2017-2018学年上海市松江二中高二下学期期末考试数学试题(Word版)

合集下载

2017-2018年上海市松江二中高二下期末

2017-2018年上海市松江二中高二下期末

2)(n
3)
.
(1)求数列{an} 的通项公式;
(2)用适当的组合数形式表示 an ,并求数列{an} 的前 n 项和 Sn ;
(3)若 bn
an (n 2)2(n 3)
2n1 ,记数列{ 1 }的前 bn
n
项和为
Tn
,求
lim
n
Tn
.
参考答案
1、 3 或 7 5、 26
3
11、435184
2、 f 1 x 1 x ( x 1)
(1)求常数 m 与 a1 的值;
(2)若 Tn Cn1S1 Cn2S2 CnnSn ,用 n、q 表示 Tn .
第2页
20. 已知函数 f (x) 定义在区间 (1,1) 上, f (1) 1,对任意 x 、 y (1,1) , 2
恒有
f (x)
f (y)
f
( x y 1 xy
D.
n r
C r1 n1
15. 从装有 2 个红球和 2 个白球的袋内任取 2 球,那么互不相容的两个事件是( )
A. “至少一个白球”与“都是白球”
B. “至少一个白球”与“至少一个红球”
C. “恰有一个白球”与“恰有两个白球”
D. “至多一个白球”与“都是红球”
16. 圆柱被一平面截去一部分后与半球(半径为 r) 组成一个几何体,该几何体的三视图中的正视图和
7. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余 部分体积的比值为
8. 从 1、2、3、4、5、6、7、8 中任取三个数,能组成等差数列的概率是
9. 我校家长会学校邀请了 6 位同学的父母共 12 人,请这 12 位家长中的 4 位介绍对子女的

松江区2018学年度第二学期高二数学期末质量监控试卷

松江区2018学年度第二学期高二数学期末质量监控试卷

松江区2018学年度第二学期期末质量监控试卷高二数学(满分150分,时间120分钟) 2019.6一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1、-3的平方根是______.2、若255x C C =,则实数x =______.3、高一(1)班有男生18人,女生12人,若用分层抽样的方法从该班的全体同学中抽取一个容量为5的样本,则抽取男生的人数为______.4、二项式612x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为______.(用数字作答) 5、若正方体的表面积为6,则它的外接球的表面积为______.6、某校生物研究社共8人,他们的生物等级考成绩如下:3人70分,3人67分,1人64分,1人61分,则他们的生物等级考成绩的标准差为______.7、已知正三棱锥的底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为______.8、若甲、乙两地都位于北纬45∘,它们的经度差为90∘,若地球半径为R ,则甲、乙两地的球面距离为______.9、若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在由直线x+y=4和两坐标轴所围成的三角形内部(不含边界)的概率为______.10、已知α是实系数一元二次方程x 2−(2m−1)x+m 2+1=0的一个虚数根,且|α|⩽2,则实数m 的取值范围是___.11、设向量(,,0)u a b =r ,(,,1)v c d =r ,其中22221a b c d +=+=,则u r 与v r 夹角的最大值为___________12、如图,已知四面体ABCD 的棱AB//平面α,且CD=1,其余的棱长均为2,有一束平行光线垂直平面α,若四面体ABCD 绕AB 所在的直线旋转,且始终在水平放置的平面α上方,则它在平面α内影子面积的最小值为______.二. 选择题(本大题共4题,每题5分,共20分)13、若向量-,4,4a a ==-r r r r (1,2,2),b (-2),则向量与b ( ) A.相交 B.垂直 C.平行 D.以上都不对14、若点P 为两条异面直线a,b 外的任意一点,则下列说法一定正确的是( )A. 过点P 有且仅有一条直线与a,b 都平行B. 过点P 有且仅有一条直线与a,b 都垂直C. 过点P 有且仅有一条直线与a,b 都相交D. 过点P 有且仅有一条直线与a,b 都异面15、如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 型(每次旋转90°仍为L 型图案),那么在由5×6个小方格组成的方格纸上可以画出不同位置的L 型图案的个数是( ) A.36 B.64 C.80 D.9616、已知复数12z cosx 2f (x)i z cosx)i(x R,i )=+=++∈,为虚数单位.在复平面上,设复数121212z z Z Z Z OZ 90∠=o ,对应的点分别为,,若,其中O 是坐标原点,则函数f(x)的最大值为( ) A.1-4 B.14 C.1-2 D.12三. 解答题(本大题共5题,共14+14+14+16+18=76分)17、(本题满分14分,第1小题满分6分,第2小题满分8分)已知复数()112z 2i z 3+4i z i m R i m +==-∈满足,(,为虚数单位),(1)求21z (2)122z z 2z ,m -+<若求实数的取值范围18、(本题满分14分,第1小题满分6分,第2小题满分8分)在上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试,受各因素影响,小李同学决定选择物理,并在生物和地理中至少选择一门。

