(完整版)刚体转动守恒定律

合集下载

刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。

2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。

(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。

3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。

练习:1角动量守恒的条件是 。

0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。

物理-定轴转动刚体的角动量定理和角动量守恒定律

物理-定轴转动刚体的角动量定理和角动量守恒定律

或 Lz = I = 恒量
当刚体相对惯性系中某给定转轴的合外力矩为 零时,该刚体对同一转轴的角动量保持不变。
——对转轴的角动量守恒定律
二、定轴转动中的角动量守恒
说明 1、 关于该守恒定律的条件:
Mz Miz 0
特别地,若每一个力的力矩均为零,即 则
二、定轴转动中的角动量守恒
M iz ri Fi sini 0 的几种情况
10
f
20
O1 R1 A
R2 O2 fB
随堂练习
当两圆柱接触处无相对滑动时,两者转速相反
10
20
O1 R1 A
R2 O2 B
且两者接触点的线速率相等!
二、定轴转动中的角动量守恒
由定轴转动的角动量定理
Mz
dLz dt
若刚体所受对转轴的合外力矩 M z 0,则有
dLz d ( I ) 0
dt
dt
二、定轴转动中的角动量守恒
(3) 对共轴非刚体系(其中各质元到转轴的距离可 变则)系:统的转动惯量可变,此时系统对转轴的角动量守恒,
即:I =恒量
• 特别地,若各质元的 保持一致,
Lz =I =恒量
当 I 增大时, 就减小; 当 I 减小时, 就增大 。
二、定轴转动中的角动量守恒
例如:花样滑冰运动员在冰面上旋转时 运动了角动量守恒定律
(1)
(2)
(3)
二、定轴转动中的角动量守恒
2、对转轴的角动量守恒定律的适用范围: • 不仅适用于刚体, • 也适用于绕同一转轴转动的任意质点系。
二、定轴转动中的角动量守恒
3、对转轴的角动量守恒的几种典型表现 (1) 对定轴刚体:I 不变, 大小和方向均不变;

§3-3定轴转动刚体的角动量守恒定律

§3-3定轴转动刚体的角动量守恒定律

v0

1 2 J ml 3
解:系统的合外力矩为零,角动量守恒
mv l mv l 0 m7l
直线运动与定轴转动规律对照
质点的直线运动 dv d2 x dx a 2 v dt dt dt 1 2 Pmv EK mv 2 刚体的定轴转动 d d2 d 2 dt dt dt 1 2 LJ EK J 2
也变, 不变;若 J 变,
3) 内力矩不改变系统的角动量. 4)在冲击、碰撞等问题中 内力矩>>外力矩,角动量保持不变。 5)角动量守恒定律是自然界的一个基本定律.
例1 一根质量为 M ,长为l 的均匀细棒,可绕通 过棒中心的垂直轴 Z ,在 xy 平面内转动。开始时 静止,今有质量为 m 的小球以速度 v0 垂直碰撞 棒的端点,假设碰撞是完全非弹性的,小球与棒碰 撞后粘在一起,试求碰撞后系统转动的角速度
§3-3 定轴转动刚体的角动量守恒定律 一、 定轴转动刚体的角动量定理 由转动定律
d ( ) d ( J ) d L M J J d t d t d t
或写作
t 2
M d t d L
t 2
对于一段时间过程有
M d t d L L L 末 初
t 1 t 1
F
d A F d x
m
M
J
Fdt
d A M d M dt
F ma
M J
0
d t P P F
d t L L M
0

v0
m
M l
x
y
z
解:系统的合外力矩 为零.角动量守恒 碰撞前 球角动量: mv
0

刚体的转动

刚体的转动

第三章 刚体的转动出发点:牛顿质点运动定律刚体的运动分为:平动,定轴转动,定点转动,平面平行运动,一般运动。

§3-1 刚体的平动,转动和定轴转动一 刚体的定义:在无论多大力作用下物体形状和大小均保持不变。

(理想模型)二 平动:在运动过程中,若刚体上任意一条直线在各个时刻的位置始终彼此平行,则这种运动叫做平动。

特征:1 平动时刚体中各质点的位移,速度,加速度相等。

2 动力学特征:将刚体看成是一个各质点间距离保持不变的质点组。

受力:内力和外力对每一个质元:满足牛顿运动定律+=Mi i 对刚体而言:∑(+fi )=∑Mi i⇒∑+∑=∑Mi i显然∑=0 ⇒∑=∑Mi I=∑Mi故:∑F ==M a即:刚体做平动时,其运动规律和一质点相当,该质点的质量与刚体的质量相等,所受的力等于刚体所受外力的矢量和。

三 转动和定轴转动定轴转动的运动学特征:用角位移、角速度、角加速度加以描述,且刚体中各质点的角位移 、角速度、角加速度相等。

ω=dt d θ, α=dtd ω对匀速、匀变速转动可参阅P210表4-2 角量与线量的关系:v=R ωa t=R αa n=ω2R更一般的形式:角速度矢量的定义:=ωγ⨯ , =dtd 显然,定轴转动的运动学问题与质点的圆周运动相同。

例:一飞轮在时间t 内转过角度θ=t b at 3+-c t 4,式中abc 都是常量。

求它的角加速度。

解: 飞轮上某点的角位置可用θ表示为θ=t b at 3+-c t 4,将此式对t 求导数,即得飞轮角速度的表达式为ω=(dtdt b at 3+-c t 4)=a+3b t 2-4c t 3角加速度是角速度对t 导数,因此得α =dt d ω=d td ( a+3b t 2-4c t 3)=6bt-12c t 2由此可见,飞轮作的是变加速转动。

§3-2 力距 刚体定轴转动定律一 力矩:设在转动平面内,=⨯是矢量,对绕固定轴转动,只有两种可能的方向,用正负即可表示,按代数求和(对多个力)。

刚体定轴转动的转动定律

刚体定轴转动的转动定律

R
M
h
Hale Waihona Puke 解法一 用牛顿第二运动 定律及转动定律求解.分 析受力如图所示. 对物体m用牛顿第二 运动定律得 mg T ma 对匀质圆盘形滑轮用 转动定律有 TR J 物体下降的加速度的 大小就是转动时滑轮边缘 上切向加速度,所以
o R M

T
h
a
G
a R 物体m 落下h 高度时的速率为
2
3.试求质量为m 、半径为R 的匀质圆环 对垂直于平面且过中心轴的转动惯量. 解 作示意图如右,由于质 量连续分布,所以由转动 惯量的定义得
J R 2dm
m
dm
o
R

2R 0
m R dl 2R
2
mR 2
4.试求质量为m 、半径为R 的匀质圆盘 对垂直于平面且过中心轴的转动惯量. dr 解 如图所示, 由于质 量连续分布,设圆盘的 R l o r 厚度为l,则圆盘的质量 密度为 m 2 R l
r近日 r远日
v近日
解 彗星受太阳引力的作用,而引力通过了 太阳,所以对太阳的力矩为零,故彗星在运 行的过程中角动量守恒. 于是有 r近日 v近日 r远日 v远日 因为 r近日 v近日 ,r远日 v远日
r近日v近日 所以 r远日 v远日
代入数据可, 得
J r 2dm
m

R 0
1 1 4 r 2r ldr R l mR 2 2 2
2
5. 如图所示,一质 量为M 、半径为R 的匀 质圆盘形滑轮,可绕一 无摩擦的水平轴转动. 圆盘上绕有质量可不计 绳子,绳子一端固定在 滑轮上,另一端悬挂一 质量为m 的物体,问物 体由静止落下h 高度时, 物体的速率为多少?

