人教版初中八年级上册数学最短路径问题课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B 地,牧马人到河边的什么地方饮马,可使所走的路径最短?
B
B 抽象成
A
A
l
实际问题
C
l
数学问题
作图问题:在直线l上求作一点C,使AC+BC最短问题.
问题1 现在假设点A,B分别是直线l异侧的两个点,如何在l上找 到一个点,使得这个点到点A,点B的距离的和最短?
在△A1N1B中,由线段公理知A1N1+BN1>A1B.
因此AM1+M1N1+BN1> AM+MN+BN.
证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A,B两地的距离:
AM+MN+BN=AM+MN+EM=AE+MN,
若桥的位置建在CD处,连接AC,CD,DB,CE,则AB两地的
A
B
问题解决
A
如图,平移A到A1,使AA1等于河A1 宽,连接A1B交河岸于N作桥MN, 此时路径AM+MN+BN最短.
M M1
N
N1
B
理由:另任作桥M1N1,连接AM1,BN1,A1N1. 由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转化为AA1+A1N1+BN1.
方法揭晓
作法: (1)作点B 关于直线l 的对称点B′; (2)连接AB′,与直线l 相交于点C.
则点C 即为所求.
A
C
B
l B′
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),连接
AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
第十三章
八年级数学上(RJ) 教学课件
轴对称
13.4 课题学习 最短路径问题
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能利用轴对称解决简单的最短路径问题.(难点) 2.体会图形的变化在解决最值问题中的作用,感悟转化思想. (重点)
导入新课
复习引入
1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥.
理由:由作图法可知,AF//DD′,AF=DD′,则四边形AFD′D
为平行四边形,于是AD=FD′,
A
同理,BE=GE′, 由两点之间线段最短可知,GF最小.
C
D 河
A
B
3.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处, 须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都 是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?
A
C
D
C′百度文库D ′
E E′
B
解:作AF⊥CD,且AF=河宽,作BG ⊥CE,且BG=河宽,连
②最短,因为两点之间,线段最短
①
②
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有
线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实? 三角形三边关系:两边之和大于第三边; 斜边大于直角边.
4.如图,如何做点A关于直线l的对称点? A
连接AB,与直线l相交于一点C.
根据是“两点之间,线段最短”, A
可知这个交点即为所求.
C l
B
问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决? B
A
l 想一想: 对于问题2,如何将点B“移” 到l 的另一侧B′处,满足直线l 上的任意 一点C,都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,
在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN,
A· M C
即AC+CD+DB >AM+MN+BN,
ND
所以桥的位置建在MN处,AB两地的路程最短.
E
B
方法归纳
解决最短路径问题的方法
1.在解决最短路径问题时,我们通常利用轴对称、平移等变 化把已知问题转化为容易解决的问题,从而作出最短路径的 选择. 2.当涉及含有固定线段“桥”的方法是构造平行四边形, 从而将问题转化为平行四边形的问题解答.
1.把A平移到岸边. 2.把B平移到岸边. 3.把桥平移到和A相连. 4.把桥平移到和B相连.
A
M
N
B
1.把A平移到岸边.
A (M)
N
B AM+MN+BN长度改变了
2.把B平移到岸边. A
M
(N)B
AM+MN+BN长度改变了
怎样调整呢? 把A或B分别向下或上平移一个桥长 那么怎样确定桥的位置呢?
∴ AC +BC
B
= AC +B′C = AB′,
∴ AC′+BC′= AC′+B′C′.
A
在△AB′C′中, AB′<AC′+B′C′,
C C′
∴ AC +BC<AC′+BC′.
即 AC +BC 最短.
l B′
造桥选址问题
如图,A和B两地在一条河的两岸,现要在河上造一座桥MN。 桥造在何处可使从A到B的路径AMNB最短(假定河的两岸 是平行的直线,桥要与河垂直)?
l A′
讲授新课
最短路径问题
“两点的所有连线中,线段最短”“连接直线外一点 与直线上各点的所有线段中,垂线段最短”等的问题,我 们称之为最短路径问题.现实生活中经常涉及到选择最短路 径问题,本节将利用数学知识探究数学史的著名的“牧马 人饮马问题”及“造桥选址问题”.
① ② A ③B
P
A BC
Dl
牧马人饮马问题
当堂练习
1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建
一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中
实线表示铺设的管道,则所需要管道最短的是( D )
Q P
Q P
MA
l Q
P
M
l
C
B
M Q
l
P
M
l
D
2.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000米.
A
A
M
N
B
B
思维分析 A
1.如图假定任选位置造桥MN, 连接AM和BN,从A到B的路 径是AM+MN+BN,那么怎样 确定什么情况下最短呢?
M
N B
2.利用线段公理解决问题我们遇到了什么障碍呢?
思维火花
我们能否在不改变AM+MN+BN的前提下把桥转化 到一侧呢?什么图形变换能帮助我们呢?
各抒己见