高二数学下学期期末考试试题文

高二数学下学期期末考试试题文

2017~2018年度第二学期期末考试试题高二数学(文)一、选择题:本大题共12小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁RQ)=( )A。

[2,3]ﻩB、(﹣2,3]ﻩC。

[1,2) D、(﹣∞,﹣2]∪[1,+∞)2、若a=,b=,c=,则a,b,c三个数的大小关系是( )A。

a<b〈cﻩB、b〈c〈aﻩC。

a〈c<b D、c<a<b3。

已知具有线性相关的变量,设其样本点为,回归直线方程为,若,(为原点),则 ( ) A、B。

C、 D、4。

给出下列四个命题,其中真命题的个数是( )①回归直线恒过样本中心点;②“”是“”的必要不充分条件;③“,使得”的否定是“对,均有”;④“命题”为真命题,则“命题”也是真命题、A。

0 B、 1 C、 2 D。

35、命题p:“∃x0∈R“,x0﹣1≤0的否定¬p为( )A、∀x∈R,x2﹣1≤0 B。

∃x0∈R,x02﹣1>0C。

∀x∈R,x2﹣1〉0D、∃x0∈R,x02﹣1〈06。

已知函数的图象关于直线对称,且当时,,若,,,则的大小关系是( )A。

B。

C、 D、7。

已知函数,则f(x)( )A、是奇函数,且在R上是增函数B、是偶函数,且在R上是增函数C、是奇函数,且在R上是减函数D、是偶函数,且在R上是减函数8、已知的零点,且(,),则A、5B、4C、3D、29、已知函数,则不等式的解集是( )A。

B、 C、D。

10、若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)﹣log3|x|的零点个数是( )A。

多于4个 B、4个C、3个ﻩD、2个11。

已知函数 ,若正实数互不相等,且,则的取值范围为( )A。

B、 C、D、12。

函数y=1+x+的部分图象大致为( )A、 B、ﻩC、D、二、填空题:本大题共4小题,每小题5分,共20分、把答案填在答题卡的相应位置。

高二数学下学期期末考试试题理(含解析)

高二数学下学期期末考试试题理(含解析)