17定轴转动刚体的角动量守恒定律

17定轴转动刚体的角动量守恒定律
解 : 对于整个系统不考虑轴 间摩擦阻力矩 , 则系统不受外力 矩作用, 碰撞前后角动量守恒 .
m2 vl = Iω − m2ul
1 细棒绕O转动的转动惯量为 I = m1l 2 3 3(v + u )m2 代入上式求得 ω = m1l
m2
u
v
A
O
m1
9
两个共轴飞轮转动惯量分别为J 例4:两个共轴飞轮转动惯量分别为 1、J2,角速度分 别为 ω1 、ω2,求两飞轮啮合后共同的角速度 ω 。啮合 过程机械能损失。 过程机械能损失。 J1 J2 两飞轮通过摩擦达到共同速度,合 解:两飞轮通过摩擦达到共同速度 合 外力矩为0,系统角动量守恒。 外力矩为 ,系统角动量守恒。 L0 = L = C
5
ω0 例1:在摩擦系数为µ桌面上有 细杆, 细杆,质量为 m、长度为 l, 、 , m, l o 以初始角速度 ω0 绕垂直于杆 的质心轴转动, 的质心轴转动,问细杆经过多 µ 长时间停止转动。 长时间停止转动。 以细杆为研究对象,受力分析, 解:以细杆为研究对象,受力分析,重力及桌面的 支持力不产生力矩,只有摩擦力产生力矩。 支持力不产生力矩,只有摩擦力产生力矩。
定轴转动刚体的 角动量守恒定律
1
一、定轴转动刚体的角动量定理
dω d(Iω) dL = = 刚体定轴转动定律: 刚体定轴转动定律: M = Iβ = I dt dt dt 定轴转动刚体角动量 dL ∴M = 定理微分形式 dt
定轴转动刚体所受的合外力矩等于刚体的角动量 对时间的变化率。 对时间的变化率。 dL 两边同时乘以dt并积分 并积分, 将M = 两边同时乘以 并积分,得: dt r
7
人与转盘的转动惯量J 例2:人与转盘的转动惯量 0=60kgm2,伸 伸 臂时臂长为 1m,收臂时臂长为 0.2m。人 , 。 站在摩擦可不计的自由转动的圆盘中心上, 站在摩擦可不计的自由转动的圆盘中心上, 的哑铃。 每只手抓有质量 m=5kg的哑铃。伸臂时转 的哑铃 动角速度 ω1 = 3 s-1,求收臂时的角速度 ω2 。 求收臂时的角速度 解:整个过程合外力矩为0,角动量守恒, 整个过程合外力矩为 ,角动量守恒,

3-2 刚体定轴转动的角动量 角动量定理 角动量守恒定律

3-2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
第三章 刚体与流体
t2 t1
M
dt
J
J11
3 – 2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
二、刚体定轴转动的角动量守恒定律
t2 t1
M
dt
J2
J1
若M 0 , 则J 常量
如果刚体所受合外力矩等于零,或者不受外力矩的 作用,则刚体的角动量守恒.此即角动量守恒定律.
茹科夫斯基转椅
第三章 刚体与流体
3 – 2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
第三章 刚体与流体
3 – 2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
例4 一根长度为L=0.60m的均匀棒,绕其端点O转
动时的转动惯量为J=0.12kgm2.当棒摆到竖直位置
时,其角速度为0=2.4rad/s.此时棒的下端和一质量
第三章 刚体与流体
3 – 2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
M d L d(J) t2 M d t 2d(J)
dt
dt
t1
1
t2 t1
M
dt
J2
J1
——角动量定理
合外力矩的冲量矩(角冲量)
刚体所受合外力矩的冲量矩等于在这段时间内刚体 角动量的增量.
t1 t2时间内,J1 J2
3 – 2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
3-2 刚体定轴转动的角动量 角动量定理 角动量守恒定律 一、刚体定轴转动的角动量 角动量定理
转动定律 M J J d d(J)
dt dt
令 L J,称为绕定轴转动刚体的角动量,则
M dL dt
刚体绕定轴转动时,作用于刚体的合外力矩 M 等于 刚体绕此轴的角动量 L 随时间的变化率.

《大学物理》34刚体定轴转动的角动量定理角动量守恒定律.

《大学物理》34刚体定轴转动的角动量定理角动量守恒定律.
矩为零故角动量守恒。
设子弹射入后杆起摆的角速度为ω,则有:
1 m v 0 a ( ML2 ma 2 ) 3
子弹射入后一起摆动的过程只有重力做功,故系统机 械能守恒。
1 1 L 2 2 2 ( ML ma ) mga (1 cos60 ) Mg (1 cos60 ) 2 3 2
1
2.刚体的角动量定理及守恒定律
刚体所受合外力矩与角加速度关系为
d M J J dt
利用角动量表示
dJ dL M dt dt
刚体绕定轴转动时,作用于刚体的合外力矩等于刚 体绕此轴的角动量对时间的变化率。这是刚体角动 量定理的一种形式。
当合外力矩为零时
d J dL M dt dt
如果质点所受合外力矩为零,则质点的角动量保持不变, 这就是质点的角动量守恒定律。
1. 质点角动量定理及守恒定律
例:我国第一颗人造地球卫星沿椭圆轨道绕地球运动,地心为该椭圆 的一个焦点。已知地球半径 R ,卫星的近地点到地面距离 l ,卫星的远 地点到地面距离 l 。若卫星在近地点速率为 v1 ,求它在远地点速率 v2 。
3.4刚体定轴转动的角动量定理 角动量守恒定律
一、冲量矩 角动量 1.冲量矩
定义:力矩与力矩作用时间的乘积称为冲量矩。
数学表达:
M dt
0
t
2.角动量
整个刚体的角动量就是刚体上每一个质元的角动 量——即每个质元的动量对转轴之矩的和。
2.1质点的角动量
o
r
v
o
L
m

L
r
m
J 恒量
如果物体所受合外力矩为零,或不受外力矩的作用, 物体的角动量保持不变,这就是角动量守恒定律。

刚体定轴转动的角动量定理和角动量守恒定律课件

刚体定轴转动的角动量定理和角动量守恒定律课件
转动惯量的特性
只与刚体的质量和各质点到转动轴 的距离有关,与转动角速度的大小 无关。
02
角动量定理
角动量的定义与性质
角动量的定义
角动量是描述刚体转动状态的物理量 ,等于刚体的转动惯量乘以角速度。
角动量的性质
角动量是矢量,具有方向和大小;对 于定轴转动,角动量位于转轴上;角 动量是相对量,与参考系的选择有关 。
理解角动量守恒定律的证明方法是深入理解该定律的重要途径。
详细描述
证明角动量守恒定律的方法主要有两种,一种是基于牛顿第二定律和转动定理推导,另一种是通过分析系统的能 量变化来证明。通过这些证明方法,可以更深入地理解角动量守恒定律的物理意义和适用条件。
04
刚体定轴转动的实例 分析
刚体定轴转动的实例介绍
角动量守恒定律的内容及应用
总结词
掌握角动量守恒定律的内容及应用是解决实际问题的关键。
详细描述
角动量守恒定律表明,对于不受外力矩或所受外力矩的矢量和为零的系统,其总角动量保持不变。这 一原理在日常生活、工程技术和科学研究中有广泛的应用,如行星运动、陀螺仪、火箭飞行等。
角动量守恒定律的证明方法
总结词
陀螺仪
风扇
陀螺仪是一个典型的刚体定轴转动实 例,其工作原理就是角动量守恒定律 。
当风扇的扇叶旋转时,可以将其视为 刚体定轴转动,这个过程涉及到角动 量定理的应用。
自行车轮
自行车轮在转动时,也是一个刚体定 轴转动的例子,其转动惯量对于理解 角动量定理和角动量守恒定律非常有 帮助。
刚体定轴转动的角动量定理应用实例
舞蹈演员在进行旋转动作时,可以通过改变身体的姿势来改变转动惯量,从而控制旋转的 速度。
刚体定轴转动的角动量守恒定律应用实例

