03章 热力学第二定律

合集下载

物理化学03章_热力学第二定律

物理化学03章_热力学第二定律
Helmholtz自由能 Gibbs自由能
为什么要定义新函数?
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。
热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,系统必须是隔离系统,也就是说必须同 时考虑系统和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用系统自身状 态函数的变化,来判断自发变化的方向和限度。
§3.8 熵和能量退降
热力学第一定律表明:一个实际过程发生 后,能量总值保持不变。
热力学第二定律表明:在一个不可逆过程 中,系统的熵值增加。
能量总值不变,但由于系统的熵值增加, 说明系统中一部分能量丧失了作功的能力,这 就是能量“退降”。
能量 “退降”的程度,与熵的增加成正比
有三个热源 TA > TB > TC
从高“质量”的能贬值为低“质量”的能 是自发过程。
§3.9 热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热与功转换的不可逆性 热是分子混乱运动的一种表现,而功是分子 有序运动的结果。 功转变成热是从规则运动转化为不规则运动, 混乱度增加,是自发的过程; 而要将无序运动的热转化为有序运动的功就 不可能自动发生。
热力学第二定律的本质 气体混合过程的不可逆性 将N2和O2放在一盒内隔板的两边,抽去隔板, N2和O2自动混合,直至平衡。 这是混乱度增加的过程,也是熵增加的过程, 是自发的过程,其逆过程决不会自动发生。
热力学第二定律的本质
热传导过程的不可逆性
处于高温时的系统,分布在高能级上的分子 数较集中;
而处于低温时的系统,分子较多地集中在低 能级上。
这与熵的变化方向相同。

03章 热力学第二定律

03章 热力学第二定律
第三章 第三章 热力学第二定律 热力学第二定律
Chapter Chapter3 3 The TheSecond SecondLaw Lawof ofThermodynamics Thermodynamics ¾ 不违背第一定律的事情是否一定能成功呢? 例1. H2(g) + 1/2O2(g) H2O(l) ∆rHθm(298K) = -286 kJ.mol-1 加热,不能使之反向进行。 例2. 25 °C及pθ下,H+ + OHH2O(l)极易进行, 但最终[H+][OH-] = 10-14 mol2.dm-6,即 反应不进行到底。 ¾ 第二定律的任务:方向,限度
方法2
1mol H2O(l) 298.2K,pθ Ⅰ
等T, r 等T, p, ir ∆S, ∆H
H2O(g) 298.2K,pθ Ⅲ 等 T, r
H2O(l) 298.2K,3160Pa

等T, p, r
H2O(g) 298.2K,3160Pa
¾ 具有普遍意义的过程:热功转换的不等价性
功不可能无代价,全部 热
① W Q 不等价,是长期实践的结果。
无代价,全部
② 不是 Q W 不可能,而是热全部变 功必须 付出代价(系统和环境),若不付 代价只能部分变功
二、自发过程的共同特征 (General character of spontaneous process) (1) 自发过程单向地朝着平衡。 (2) 自发过程都有作功本领。 (3) 自发过程都是不可逆的。
= r Clausius Inequality (1) 意义:在不可逆过程中系统的熵变大于过程 的热温商,在可逆过程中系统的熵变等于过 程的热温商。即系统中不可能发生熵变小于 热温商的过程。 是一切非敞开系统的普遍规律。 (2) T是环境温度:当使用其中的“=”时,可认为T 是系统温度。 (3) 与“第二类永动机不可能”等价。

03热力学第二定律

03热力学第二定律

二、热力学第二定律的表述
克劳修斯的说法
不可能把热量从低温物体传向高温物体 而不引起其他变化。
开尔文的说法
不可能从单一热源取热使之完全变为功 而不引起其他变化。
这两种说法的关键是“不引起其他变化”。 制冷中,引起变化——外界消耗功;定温膨胀 引起系统状态变化——气体压力降低。 第二类永动机是造不成的。不违背热力学 第一定律却违背热力学第二定律的“第二类永 动机”:以环境为单一热源,使机器从中吸热 对外作功;由于环境中能量是无穷无尽的,因 而这样的机器就可以永远工作下去。
结论:
(1)两恒温热源间一切可逆循环的热效率都相 等,都等于相同温限间卡诺循环的热效率。它们的 热效率仅取决于热源和冷源的温度。而与工质无关。 提高热源温度和降低冷源温度是提高可逆循环热效 率的根本途径和方法。 (2)相同高、低温热源间的不可逆循环的热效 率恒小于相应可逆循环的热效率。尽量减少循环中 的不可逆因素是提高循环热效率的重要方法。
下面采用反证法证明定理一:
QHA 设有可逆热机和,分别从高温热源吸取热量 和 HB ,对外作功WA 和WB ,向低温热源放出热量 Q Q QLB 和 LA ,则它们的热效率分别为
WA QLA A 1 QHA QHA
WB QLB B 1 QHB QHB
若 A B,假定 A B。由于A和B均为 可逆热机,现使B机逆转。由可逆过程的性质知 , B机逆转的结果是工质从低温热源吸收热量 QHB , 外界输入功 WB ,向高温热源放出热量 QLB 成为一 QLB 台制冷机。为证明方便起见,假定 QLA 且制冷机所需功由热机A提供,从而构成一台联合 运转的机器,如图所示。
平均吸热(放热)温度:工质在变温吸热(放 热)过程中温度变化的积分平均值。 g QH e TdS TH S S

第03章 热力学第二定律

第03章 热力学第二定律

第3章 热力学第二定律练 习1、发过程一定是不可逆的。

而不可逆过程一定是自发的。

上述说法都对吗为什么 答案:(第一句对,第二句错,因为不可逆过程可以是非自发的,如自发过程的逆过程。

)2、什么是可逆过程自然界是否存在真正意义上的可逆过程有人说,在昼夜温差较大的我国北方冬季,白天缸里的冰融化成水,而夜里同样缸里的水又凝固成冰。

因此,这是一个可逆过程。

你认为这种说法对吗为什么 答案:(条件不同了)3、若有人想制造一种使用于轮船上的机器,它只是从海水中吸热而全部转变为功。

你认为这种机器能造成吗为什么这种设想违反热力学第一定律吗答案:(这相当于第二类永动机器,所以不能造成,但它不违反热力学第一定律)4、一工作于两个固定温度热源间的可逆热机,当其用理想气体作工作介质时热机效率为 η1,而用实际气体作工作介质时热机效率为 η2,则A .η1>η2B .η1<η2 C.η1=η2 D.η1≥η2 答案:(C )5、同样始终态的可逆和不可逆过程,热温商值是否相等体系熵变 ΔS 体 又如何 答案:(不同,但 ΔS 体 相同,因为 S 是状态函数,其改变量只与始、终态有关)6、下列说法对吗为什么(1)为了计算不可逆过程的熵变,可以在始末态之间设计一条可逆途径来计算。

但绝热过程例外。

(2)绝热可逆过程 ΔS =0,因此,熵达最大值。

(3)体系经历一循环过程后,ΔS =0 ,因此,该循环一定是可逆循环。

(4)过冷水凝结成冰是一自发过程,因此,ΔS >0 。

(5)孤立系统达平衡态的标态是熵不再增加。

答案:〔(1) 对,(2) 不对,只有孤立体系达平衡时,熵最大,(3)不对,对任何循环过程,ΔS=0 不是是否可逆,(4) 应是ΔS总>0,水→冰是放热,ΔS<0,ΔS>0,(5) 对〕7、1mol H2O(l)在、下向真空蒸发变成、的 H2O(g),试计算此过程的ΔS总,并判断过程的方向。

答案:(ΔS总=·K-1·mol-1>0)8、试证明两块重量相同、温度不同的同种铁片相接触时,热的传递是不可逆过程。

第三章 热力学第二定律

第三章 热力学第二定律
5
2、热功转换
热力学第二定律是人们在研究热机效率的基础上建立起 来的,所以早期的研究与热、功转换有关。
高温热源(T1) Q1 > 0 200J W<0 −50J Q2 < 0 −150J 低温热源(T2)
热机:通过 工质从高温热源 吸热、向低温热 原放热并对环境 作功的循环操作 的机器。
蒸汽热机工作原理:利用燃料煤燃烧产生的热,使水(介质)在高压锅炉内 变为高温、高压水蒸气,然后进入绝热的气缸膨胀从而对外作功,而膨胀 后的水蒸气进入冷凝器降温并凝结为水(向冷凝器散热过程),然后水又被 泵入高压锅炉循环使用。
由η = − W Q1 + Q2 T1 − T2 = = 可知最多能作功 : Q1 Q1 T1 T1 − T2 (500 − 300)K = −1kJ × = −0.4kJ W = −Q1 × T1 500K
由 -W = Q1 + Q2 可知向低温热源放热 Q2 =-W-Q1 = {-(-0.4)-1}kJ = -0.6kJ
熵的定义式 :
δ Qr dS = T

δ Qr = TdS
根据热力学第一定律当 W ′ = 0
dH − pdV − Vdp dU + pdV = dH − Vdp dU = δ Qr = dU + pdV dS = T dH − Vdp dS = T
27
PVT变化熵变计算出发点
Q1 Q1 T1
|Q1| |Q1|可 W 某可 W可 |Q2|=|Q2|可
T2热源
Q1 Q2 ≤ 0 不可逆 + 可逆 T1 T2 式中T1和T2 是热源温度,只有对可逆机才是 系统温度。
Q1 + Q2 T1 − T2 ≤ Q1 T1