2017—2018学年度第二学期期末教学质量检测高二理科数学第Ⅰ卷(选择题共60分)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1.已知复数满足,则()A. B. C. D.【答案】C【解析】分析:根据复数的除法法则求解可得结果.详解:∵,∴.故选C.点睛:本题考查复数的除法运算,考查学生的运算能力,解题时根据法则求解即可,属于容易题.2.2.有一段“三段论”推理是这样的:对于可导函数,如果,那么是函数的极值点,因为函数在处的导数值,所以,是函数的极值点.以上推理中()A. 大前提错误B. 小前提错误C. 推理形式错误D. 结论正确【答案】A【解析】分析:根据极值定义得导数为零的点不一定为极值点,得大前提错误.详解:因为根据极值定义得导数为零的点不一定为极值点,所以如果f ' (x0)=0,那么x=x0不一定是函数f(x)的极值点,即大前提错误.选A.点睛:本题考查极值定义以及三段论概念,考查对概念理解与识别能力.3.3.在回归分析中,的值越大,说明残差平方和()A. 越小B. 越大C. 可能大也可能小D. 以上都不对【答案】A【解析】分析:根据的公式和性质,并结合残差平方和的意义可得结论.详解:用相关指数的值判断模型的拟合效果时,当的值越大时,模型的拟合效果越好,此时说明残差平方和越小;当的值越小时,模型的拟合效果越差,此时说明残差平方和越大.故选A.点睛:主要考查对回归分析的基本思想及其初步应用等知识的理解,解题的关键是熟知有关的概念和性质,并结合条件得到答案.4.4.用火柴棒摆“金鱼”,如图所示,按照上面的规律,第个“金鱼”图需要火柴棒的根数为()A. B. C. D.【答案】C【解析】由题意得,第1个“金鱼”需要火柴棒的根数为;第2个“金鱼”需要火柴棒的根数为;第3个“金鱼”需要火柴棒的根数为,构成首项为,公差为的等差数列,所以第个“金鱼”需要火柴棒的根数为,故选C.5.5.如果函数y=f(x)的图象如图所示,那么导函数y=f′(x)的图象可能是( )A. B. C. D.【答案】A【解析】试题分析:由原函数图像可知函数单调性先增后减再增再减,所以导数值先正后负再正再负,只有A正确考点:函数导数与单调性及函数图像6.6.某产品的广告费用万元与销售额万元的统计数据如下表:根据以上数据可得回归直线方程,其中,据此模型预报广告费用为6万元时,销售额为65.5万元,则,的值为()A. ,B. ,C. ,D. ,【答案】C【解析】分析:根据回归直线过样本中心和条件中给出的预测值得到关于,的方程组,解方程组可得所求.详解:由题意得,又回归方程为,由题意得,解得.故选C.点睛:线性回归方程过样本中心是一个重要的结论,利用此结论可求回归方程中的参数,也可求样本数据中的参数.根据回归方程进行预测时,得到的数值只是一个估计值,解题时要注意这一点.7.7.利用数学归纳法证明不等式的过程中,由变到时,左边增加了()A. 1项B. 项C. 项D. 项【答案】C【解析】分析:先表示出、,通过对比观察由变到时,项数增加了多少项. 详解:因为,所以当,当,所以由变到时增加的项数为.点睛:本题考查数学归纳法的操作步骤,解决本题的关键是首先观察出分母连续的整数,当,,由此可得变化过程中左边增加了多少项,意在考查学生的基本分析、计算能力.8.8.如图,用、、三类不同的元件连接成一个系统.当正常工作且、至少有一个正常工作时,系统正常工作,已知、、正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为()A. 0.960B. 0.864C. 0.720D. 0.576【答案】B【解析】试题分析:系统正常工作当①正常工作,不能正常工作,②正常工作,不能正常工作,③正常工作,因此概率.考点:独立事件的概率.9.9.设复数,若,则的概率为()A. B. C. D.【答案】D【解析】若则,则的概率为:作出如图,则概率为直线上方与圆的公共部分的面积除以整个圆的面积,即:10.10.设函数的定义域为,若对于给定的正数,定义函数,则当函数,时,定积分的值为()A. B. C. D.【答案】D【解析】分析:根据的定义求出的表达式,然后根据定积分的运算法则可得结论.详解:由题意可得,当时,,即.所以.故选D.点睛:解答本题时注意两点:一是根据题意得到函数的解析式是解题的关键;二是求定积分时要合理的运用定积分的运算性质,可使得计算简单易行.11.11.已知等差数列的第项是二项式展开式的常数项,则()A. B. C. D.【答案】C【解析】试题分析:二项式展开中常数项肯定不含,所以为,所以原二项式展开中的常数项应该为,即,则,故本题的正确选项为C.考点:二项式定理.12.12.已知函数的定义域为,为的导函数,且,若,则函数的取值范围为()A. B. C. D.【答案】B【解析】分析:根据题意求得函数的解析式,进而得到的解析式,然后根据函数的特征求得最值.