4.3刚体转动角动量 角动量守恒定律

4.3刚体转动角动量 角动量守恒定律

Mdt I2 I1
L I 常量
四 刚体定轴转动的角动量守恒定律 若 M 0 ,则 讨论
守 恒条件
M 0
内力矩不改变系统的角动量.
在冲击等问题中
M in M ex L 常量
角动量守恒定律是自然界的一个基本定律.
有许多现象都可以 用角动量守恒来说明. 花样滑冰 跳水运动员跳水 自然界中存在多种守恒定律 动量守恒定律 能量守恒定律 角动量守恒定律 电荷守恒定律 质量守恒定律 宇称守恒定律等
1 3 J 2 r dr l 0 12 1 ml 2 12
l/2 2
如转轴过端点垂直于棒
1 2 J r dr ml 0 3
l 2
例3 一质量为 m 、半径为 R 的均匀圆盘,求通 过盘中心 O 并与盘面垂直的轴的转动惯量 .
解 设圆盘面密度为 , 在盘上取半径为 ,宽为 dr 的圆环
注意
d
C
mO
I O I C md
2
1 圆盘对P 轴 J P mR 2 mR 2 的转动惯量 2
P
R O m
三 刚体定轴转动的角动量定理
由质点系角动量定理
dLz d ( I ) Mz dt dt
Hale Waihona Puke t2t1M z dt I2 I1
刚体定轴转动的角动量定理

t2
t1
克服直升飞机机身反转的措施:
装置尾浆推动大 气产生克服机身 反转的力矩 装置反向转动的双 旋翼产生反向角动 量而相互抵消
质量为M,长度为L的均匀杆可绕水平轴O在铅直面内 自由转动,一质量为m的小球以水平速度v与杆的下端 相碰,碰后以反向v’运动,求碰后杆的角速度?

定轴转动的角动量定理 角动量守恒定律

定轴转动的角动量定理 角动量守恒定律
O
C
零点, 表示棒这时的角速度, 零点,用ω表示棒这时的角速度,则
l 1 11 2 2 2 mg = J ω = ml ω 2 2 23
( 1)
第二阶段是碰撞过程 。 因碰撞时间极短, 第二阶段是 碰撞过程。 因碰撞时间极短 , 自由的 碰撞过程 冲力极大,物体虽然受到地面的摩擦力, 冲力极大,物体虽然受到地面的摩擦力,但可以忽略 这样,棒与物体相撞时, 。这样,棒与物体相撞时,它们组成的系统所受的对 的外力矩为零,所以, 转轴O的外力矩为零,所以,这个系统的对O轴的角 动量守恒。 表示物体碰撞后的速度, 动量守恒。我们用v表示物体碰撞后的速度,则
讨论: 讨论:
a.对于绕固定转轴转动的刚体,因J保持不变, 对于绕固定转轴转动的刚体, 保持不变 保持不变, 对于绕固定转轴转动的刚体 当合外力矩为零时,其角速度恒定。 当合外力矩为零时,其角速度恒定。
当 M z = 0时, J =恒量
ω
=恒量
b.若系统由若干个刚体构成,当合外力矩为零时,系 若系统由若干个刚体构成,当合外力矩为零时, 若系统由若干个刚体构成 统的角动量依然守恒。 统的角动量依然守恒。J 大→ ω , J 小→ 大。 小 ω
(6)
l h = + 3 µ s − 6 µ sl 2
的匀质细杆, 例13:一长为 l 的匀质细杆,可绕通过中心的固定 13: 水平轴在铅垂面内自由转动, 水平轴在铅垂面内自由转动,开始时杆静止于水平位 置。一质量与杆相同的昆虫以速度 v0 垂直落到距点 O点 l/4 处的杆上,昆虫落下后立即向杆的端点爬行 处的杆上, ,如图所示。若要使杆以匀角速度转动 如图所示。 求: 昆虫沿杆爬行的速度。 昆虫沿杆爬行的速度。
r r vi ∆m i L r ri