物理化学课后答案热力学第二定律

物理化学课后答案热力学第二定律

第三章 热力学第二定律复习题1指出下列公式的适用范围; 1min ln BB BS Rnx ∆=-∑;212222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; 3dU TdS pdV =-; 4G Vdp ∆=⎰5,,S A G ∆∆∆作为判据时必须满足的条件;解 1封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力;2非等温过程中熵的变化过程,对一定量的理想气体由状态AP 1、V 1、T 1改变到状态AP 2、V 2、T 2时,可由两种可逆过程的加和而求得;3均相单组分或组成一定的多组分封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程;4非体积功为0,组成不变的均相封闭体系的等温过程; 5S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡;A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;2判断下列说法是否正确,并说明原因;1不可逆过程一定是自发的,而自发过程一定是不可逆的; 2凡熵增加过程都是自发过程; 3不可逆过程的熵永不减少;4系统达平衡时,熵值最大,Gibbs 自由能最小;5当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;6某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;7在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;8理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符; 9冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; 10p C 恒大于V C ;答1不正确,因为不可逆过程不一定是自发的例如 可逆压缩就不是自发过程,但自发过程一定是不可逆的;2不正确,因为熵增加过程不一定是自发过程,但自发过程都是熵增加的过程;所以必须在隔离体系中凡熵增加过程都是自发过程;3不正确,因为不可逆过程不一定是自发的,而自发过程的熵永不减少;所以必须在隔离体系中;不可逆过程的熵永不减少4不正确;绝热体系或隔离体系达平衡时熵最大,等温等压不作非体积功的条件下,体系达平衡时Gibbs 自由能最小;5不正确,因为只有当系统的U 和V 恒定非体积功为0时,S ∆<0和S ∆=0的过程不可能发生; 6不正确,根据熵增加原理,绝热不可逆过程的S ∆>0,而绝热可逆过程的S ∆=0,从同一始态出发经历一个绝热不可逆过程的熵值和经历一个绝热可逆过程的熵值永不相等,不可能达到同一终态;7正确,在绝热系统中,发生了一个不可逆过程,从状态1变到了状态2,S ∆>0,S 2>S 1,仍然在绝热系统中,从状态2出发,无论经历什么过程,体系的熵值有增无减,所以永远回不到原来状态了;8不正确,Kelvin 的说法是不可能从单一的热源取出热使之变为功而不留下其它变化;关键是不留下其它变化,理想气体的等温膨胀时热全部变成了功,,体积增大了,环境的体积缩小的,留下了变化,故原来的说法不违反Kelvin 的说法;9不正确,Clausius 的说法是不可能把热从低温热源传到高温热源而不引起其它变化;冷冻机可以从低温热源吸热放给高温热源时环境失去了功,得到了热引起了变化,故原来的说法不违反Clausius 的说法; 10不正确,211p V P T T VV V C C V T V P αακκ∂∂⎛⎫⎛⎫-===- ⎪ ⎪∂∂⎝⎭⎝⎭,,因为P V T ∂⎛⎫ ⎪∂⎝⎭>0,TV P ∂⎛⎫⎪∂⎝⎭<0,即α>0,κ>0,则p V C C ->0,p C 恒大于V C ;但有例外,如对277.15K 的水,PV T ∂⎛⎫⎪∂⎝⎭=0,此时p V C C =;3指出下列各过程中,,,,,,Q W U H S A ∆∆∆∆和G ∆等热力学函数的变量哪些为零,哪些绝对值相等1理想气体真空膨胀; 2理想气体等温可逆膨胀; 3理想气体绝热节流膨胀; 4实际气体绝热可逆膨胀; 5实际气体绝热节流膨胀;62()H g 和2()O g 在绝热钢瓶中发生反应生成水; 72()H g 和2()Cl g 在绝热钢瓶中发生反应生成()HCl g ; 822(,373,101)(,373,101)H O l k kPa H O g k kPa ;9在等温、等压、不作非膨胀功的条件下,下列反应达到平衡2233()()2()H g N g NH g +10绝热、恒压、不作非膨胀功的条件下,发生了一个化学反应; 解10Q W U H ==∆=∆=20R U H Q W G A ∆=∆==∆=∆,,,0S ∆= 30U H Q W ∆=∆=== 40Q S U Q W W =∆=∆=+=, 50V Q U H =∆=∆=60W A G Q =∆=∆== U H ∆=∆ 70W A G Q =∆=∆== U H ∆=∆ 800R G A W U ∆=∆=-∆=∆H =,,; 90G ∆= ;10p 0H Q ∆== U W ∆=4将不可逆过程设计为可逆过程; 1理想气体从压力为p 1向真空膨胀为p 2;2将两块温度分别为T 1,T 2的铁块T 1>T 2相接触,最后终态温度为T 3水真空蒸发为同温、同压的气,设水在该温度时的饱和蒸气压为p , 22(,303,100)(,303,100)H O l K kPa H O g K kPa →4理想气体从111,,p V T 经不可逆过程到达222,,p V T ,可设计几条可逆路线,画出示意图;答1设计等温可逆膨胀2在T 1和T 2之间设置无数个温差为dT 的热源,使铁块T 1和T 1-dT,T 1-2dT,…的无数热源接触,无限缓慢地达到终态温度T,使铁块T 2和T 2-dT,T 2-2dT,…的热源接触,无限缓慢地达到终态温度T;3可以设计两条可逆途径:一是等压可逆,另一条是等温可逆;H 2O (l,303K,P S ) H 2S )H 2O (l,,)H 2H 2O ()H 2逆降温4可设计下列四条途径,从111,,p V T 变化到222,,p V T ; a 等容可逆升压到状态A 后再等温可逆膨胀终态Ⅱ; b 等压可逆膨胀到状态B 后再等温可逆膨胀到终态Ⅱ; c 等温可逆膨胀到状态C 后再等压可逆膨胀到终态Ⅱ; d 等温可逆膨胀到状态D 后再等容可逆升压到终态Ⅱ;5判断下列恒温、恒压过程中,熵值的变化,是大于零,小于零还是等于零,为什么 1将食盐放入水中;2HClg 溶于水中生成盐酸溶液; 343()()()NH Cl s NH g HCl g →+; 42221()()()2H g Og H O l +→;5333221(,)1(,)2(,)dm N g dm Ar g dm N Ar g +→+; 6333221(,)1(,)1(,)dm N g dm Ar g dm N Ar g +→+; 73332221(,)1(,)2(,)dm N g dm N g dm N g +→; 83332221(,)1(,)1(,)dm N g dm N g dm N g +→;解1S ∆<0,因为将食盐放入水中为放热过程,Q <0,QS Tδ∆=,所以S ∆<0;2S ∆<0,同理,HClg 溶于水中Q <0,S ∆<0;3S ∆>0,因为该过程为吸热反应,Q >0,S ∆>0;或因为混乱度增加; 4S ∆<0,因为该过程为放热反应,Q <0,S ∆<0;或因为混乱度减小; 5S ∆>0,根据min ln 2ln 2BB BS Rnx R ∆=-=∑>0,或因为混乱度增加;6S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;7S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;8S ∆<0,根据min ln 2ln 2BB BS Rnx R ∆=-=-∑<061在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应不能自发进行;但在实验室内常用电解水的方法制备氢气,这两者有无矛盾 2请将Carnot 循环分别表达在以如下坐标表示的图上:,,,,T p T S S V U S T H -----解 1r m G ∆>0的判据是在等温等压非体积功为0的条件下,所以在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应在等温等压非体积功为0的条件下不能自发进行;而在实验室内常用电解水的方法制备氢气,是在电功对体系作功,所以并不矛盾; 21234习题01有5mol某双原子理想气体,已知其RCmV5.2,=,从始态400K,200kPa,经绝热可逆压缩至400kPa后,再真空膨胀至200kPa,求整个过程的Q,W,△U,△H和△S.解第一步绝热可逆压缩Q1=0 △S1=04.15.25.2,,,,=+=+==RRRCRCCCrmVmVmVmP根据绝热过程方程CTP rr=-1得KkPakPaKPPTTrr6.4874002004004.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=--111,21()5 2.58.314(487.6400)9.1 V mU W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=111,21()5 3.58.314(487.6400)12.75 P mH nC T T mol J K mol K K kJ--∆=-=⨯⨯⋅⋅-=第二步等温向真空膨胀W2=0 △U2=△H2=0 Q2=0111221400ln58.314ln28.8200p kPaS nR mol J K mol J Kp kPa---∆==⨯⋅⋅=⋅所以整个过程的Q=0,W=9.1kJ,△U=9.1kJ,△H=12.75kJ,△S=28.8J•K-12有5molHeg可看作理想气体, 已知其RCmV5.1,=,从始态273K,100kPa,变到终态298K,1000kPa,计算该过程的熵变.解根据理想气体从状态p1,V1,T1到终态p2,V2,T2的熵变公式:1221lnlnTTCppnRSp+=∆得:111110029858.314ln5 2.58.314ln1000273kPa K S mol J K mol mol J K molkPa K----∆=⨯⋅⋅+⨯⨯⋅⋅186.615J K-=-⋅03在绝热容器中,将0.10kg、283K的水与0.20kg、313K的水混合,求混合过程的熵变;设水的平均比热为4.184kJ•K-1•kg-1.解设混合后的平衡温度为T,则 0.10kg 、283K 的水吸热为Q 1=C P T-T 1=4.184kJ•K -1•kg -1×0.10kg×T-283K 0.20kg 、313K 的水放热为Q 2=C P T 1-T=4.184kJ•K -1•kg -1×0.20kg×313K-T 平衡时Q 1=Q 2得 T=303K111113030.1(4.184)ln 28.57283TP T C KS dT kg kJ K kg J K T K ---∆==⨯⋅⋅⨯=⋅⎰111123030.2(4.184)ln127.17313T P T C KS dT kg kJ K kg J K T K---∆==⨯⋅⋅⨯=-⋅⎰△S=△S 1+△S 2=1.40J •K -104在298K 的等温情况下,在一个中间有导热隔板分开的盒子中,一边放0.2molO 2g,压力为20kPa,另一边放0.8molN 2g,压力为80kPa,抽去隔板使两种气体混合,试求1混合后盒子中的压力;2混合过程的Q,W,△U,△S 和△G ;3如果假设在等温情况下,使混合后的气体再可逆地回到始态,计算该过程的Q 和W 的值;解1混合前O 2g 和N 2g 的体积V 相等,混合后是1mol 气体占全部容积的体积2V;21130.28.31429824.77620O nRT mol J K mol KV dm P kPa--⨯⋅⋅⨯===11318.3142985024.7762nRT mol J K mol K p kPa V dm --⨯⋅⋅⨯===⨯2由于是等温过程 △U=0O 2g 和N 2g 都相当于在等温下从V 膨胀到2V2ln 2.02ln2.02R V VR S O ==∆ 2ln 8.02ln 8.02R VVR S N ==∆221ln 2 5.76O N S S S R J K -∆=∆+∆===⋅J RT p p nRT Vdp G 17192ln ln12-=-===∆⎰ 3因为△U′=0,Qr=-Wr=T △S′所以 Qr=-Wr=T △S′=298K×-5.76J•K -1=-1.716J05有一绝热箱子,中间用绝热隔板把箱子的容积一分为二,一边放1mol 300K,100kPa 的单原子理想气体Arg,另一边放2mol 400K,200kPa 的双原子理想气体N 2g,如果把绝热隔板抽去,让两种气体混合达平衡,求混合过程的熵变;解起初Arg 和N 2g 的体积分别为R p nRT V Ar 3==, R pnRTV N 42== 当混合时对于1molArg 相当于从300K,100kPa 膨胀到T,P,V=7R对于2molN 2g 相当于从400K,200kPa 膨胀到T,P,V=7R 而整个体系的 W=0 Q V =△U=0所以02=∆+∆N Ar U U即 0))(())((22,1,2=-+-T T N C n T T Ar C n m V N m V Ar0)400(252)300(231=-⨯+-⨯K T R mol K T R mol得 T=362.5K⎰+=∆T T m V Ar TnC V VnR S 1,1ln111173362.518.314ln8.314ln32300R Kmol J mol K J mol K R K----=⨯⋅⋅+⨯⋅⋅ =9.4J⎰+=∆T T m V N TnC V VnR S 22,2ln111175362.528.314ln8.314ln42400R Kmol J mol K J mol K R K----=⨯⋅⋅+⨯⋅⋅ =7.26JJ S S S N Ar 66.162=∆+∆=∆06有2mol 理想气体,从始态300K,20dm 3,经下列不同过程等温膨胀至50dm 3,计算各过程的Q,W,△U,△H 和△S;1可逆膨胀; 2真空膨胀;3对抗恒外压100kPa 膨胀;解由于是理想气体的等温过程,所以△U=△H=01可逆膨胀31123150ln 28.314300ln20V dm W nRT mol J K mol K V dm --=-=-⨯⋅⋅⨯⨯ =-4570.8J Q=-W=4570.8J14570.815.24300Q J S J K T K-∆==⋅ 2真空膨胀; W=Q=0S 是状态函数所以△S 的值同1 3对抗恒外压100kPa 膨胀;W=-PV 2-V 1=-100kPa50dm 3-20dm 3=-3.0kJ Q=-W=3.0kJS 是状态函数所以△S 的值同107有1mol 甲苯CH 3C 6H 5l 在其沸点383K 时蒸发为气,计算该过程的Q,W,△U,△H,△S,△A 和△G.