详解:由,得,∴,设(为常数),∵,∴,∴,∴,∴,∴当x=0时,;当时,,故当时,,当时等号成立,此时;当时,,当时等号成立,此时.综上可得,即函数的取值范围为.故选B.点睛:解答本题时注意从所给出的条件出发,并结合导数的运算法则利用构造法求出函数的解析式;求最值时要结合函数解析式的特征,选择基本不等式求解,求解时注意应用不等式的条件,确保等号能成立.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.13.已知随机变量服从正态分布,若,则等于__________.【答案】0.36【解析】.14.14.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)【答案】660【解析】【详解】第一类,先选女男,有种,这人选人作为队长和副队有种,故有种;第二类,先选女男,有种,这人选人作为队长和副队有种,故有种,根据分类计数原理共有种,故答案为.15.15.的展开式中的系数是__________.【答案】243【解析】分析:先得到二项式的展开式的通项,然后根据组合的方式可得到所求项的系数.详解:二项式展开式的通项为,∴展开式中的系数为.点睛:对于非二项式的问题,解题时可转化为二项式的问题处理,对于无法转化为二项式的问题,可根据组合的方式“凑”出所求的项或其系数,此时要注意考虑问题的全面性,防止漏掉部分情况.16.16.已知是奇函数,当时,,(),当时,的最小值为1,则的值等于__________.【答案】1【解析】试题分析:由于当时,的最小值为,且函数是奇函数,所以当时,有最大值为-1,从而由,所以有;故答案为:1.考点:1.函数的奇偶性;2.函数的导数与最值.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.17.复数,,若是实数,求实数的值.【答案】【解析】分析:由题意求得,进而得到的代数形式,然后根据是实数可求得实数的值.详解:.∵是实数,∴,解得或,∵,∴,∴.点睛:本题考查复数的有关概念,解题的关键是求出的代数形式,然后根据该复数的实部不为零虚部为零得到关于实数的方程可得所求,解题时不要忽视分母不为零的限制条件.18.18.某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次0 1 2 3 4数保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次0 1 2 3 4数概率0.30 0.15 0.20 0.20 0.10 0.05(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.【答案】(1)0.55(2)【解析】分析:(1)将保费高于基本保费转化为一年内的出险次数,再根据表中的概率求解即可.(2)根据条件概率并结合表中的数据求解可得结论.详解:(1)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故.(2)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故.又,故,因此其保费比基本保费高出的概率为.点睛:求概率时,对于条件中含有“在……的条件下,求……发生的概率”的问题,一般为条件概率,求解时可根据条件概率的定义或利用古典概型概率求解.19.19.在数列,中,,,且,,成等差数列,,,成等比数列().(1)求,,及,,;(2)根据计算结果,猜想,的通项公式,并用数学归纳法证明.【答案】(1) ,,,,, (2) 猜想,,证明见解析【解析】分析:(1)根据条件中,,成等差数列,,,成等比数列及所给数据求解即可.(2)用数学归纳法证明.详解:(1)由已知条件得,,由此算出,,,,,.(2)由(1)的计算可以猜想,,下面用数学归纳法证明:①当时,由已知,可得结论成立.②假设当(且)时猜想成立,即,.则当时,,,因此当时,结论也成立.由①②知,对一切都有,成立.点睛:用数学归纳法证明问题时要严格按照数学归纳法的步骤书写,特别是对初始值的验证不可省略,有时可能要取两个(或两个以上)初始值进行验证,初始值的验证是归纳假设的基础;第二步的证明是递推的依据,证明时必须要用到归纳假设,否则就不是数学归纳法.20.20.学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的,对教师管理水平给出好评的学生人数为总数的,其中对教师教学水平和教师管理水平都给出好评的有120人.(1)填写教师教学水平和教师管理水平评价的列联表:对教师管理水平不满合计对教师管理水平好评意对教师教学水平好评对教师教学水平不满意合计请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量.