中国科学院大学高等代数历年考研试题
数学分析与高等代数考研真题详解--中科院卷
校教师,硕博研究生报名参与本丛书的编写工作,他们在工作学习的过程中挤时间,编写审
稿严肃认真,不辞辛苦,这使我们看到了中国数学的推广和科研的进步,离不开这些默默无
闻的广大数学工作者,我们向他们表示最崇高的敬意!
国际数学大师陈省身先生提出:“要把中国建成 21 世纪的数学大国。”每年有上万名数
学专业的学生为了更好的深造而努力考研,但是过程是艰难的。我们为了给广大师生提供更
∫∫∫ 算积分 I = ex+y+zdxdydz . D
4.(15
⎛ 分)定义向量场 F (x, y) = ⎜⎜⎝
xe x2 + y2 ,
x2 + y2
ye
x2 + y2
⎞ ⎟, x2 + y2 > 0
x2 + y2 ⎟⎠
证明 F (x, y) 是有势
场, 并求出 F (x, y) 的一个势函数.
∑ 5.(25
没有编配解答,很多同学感到复习时没有参照标准,所以本丛书挑选了重点名校数学专业的
试题,由众多编委共同编辑整理成书。在此感谢每一位提供试题的老师,同时感谢各个院校
的教师参与解答。以后我们会继续更新丛书,编入更新的试题及解答,希望您继续关注我们
的丛书系列。也欢迎您到博士家园数学专业网站参加学术讨论,了解考研考博,下载最新试
博士家园考研丛书 (2010 版)
全国重点名校数学专业考研真题及解答
数学分析与高等代数 考研真题详解
中国科学院数学专卷 博士家园 编著
博士家园系列内部资料
《 博士家园数学专业考研丛书》
编委会
这是一本很多数学考研人期待已久的参考书,对于任何一个想通过考取重点院校的研究
中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)
|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵
a21
a1a2 + 1 · · · a1an + 1
A
=
a2a1 + 1
a22
···
a2an + 1
,
···
··· ··· ···
ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.
2007年中国科学院高等代数考研试题
中国科学院研究生院2007年招收攻读硕士学位研究生入学统一考试试题科目名称:高等代数考生须知:1.本试卷满分为150分,全部考试时间总计180分钟。
2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
1. (10分) 设多项式(),(),()f x g x h x 只有非零常数公因子,证明:存在多项式,使得 (),(),()u x v x w x ()()()()()()1u x f x v x g x w x h x ++=。
2. (10分) 设,,m n p 都是非负整数,证明: 1)++整除。
2(x x 33132()m n p x x x ++++3. (10分) 设A 是n 阶实数矩阵,0A ≠,而且A 的每个元素都和它的代数余子式相等。
证明A 是可逆矩阵。
4. (25分) 计算n 阶行列式2cos 112cos 112cos 112cos 112cos n D ααααα=O OO 5. (20分) 设是齐次线性方程组12,,,n k ααα∈L R 0AX =的基础解系,,,s t ∈R 11211,,,k k k k k s t s t s t 1βααβααβαα−−=+=+=+L 。
试问:应该满足什么关系,使得,s t 11,,,k k βββ−L 是方程组0AX =的基础解系,反之,当11,,,k k βββ−L 是方程组的基础解系时,这个关系必须成立。
0AX =科目名称:高等代数 第1页 共2页5. (15分) 设A 是实对称矩阵,如果A 是半正定的,则存在实的半正定矩阵B ,使得2A B =。
6. (20分) 已知⎟⎟,试证明对于3n ≥有I 100101010A ⎛⎞⎜=⎜⎜⎟⎝⎠−22n n A A A =+−,并计算100A ,其中I 表示单位矩阵。
7. (20分) 设二次型2342221231213f 22x x x ax x x x =++++bx x +通过正交变换化为标准形22232f y y ,求参数,a b 及所用的正交变换。
中国科学院大学601高等数学(甲)历年考研真题及详解
目录
2016年中国科学院大学601高等数学(甲)考研真题(回忆版)及详解[视频讲解]
2015年中国科学院大学601高等数学(甲)考研真题及详解[视频讲解]
2014年中国科学院大学601高等数学(甲)考研真题及详解[视频讲解]
2013年中国科学院大学601高等数学(甲)考研真题及详解
2012年中国科学院高等数学(甲)考研真题及详解
2011年中国科学院高等数学(甲)考研真题及详解
2010年中国科学院高等数学(甲)考研真题及详解
2009年中国科学院高等数学(甲)考研真题及详解
2008年中国科学院高等数学(甲)考研真题及详解
2007年中国科学院高等数学(甲)考研真题及详解
2006年中国科学院高等数学(甲)考研真题及详解
2005年中国科学院高等数学(A)考研真题及详解
2004年中国科学院高等数学(A)考研真题及详解
2003年中国科学院高等数学(A)考研真题及详解。