Me Me +
3Me
A
Tmax= 3Me 计算外力偶矩Me
DB= CB+ DC=1°
M ea 2 M ea 180 ( ) 1 GI p GI p π
2Me
M e 292kN m
例题5 图示为一变截面圆杆ABCD.已知F1=20kN,F2=35kN
F3=35kN. l1=l3=300mm,l2=400mm. d1=12mm,d2=16mm, d3=24mm. 试求: (1) Ⅰ-Ⅰ、Ⅱ-Ⅱ、III-III截面的轴力并作轴力图 (2) 杆的最大正应力max
(3) B截面的位移及AD杆的变形
ql FS ( x ) qx 2
剪力图为一倾斜直线
q
(0 x l )
A
x
B
l
FRA
FRB
ql x=0 处 , FS 2 x= l 处 , F ql S 2
绘出剪力图
ql/2
+
ql/2
x qlx qx 2 M ( x ) FRA x qx 2 2 2
弯矩图为一条二次抛物线
(0 x l )
q
B
x
x 0, M 0 x l, M 0
A
FRA
l
FRB
dM ( x ) ql qx 0 令 dx 2
l 得驻点 x 2
弯矩的极值 M max M 绘出弯矩图
l x 2
+
ql 8
2
ql 8
2
l/2
q
由图可见,此梁在跨中截
Me C a
2Me B 2a 3Me
3Me A
max
Tmax 69.7MPa Wt
(2)扭转角 CA 2Me
CA BA CB
3 M e 2a M e a 180 ( ) 2.33 GI p GI p π
Me
+
例题6 图示的简支梁,在全梁上受集度为q的均布荷载用.试作
此梁的剪力图和弯矩图.
解: (1) 求支反力
A
q
B
x
FRA FRB
ql 2
FRA
Fra Baidu bibliotek
l
FRB
(2)列剪力方程和弯矩方程.
ql FS ( x ) FRA qx qx (0 x l ) 2 x qlx qx 2 M ( x ) FRA x qx (0 x l ) 2 2 2
矩为Fa;
A
B
C a
2a
(2)求惯性矩,抗弯截面系数
( 3cm )( 2cm )3 (1.4cm )( 2cm )3 Iz 1.07cm 4 12 12 Iz 1.07cm 4 Wz 1.07cm 3 ymax 1cm Fa Wz [σ ]
(3)求许可载荷
+
M max Wz [σ ]
Ⅲ Ⅱ Ⅰ
F3
D Ⅲ l3 C l2 Ⅱ B
F2
Ⅰ l1 A
F1
Ⅲ
Ⅱ
Ⅰ
FRD
C
F3
D
Ⅲ l3
F2
Ⅱ
l2
F1
Ⅰ
A
B
l1
解:求支座反力 FRD = -50kN (1)Ⅰ-Ⅰ、Ⅱ-Ⅱ、III-III 截面的轴力并作轴力图
FN1
F1
F1 FN1 0 FN1 20kN ( )
Ⅲ
Ⅱ
Ⅰ
FRD
C
FN 3 l3 -4 1.58 10 m uB ΔlCD Δl BC -0.3mm EA3
-4
Δl AD Δl AB Δl BC ΔlCD -0.47 10 mm
例题5 图示等直杆,已知直径d=40mm,a=400mm,材料的剪切弹性
模量G=80GPa,DB=1°. 试求:
AB段
FN1 =20kN (+) FN2 =-15kN ( - ) FN3 =- 50kN ( - )
max = 176.8MPa
发生在AB段.
Ⅲ
Ⅱ
Ⅰ
FRD
C
F3
D Ⅲ l3 Ⅱ l2 B
F2
Ⅰ l1
F1
A
(3) B截面的位移及AD杆的变形
Δl AB
ΔlCD
FN1l1 FN 2 l2 -4 -4 2.53 10 m Δl BC 1.42 10 m EA1 EA2
FN3 =- 50kN (-)
Ⅲ
Ⅱ
Ⅰ
FRD
C
F3
D Ⅲ l3 Ⅱ l2 B
F2
Ⅰ l1 A
F1
(2) 杆的最大正应力max
FN1 AB 176.8MPa ( ) A1 F BC段 BC N 2 74.6MPa ( ) A2 FN 3 DC段 DC 110.5MPa ( ) A3
A
B
x
面上的弯矩值为最大
FRA
ql/2
l
FRB
ql M max 8
2
+
ql/2
但此截面上 FS= 0 两支座内侧横截面上 剪力绝对值为最大
+
l/2
ql 8
2
FS max
ql 2
例题1 螺栓压板夹紧装置如图所示.已知板长3a=150mm,压板 材料的弯曲许用应力[]=140MP.试计算压板传给工件的最大允 F F F R B 许压紧力F. RA 解:(1)作出弯矩图的最大弯
0
x
q
wmax B
梁的转角方程和挠曲线方程 A 分别为
A
W z [σ ] F 3kN a
φ14 φ30
20
Fa
例题2 图示一抗弯刚度为 EI 的简支梁,在全梁上受集度为q 的
均布荷载作用.试求此梁的挠曲线方程和转角方程,并确定其 max 和 wmax
q A l B
q
解:由对称性可知,梁的两 个支反力为
A x
B
FRA FRB
ql 2
FRA
l
FRB
此梁的弯矩方程及挠曲线微分方程分别为
ql q 2 M ( x) x x 2 2 ql q 2 EIw x x 2 2
ql 2 q 3 EIw x x C 4 6
ql 3 q 4 EIw x x Cx D 12 24
边界条件x=0 和 x=l时, w
F3
D Ⅲ l3 Ⅱ l2 B
F2
Ⅰ l1 A
F1
FRD
FN3 FN2
F2
F1
FN 3 FRD 0 FN 3 50kN ( )
F1 F2 FN 2 0 FN 2 15kN ( )
Ⅲ
Ⅱ
Ⅰ
FRD
C
F3
D Ⅲ l3 Ⅱ l2 B
F2
Ⅰ l1 A
F1
20
+
50
15
FN1 =20kN (+) FN2 =-15kN (-)
(1) AD杆的最大切应力; (2)扭转角 CA 解:画扭矩图 Me D a C a 2Me B 2a 3Me Me +
3Me
A
Tmax= 3Me 计算外力偶矩Me
DB= CB+ DC=1°
M ea 2 M ea 180 ( ) 1 GI p GI p π
2Me
M e 292kN m
例题5 图示为一变截面圆杆ABCD.已知F1=20kN,F2=35kN
F3=35kN. l1=l3=300mm,l2=400mm. d1=12mm,d2=16mm, d3=24mm. 试求: (1) Ⅰ-Ⅰ、Ⅱ-Ⅱ、III-III截面的轴力并作轴力图 (2) 杆的最大正应力max
(3) B截面的位移及AD杆的变形
ql FS ( x ) qx 2
剪力图为一倾斜直线
q
(0 x l )
A
x
B
l
FRA
FRB
ql x=0 处 , FS 2 x= l 处 , F ql S 2
绘出剪力图
ql/2
+
ql/2
x qlx qx 2 M ( x ) FRA x qx 2 2 2
弯矩图为一条二次抛物线
(0 x l )
q
B
x
x 0, M 0 x l, M 0
A
FRA
l
FRB
dM ( x ) ql qx 0 令 dx 2
l 得驻点 x 2
弯矩的极值 M max M 绘出弯矩图
l x 2
+
ql 8
2
ql 8
2
l/2
q
由图可见,此梁在跨中截