①求对教师教学水平和教师管理水平全好评的人数的分布列(概率用组合数算式表示);②求的数学期望和方差.0.15 0.10 0.05 0.025 0.010 0.005 0.0012.072 2.7063.841 5.024 6.635 7.879 10.828(,其中)【答案】(1) 可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关. (2) ①见解析②,【解析】分析:(1)由题意得到列联表,根据列联表求得的值后,再根据临界值表可得结论.(2)①由条件得到的所有可能取值,再求出每个取值对应的概率,由此可得分布列.②由于,结合公式可得期望和方差.详解:(1)由题意可得关于教师教学水平和教师管理水平评价的列联表:对教师管理水平好评对教师管理水平不满意合计对教师教学水平好评120 60 180对教师教学水平不满意105 15 120合计225 75 300由表中数据可得,所以可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关.(2)①对教师教学水平和教师管理水平全好评的概率为,且的取值可以是0,1,2,3,4,其中;;;;,所以的分布列为:0 1 2 3 4②由于,则,.点睛:求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算,对于二项分布的均值和方差可根据公式直接计算即可.21.21.已知函数,(为自然对数的底数,).(1)判断曲线在点处的切线与曲线的公共点个数;(2)当时,若函数有两个零点,求的取值范围.【答案】(1)见解析(2)【解析】分析:(1)根据导数的几何意义可得切线方程,然后根据切线方程与联立得到的方程组的解的个数可得结论.(2)由题意求得的解析式,然后通过分离参数,并结合函数的图象可得所求的范围.详解:(1)∵,∴,∴.又,∴曲线在点处的切线方程为.由得.故,所以当,即或时,切线与曲线有两个公共点;当,即或时,切线与曲线有一个公共点;当,即时,切线与曲线没有公共点.(2)由题意得,由,得,设,则.又,所以当时,单调递减;当时,单调递增.所以.又,,结合函数图象可得,当时,方程有两个不同的实数根,故当时,函数有两个零点.点睛:函数零点个数(方程根的个数、两函数图象公共点的个数)的判断方法:(1)结合零点存在性定理,利用函数的性质确定函数零点个数;(2)构造合适的函数,判断出函数的单调性,利用函数图象公共点的个数判断方程根的个数或函数零点个数.请考生在22~23两题中任选一题作答,如果多做,则按所做的第一题记分.22.22.在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知点的直角坐标为,曲线的极坐标方程为,直线过点且与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若,求直线的直角坐标方程.【答案】(1) (2) 直线的直角坐标方程为或【解析】分析:(1)根据极坐标和直角坐标间的转化公式可得所求.(2)根据题意设出直线的参数方程,代入圆的方程后得到关于参数的二次方程,根据根与系数的关系和弦长公式可求得倾斜角的三角函数值,进而可得直线的直角坐标方程.详解:(1)由,可得,得,∴曲线的直角坐标方程为.(2)由题意设直线的参数方程为(为参数),将参数方程①代入圆的方程,得,∵直线与圆交于,两点,∴.设,两点对应的参数分别为,,则,∴,化简有,解得或,∴直线的直角坐标方程为或.点睛:利用直线参数方程中参数的几何意义解题时,要注意使用的前提条件,只有当参数的系数的平方和为1时,参数的绝对值才表示直线上的动点到定点的距离.同时解题时要注意根据系数关系的运用,合理运用整体代换可使得运算简单.23.23.已知函数的定义域为.(1)若,解不等式;(2)若,求证:.【答案】(1) (2)见解析【解析】分析:(1)由可得,然后将不等式中的绝对值去掉后解不等式可得所求.(2)结合题意运用绝对值的三角不等式证明即可.详解:(1),即,则,∴,∴不等式化为.①当时,不等式化为,解得;②当时,不等式化为,解得.综上可得.∴原不等式的解集为.(2)证明:∵,∴.又,∴.点睛:含绝对值不等式的常用解法(1)基本性质法:当a>0时,|x|<a⇔-a<x<a,|x|>a⇔x<-a或x>a.(2)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(3)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.(4)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.。