定轴转动刚体的角动量守恒定律

定轴转动刚体的角动量守恒定律

一、刚体的角动量二、转动惯量三、计算转动惯量的三个定理四、定轴转动刚体的角动量定理和转动定理五、刚体定轴转动的角动量守恒定律刚体可以看作是由无数质点组成的质点组.刚体转动状态发生变化的原因是受到力矩的作用,力矩作用的时间累积效应将是什么?z 一、刚体的角动量质点以角速度ω作半径为r 的圆周运动时相对圆心的角动量为ωmr L 2=刚体可看作是特殊的质点系.对于图示刚体,可看作由许多可视为质点的微元组成.i i i i v m r L ∆⨯=定轴转动的整个刚体ωr m v m r L i i i i i i i ⎪⎭⎫ ⎝⎛∆=∆⨯=∑∑2∑∆=i ii r m J 2令O im ∆ωiv ir ωJ L =AωJ L=考虑到定轴转动刚体的特征,第i 个微元令J =mr 2ωr m i i 2∆=2iii r m J ∑∆=二、转动惯量物理意义:刚体定轴转动惯性大小的量度.质量离散分布刚体的转动惯量++=∆=∑2222112r m r m r m J i ii 转动惯量的计算方法质量连续分布刚体的转动惯量⎰⎰==mmmr J J d d 2刚体绕定轴Oz 的转动惯量(rotational inertia).◆质量线分布(质量线密度为λ):d m =λd l ◆质量面分布(质量面密度为σ):d m =σd S ◆质量体分布(质量体密度为ρ):d m =ρd V单位:kg ·m 2量纲:ML 2设棒的线密度为λ,在距离转轴OO'为r 处取线元d r r m d d λ=3d 22ml r r J l==⎰λ1212d 232/2/2ml l r r J l l ===⎰-λλrr m r J d d d 22λ==一质量为m 、长为l 的均匀细长棒,求:(1)通过棒中心并与棒垂直的轴的转动惯量,(2)通过棒端点并与棒垂直的轴的转动惯量.(2)同理,若转轴过端点垂直于棒有例2l 2l -rrd m d rOO'lrrd m d OrO'(1)根据题意作右图.建立Or 坐标系.解线元质量线元转动惯量棒的转动惯量例⎰=mJ J d 一质量为m 、半径为R 的均匀细圆环,求通过盘中心O 并与环面垂直的轴的转动惯量.建立图示直角坐标系θλλd d d R l m ==线元质量θλd d d 32R m R J ==线元绕轴的转动惯量mRO解设圆环线密度为λ圆环绕轴的转动惯量θd πRm 2=λ⎰=πθλ203d R 32R πλ=2mR=xy zθld 在环上取线元d l例5-4⎰=mJ J d 一质量为m 、半径为R 的均匀圆盘,求通过盘中心O 并与盘面垂直的轴的转动惯量.建立图示直角坐标系θσσd d d d r r S m ==面元质量θπσd d 2d d 32r r m r J ==面元绕轴的转动惯量mRO 解1设圆盘面密度为σ,在盘上取面元d S圆盘绕轴的转动惯量rr d +r Sd θθd xyz2πR m σ=⎰⎰=R r σr 0203d d 2πθπ42R σπ=221mR=m⎰=mJ J d 设圆盘面密度为σ,在盘上取半径为r ,宽为d r 的圆环rr m d 2d πσ=圆环质量rr m r J d 2d d 32πσ==圆环绕轴的转动惯量Rr rd O解22πRm σ=⎰=Rr σr 03d 2π42R σπ=221mR=圆盘绕轴的转动惯量几种常见刚体的转动惯量2mrJ =rm质量为m 的质点绕轴转动质量为m 长为l 的均匀细棒绕轴转动2121ml J =轴在中心231mlJ =轴在一端221mR J =RmO 质量为m 半径为R 的均匀圆盘或圆柱体绕轴转动2mR J =R mO质量为m 半径为R 的均匀圆环绕轴转动232mR J =质量为m 半径为R 的均匀薄球壳绕轴转动R mO252mR J =质量为m 半径为R 的均匀球体绕轴转动R mO影响因素◆刚体的总质量:形状、大小和转轴都相同的匀质刚体,总质量越大,则转动惯量越大.◆刚体质量分布:总质量、形状和转轴都相同的刚体,质量分布离轴越远,转动惯量越大.◆转轴位置:同一刚体,对不同位置的转轴,其转动惯量不同,转轴离质心越远,转动惯量越大.三、计算转动惯量的三个定理质心及其确定方法刚体的运动=平动+转动刚体做平动时,刚体上各点运动都相同,可用其上任何一点的运动来代表整个刚体的运动.绝大多数情况下都是用刚体上的一个特殊点——质心的运动代表整个刚体的平动.质心(center of mass)就是质点系或刚体的质量分布中心.质点系的质心∑∑=iii C mr m r直角坐标系中Cx km z m j m y m i mx m ii i i i i iii ∑∑∑∑∑∑++=Cy Cz刚体的质心直角坐标系中⎰⎰=m mr r C d d Cx 可以证明:质量分布均匀、且为对称性的刚体,其质心在对称面或对称轴上,若有对称中心,它就是刚体的质心.如匀质的细棒、圆盘、圆环、球、平行四边形薄板、矩形薄板等,质心分别在其对称中心.若刚体由几部分组成,要确定其质心,应先求每一部分的质心,并认为每一部分的质量集中在其各自的质心上,再将各部分看作质点系,求其总质心.kmm z j m m y i m m x ⎰⎰⎰⎰⎰⎰++=d d d d d d Cy Cz1 平行轴定理如图,刚体的质心为C .CD 为过质心的轴,MN 为与CD 平行的任意轴.d m 是构成刚体的任一质量元,位于点P .过d m 作垂直于二轴的平面与两轴的交点分别为D 、M .ρ'为d m 到MN 轴的垂距.ρ为d m 到OC 轴的垂距.d 为两平行轴间距.C P ρ 'd zx y O mdcr r ρ N MD 以O 为原点建立图示直角坐标系.刚体对MN 轴的转动惯量为⎰'=mm J d 2ρdr r r CD CD CP⊥-= ,ρ⎰⎰⋅=⋅mCP m m r d m d d 2d 2 ρ()⎰⎰-=m c m CP m r r m r d d 质量为m 的刚体,如果对其质心轴的转动惯量为J C ,则对任一与该轴平行,相距为d 的转轴的转动惯量为J C +md 2——平行轴定理2mdJ J C +=CJ J =min ()⎰-=m md d 2 ρ⎰⎰⎰⋅-+=mm m md m d m d 2d d 22ρρ =J C =md 2⎰⎰-=m c m m r m r d d⎰⎰-=mc mm r mmr md d 0=-=c c r m r m =0CPrCPrr 2=x 2+y 2Oz设有如图所示薄板状刚体.2正交轴定理yxmd r 过板上任一点O 建立直角坐标系Oxyz ,薄板在Oxy 平面内.取质量元d m ,位置如图.x y 薄板绕Ox 轴的转动惯量:⎰⎰==mm xx my J J d d 2薄板绕Oy 轴的转动惯量:⎰⎰==mmyy mx JJ d d 2薄板绕Oz 轴的转动惯量:⎰=mz z J J d yx z J J J +=薄板状刚体绕对于板面内的两条正交轴的转动惯量之和,等于薄板对过该二轴交点且垂直于板面的那条轴的转动惯量——正交轴定理.⎰=mmr d 2⎰⎰+=mmmy m x d d 22xJ y JmOR例半径为R ,质量为m 的匀质圆盘,求(1)通过圆盘边缘且与盘面垂直的轴的转动惯量,(2)通过圆盘直径轴的转动惯量.利用转动惯量的定义求解J解1(1)建立图示直角坐标系Oxyz ,原点在盘心,Oxy 与盘同面.m d 任取质量元d m ,位置如图由转动惯量的定义有()⎰⎰⎰⎰⎰⋅-+=-='=mm m m m m d r m d m r m d r m r J d 2d d d d 2222 r xyzr '2221d mR J m r oz m ==⎰222d mR md m dm ==⎰0d d d =⋅=⋅=⋅=⋅⎰⎰⎰c m m m r d m m m r m d m r d m d r 22223021mR mR mR J =++=d过盘边缘且垂直于盘面的轴如图,设盘对它的转动惯量J .mO R (2)建立图示直角坐标系Oxyz ,原点在盘心,Oxy 与盘同面,Ox 和Oy 都是过圆盘直径的轴.r m d θθd r r d +取质量元d m ,位置如图Sm d d σ=由转动惯量的定义有()24203220224141d d sin d d sin d mRR rr r r r m y J RR mx =⋅⋅====⎰⎰⎰⎰⎰πσθθσθσθππ由题意有2R m πσ=θθsin d d d r y r r S ==,又 同理可得2241d mR m x J m y ==⎰xyzRmO利用平行轴定理和正交轴定理求解.(1)由平行轴定理得2mdJ J C +=Rd mR J C ==,2212222321mRmR mR J =+=dJCJ (2)建立图示坐标系,原点位于盘心,盘面与Oxy 同平面.RmOC J xyz221mR J J C z ==由正交轴定理得yx z J J J +=由质量分布对称性有yx J J =241mRJ J y x ==对Oz 轴有解xy Ozα例一质量为m 、长为L 的均匀细棒放在Oxy 平面内,棒与x 轴成α角,其中心在O 点.求棒对x 、y 和z 轴的转动惯量.细棒的质量密度为lm d d λ=在细棒上取长为d l 的质量元由正交轴定理Lm =λ⎰=mx x J J d ()ααλαλλ22232222cos 121cos 121d cos d d mL L ll l x J J L L m my y =====⎰⎰⎰-2121mL J J J y x z =+=ld x ly⎰=ml y d 2λ()⎰-=222d sin L L l l αλαλ23sin 121L =α22sin 121mL =解例解1半径为R ,质量为m 的匀质圆环,求通过沿圆环直径的轴的转动惯量.环的质量密度为R m πλ2=θθd md r在环上取质量元d m θλd d R m =d m 到转轴的距离为θcos R r =R⎰=mm r J d 2解2利用转动惯量的定义求解利用正交轴定理求解对过环心并与环垂直的轴的转动惯量为222d d mR mRm R J mmO ===⎰⎰由对称性有221mRJ J y x ==md R Oyx由正交轴定理有yx O J J J +=()⎰=πθλθ202d cos R R ⎰=πθθλ2023d cos R3R πλ=221mR=设有如图所示刚体,由圆板A 、细杆B 及矩形板C 组成.3组合定理刚体对过圆心O 且垂直于圆板的轴的转动惯量为CB A J J J J ++=由几个部分组成的刚体对某轴的转动惯量,等于刚体各部分对该轴的转动惯量之和——转动惯量的组合定理.ABCO∑∆=2i i r m J ()2222211kk rm r m r m ∆++∆+∆= ()2222221n n k k k k r m r m rm ∆++∆+∆+++++ ()2222221ss n n n n rm rmrm∆++∆+∆+++++ AB C∑∑∑∆+∆+∆=CCiCi BBiBi AAiAi rm r m r m 222∑=iJ J 一般地例一质量为M 、半径为R 的均匀圆盘,沿其直径对称地挖出半径为r 的两个圆孔,孔心距为R .求剩余部分对过盘心且与盘面垂直的轴的转动惯量.