已知在该温度下甲苯的汽化热为362kJ•kg -1.解在沸点时蒸发为可逆相变,所以 △G=0 △H=Q=362kJ•kg -1×1mol×0.092kg•mol -1=33.304kJ W =-p V g -V l = -p V g =-nRT=-1mol×8.341J•K -1•mol -1×383K=-3184.26J=-3.184kJ△U=△H-△PV=△H-P △V=△H+W=33.304kJ-3.184kJ=30.12kJ △S=Q/T=33.304kJ/383K=86.96J•K -1 △A=△U-T △S=△U-Q=W=-3.184kJ08在一个绝热容器中,装有298K 的H 2Ol1.0kg,现投入0.15kg 冰H 2Os,计算该过程的熵变.已知H 2Os 的熔化焓为333.4J•g -1. H 2Ol 的平均比热容为4.184J•K -1•g -1.解设计过程如下:1.0kg H 2Ol 放出的热为: Q 放=1.0×103×4.184×298-T0.15kgH 2Os 吸收的热为:Q 吸=0.15×103×4.184×T-273+0.15×103×333.4 根据Q 放=Q 吸 得 T=284.35K321S S S S ∆+∆+∆=∆dT TC T HdT TC K K p KKp ⎰⎰+∆+=35.28427335.284298 27335.284ln184.41015.02731015.04.33329835.284ln 184.4100.1333⨯⨯+⨯⨯+⨯⨯= =12.57J•K -109实验室中有一个大恒温槽的温度为400K,室温为300K,因恒温槽绝热不良而有4.0kJ 的热传给了室内的空气,用计算说明这一过程是否可逆.解该过程是体系放热Q,环境吸热-Q 的过程 △S 体系=Q/T 体系=-4.0kJ/400K=-10J •K -1 △S 环境=-Q/T 环境=4.0kJ/300K=13.33J •K -1△S 隔离=△S 体系+△S 环境=-10J •K -1+13.33J •K -1=3.33J •K -1>0 所以该过程为不可逆过程.10有1mol 过冷水,从始态263K,101kPa 变成同温、同压的冰,求该过程的熵变;并用计算说明这一过程的可逆性.已知水和冰在该温度范围内的平均摩尔定压热容分别为:11,2(,)75.3P m C H O l J K mol --=⋅⋅,11,2(,)37.7P m C H O s J K mol --=⋅⋅;在273K, 101kPa时水的摩尔凝固热为60012(,) 5.90fus m H H O s kJ mol -∆=-⋅;解设计如下过程263K 101kPa H 2O(l)22H 1311121,1273ln175.3ln 2.81263P m T K S nC mol J K mol J K T K---∆==⨯⋅⋅=⋅ 1121( 5.90)21.61273fus mn H mol kJ mol S J K T K--∆⨯-⋅∆===-⋅11123,1263ln137.7ln 1.41273P m T K S nC mol J K mol J K T K---∆==⨯⋅⋅=-⋅ △S=△S 1+△S 2+△S 3=-20.21J•K -1111molN 2g 可作理想气体,从始态298K,100kPa,经如下两个等温过程,分别到达终态压力为600kPa,分别求过程的Q,W,△U,△H,△A,△G,△S,和△S iso .1等温可逆压缩; 2等外压为600kPa 时压缩;解由于都是理想气体的等温过程,所以△U=△H=0 1等温可逆压缩1112100ln18.314298ln 4.439600p kPa W nRT mol J K mol K kJ p kPa--=-=-⨯⋅⋅⨯⨯= Q=-W=-4.439kJ△S =Q/T =-4439J/298K=-14.90J•K -1 △A =△U -T △S =-Q =W =4.439kJ △G =△H -T △S =-Q =W =4.439kJ △S 环境=-Q /T =14.90J•K -1 △S iso =△S 体系+△S 环境=0 2等外压为600kPa 时压缩 W=-P 2V 2-V 1=-nRT1-P 2/P 1=-1mol×8.314J•K -1•mol -1×298K×1-600kPa/100kPa =12.39kJ Q=-W=-12.39kJ△A,△G,△S 都是状态函数的变化,所以值与1相同 △S 环境=-Q /T=12.39kJ/298K=41.58J•K△S iso =△S 体系+△S 环境=-14.90J•K -1+41.58J•K=26.28J•K12将1molO 2g 从298K,100kPa 的始态,绝热可逆压缩到600kPa,试求该过程Q,W,△U,△H,△A,△G,△S,和△S iso .设O 2g为理想气体,已知O 2g的R C m p 5.3,=,112(,)205.14m S O g J K mol θ--=⋅⋅;解由于是绝热可逆压缩 Q=0 △S 体系=04.15.35.3,,,,=-=-==RR RRC C C C r m p m p mV m P根据绝热过程方程C T Pr r=-1得K kPa kPa K P P T T rr 2.4996001002984.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--11,21()1 2.58.314(499.2298) 4.182V m U W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=11,21()1 3.58.314(499.2298) 5.855P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=△A =△U - S △T =4182J-205.14J•K -1•mol -1×1mol×499.2K-298K =-37.092kJ △G =△H - S △T =5855J-205.14J•K -1•mol -1×1mol×499.2K-298K=-35.42kJ △S 环境=-Q /T =0 △S iso =△S 体系+△S 环境=013将1mol 双原子理想气体从始态298K,100kPa,绝热可逆压缩到体积为5dm 3,试求终态的温度、压力和过程的Q,W,△U,△H,和△S;解对于双原子理想气体R C m V 5.2,=R C m p 5.3,=4.15.25.3,,===RRC C r mV m P 而 11311118.31429824.78100nRT mol J K mol KV dm P kPa --⨯⋅⋅⨯===根据 C pV r=得:kPa dm dm kPa VV p p r12.940578.241004.1332112=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=322211940.125565.3818.314p V kPa dm T K nR mol J K mol --⨯===⨯⋅⋅因为是绝热可逆,所以Q=0 △S=011,21()1 2.58.314(565.38298) 5.557V m U W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=11,21()1 3.58.314(565.38298)7.78P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=14将1mol 苯C 6H 6l 在正常沸点353K 和101.3kPa 压力下,向真空蒸发为同温、同压的蒸气,已知在该条件下,苯的摩尔汽化焓为130.77vap m H kJ mol -∆=⋅,设气体为理想气体;试求1该过程的Q 和W ;2苯的摩尔汽化熵m vap S ∆和摩尔汽化Gibbs 自由能m vap G ∆; 3环境的熵变△S 环;4根据计算结果,判断上述过程的可逆性; 解1向真空蒸发 W=0Q=△U而△U 为状态函数的变化所以当等温等压时相变时:W′=-nRT=-1mol×8.314J•K -1•mol -1×353K=-2.935kJ Q=△H=130.77vap m H kJ mol -∆=⋅ △U=Q+W=30.77kJ-2.935kJ=27.835kJ 所以Q=27.835kJ 211130.7787.167353vap mvap m H kJ mol S J K mol T K---∆⋅∆===⋅⋅0=∆m vap G G 是状态函数,所以△G 与可逆相变时相同 3△S 环境=-Q /T =-27.835kJ/353K=-78.85J•K -14△S iso =△S 体系+△S 环境=87.167J•K -1-78.85J•K -1=8.317J•K -1 即 △S iso >0 可见是不可逆过程.15某一化学反应,在298K 和大气压力下进行,当反应进度为1mol 时,放热40.0kJ,如果使反应通过可逆电池来完成,反应程度相同,则吸热4.0kJ;1计算反应进度为1mol 时的熵变m r S ∆;2当反应不通过可逆电池完成时,求环境的熵变和隔离系统的总熵变,从隔离系统的总熵变值说明了什么问题;3计算系统可能做的最大功的值;解1111400013.42298R r m Q J mol S J K mol T K---⋅∆===⋅⋅211140000134.2298P Q J mol S J K mol T K----⋅∆===⋅⋅环境△S iso =△S 体系+△S 环境=13.4J•K -1•mol -1+134.2J•K -1•mol -1=147.6 J•K -1•mol -1 即 △S iso >0 可见是不可逆过程.3J J J S T G W f 44000)400040000()(max ,=---=∆-∆H -=∆-=16 1mol 单原子理想气体从始态273K,100kPa,分别经下列可逆变化到达各自的终态,试计算各过程的Q,W,△U,△H,△S,△A 和△G;已知该气体在273K,100kPa 的摩尔熵11100m S J K mol --=⋅⋅;1恒温下压力加倍; 2恒压下体积加倍; 3恒容下压力加倍;4绝热可逆膨胀至压力减少一半;5绝热不可逆反抗50kPa 恒外压膨胀至平衡; 解1恒温下压力加倍即等温可逆△U=△H=01112100ln18.314273ln 1.573200p kPa W nRT mol J K mol K kJ p kPa--=-=-⨯⋅⋅⨯⨯= Q=-W=-1.573kJ△S=Q/T=-1.573kJ/273K=-5.76J•K -1 △A =△U -T △S =-Q =W =1.573kJ △G =△H -T △S =-Q =W =1.573kJ 2恒压下体积加倍T 2=2T 1 W=-PV 2-V 1=-P 1V 1=-nRT =-1mol×8.314J•K -1•mol -1×273K =-2.27kJ11,21()1 1.58.314273 3.4V m U nC T T mol J K mol K kJ--∆=-=⨯⨯⋅⋅⨯=11,21()1 2.58.314273 5.67P m H nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯= Q=△U-W=3.4kJ+2.27kJ=5.67kJ12ln5.2ln T T R T d C S p ==∆⎰ 1111 2.58.314ln 214.4mol J K mol J K---=⨯⨯⋅⋅⨯=⋅S 2=△S+S 1=14.4J•K -1+100J•K -1=114.4J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=3.4×103J-2×273K×114.4J•K -1-273K×100J•K -1 =-31.76kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=5.67×103J-2×273K×114.4J•K -1-273K×100J•K -1 =-29.49kJ3恒容下压力加倍 T 2=2T 1W=011,21()1 1.58.314273 3.4V m U nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯=11,21()1 2.58.314273 5.67P m H nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯=Q=△U=3.4kJ12ln5.1ln T T R T d C S V ==∆⎰ 1111 1.58.314ln 28.67mol J K mol J K---=⨯⨯⋅⋅⨯=⋅S 2=△S+S 1=8.67J•K -1+100J•K -1=108.67J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=3.4×103J-2×273K×108.67J•K -1-273K×100J•K -1 =-28.63kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=5.67×103J-2×273K×108.67J•K -1-273K×100J•K -1 =-26.36kJ4绝热可逆膨胀至压力减少一半;Q=0 △S=067.15.15.2,,===RRC C r mV m P 根据绝热过程方程C T Pr r=-1得K kPa kPa K P P T T rr 9.2065010027367.167.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--)(12,T T nC W U m V -==∆111 1.58.314(206.9273)824.58mol J K mol K K J --=⨯⨯⋅⋅-=-)(12,T T nC H m P -=∆111 2.58.314(206.9273)1374.3mol J K mol K K J --=⨯⨯⋅⋅-=- △A =△U -S △T=-824.58J-100J•K -1•mol -1×1mol×206.9K-273K =-5.787kJ △G =△H -S △T=-1374.3J-100J•K -1•mol -1×1mol×206.9K-273K =-5.33kJ5绝热不可逆反抗50kPa 恒外压膨胀至平衡;Q=0)()(12122T T C V V P W V -=--= 即: )()(1211222T T C P nRT P nRT P V -=-- 代入数据得:T 2=218.4K所以 1121()1 1.58.314(218.4273)V W U C T T mol J K mol K K --=∆=-=⨯⨯⋅⋅⨯- =-680.92J)(12,T T nC H m P -=∆111 2.58.314(218.4273)mol J K mol K K --=⨯⨯⋅⋅-=-1.135kJ⎪⎪⎭⎫⎝⎛+=+=∆122112,21ln 25ln ln lnT T p p nR T TnC p p nR S m p111005218.418.314ln ln502273kPa Kmol J K mol kPa K --⎛⎫=⨯⋅⋅+ ⎪⎝⎭=1.125J•K -1S 2=△S+S 1=1.125J•K -1+100J•K -1=101.125J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=-680.92J-218.4K×101.125J•K -1-273K×100J•K -1 =4.533kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=-1135J-218.4K×101.125J•K -1-273K×100J•K -1 =-26.36kJ =4.08kJ17将1molH 2Og 从373K,100kPa 下,小心等温压缩,在没有灰尘等凝聚中心存在时,得到了373K,200kPa 的介稳水蒸气,但不久介稳水蒸气全变成了液态水,即H 2Og,373K,200kPa→H 2Ol,373K,200kPa求该过程的△H,△G 和△S;已知在该条件下水的摩尔汽化焓为146.02kJ mol -⋅,水的密度为1000kg•m -3.