上海市松江区2018-2019学年高二第二学期期末考试数学试题及答案解析

上海市松江区2018-2019学年高二第二学期期末考试数学试题及答案解析
当 时, 取得最大值为 .
【点睛】
本题考查向量的数量积运算和三角函数的最值,属于基础题.
5.
【分析】
根据 得解.
【详解】
由 得解.
【点睛】
本题考查虚数的概念,属于基础题.
6. 或
【分析】
根据组合数的性质得解.
【详解】
由组合数的性质得 或 ,
所以 或
【点睛】
本题考查组合数的性质,属于基础题.
7.3
【分析】
所以正方体的外接球的半径 ,
所以外接球的表面积 ,
故得解.
【点睛】
本题考查正方体的外接球,属于基础题.
10.3
【分析】
先求出样本的平均数,再求出其标准差.
【详解】
这八个人生物成绩的平均分为 ,
所以这八个人生物成绩的标准差为
故得解.
【点睛】
本题考查样本的标准差,属于基础题.
12.甲、乙两地都位于北纬45°,它们的经度相差90°,设地球半径为 ,则甲、乙两地的球面距离为________.
13.若以连续两次掷骰子分别得到的点数 , 作为点 的坐标,则点 落在由 和两坐标轴所围成的三角形内部(不含边界)的概率为________.
14.已知 是实系数一元二次方程 的一个虚数根,且 ,则实数 的取值范围是________.
8.二项式 的展开式中常数项为______ 用数字表示 .
9.若正方体的表面积为 ,则它的外接球的表面积为________.
10.某校生物研究社共 人,他们的生物等级考成绩如下: 人 分, 人 分, 人 分, 人 分,则他们的生物等级考成绩的标准差为________.
11.已知正三棱锥底面边长为 ,侧棱长为 ,则它的侧面与底面所成二面角的余弦值为________.

2017-2018学年高二下学期期末考试数学(文)试题word版含答案

2017-2018学年高二下学期期末考试数学(文)试题word版含答案

2017-2018学年下学期期末质量检测试卷高二数学(文)一、选择题(每题5分,共60分)1.已知集合{}2{|20},1,0,1,2A x x x B =-≤=-,则A B ⋂=( ) A. []0,2 B. {}0,1,2 C. ()1,2- D. {}1,0,1-2.命题“21],1,0[≥+∈∀x x m ”的否定形式是( ) A. 21],1,0[<+∈∀x x mB.21],1,0[≥+∈∃x x mC.21,00-≥+∞+⋃∞∈∃x x m ),(),( D.21],1,0[<+∈∃x x m3.函数()()ln 1f x x =-的定义域是( ) A.()0,+∞ B. ()1,+∞C. ()0,1D. ()()0,11,⋃+∞4.执行如图所示的程序框图,输出的S 值为( )A .2B .4C .8D .165.甲、乙两人练习射击, 命中目标的概率分别为21和31, 甲、乙两人各射击一次,目标被命中的概率为:( )A .32B .31C .61D .65 6.下列函数()f x 中,满足“任意1x , ()20,x ∈+∞,且12x x ≠,()()()12120x x f x f x ⎡⎤--<⎣⎦”的是( )A. ()1f x x x =-B. ()3f x x =C. ()ln f x x =D. ()2f x x =7.曲线x xe y =在1=x 处切线的斜率等于( )A. 2eB. eC. 2D. 18.不等式0312>+-x x 的解集是( )A .(12,+∞)B .(4,+∞)C .(﹣∞,﹣3)∪(4,+∞)D .(﹣∞,﹣3)∪(12,+∞)9.已知命题p :若b a >,则22b a >;命题q :若42=x ,则2=x .下列说法正确的是( )A .“q p ∨”为真命题B .“q p ∧”为真命题C .“p ⌝”为真命题D .“q ⌝”为真命题10.定义在R 上的奇函数()f x 满足()()22f x f x -=+,且当[]2,0x ∈-时,()31x f x =-,则()9f =( )A. -2B. 2C. 23-D. 2311.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( )A. 4B. 6C. 8D. 1212.函数1)3(2)(2+-+=x a ax x f 在区间),2[+∞-上递减,则实数错误!未找到引用源。