采用补偿法,挖孔后的圆盘可看作由三部分组成:R Or O ''r O 'R 半径为R 的匀质圆盘O ,质量为半径为r 的匀质圆盘O ',质量为半径为r 的匀质圆盘O ",质量为解MR M =⋅=21πσ2222RMrr M -=⋅-=πσ2223RMrr M -=⋅-=πσ圆盘质量分布的面密度为2RM πσ=R Or O ''rO 'R 由平行轴定理,匀质圆盘O '和O ''对过O 且垂直于盘面的轴的转动惯量分别为⎪⎪⎭⎫⎝⎛+-=⎪⎭⎫⎝⎛+=21222222222R r Mr R M J J C O ⎪⎪⎭⎫ ⎝⎛+-=++=21212222321R r Mr MR J J J J O O C O 22112121MRR M J C ==24222221RMr r M J C -==它们对各自质心轴(垂直于盘面)的转动惯量分别为24233221RMr r M J C -==由组合定理,挖孔后的盘对过O 且与盘面垂直的轴的转动惯量为⎪⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+=21222222333R r Mr R M J J C Oz四、定轴转动刚体的角动量定理和转动定理∑∑+=iin iiex i M M M ()ω2d d d d i i i i r m t t L M ∆==如图,第i 个微元定轴转动刚体的角动量定理in iex i i M M M +=()ωJ tt L M d d d d ==刚体绕定轴转动时,作用于刚体的合外力矩等于刚体绕此定轴的角动量随时间的变化率——刚体定轴转动的角动量定理(微分形式).O im ∆ωiv ir A对整个刚体而言⎪⎭⎫ ⎝⎛∆==∑∑ω i i i i ex i r m t M 2d d =0刚体绕给定轴转动时,作用在刚体上的合外力矩的冲量距等于刚体对该轴的角动量的增量——刚体定轴转动的角动量定理(积分形式).12122121d d ωω J J L L L t M t t t t -=-==⎰⎰非刚体定轴转动的角动量定理112221d ωJ ωJ t M t t -=⎰()ωJ t M d d =⎰21d t t t M为t 1到t 2时间间隔内合外力矩与时间的乘积,称为刚体相对于给定轴的冲量矩.力矩在一段时间间隔内的累积效应刚体定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =定轴转动刚体的转动定理t L M d d =(刚体定轴转动时J 为常量)刚体所受的相对于某一固定转轴的合外力矩等于刚体对此转轴的转动惯量与刚体在此合外力矩作用下所获得的角加速度的乘积——定轴转动刚体的转动定理.()ω J t d d =tJd d ω =应用转动定理和牛顿第二定律解题的思路(1)明确已知条件和待求量,确定研究对象;(2)取隔离体,受力分析;(3)选坐标,应用转动定理或牛顿第二定律列方程;(4)计算力矩和转动惯量;(5)由约束关系补充运动学方程;(6)求解,讨论.如图A 所示,滑轮与轴间无摩擦,质量为m 的物体由轻绳悬挂滑轮下面,绳与滑轮间无相对滑动.若以大小为F =mg 的力代替物体m ,则滑轮转动的角加速度().A .βA <βB B .βA >βB C .βA =βB D .无法确定例设物体滑轮半径和转动惯量分别为r 和J .解由刚体定轴转动定理有A A J rT β=由牛顿第二定律有对图A :设物体加速度大小为a ,轻绳张力大小为T A ,则maT mg A =-滑轮边缘线加速度大小m A FB Ar a β=2mrJ rmgA +=β对图B :轻绳张力大小为T B ,则由刚体定轴转动定理有B B J rT β=由轻绳性质有F T B =由题意有mgF =Jrmg B =βA BA ββ<飞轮的质量为什么大都分布于外轮缘?2mRJ =圆环221mR J =圆盘刚体定轴转动定理βJ M =在同样质量和半径的情况下,圆环比圆盘更稳定!⎪⎪⎩⎪⎪⎨⎧====222mR M J M mR M J M 圆环圆环圆盘圆盘ββ圆环圆盘ββ>在同样半径的情况下,要获得同样的角加速度,圆环比圆盘更轻!Oθ竿子长些还是短些较安全?细竿对过支点O 的轴刚体定轴转动定理βJ M =231Lm J 竿竿=N F g m 杆g m 人演员对过支点O 的轴2Lm J 人人=总转动惯量竿人J J J +=J M =β细竿的重力矩()向里竿竿sin 21θgL m M =演员的重力矩()向里人人 sin θgL m M =总力矩竿人M M M +=()()Lm m θg m m 3sin 2竿人竿人++=L越大β越小,系统越稳定.即竿越长越安全!走钢丝的演员总是伸开双臂或横握一根长竿,也是同样的道理.C员演C 3m A B R例5-5如图,一轻绳跨过一定滑轮C ,滑轮视为匀质圆盘,绳的两端分别悬有质量为m 1和m 2的物体A 和物体B ,m 1<m 2.设滑轮的质量为m 3,半径为R ,滑轮与轴承间的摩擦力可略去不计,绳与滑轮之间无相对滑动.试求:(1)物体的加速度和绳的张力;(2)若不计滑轮质量,结果如何?(1)分别取A 、B 为质点,取图示Oy 坐标系,受力分析如图gm 1gm 22T a 1'T2'T 1T a-βC 绕定轴转动,由转动定理得由角加速度和切向加速度的关系得⎩⎨⎧-=-=-a m g m T am g m T 222111 :B :A βJ R T'R T'=-12βR a =由牛顿第二定律得C 为刚体,受力分析如图Oy解联立以上各式得gm m m m m a 232112++-=22112321T T'T T'R m J ===,,gm m m m m m m T 22232113211+++=gm m m m m m m T 22232123212+++=(2)当m 3=0时有gm m m m T T 2121212+==gm m m m a 2112+-=T 1≠T 2Oθ例5-6如图,一长为l 、质量为m 匀质细杆竖直放置,其下端与一固定铰链O 相接,并可绕其转动.由于此竖直放置的细杆处于非稳定平衡状态,当其受到微小扰动时,细杆将在重力作用下由静止开始绕铰链O 转动.试计算细杆转动到与竖直线成θ角时的角加速度和角速度.()J βθmgl =-πsin 21l2l ()32ml J =t ωβd d =θlg βsin 23=由角加速度的定义θθlg ωωd sin 23d =代入初始条件积分得()θlgωcos 13-=N F P由题意,t =0时,θ=0,ω=0,β=0.细杆受重力和铰链对细杆的约束力作用.PN F由转动定理得t θθωd d d d ⋅=θωωd d =解()ωJ t t L Md d d d ==112221d ωJ ωJ t M t t -=⎰五、刚体定轴转动的角动量守恒定律➢角动量守恒定律是自然界的一个基本定律.➢内力矩不改变刚体的角动量.讨论刚体所受的合力矩为零,或不受外力矩作用时,刚体的角动量保持不变——质点的角动量守恒定律.恒量,则若===ωJ L M 0➢守恒条件:0=M 若J 不变,不变;若J 变,也变,但不变.ω ω ωJ L =➢在冲击等问题中,恒量.,≈∴>>L M M ex in应用举例跳水运动员茹科夫斯基凳ωJ L =21ωω<⇒图1图20=轴M2211ωωJ J =⇒21L L =⇒∑=2ii r m J 21J J >⇒茹科夫斯基凳分析例5-7如图,一杂技演员M 由距水平跷板高为h 处自由下落到跷板的一端A ,并把跷板另一端的演员N 弹了起来.设跷板是匀质的,长度为l ,质量为m',跷板可绕中部支撑点C 在竖直平面内转动,演员的质量均为m ,假定演员M 落在跷板上,与跷板的碰撞是完全非弹性碰撞.问演员N 可弹起多高?碰撞前M 落在A 点的速率ghv M 2=2l lhMC NAB 222l mu J ωl mv M +=系统角动量守恒系统:M 、N 和跷板.由于是完全非弹性碰撞,设碰撞后的瞬间系统角速度为ω.2ωl u =122l m J '=ωml ωl m gh ml 2221121221+'=解碰撞后的瞬间M 、N 具有相同的线速率u()lm m gh m ω626+'=解得m m gh m u 623+'=演员N 以u 起跳,达到的高度22632⎪⎭⎫ ⎝⎛+'=='m m m h g u h例5-8如图,宇宙飞船对其中心轴的转动惯量为J =2×103k g ·m 2,它以ω=0.2rad·s -1的角速度绕中心轴旋转.宇航员想用两个切向的控制喷管使飞船停止旋转.每个喷管的位置与轴线距离都是r =1.5m .两喷管的喷气量恒定,共是α=2kg·s -1.废气的喷射速率(相对于飞船周边)u =50m·s -1,并且恒定.问喷管应喷射多长时间才能使飞船停止旋转?系统:飞船和排出的废气设废气质量为m ,由于m 远小于飞船质量,可认为系统绕飞船中心轴的初始角动量近似等于飞船自身的角动量,即ωJ L =0ru -0L gL u2d m 2d m ω整个喷气过程中喷出废气的总角动量设喷管随飞船自转的线速率为v ,d m 为喷气过程中t →t +d t 时间内喷出的气体,则这些气体绕飞船中心轴转动的角动量()v u r m L g +⋅=d d rum L r v u g ⋅≈∴=>>d d ω mruru m L m g =⋅=⎰0d 解所需时间为当飞船停止旋转时,飞船的角动量为零,系统此时的总角动量即为废气总角动量整个喷气过程中,系统所受的对飞船中心轴的合外力矩为零,系统绕飞船中心轴的角动量守恒mruL L g ==mruJ L L =∴=ω 0ruJ m ω=tm α= ()s 67.2≈==ru J mt αωαm R Omh00=v M如图,一个质量为M 、半径为R 的定滑轮(当作均匀圆盘)上面绕有细绳,绳的一端固定在滑轮边上,另一端挂一质量为m 的物体而下垂.忽略轴处摩擦,求物体m 由静止下落高度h 时的速度大小和此时滑轮的角速度.maT mg =- 221 MRJ J TR M ===β'Mm mgh R R v +==241ω242Mm mghah v +==g Mm ma +=22例对M 由转动定理有对m 由牛顿第二定律有联立以上方程解得gm T -TOyβ对m 和M :βR a =解θO一根长为l 、质量为m 的均匀细直棒,其一端有一固定的光滑水平轴O ,因而可以在竖直平面内转动.最初棒静止在水平位置.求它由此下摆θ角时的角加速度和角速度.棒下摆为加速过程,外力矩为重力对O 的力矩.棒上取质元d m ,当棒处在下摆θ角时,重力矩为:⎰⎰=mx g m gx M d d =Cmgx M =∴ 据质心定义cmxm x =⎰d θcos 21l x c =θcos 21mgl M =l g ml mgl J M 2cos 331cos 212θθβ===例md gm d xx解由转动定理有t d d ωβ=ωωθθd d cos 23=lg⎰⎰=ωθωωθθ00d d cos 23lg221sin 23ωθ=l g lg θωsin 3=d d ωωθβ=再求角速度d d d d t θθω=d d θωω=如图,一长为l 、质量为M 的匀质细棒,以顶端静止悬挂于O 处,并可绕其转动.一质量为m 的子弹以速率v 0沿水平方向射入棒的下端,穿出后速度损失3/4,求子弹穿出后棒的角速度ω.例0vmMOvml利用动量定理和角动量定理求解()43d 0mvv v m t F -=-=⎰μ设子弹对棒的反作用力为F ,碰撞后棒的角速度为ω,对棒由刚体绕定轴转动的角动量定理有J ωt F l t Fl ==⎰⎰d d 而F=-F μ,代入上述两式可解得430l mv J ω=32Ml J =Mlmv ω490=设棒对子弹的阻力为F μ,对子弹由动量定理有解1利用角动量守恒定理求解0mlv L =末态角动量mlvJL +=ω联立上述三式得430l mv J ω=32Ml J =解2Mlmv ω490=取子弹和细棒为系统.设子弹穿出瞬间棒的角速度为ω.系统初始角动量细棒的初始和末态角速度分别为0和ω由题意有:子弹的初始速率为v 0,末态速率为v=v 0-3v 0/4=v 0/4子弹与棒的相互作用力为内力,所以系统角动量守恒,即LL =。