设气体为理想气体,液体体积受压力的影响可忽略不计;解设计可逆过程如下:H 2O(g)H 2O(l)H 2O(g)H 2O(l)373K,200kPa373K,200kPa(2)121lnp p nRT G =∆ =1mol×8.314J•K -1•mol -1×373Kln0.5 =-2.15kJ02=∆G)(12321p p nMVdp G p p -==∆⎰ρ=1mol×0.018kg•mol -1/1000kg•m -3200kPa-100kPa=1.8J△G=△G 1+△G 2+△G 3=-2148.2J11(46.02)46.02r m n mol kJ molkJ θ-∆H =∆H =⨯-⋅=- 146020(2148.2)117.6373G J J S J K T K-∆H -∆---∆===-⋅ 18用合适的判据证明:1在373K 和200kPa 压力下,H 2Ol 比H 2Og 更稳定; 2在263K 和100kPa 压力下,H 2Os 比H 2Ol 更稳定; 解1设计等温可逆过程如下1001200kPal kPaG V dp ∆=⎰20G ∆=等温等压无非体积功的可逆相变过程2003100kPag kPaG V dp ∆=⎰所以 ()20020013100100kPakPag l g kPakPaG G G V V dp V dp ∆=∆+∆=-≈⎰⎰若水蒸气可看作理想气体,则ln 20G RT ∆≈所以,在373K 和200kPa 压力下,H 2Ol 比H 2Og 更稳定; 2设100kPa 压力下设计如下可逆过程如下1mol,H 2O(s),263K21mol,H 2S 1ΔS 2S 3123S S S S ∆=∆+∆+∆,,273273()lnln 263273263fus m p m p mn K KnC nC K K K∆H =++冰(水)>0所以自发变化总是朝熵增加的方向进行,H 2Os 比H 2Ol 更稳定;19在298K 和100kPa 压力下,已知C 金刚石和C 石墨的摩尔熵、摩尔燃烧焓和密度分别为:试求:1在298K 及100kPa 下,C 石墨→C 金刚石的θm trs G ∆; 2在298K 及100kPa 时,哪个晶体更为稳定3增加压力能否使不稳定晶体向稳定晶体转化 如有可能,至少要加多大压力,才能实现这种转化解 1根据△G=△H-T △S),298(),298()298(金刚石石墨K H K H K H m c m c m r θθθ∆-∆=∆=-393.51kJ•mol -1--395.40kJ•mol -1 =1.89kJ•mol -1),298(),298()298(石墨金刚石K S K S K S m m m r -=∆θ=2.45J•K -1•mol -1-5.71J•K -1•mol -1 =-3.26J•K -1•mol -11111.89298( 3.26)trs m r m r m G H T S kJ mol K J K mol θθθ---∆=∆-∆=⋅-⨯-⋅⋅=2.862kJ•mol -12因为298K,100kPa 下,θm trs G ∆>0,说明此反应在该条件下不能自发向右进行,亦即石墨比较稳定.3设298K 下压力为p 2时石墨恰能变成金刚石dp V V p K G p K G p p m m m r m r )(),298(),298(2,2⎰-+∆=∆θθθθ石墨金刚石),298(2p K G m r θ∆>0,解上式得:p 2>1.52×109Pa即需要加压至1.52×109Pa 时,才能在298K 时,使石墨转化为金刚石.20某实际气体的状态方程为p RT pV m α+=,式中α为常数;设有1mol 该气体,在温度为T 的等温条件下,由p 1可逆地变到p 2;试写出:Q,W,△U,△H,△S,△A 及△G 的计算表达式;解:2112ln ln p p RT V V RT dV V RTpdV W m -=---=--=-=⎰⎰ααα因为 p T p T V U V T -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 而 α-=⎪⎭⎫ ⎝⎛∂∂m V V R T p 所以 0=--=⎪⎭⎫⎝⎛∂∂p V R TV U mT α 即该气体的等温过程 △U=0 Q=-W=21lnp p RT α=-=⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂P R TV T V T V P H P T )(12p p dp H -==∆⎰ααP R T V P S PT -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂12ln p p R dp p RS -=-=∆⎰12lnp p RT S T S T U A =∆-=∆-∆=∆ 1212ln)(p p RT p p S T H G +-=∆-∆=∆α 21在标准压力和298K 时,计算如下反应的)298(K G m r θ∆,从所得数据值判断反应的可能性;1 CH 4g+1/2O 2g →CH 3OHl2 C 石墨+2H 2g+ 1/2O 2g→CH 3OHl 所需数据自己从热力学数据表上查阅;解所查热力学数据如下:1155.115)72.50(27.166)298(-•-=---=∆mol kJ K G m r θ可见θm trs G ∆<0,说明此反应在该条件下能自发向右进行.21(298)166.27r m G K kJ mol θ-∆=-⋅可见θm trs G ∆<0,说明此反应在该条件下能自发向右进行.22计算下述催化加氢反应,在298K 和标准压力下的熵变;C 2 H 2 g + 2H 2 g → C 2 H 6 g已知C 2 H 2 g,H 2 g,C 2 H 6 g 在298K 和标准压力下的标准摩尔熵分别为:200.8J•K -1•mol -1,,130.6J•K -1•mol -1,,229.5J•K -1•mol -1,.解 ),(2),(),(),298(22262g H S g H C S g H C S p K S m m m m r θθθθθ--=∆=229.5J•K -1•mol -1-200.8J•K -1•mol -1-2×130.6J•K -1•mol -1, =-232.5J•K -1•mol -1 23若令膨胀系数P T V V ⎪⎭⎫ ⎝⎛∂∂=1α,压缩系数TpV V ⎪⎪⎭⎫⎝⎛∂∂-=1κ;试证明: κα2VT C C V P =-证明根据V P C C 和的定义,及H=U+P VV p P V p V P T U T V p T U T U T H C C ⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=-由dV V U dT T U dU TV ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= 在恒压下对T 求偏导得: pT V p T V V U T U T U ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T V P T V p V U C C ⎪⎭⎫ ⎝⎛∂∂⎭⎬⎫⎩⎨⎧+⎪⎭⎫ ⎝⎛∂∂=- 1又因为 pdV TdS dU -=在恒温下对V 求偏导得: p V S T V U TT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 2 TT T V p p S V S ⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 将麦克斯韦关系式p TT V p S ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫⎝⎛∂∂代入上式Tp T V p T V V S ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ 3将3代入2得: p V p T V T V U Tp T-⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ 4将4代入1得: Tp V P V p T V T C C ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=-2再将P T V V ⎪⎭⎫ ⎝⎛∂∂=1α, TpV V ⎪⎪⎭⎫⎝⎛∂∂-=1κ代入得: κα2VT C C V P =-24对van der Waals 实际气体,试证明: 2VV U T α=⎪⎭⎫ ⎝⎛∂∂证明: van der Waals 实际气体的状态方程式为()RT b V V a p m m =-⎪⎪⎭⎫ ⎝⎛+2 b V R T p mV -=⎪⎭⎫⎝⎛∂∂ 22m m m m m VT V V b V RT b V RT p b V R Tp T p T V U αα=+---=--=-⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 25对理想气体,试证明:nR S U p H V U VS S -=⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 证明 pdV TdS dU -=则 T S U V=⎪⎭⎫ ⎝⎛∂∂ p V U S-=⎪⎭⎫⎝⎛∂∂ 又 Vdp TdS dH +=则 Vp H S=⎪⎪⎭⎫ ⎝⎛∂∂ 那么 nRT pV S U p H V U VSS -=-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 26在600K,100kPa 压力下,生石膏的脱水反应为42422()()2()CaSO H O s CaSO s H O g ⋅→+试计算:该反应进度为1mol 时的Q,W,△Um,△Hm,△Sm,△Am 及△Gm;已知各物质在298K,100kPa 的热力学数据为:解W=-P △V=-PV 水=-2RT=-2×8.314J•K -1•mol -1×600K=-9.98kJ 在298K,100kPa 时:1(298)241.822(1432.68)(2021.12)104.8r m H K kJ mol θ-∆=-⨯+---=⋅11(298)188.832106.70193.97290.39r m S K J mol K θ--∆=⨯+-=⋅⋅11,33.58299.60186.2019.44r p m C J mol K --∆=⨯+-=-⋅⋅dT C K H K H m T T r m r m r ⎰∆+∆=∆21)298()600(θθ=104.8kJ•mol -1+-19.44J•K -1•mol -1600K-298K =98.93kJ•mol -T d C K S K S m T T r m r m r ln )298()600(21⎰∆+∆=∆θθ=290.39J•K -1•mol -1+-19.44J•K -1•mol -1ln KK298600 =276.79J•K -1•mol -1△Um=△Hm+W=98.93kJ•mol --9.98kJ•mol -=88.95kJ•mol - Q=△U-W=98.93kJ•mol -△Am=△U-T △S=88.95kJ•mol -1-600K×276.79J•K -1•mol -1=-77.124kJ•mol -1△Gm=△H-T △S=98.93kJ•mol -1-600K×276.79J•K -1•mol -1=-67.14kJ•mol -127将1mol 固体碘I 2s 从298K,100kPa 的始态,转变成457K,100kPa 的I 2g,计算在457K 时I 2g 的标准摩尔熵和过程的熵变;已知I 2s 在298K,100kPa 时的标准摩尔熵112(,,298)116.14m S I s K J K mol --=⋅⋅,熔点为387K,标准摩尔熔化焓12(,)15.66fus m H I s kJ mol -∆=⋅;设在298-378K 的温度区间内,固体与液体碘的摩尔比定压热容分别为11,2(,)54.68P m C I s J K mol --=⋅⋅,11,2(,)79.59P m C I g J K mol --=⋅⋅,碘在沸点457K 时的摩尔汽化焓为12(,)25.52vap m H I l kJ mol -∆=⋅;解设计可逆过程如下:I 22(g)100kPa△S=△S 1+△S 2+△S 3+△S 4=vapm vap KKp fusmfus KKP T T d l C T H T d s C H ∆++∆+⎰⎰ln )(ln )(457387387298θ=4571052.25387457ln 68.543871066.15298387ln 68.5433⨯+⨯+⨯+⨯=123.82J•K -1•mol -1又因为 ),(),(22s I S g I S S m m -=∆123.82J•K -1•mol -1=),(2g I S m -116.14 J•K -1•mol -1得: ),(2g I S m =239.96J•K -1•mol -128保持压力为标准压力,计算丙酮蒸气在1000K 时的标准摩尔熵值;已知在298K 时丙酮蒸气的标准摩尔熵值11(298)294.9m S K J K mol θ--=⋅⋅在273-1500K 的温度区间内,丙酮蒸气的定压摩尔热容m P C ,与温度的关系式为:36211,[22.47201.810(/)63.510(/)]P m C T K T K J K mol ----=+⨯-⨯⋅⋅解:由于dT T C S P⎰=故 TC dS P=即⎰⎰=2121T T PS S dT TC S d T T T d C K S K S m K Kr m m ln )298()1000(1000298⎰∆+=θθ=434.8J•K -1•mol -1。

