八年级勾股定理教学反思

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级勾股定理教学反思范文一

在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师再利用电脑演示直角三角形中勾股定理的探索过程。反复演示几遍,让学生自己感觉并最后体会到勾股定理的结论。通过动画演示体会到解决问题的方法是多种多样,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的解决问题的能力和创新能力。学生在这一过程中各显神通,都得到了解决问题的满足感和自豪感。

在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。

最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。只是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

八年级勾股定理教学反思范文二

我用了4课时讲授了八年级下册数学人教版的第十八章第一节勾股定理,第一课时我主要讲授的是勾股定理的探究和验证,并举例计算有关直角三角形已知两边长求第三边的问题;第二课时我主要讲授了各种类型的有关直角三角形边长或者面积相关问题;第三课时讲授了如何用勾股定理解决生活中的实际问题;第四课时主要讲授了怎样在数轴上找出无理数对应的点。这4个课时我采用的教学方

法是:引导—探究—发现法;为学生设计的学习方法是:自主探究与合作交流相结合。

第一课时的课堂教学中,我始终注意了调动学生的积极性.兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,我都注意去调动学生,让学生满怀激情地投入到活动中.因此,课堂效率较高.勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破了本节课的难点.

第二课时我依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习。教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点。为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.

第三课时在课堂教学中,始终注重学生的自主探究,由实例引入,激发了学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高,切实体现了学生是数学学习的主人的新课程理念。对于拼图验证,学生还没有接触过,所以,教学中,教师给予了学生适当的指导与鼓励,教师较好地充当了学生数学学习的组织者、引导者、合作者。另外教会学生思维,培养学生多种能力。课前查资料,培养了学生的自学能力及归类总结能力;课上的探究培养了学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。因此,在今后的教学中还需要进一步关注学生的实验操作活动,提高其实践能力。

第四课时我另外向学生介绍了勾股定理的证明方法:以赵爽的“弦图”为代表,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系;以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明;以刘徽的“青朱出入图”为代表,“无字证明”。

总的来看,学生掌握的情况比较好,都能够达到预期要求,但介于有关勾股定理的类型题很多,不能一一为学生讲解,但我还是建议将北师大版本中的《蚂蚁怎样走最近》的类型题加入本教材。

八年级勾股定理教学反思范文三

时光稍纵即逝,转眼间一个新的学期又要结束了,回顾已逝的教学时光,可谓百味俱全,其间有一节课我上得最投入、最值得回忆与反思。

记得那是期末的展示汇报课,(主任说可能会有校外的教师来听课。)我当时很有压力,晚上也难以入睡.我选的是《勾股定理》一课。为了上好这节课,我反复研究了去洋思学习的一些记录,努力用新理念新手段来打造我的这节课。当我满怀信心地上完这节课时,我心情愉悦,因为我教态自然得体,与学生合作默契,基本上获得了教学的成功。

1、从生活出发的教学让学生感受到学习的快乐

在“勾股定理”这节课中,一开始引入情景:

平平湖水清可鉴,荷花半尺出水面。

忽来一阵狂风急,吹倒荷花水中偃。

湖面之上不复见,入秋渔翁始发现。

花离根二尺远,试问水深尺若干。

知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。

2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的最短距离,这些都是勾股定理应用的典型例题。

3、名题欣赏:首尾呼应,用“代数方法”解决“几何问题”。印度数学家婆什迦罗(1141-1225年)提出的“荷花问题”比我国的“引葭赴岸”问题晚了一千多年。“引葭赴岸”问题,是我国数学经典著作《九章算术》中的一道名题。《九章算术》约成书于公元一世纪。该书的第九章,即勾股章,详细讨论了用勾

股定理解决应用问题的方法。这一章的第6题,就是“引葭赴岸”问题,题目是:“今有池一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐。问水深、葭长各几何?”“荷花问题”的解法与“引葭赴岸”问题一样。它的出现却足以证明,举世公认的古典数学名著《九章算术》传入了印度。《九章算术》中的勾股定理应用方面的内容,涉及范围之广,解法之精巧,都是在世界上遥遥领先的,为推动世界数学的发展作出了贡献。鼓励学生可以自己利用课余时间查阅相关资料,丰富知识。

4、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生之间的合作。

5、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。

相关文档
最新文档