大学物理学-刚体的转动定律

大学物理学-刚体的转动定律
1 1 ∆mi vi 2 = ∆mi (riω ) 2 则i质元的动能为 质元的动能为 2 2 则整个刚体的转动动能
ω
v ri
vi
∆mi
v
Ek =

i =1
n
1 1 n 1 2 2 2 2 ∆ m i ri ω = ( ∑ ∆ m i ri )ω = J ω 2 2 2 i =1 2
刚体绕定轴转动时的转动动能等于刚体的转动惯量 与角速度平方乘积的一半. 与角速度平方乘积的一半.
第2章 运动定律与力学中的守恒定律
支架S 支架S
外环 陀螺G 陀螺G 内环
2–6 刚体的定轴转动 6 直升机螺旋桨的设置
尾桨的设置: 尾桨的设置:直升机发动后机身要在旋翼旋转相反方向旋 产生一个向下的角动量。 转,产生一个向下的角动量。为了不让机身作这样的反向 旋转,在机身尾部安装一个尾桨, 旋转,在机身尾部安装一个尾桨,尾桨的旋转在水平面内 产生了一个推力,以平衡单旋翼所产生的机身扭转作用。 产生了一个推力,以平衡单旋翼所产生的机身扭转作用。 对转螺旋桨的设置:双旋翼直升机则无需尾桨, 对转螺旋桨的设置:双旋翼直升机则无需尾桨,它在直立 轴上安装了一对对转螺旋桨, 轴上安装了一对对转螺旋桨,即在同轴心的内外两轴上安 装了一对转向相反的螺旋桨。工作时它们转向相反, 装了一对转向相反的螺旋桨。工作时它们转向相反,保持 系统的总角动量仍然为零。 系统的总角动量仍然为零。
力矩的功
A=
∫θ
θ2
1
M dθ
力矩的功率 力矩的功率
dA dθ P= =M = Mω dt dt
第2章 运动定律与力学中的守恒定律
2–6 刚体的定轴转动 6
9
3、刚体定轴转动的动能定理 、