2017-2018学年高二年级数学期末试卷(理数)含答案

2017-2018学年高二年级数学期末试卷(理数)含答案

2017-18学年高二年级第二学期期末考试数学试卷(理数)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考试时间120分钟,满分150分.第I 卷(选择题,共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考场号、座号、考试科目涂写在答题卡上. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0=A ,{}A y A x y x z z B ∈∈+==,,|,则集合B 的子集个数为( ) A .3 B .4 C . 7 D .8 2.若322->m x 是41<<-x 的必要不充分条件,则实数m 的取值范围是( )A .[]3,3-B .(][)+∞-∞-,33,C . (][)+∞-∞-,11,D .[]1,1-3.命题“[)+∞-∈∀,2x ,13≥+x ”的否定为( )A .[),,20+∞-∈∃x 130<+xB .[),,20+∞-∈∃x 130≥+xC .[)+∞-∈∀,2x ,13<+xD .()2,-∞-∈∀x ,13≥+x4.已知函数()x f 在()+∞∞-,单调递减,且为奇函数,若()11-=f ,则满足()121≤-≤-x f 的x 的取值范围是( )A .[]2,2-B .[]1,1-C .[]4,0D .[]3,15.已知函数()xx f 5=,()x ax x g -=2,若()[]11=g f ,则=a ( )A .1B .2C .3D .1-6.已知函数()⎩⎨⎧>+≤+-=2,log 3,2,6x x x x x f a ,()1,0≠>a a 且的值域是[)+∞,4,则实数a 的取值范围是( )A .[]1,1-B .(]2,1C .[]4,0D .[]3,17.已知函数()ax f x x -+=212 是奇函数,则使()3>x f 成立x 的取值范围是 ( )A .()1,-∞-B .()0,1-C . ()1,0D .()+∞,18.若0>>b a ,10<<c ,则 ( )A .c c b a log log <B .b a c c log log <C .c c b a <D .a b c c > 9.已知函数()12-=-mx x f 为偶函数,记()3log 5.0f a = ,()5log 2f b = ,()m f c 2=,则c b a ,,的大小关系为 ( ) A .c b a << B .b c a << C . b a c << D .a c b <<10.已知函数()34213123-+-=x mx x x f 在区间[]2,1上是增函数,则实数m 的取值范围是( )A .[]5,4B .[]4,2C . (][)+∞-∞-,11,D .(]4,∞- 11.已知函数()|1|23,0,21,0x x f x x x x -⎧>=⎨--+≤⎩若关于x 的方程()[]()()012=--+a x f a x f 有7个不等实根,则实数a 的取值范围是( )A .()1,2-B .[]4,2C . ()1,2--D .(]4,∞-12. 已知函数()a x x f ++-=13,⎥⎦⎤⎢⎣⎡∈e ex ,1 与()x x g ln 3=的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A .[]4,03-eB .⎥⎦⎤⎢⎣⎡+21,03e C . ⎥⎦⎤⎢⎣⎡-+4,2133e eD .[)+∞-,43e第II 卷(非选择题,共90分)注意事项:1.答题前将密封线内的项目及座号填写清楚;2.考生做答时,用黑色签字笔将答案答在答题卷上,答在试题卷上的答案无效.二、填空题(本大题共4小题,每小题5分,共20分 13.已知函数()()2'11f x f x x =++,则()=⎰1dx x f .14.函数()()x x f cos sin lg =的定义域为_______________. 15.若()02222222≥++---x x xx a 在区间[]2,1上恒成立,则实数a 的取值范围是 ______.16.设()'f x 是奇函数()x f 的导函数,()02=-f ,当0>x 时,()()'0xf x f x ->,则使()0>x f 成立的x 的取值范围是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) (一)必考题:共60分 17.(本小题满分12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,且ab c b a 3222+=+.(1)求角C 的值;(2)若ABC ∆为锐角三角形,且1=c ,求b a -3的取值范围. 18.(本小题满分12分)(单位:(1)根据频数分布表,求该产品尺寸落在的概率;(2)求这50件产品尺寸的样本平均数x ;(3)根据频率分布对应的直方图,可以认为这种产品尺寸z 服从正态分布2(,)N μσ;其中μ近似为样本平均值x ,2σ近似为样本方差2S ,经计算得222.37S =,利用正态分布,求(27.43)P z ≥.19.(本小题满分12分)如图,三棱柱111C B A ABC -中,CB AC =,1AA AB =,0160=∠BAA(1)证明:C A AB 1⊥;(2)若平面⊥ABC 平面B B AA 11,CB AB =,求直线C A 1与平面C C BB 11所成角的正弦值. 20. (本小题满分12分)已知三点()1,2-A ,()1,2B ,()0,0O ,曲线C 上任意一点()y x M ,满足||()M A M B O M O A O B+=++. (1) 求C 的方程;(2) 动点()00,y x Q ()220<<-x 在曲线C 上,l 是曲线C 在Q 处的切线.问:是否存在定点()t P ,0()0<t 使得l 与PB PA ,都相交,交点分别为E D ,,且ABQ ∆与PDE ∆的面积之比为常数?若存在,求t 的值;若不存在,说明理由. 21.(本小题满分12分)()x x f ln =,()xe x g =.1)求函数()x x f y -=的单调区间;2)求证:函数()x f y =和()x g y=在公共定义域内,()()2>-x f x g 恒成立;3)若存在两个不同的实数1x ,2x ,满足()()a x x f x x f ==2211,求证:1221>exx . (二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所作第一题计分.22.(本小题满分10分)在直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系。