物理化学03章_热力学第二定律(二)

物理化学03章_热力学第二定律(二)

Ssys = 19.14 J K
Ssur = 0
1
(系统未吸热,也未做功)
Siso = Ssys + Ssur = 19.14 J K 1 > 0
(2)为不可逆过程.
例2:在273 K时,将一个 22.4 dm3 的盒子用隔板一分为二,
0.5 mol 0.5 mol O2 (g) N2 (g)
p1 V1 p2 V2 T2 p2 V2 ∵ = ∴ = T1 T2 T1 p1V1
V2 p2V2 ∴ S = nR ln + nCV ,m ln V1 p1V1
V2 p2 V2 = nR ln + nC V ,m ln + nC V ,m ln V1 p1 V1
p2 V2 ∴ S = nCV ,m ln + nC p ,m ln p1 V1
因为在可逆相变中压力恒定,所以可逆热即为相 因为在可逆相变中压力恒定, 变焓.又由于温度一定,所以, 变焓.又由于温度一定,所以,物质 B 由 α 相态 转化为 β 相态
p ,T B (α ) → B ( β )
的相变熵为: 的相变熵为:
β α H β α S = T
用上式,可计算正常熔点下的熔化熵, 用上式,可计算正常熔点下的熔化熵,正常 沸点下的蒸发熵等等. 沸点下的蒸发熵等等.
= TC S > 0
Q W
热源
R2
TC
1
W2
Q W2
TB热源做功能力低于TA
TB热源做功能力低于TA
其原因是经过了一个不可逆的热传导过程 功变为热是无条件的,而热不能无条件 地全变为功. 热和功即使数量相同,但"质量"不等, 功是"高质量"的能量. 高温热源的热与低温热源的热即使数量相 同,但"质量"也不等,高温热源的热"质量" 较高,做功能力强. 从高"质量"的能贬值为低"质量"的能 是自发过程.