刚体的转动 角动量守恒定律

刚体的转动 角动量守恒定律

L
r
mv
二.力矩
M
r
F
大小:M
方向: r
rF F
sin
单位: N m 量纲: ML2T 2
三.角动量定理
质点所受的合外力矩等于它的角动量对时
间的变化率
M
dL
dt
2.8 角动量 角动量守恒定律
一L.角动r量 mv二.力M矩 r三.角F动量定理
M
dL
dt
四.角动量守恒定律:如果对于某一固定点,质 点所受的合外力矩为零,则此质点对该固定
x dx
IB
1 3
m L2
1 mL2 12
m
L 2
2
B A h O质
IC
1 XmL2 12
IA
1 12
m L2
m h2
IB
1 mL2 12
m
L
2
2
平行轴定理:绕任意轴的转 动惯量等于绕过质心的平行 的转动惯量加上质量与两轴 间距的平方
I IC md2
d
A
C
例2)半径为R的质量均匀分布的细圆环及薄圆 盘,质量均为m,试分别求出对通过质心并与 环面或盘面垂直的转轴的转动惯量。
质心运动定理反映了物体的平动规律。
2.刚体的定轴转动 刚体的各质元在运动中都绕一固定轴作圆 周运动,称为刚体作定轴转动。
3.刚体的一般运动
蔡斯勒斯定理:刚体的任一位移总可以表示 为一个随质心的平动加上绕质心的转动。
三. 刚体定轴转动的特点
每一质点都作圆心在轴上,圆平面垂直轴,
且角位置.角速度.角加速度都相同的圆周运动
复习
冲量:
dI Fdt
I
动量定理:

刚体转动守恒定律

刚体转动守恒定律

2
)
2
Ek

1 2
J2
刚体转动动能
三.定轴转动的动能定理
根据定轴转动定理
M d J
dt
则物体在 d时t 间内转过角位移 d 时 dt
外力矩所做元功为:
dA Md d J d Jd d Jd
dt
dt
总外力矩对刚体所作的功为:
A
2 Md
讨论:
a.对于绕固定转轴转动的刚体,因J 保持不变,
当合外力矩为零时,其角速度恒定。
当M z 0时, J =恒量 =恒量
定轴转动刚体的角动量守恒定律
b.若系统由若干个刚体构成,当合外力矩为零时,系
统的角动量依然守恒。J 大→ 小,J 小→ 大。
当M z 0时, Lz J11 J22 恒量
是变力矩,大小等于mg(l /2) cos ,棒转过一极
小的角位移d 时,重力矩所作的元功是
dA mg l cosd
2
在使棒从水平位置下摆到竖直位置过程中,重力
矩所作的功是
A dA

02
mg
l 2
cosd

mg l 2
应该指出:重力矩作的功就是重力作的功,也可
用重力势能的差值来表示。棒在水平位置时的角
解 先对细棒OA所受的力
作一分析;重力G 作用在 O

棒的中心点C,方向竖直向
下;轴和棒之间没有摩擦
力,轴对棒作用的支承力N
垂直于棒和轴的接触面且
通过O点,在棒的下摆过
G
程中,此力的方向和大小
是随时改变的。

A
A
定轴转动的动能定理
在棒的下摆过程中,对转轴O而言,支撑力N通过

3-4 刚体定轴转动的角动量定理和角动量守恒定律

3-4 刚体定轴转动的角动量定理和角动量守恒定律

若 M 0 ,则 L r mv 常数
质点所受外力对某固定点的力矩为零,则质点 对该固定点的角动量守恒。这就是质点的角动 量守恒定律。
第3章 刚体力学基础
3–4 刚体定轴转动的角动量定理和角动量守恒定律
4
例3.7 在光滑的水平桌面上,放有质量为M的木块, 木块与一弹簧相连,弹簧的另一端固定在O点,弹簧 的劲度系数为k,设有一质量为m的子弹以初速 v0 垂 直于OA射向M并嵌在木块内.弹簧原长 l0 ,子弹击中 木块后,木块M运动到B点时刻,弹簧长度变为l,此 时OB垂直于OA,求在B点时,木块的运动速度 v2 . 解 击中瞬间,在水平 面内,子弹与木块组成 的系统沿 v0 方向动量守 恒,即有
M t d L L L J J M d t d L L L J J M dd t d L L M L d t J d L J L 0 0 0 0 0 0 L0 0 J J 0 t L L
3–4 刚体定轴转动的角动量定理和角动量守恒定律
24
例3.9 在工程上,两飞轮常用摩擦啮合器使它们以 相同的转速一起转动.如图所示,A和B两飞轮的 轴杆在同一中心线上.A轮的转动惯量为JA=10 kg· m2,B轮的转动惯量为JB=20 kg· m2,开始时A 轮每分钟的转速为600转,B轮静止.C为摩擦啮合 器.求两轮啮合后的转速,在啮合过程中,两轮的 机械能有何变化?
第3章 刚体力学基础
3–4 刚体定轴转动的角动量定理和角动量守恒定律
解 以飞轮A,B,啮合器C为系统,系统受到轴向 的正压力和啮合器之间的切向摩擦力。前者对轴的力 矩为零,后者对轴有力矩,但为系统的内力矩,即系 统所受合外力矩为零,所以系统的角动量守恒,即

5.5 刚体定轴转动的角动量守恒定律

5.5 刚体定轴转动的角动量守恒定律

周期约1.19 s
脉冲星的精确周期性信号
J z const .
星体不被惯性离心力甩散,必须满足条件:
GM 4 2 3 R , ( M R ) 2 3 R
3 2 3 11 3 10 kg / m 4 G GT 2 3 3
恒星 红巨星 中子星 脉冲星是高速旋转的中子星。
5.5 刚体定轴转动的角动量定理和角动量守恒定律
一、角动量定 理 质点系 对点 对轴 刚体
M外
dL dt
Lz J z
M 外z dLz dt
d ( J z ) Mz dt
刚体的角动量定理
二、刚体定轴转动的角动量守恒定律
d ( J z ) Mz dt
M 外z 0
J z

t2 M 外z t1
d t J z 2 J z 1
——刚体定轴转动的角动量定理
【例题】一质量为 m 的子弹以水平速度射入一静止 悬于顶端长棒的下端,穿出后速度损失 3/4,求子弹穿出后棒的角速度 解:棒对子弹的阻力为 f
M
l
对子弹 fdt m( 0 ) m0 4
Fe 7.8 10 kg / m 白矮星 黑洞
三、角动量定理的另一形式 对点
M外