48-70 第三章热力学第二定律

48-70 第三章热力学第二定律

第三章 热力学第二定律 本章知识要点与公式1.自发变化的不可逆性;一个自发变化发生后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,自发变化具有方向性,是不可逆的。

2.热力学第二定律Clausius :不可能把热从低温物体传到高温物体,而不引起其他变化。

Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化。

热力学第二定律表明:热转化为功是有条件的,有限度的,而功转化为热是无条件的。

3.Carnot 定律所有工作于同温热源与同温冷源之间的热机,其效率不可能超过可逆热机;所有工作于同温热源与同温冷源之间的可逆热机,其热机效率都相等。

4.熵(1)熵的数学表达式2pG H T T T ⎛∆⎫⎛⎫∂ ⎪ ⎪∆⎝⎭ ⎪=-∂ ⎪ ⎪⎝⎭B A R Q S T δ⎛⎫∆= ⎪⎝⎭⎰或Rδd Q S T ⎛⎫= ⎪⎝⎭ (2)Clausius 不等式d d 0Q S T =≥或d d QS T≥ 可利用不等式来判别过程的可逆性;等式表示可逆过程,不等式表示不可逆过程。

(3)熵增加原理在绝热过程中,若过程是可逆的则系统的熵是不变的,若过程是不可逆的,则系统的熵增加,绝热不可逆过程当达到平衡时,熵达到最大值。

5.熵的计算等温过程中熵的变化值(1) 理想气体等温可逆变化max R 2112ln ln W Q V pS nR nR T T V p -∆====(2) 等温等压可逆变化()()()H S T ∆∆=相变相变相变(3) 理想气体的等温等压混合过程,且符合分体积定律,mix B B Bln S R n x ∆=-∑非等温过程熵的变化值。

(4) 可逆等容,变温过程21,m d T V T nC S T T ∆=⎰ (5) 可逆等压,变温过程21,m d T p T nC S T T∆=⎰(6) 分布计算法12211221T ,m 212T 1T ,m 112T 2ln d ln d S S V S S p A C B nC V S S S nR T V T A C B nC p S S S nR T p T ∆∆''∆∆⎧⎫−−−−→−−−−→⎪⎪⎪⎪∆=∆+∆=+⎪⎪⎪⎪⎨⎬−−−−→−−−−→⎪⎪⎪⎪⎪⎪∆=∆+∆=+⎪⎪⎩⎭⎰⎰等温可逆等容可逆等温可逆等压可逆5.热力学第二定律本质:在隔离系统中,由比较有次序的状态向比较无次序的状态变化,是自发变化的方向。

03 热力学第二定律

03 热力学第二定律

第三章热力学第二定律一.基本要求1.了解自发过程的共同特征及热力学第二定律的表述方式。

2.掌握Carnot循环中各步的功和热的计算,了解如何从Carnot循环中引出熵这个状态函数。

3.掌握Clausius不等式的应用及熵增加原理,会熟练计算一些常见过程如:等温、等压和等容过程的熵变,学会设计简单的可逆过程。

4.了解熵的本质和规定熵的由来,会使用规定熵值来计算化学变化的熵变。

5.理解为什么要定义Helmholtz自由能和Gibbs自由能,它他们有什么用处?如何计算不同过程中它们的变化值?6.了解有几个热力学判据,掌握如何利用Gibbs自由能判据来判断变化的方向和限度。

7.了解热力学的四个基本共识的由来,记住每个热力学函数的特征变量,会利用d G的表示式计算温度和压力对Gibbs自由能的影响。

二.把握讲课要点的建议自发过程的共同特征是不可逆性,热力学第二定律即是概括了所有不可逆过程的经验定律。

通过学习本章,原则上解决了判断变化的方向和限度的问题,完成了化学热力学的最基本的任务。

所以学好本章十分重要。

通过学习Carnot循环,一方面熟练不同过程中功和热的计算,另一方面理解所导出的熵函数的状态函数的性质及热机效率总是小于1的原因。

Clausius不等式就是热力学第二定律的数学表达式,从这个不等式就可以引出以后的几个判据,解决判断变化方向与限度的问题,必须要让学生掌握。

熵增加原理引出了熵判踞,但要讲清楚绝热过程的熵变只能判断过程的可逆与否,而只有隔离系统的熵变才能判断过程的可逆与否及自发与否。

要计算隔离系统的熵变,必须介绍如何计算环境的熵变。

计算熵变一定要用可逆过程的热效应,如果实际是个不可逆过程,则要介绍几个如何设计可逆过程的方法,例如,如何可逆地绕到相变点:熔点、沸点或饱和蒸汽压时的可逆气-液平衡点。

不必完整地介绍熵的本质和热力学第三定律,只需要让学生了解熵是系统混乱度的一种量度,凡是混乱度增加的过程都是自发过程。

第三章热力学第二定律

第三章热力学第二定律

第三章 热力学第二定律一.基本要求1.了解自发变化的共同特征,熟悉热力学第二定律的文字和数学表述方式。

2.掌握Carnot 循环中,各步骤的功和热的计算,了解如何从Carnot 循环引出熵这个状态函数。

3.理解Clausius 不等式和熵增加原理的重要性,会熟练计算一些常见过程如:等温、等压、等容和,,p V T 都改变过程的熵变,学会将一些简单的不可逆过程设计成始、终态相同的可逆过程。

4.了解熵的本质和热力学第三定律的意义,会使用标准摩尔熵值来计算化学变化的熵变。

5.理解为什么要定义Helmholtz 自由能和Gibbs 自由能,这两个新函数有什么用处?熟练掌握一些简单过程的,,H S A ΔΔΔ和G Δ的计算。

6.掌握常用的三个热力学判据的使用条件,熟练使用热力学数据表来计算化学变化的,和r m H Δr m S Δr m G Δ,理解如何利用熵判据和Gibbs 自由能判据来判断变化的方向和限度。

7.了解热力学的四个基本公式的由来,记住每个热力学函数的特征变量,会利用d 的表示式计算温度和压力对Gibbs 自由能的影响。

G 二.把握学习要点的建议自发过程的共同特征是不可逆性,是单向的。

自发过程一旦发生,就不需要环境帮助,可以自己进行,并能对环境做功。

但是,热力学判据只提供自发变化的趋势,如何将这个趋势变为现实,还需要提供必要的条件。

例如,处于高山上的水有自发向低处流的趋势,但是如果有一个大坝拦住,它还是流不下来。

不过,一旦将大坝的闸门打开,水就会自动一泻千里,人们可以利用这个能量来发电。

又如,氢气和氧气反应生成水是个自发过程,但是,将氢气和氧气封在一个试管内是看不到有水生成的,不过,一旦有一个火星,氢气和氧气的混合物可以在瞬间化合生成水,人们可以利用这个自发反应得到热能或电能。

自发过程不是不能逆向进行,只是它自己不会自动逆向进行,要它逆向进行,环境必须对它做功。

例如,用水泵可以将水从低处打到高处,用电可以将水分解成氢气和氧气。

物理化学 第三章 热力学第二定律课件

物理化学 第三章 热力学第二定律课件

第三章 热力学第二定律§3.1 热力学第二定律1.自发过程自发过程:在自然条件下,能够发生的过程,称为自发过程。

自发过程的逆过程称为非自发过程。

所谓自然条件,是指不需要人为加入功的过程。

例如:(1) 热量从高温物体传入低温物体; (2)气体向真空膨胀;(3)锌片与硫酸铜的置换反应等,。

说明:自发过程是热力学中的不可逆过程,这是自发过程长的共同特征。

自发过程的逆过程都不能自动进行,自发过程的逆向必须消耗功。

2.热、功转换任何热机从高温1T 热源吸热1Q ,一部分转化为功W ,另一部分2Q 传给低温2T 热源。

将热机所作的功与所吸的热之比值称为热机效率,或称为热机转换系数,用η表示。

恒小于1。

即1W Q η-=若热机不向低温热源散热,20Q =,此时热机效率可达到100%,将所吸收的热全部变为功,实践证明这样的机器永远造不成。

人们将这种从单一热源吸热全部用来对外作功的机器,称为第二永动机。

2.热力学第二定律克劳修斯(Clausius )的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。

”开尔文(Kelvin )的说法:“不可能从单一热源取出热使之完全变为功,而不发生其他的变化。

”克劳修斯和开尔文的说法都是指某一件事情是“不可能”的,即指出某种自发过程的逆过程是不能自动进行的。

克劳修斯的说法是指明热传导的不可逆性,开尔文的说法是指明功转变为热的过程的不可逆性,这两种说法实际上是等效的。

热力学第二定律和热力第一定律一样,是建立在无数事实的基础上,是人类经验的总结。

它不能从其它更普遍的定律推导出来。

§3.2 卡诺循环与卡诺定理1.卡诺循环(Carnot cycle )卡诺循环:由恒温可逆膨胀、绝热可逆膨胀、恒温可逆压缩、绝热可逆压缩四个可逆步骤组成的循环过程。