冲量矩
t2 M外 t1
dL dt
M外 d t d L
d t L2 L1

t2
t1
M 外 d t 力矩对时间的积累效应
刚体定轴转动
d ( J z ) Mz dt
子弹对棒的反作用力
m
f3Leabharlann 对棒的冲量矩0
3 f ldt l f dt l fdt lm0 J 4 9m0 3 lm0 4J 4Ml
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

速度0=0,下摆到竖直位置时的角速度为 ,按 力矩的功和转动动能增量的关系式得
定轴转动的动能定理
mg l 1 J 2
22
由此得 mgl
J
因 J 1 ml 2 代入上式得 3g
3
J
所以细棒在竖直位置时,端点A和中心点C的速度
分别为
vA l 3gl
vC
l
2
1 2
3gl
刚体的平面平行运动
c.若系统内既有平动也有转动现象 发生,若对某一定轴的合外力矩为 零,则系统对该轴的角动量守恒。
定轴转动刚体的角动量守恒定律
直线运动与定轴转动规律对照
质点的直线运动
v dx dt
dv d2 x a dt dt2
P mv F
EK
1 mv2 2
m
dA Fdx Fdt
刚体的定轴转动
d
dt
d
dt
Mz
dLz dt
t2 Mdt t1
L2 L1
dL
L2
L1
角动量定理的微分形式:
t2 t1
M
d
t
J
J0
t2 M d t为t t2 t1时间内力矩M 对给定轴的冲量矩
t1

2. 定轴转动刚体的角动量守恒定律
角动量守恒定律:若一个系统一段时间内
所受合外力矩M 恒为零,则此系统的总角 动量L 为一恒量。
解 先对细棒OA所受的力
作一分析;重力G 作用在 O
棒的中心点C,方向竖直向
下;轴和棒之间没有摩擦
力,轴对棒作用的支承力N
垂直于棒和轴的接触面且
通过O点,在棒的下摆过
G
程中,此力的方向和大小
是随时改变的。
A
A
定轴转动的动能定理
在棒的下摆过程中,对转轴O而言,支撑力N通过
O点,所以支撑力N的力矩等于零,重力G的力矩则
则物体在 d时t 间内转过角位移 d 时 dt
外力矩所做元功为:
dA Md d J d Jd d Jd
dt
dt
总外力矩对刚体所作的功为:
A
2 Md
1
2 1
Jd
1 2
J22
1 2
J12
定轴转动的动能定理
A
2
1
Md
1 2
J
2 2
1 2
J12
刚体定轴转动的动能定理:总外力矩对 刚体所做的功等于刚体转动动能的增量。

2Ek
J
而飞轮的转速变为
n飞
60
2
60
2
240006r / min 325
149.8r / min
定轴转动的动能定理
例题 一根质量为m、长为 l 的均匀细棒OA(如图 ),可绕通过其一端的光滑轴O在竖直平面内转动 ,今使棒从水平位置开始自由下摆,求细棒摆到竖 直位置时其中点C和端点A的速度。
0
A
M
d
M
0
d
根据功率的定义,力矩的功率为:
p dA Md M 0‘
dt dt
F
d r
dr
P
二. 刚体定轴转动的动能
Ek
Eki
1 2
mivi
2
因 vi ri

Ek
1 2
mi
ri
2
2
1 2
(mi
ri
2
)
2
Ek
1 2
J2
刚体转动动能
三.定轴转动的动能定理
根据定轴转动定理
M d J
dt
是变力矩,大小等于mg(l /2) cos ,棒转过一极
小的角位移d 时,重力矩所作的元功是
dA mg l cosd
2
在使棒从水平位置下摆到竖直位置过程中,重力
矩所作的功是
A dA
02
mg
l 2
cosd
mg l 2
应该指出:重力矩作的功就是重力作的功,也可
用重力势能的差值来表示。棒在水平位置时的角
1 5000 2
0.32 0.22 kg m2
325kg m2
皮带传动机构中,电动机的传动轴是主动轮,
飞轮是从动轮。两轮的转速与轮的直径成反比,即
飞轮的转速为
n飞
n电
d电 d飞
定轴转动的动能定理
由此得飞轮的角速度
2n飞 2n电 d电
60
这样飞轮的转动动能是
60 d飞
Ek
1 J 2
2
1 2
325
2
3.14 60
900 60
10
2
40055J
(2)在冲断钢片过程中,冲力F 所作的功为
A Fd 9.80 104 0.5 103 J
49J
定轴转动的动能定理
这就是飞轮消耗的能量,此后飞轮的能量变为
Ek 40055 49J 40006J

Ek
1 2
J 2 求得此时间的角速度’‘
例题 讨论一匀质实
y
N
心的圆柱体在斜面上
O
x
的运动。
fr r
解 圆柱体所受的力共有三个: 重力G ,斜面的支承力N 和
aCx
G=mg
摩擦力f r,如图所示。设圆柱体的质量为m,半径
为r,那么,它对其几何的转动惯量
J 1 mr 2 2
四.刚体的重力势能
对于一个不太大的质量为 m的物体,它的重力
势能应是组成刚体的各个质点的重力势能之和。
即:
质心高度为:
hc
mihi
m
Ep mghc
表明:一个不太大的刚体的重力势能与它的质量集 中在质心时所具有的势能一样。
刚体角动量和角动量守恒定律
五.刚体角动量和角动量守恒定律
1. 定轴转动刚体的角动量定理
(2)若冲床冲断0.5mm厚
的薄钢片需用冲力9.80104 2r1 2r2 N,所消耗的能量全部由飞
轮提供,问冲断钢片后飞轮
的转速变为多大?
d
定轴转动的动能定理
解 (1)先求出它的转动惯量和转速。因飞轮质量 大部分分别布在轮缘上,由图示尺寸并近似用圆筒 的转动惯量公式,得
J m
2
r12 r22
§3-3 刚体转动的守恒定律
一.力矩的功
力矩的功:当刚体在外力矩作用下绕定轴转动
而发生 角位移时,就称力矩对刚体做功。
力F对P 点作功 :
0
d A F dr
F d s cos 2
F
d r
dr
F d s sin
0‘
P
d s r d
力矩的功
因 Fr sin M
d A M d
力矩作功:
d2
dt2
L J
EK
1 2
J 2
M
J
d A M d d t P P0
F
d
x
1 2
mv2
1 2
mv02
M d t L L0
M
d
1 J 2
2
1 2
J02
定轴转动的动能定理
例题 如图,冲床上配置一质量为5000kg的飞轮, r1=0.3m, r2=0.2m.今用转速为900r/min的电动机借皮带 传动来驱动飞轮,已知电动机的传动轴直径为d=10cm。 (1)求飞轮的转动动能。
当M z 0时, L J 恒量
讨论:
a.对于绕固定转轴转动的刚体,因J 保持不变,
当合外力矩为零时,其角速度恒定。
当M z 0时, J =恒量 =恒量
定轴转动刚体的角动量守恒定律
b.若系统由若干个刚体构成,当合外力矩为零时,系
统的角动量依然守恒。J 大→ 小,J 小→ 大。
当M z 0时, Lz J11 J22 恒量
相关文档
最新文档