以理想气体为工作物质,从高温T 1热源吸收Q 1的热量,一部分通过理想热机用来对外做功W ,另一部分的热量Q 2放给低温T 2热源。

热力学第二定律

热力学第二定律

第三章热力学第二定律3.1 热力学第二定律的克劳修斯说法和开尔文说法热力学第二定律(second law of thermodynamics)有多种说法,各种说法完全等价的,它是人类经验的总结。

下面介绍两种经典说法。

克劳修斯(R. Clausius)说法:热从低温物体传给高温物体而不产生其它变化是不可能的。

开尔文(L. Kelvin)说法:从一个热源吸热,使之完全转化为功而不产生其它变化是不可能的,或第二类永动机是不可能造成的。

注意的是并非热不能从低温物体传给高温物体,而是不产生其它变化,如致冷机需要消耗电能。

另外也不能简单理解开尔文说法为,如理想气体等温膨胀, U = 0 -Q = W,即热全部变为功,但气体体积变大了。

所以是不引起其它变化的条件下,热不能全部转化为功。

所谓第二类永动机乃是一种能够从单一热源吸热,并将所吸收的热全部变为功而无其它影响的机器,那是不可能造成的。

认识热力学第二定律,首先从热、功转化规律开始,所以首先介绍卡诺定理3.2 卡诺定理3.2.1 热机效率如图3.2-1所示,热机从高温热源吸热Q1,对环境作功 -W,同时向低温热源放热Q2,完成一个循环。

图3.2-1 热转化为功热机效率(efficiency of the heat engine)...... (3.2-1)3.2.2 可逆热机效率可逆过程系统做功最大,热机效率也最大。

1. 卡诺循环卡诺(S. Carnot)设想一部理想热机,由理想气体经四个可逆过程来完成一个循环,如图3-2,称卡诺循环。

过程如下:(1)→(2) 恒温可逆膨胀:(2)→(3) 绝热可逆膨胀:即(3)→(4)恒温可逆压缩:(4)→(1) 绝热可逆压缩:即得经一循环 DU = 0,热机所作的净功热机效率......(3.2-2)即结论:卡诺热机(可逆热机)效率的大小与两个热源的温差有关。

不可逆热机效率没有这种关系。

从(3.2-2)式还可以得到 ......(3.2-3)结论:卡诺循环(可逆过程)中热温商(Q/T)之和为零。

03章_热力学第二定律

03章_热力学第二定律

§3.1 §3.2 §3.3 §3.4 §3.5 §3.6
§3.7
§3.8 §3.9
自发变化的共同特征 热力学第二定律 Carnot定理 熵的概念 Clausius不等式与熵增加原理 热力学基本方程与T-S图
熵变的计算
熵和能量退降 热力学第二定律的本质和熵的统计意义
§3.10 Helmholtz和Gibbs自由能
▲ kelvin 说法:不可能从单一热源取出热使之全 部转化为功,而不留下其它变化。
“It is impossible to devise an engine which,working in a cycle, shall produce no effect other than the extraction of heat from a reservoir and the performance of an equal amount of work”。
在极限情况下,上式可写成
(Q
T
)
R
0
即任意可逆循环可逆热温商沿封闭曲线的环积 分为零。
现在再讨论可逆过程的热温熵。
在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。
根据任意可逆循环热温商的公式:
Q
( T )R 0
b
可分成两项的加和
A a
B
B Q
A Q
(
AT
)R1
( BT
) R2
不需要外功,就能自动进行的变化过程。
要使自发过程的逆过程能够进行,必须环境对系统作功。 ◆ 借助抽水机,使水从低处流向高处;
◆ 利用抽气机(压缩机),使气体从低压流向高压; ◆ 借助冷冻机,使热量从低温传向高温; ◆ 借助于电解,可以使水恢复为 H2 和 O2 。

3 第三章 热力学第二定律

3 第三章  热力学第二定律

Q1 / T1 Q2 / T2 0
结论: 2)卡诺循环热温商之和为零
(2)卡诺定理 所有工作于两个温度一定的热源之间的热机, 以可逆热机的热机效率为最大.
如何证明:详见P103-104说明 违反卡诺定理必然违反热力学第二定律
卡诺定理的推论

在两个不同温度的高低温热源之间工作的可逆 热机效率相等,与工作物质无关。

.凝聚态物质(固体,液体) 变温过程熵变的计算
Q dH nCp.mdT = Qr
DS
T2
Qr
T
T1
=
T2
nC p.m T
T1
dT
使用条件:恒压变温或压力变 化不大的凝聚态系统
1、理想气体恒温过程 例1:1.00mol N2(g)初态为273K、100.00kPa,经过一个
以理想气体为工作 介质的卡诺循环
nRT 1.等温可逆膨胀: ΔU=0 Q1=-W1= 1ln
V2 V1
2.绝热可逆膨胀:W2= ΔU2=nCv, m(T2-T1) T1V2 1 T2V3 1
V4 3.等温可逆压缩: Q1= -W3=nRT2ln ΔU=0 V3
4.绝热可逆压缩: W4= ΔU4 =nCv, m(T1-T2) T1V1 1 T2V4 1
(1)热量从高温物体传入低温物体过程 (2)高压气体向低压气体的扩散过程 (3)溶质自高浓度向低浓度的扩散过程 (4)锌与硫酸铜溶液的化学反应
2.自发过程 都是不能自动逆转的,
逆向进行必须消耗功!!!
3. 结论:自然界中发生的一切实际过程都有一定的 方向和限度。
4、热力学第二定律的经典表述
克劳休斯说法: 不可能把热由低温物体转移到高温物体,而不产生其它 影响。(高温物体向低温物体传热过程不可逆性) 开尔文说法:

热力学第二定律-物理化学-课件-03

热力学第二定律-物理化学-课件-03
7
说明: 1.各种说法一定是等效的。若克氏说法不成 立,则开氏说法也一定不成立(证明见书48页); 2.要理解整个说法的完整性切不可断章取义。如 不能误解为热不能转变为功,因为热机就是一种把 热转变为功的装置;也不能认为热不能完全转变为 功,因为在状态发生变化时,热是可以完全转变为 功的(如理想气体恒温膨胀即是一例) 3.热二律与热一律同样都是建立在无数客观事实基础 上的客观规律。至今还没有发现违背热二律的事实。
平衡
20
(2)真空膨胀 熵是状态函数,始终态相同,系统熵变也相同, 所以:
S sy 19.14 J K
1
S su
Q pra Tex
0
Sis Ssy Ssu 19.14 J K 1 0
自发过程
21
恒容变温
QV= dU = nCV,mdT
S
4
自发过程的定义
没有环境的影响下而能自动发生的过程 自发过程的特点 有方向的,有限度的,是不可逆过程。 要正确理解自发过程具有单向性(不可逆)的含义: 并不是其不能反向进行,环境对系统做功,可以使 系统复原,如利用水泵引水上山;利用空调机,可 以把热量从低温物体传到高温物体,但是一定在环 境中留下痕迹。 5
22
PVT均变化的ΔS的计算-理想气体
( p1 ,V1 , T1 ) ( p2 , V2 , T2 )
恒容 SV
S
( p ',V1 , T2 )
恒温 ST
T2 V2 S SV ST nCV ,m ln nR ln T1 V1
23
( p1 ,V1 , T1 ) ( p2 , V2 , T2 )
V2 p2 Qr Wr nRT ln nRT ln V1 p1 Qr V2 p2 S nR ln nR ln T V1 p1

第三章 热力学第二定律

第三章 热力学第二定律
物理化学
滨州学院化工与安全学院
2.吉布斯自由能判据
如果系统在恒温、恒压、且不作非膨胀功的条件下,
dGT , p,W / =0 0 GT , p,W / =0 0
=
可逆
平衡
不可逆 自发
不能自发
即恒温、恒压不做非体积功的系统中,自发变化总是 朝着吉布斯自由能减少的方向进行,直到达到平衡为 止。
=
可逆
平衡
不可逆 自发
不能自发
在恒温、恒容、不做非体积功的条件下,自发变化 总是朝着亥姆霍兹自由能减少的方向进行,直到达到平 衡为止。
物理化学
滨州学院化工与安全学院
(三)吉布斯自由能 1.吉布斯自由能函数
G def H −TS
G称为吉布斯自由能(Gibbs free energy),是 状态函数,具有容量性质。
S = QR T
S = nR ln(V2 ) = nR ln( p1 )
V1
p2
(2)理想气体(或理想溶液)的等温混合过程,并
符合分体积定律,即
mixS = −R nB
xB =
ln xB
VB V总
B
(3)等温等压可逆相变(若是不可逆相变,应设计
可逆过程)
S
(相变)=
H (相变) T (相变)
物理化学
ln
T2 T1
物理化学
滨州学院化工与安全学院
(3)一定量理想气体从 p1,V1,T1 到 p2 ,V2 ,T2 的过程。
a. 先等温后等容 S = nR ln(V2 ) + T2 nCV ,mdT
⎯若⎯CV⎯,m =常 ⎯⎯数→
S
=
nR
ln
V2 V1

教科版高中物理选择性必修第三册第三章第3节热力学第二定律

教科版高中物理选择性必修第三册第三章第3节热力学第二定律

全部转化(自发) 对第三者有影响
内能(热)
2.注意:在热力学第二定律的表述中,“自发地”“不产生其他影响”“单一热源”“不可能”的含义
①“自发地”是指热量从高温物体“自发地”传给低温物体的方向性.在传递过程中不会对其他物体 产生影响或借助其他物体提供能量等.
②“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热 力学方面的影响.如吸热、放热、做功等.
机械能和内能的转化过程具有方向性
自发 全部
自发 全部ຫໍສະໝຸດ 思考:满足能量守恒定律的过程是否都能实现呢?
物体间的传热
温度由高到低
热现象
气体的膨胀 扩散现象
特定的方向
体积由小到大 密度由密到疏
有摩擦的机械运动
由机械能到内能
无数事实告诉我们,凡是实际的过程,一切与热现象有关的宏观
自然过程都是不可逆的。
反映宏观自然过程的方向性的定律就是热力学第二定律。
一辆汽车在水平地面上滑行,由于克服摩擦力做功,最后要停 下来。在这个过程中,物体的动能转化成为内能,使物体和地面的 温度升高.
我们能不能看到这样的现象:一辆汽车靠降低温度,可以把内 能自发地转化为动能,使汽车运动起来.
有人提出这样一种设想,发明一种热机,用它把物体与地面 摩擦所生的热量都吸收过来并对物体做功,将内能全部转化为动 能,使因摩擦停止运动的物体在地面上重新运动起来,而不引起 其它变化.
Q1
Q1
,热机从热源吸取的热量Q1全部变
成功W,即Q2=0,该机器唯一的结果就是从单一热源吸取热量全部变成功而不
产生其它影响。此时热机的效率η=1(100%), η=1的热机称为第二类永动机。
4.理解:

第三章_热力学第二定律

第三章_热力学第二定律

deS—外熵变 diS—内熵变
当diS>0时, dS>0 为不可逆过程 当diS=0时, dS=0 为可逆过程 diS≥0 体系内的熵产生永远不能为负值
39
§3-7 非平衡体系的热力学
孤立体系:
S
U ,V
0
处理方法: ①用距离非平衡态最近的平衡态描述。
②把非平衡态分割成无数小的平衡态, 然后将其加和起来描述非平衡态的性 质。
H1 H2 H3 Tsur
37
3. 恒温非恒压不可逆相变
例: H2O(l)
向真空
100℃,pθ T环=100℃
[ T ]可逆
S H相变 T
Ssur
Qsur Tsur
Q Tsur
U T
H2O(g) 100℃,pθ
( pV ) H pVg H
T
TT
38
§3-6 熵产生原理
任意体系: dSsys=deS+diS 孤立体系: deS=0
40
§3-8 自由能
8-1 目的 用自由能判别任一过程的方向和限度
8-2 Helmholtz 自由能 A (or F 功函)
一、定义
封闭体系
Q
S Tsur
dS Q
Tsur
温度恒定时: d S Q
T
d(TS) Q
Q Q dU W d(TS) dU W
判别过程的方向和限度 5.发展史: 热机Carnot热机卡诺定理 经典
第二定律表述 熵函数 S=klnΩ 熵产生
2
§3-2 Carnot定理
2-1 热机 1. 热机:将热量转化为机械功的装置 2. 热机过程 工作物质: 水
①恒温气化 ②绝热膨胀做功 ③恒温液化 ④绝热压缩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章热力学第二定律
1. 5 mol He(g)从273.15 K和标准压力101.325 kPa变到298.15K和压力
p=10×101.325 kPa, 求过程的ΔS。

(已知C(V,m)=3/2 R)
2. 0.10 kg 28
3.2 K的水与0.20 kg 313.2 K 的水混合,求ΔS。

设水的平均比热为
4.184kJ/(K·kg)。

3. 实验室中有一大恒温槽(例如是油浴)的温度为400 K,室温为300 K。

因恒温槽绝热不良而有4000 J的热传给空气,用计算说明这一过程是否为可逆?
4. 在298.15K的等温情况下,两个瓶子中间有旋塞连通。

开始时,一放0.2 mol O2,压力为0.2×101.325kPa,另一放0.8 mol N2,压力为0.8×101.325 kPa,打开旋塞后,两气体互相混合。

计算:
(1)终了时瓶中的压力。

(2)混合过程中的Q,W,ΔU,ΔS,ΔG;
(3)如果等温下可逆地使气体回到原状,计算过程中的Q和W。

5.(1)在298.2 K时,将1mol O2从101.325 kPa 等温可逆压缩到6×101.325 kPa,求Q,W,ΔU m,ΔH m,ΔF m,ΔG m,ΔS m,ΔS iso
(2)若自始至终用6×101.325 kPa的外压等温压缩到终态,求上述各热力学量的变化值。

6. 在中等的压力下,气体的物态方程可以写作pV(1-βp)=nRT。

式中系数β与气体的本性和温度有关。

今若在273K时,将0.5 mol O2由1013.25kPa的压力减到101.325 kPa,试求ΔG。

已知氧的β=-0.00094。

7. 在298K及101.325 kPa下,一摩尔过冷水蒸汽变为同温同压下的水,求此过程的ΔG m。

已知298.15K时水的蒸汽压为3167Pa。

8. 将298.15K 1 mol O2从101.325 kPa绝热可逆压缩到6×101.325 kPa,试求Q,W,ΔU m, ΔH m, ΔF m, ΔG m, ΔS m和ΔS iso(C(p,m)=7/2 R)。

已知
(298K,O2)=205.03 J/(K·mol) 。

9. 在298.15K和101.325 kPa时,反应H2(g)+HgO(s)=Hg(l)+H2O(l) 的为195.8 J/mol。

若设计为电池,在电池
H2(101.325 kPa)|KOH(0.1 mol/kg)|HgO(s)+Hg(l)中进行上述反应,电池的电动势为0.9265 V,试求上述反应的
Δr S m和Δr G m。

10. 某一化学反应若在等温等压下(298.15K,101.325 kPa)进行,放热40 kJ,若使该反应通过可逆电池来完成,则吸热4.0 kJ。

(1)求该化学反应的Δr S m。

(2)当该反映自发进行时(即不做电功时),求环境的熵变及总熵变。

(3)计算体系可能做的最大功。

11.一摩尔单原子理想气体始态为273 K,101.325 kPa ,计算经过下列变化后的各个ΔG m。

设该条件下气体摩尔熵为100 J/(K·mol)。

(1)恒压下体积加倍。

(2)恒容下压力加倍。

(3)恒温下压力加倍。

12.将1 mol H2O(g)在373 K下小心等温压缩,在没有灰尘情况下获得了压力为2×101.325 kPa的过热蒸汽,但不久全凝聚成液态水,请计算这凝聚过程的
ΔH m,ΔG m和ΔS m。

H2O(g,373K,2×101.325 kPa) --> H2O(l,373K, 2×101.325 kPa) 已知:在这条件下,水的汽化热为46.024 kJ/mol,设气体为理想气体,水的密度为1000 kg*m-3,液体体积不受压力影响。

13.在温度为298 K,压力为101.325 kPa下,C(金刚石)和C(石墨)的摩尔熵分别为2.45和5.71 J/(K·mol),其燃烧热依次为-395.40和-393.51 kJ/mol, 又其密度分别为3513和2260 kg·m-3。

试求:
(1)在298.15K及101.325 kPa下,石墨到金刚石的;
(2)哪一种晶形较为稳定?
(3)增加压力能否使不稳定的晶体变成稳定的晶体,如有可能,则需要加多大的压力?
14.设某气体其状态方程式为 pV=RT+ap(式中a 是常数)。

求等温可逆膨胀过程中W,Q和ΔH的表示式。

15.当外压降到66.87 kPa时,水的沸点为若干度?已知(298K,H2O)
为40.67 kJ/mol 。

16.溜冰鞋下面的冰刀与冰接触的地方,长度为7.62 cm,宽度为2.45× cm。

(1)若某人的体重为60 kg,试问施加于冰的压力为若干?
(2)在该压力下冰的熔点为若干?
(已知冰的融化热为6.01 kJ/mol, =273.16 K,冰的密度为920 kg·m-3, 水的密度为1000 kg·m-3 )。

17.正已烷的沸点是342.2 K,假定他服从楚顿规则,试估计298.2 K时正己烷的蒸汽压。

18.乙烯的蒸汽压与温度的关系可写作
试求乙烯在正常沸点169.3 K的蒸发热。

19.纯水蒸汽压在298.2 K时为3167.4 Pa,试问水在压力的空气中其蒸汽压为若干?
20.苯在正常沸点353K下的 =30.77 kJ/mol,今将353K及101.325 kPa
下的 1 mol C6H6(l) 向真空等温蒸发为同温同压的苯蒸汽(设为理想气体)(1)请求计算在此过程中苯吸收的热量Q与作的功W。

(2)求苯的摩尔气化熵和摩尔气化自由能。

(3)求环境的熵变ΔS环。

(4)应用有关原理,判断上述过程是否为不可逆过程?
(5) 298 K是苯的蒸汽压为多大?。

相关文档
最新文档