上海市上海中学2017-2018学年高二下学期期末数学试题(逐题详解版)

上海市上海中学2017-2018学年高二下学期期末数学试题(逐题详解版)

2018年上海中学高二下期末数学试卷一、填空题(36分):1. 关于x 的方程222424x x C C =的解为_________. 2. 从总体中抽取一个样本是5,6,7,8,9,则总体方差的估计值是____________.3. 5(31)x -展开式中,设各项的系数和为a ,各项的二项式系数和为b ,则a b=________. 4. 从长度为2、3、5、6的四条线段中任选三条,能构成三角形的概率为_______.5. 从编号为0,1,2,…,7980件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为___6. 如果三个球的表面积之比是1:2:3,那么它们的体积之比是__________.7. 北纬45︒圈上有A ,B 两点,该纬度圈上劣弧AB R (R 为地球半径),则A ,B 两点的球面距离为________.8. 一个口袋中装有2个白球和3个红球,每次从袋中摸出两个球,若摸出的两个球颜色相同为中奖,否则为不中奖,则中奖的概率为_________.9. 设n A 为1(1)n x ++的展开式中含1n x -项的系数,n B 为1(1)n x -+的展开式中二项式系数的和,则能使n n A B ≥成立的n 的最大值是________.10. 将4个不同的小球任意放入3个不同的盒子中,则每个盒子中至少有1个小球的概率为________. 11. 若对于任意实数x ,都有1021001210(2)(2)(2)x a a x a x a x =+++++++,则3a 的值为_________. 12. 校园某处并排连续有6个停车位,现有3辆汽车需要停放,为了方便司机上下车,规定:当有汽车相邻停放时,车头必须同向;当车没有相邻时,车头朝向不限,则不同的停车方法共有__________种.(用数学作答)二、选择题(16分):13. 某几何体的三视图如图所示,则该几何体的体积(单位:3cm )是( )A. 43π+B. 23π+C. 43π+D. 423π+ 14. 设A ,B ,C 是三个事件,给出下列四个事件:(Ⅰ)A ,B ,C 中至少有一个发生;(Ⅱ)A ,B ,C 中最多有一个发生;(Ⅲ)A ,B ,C 中至少有两个发生;(Ⅳ)A ,B ,C 最多有两个发生;其中相互为对立事件的是( )A. Ⅰ和ⅡB. Ⅱ和ⅢC. Ⅲ和ⅣD. Ⅳ和Ⅰ 15. 由曲线24x y =,24x y =-,4x =,4x =-围成图形绕y 轴旋转一周所得为旋转体的体积为1V ,满足2216x y +≤,22(2)4x y +-≥,22(2)4x y ++≥的点(,)x y 组成的图形绕y 轴旋一周所得旋转体的体积为2V ,则( ) A. 1212V V = B. 1223V V = C. 12V V = D. 122V V =16. a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴选择,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角最小值为45°;④直线AB 与a 所成角的最大值为60°;其中正确的是_______.(填写所以正确结论的编号).A. ①③B. ①④C. ②③D. ②④三、解答题(48分)17. 已知矩形ABCD 内接于圆柱下底面的圆O ,PA 是圆柱的母线,若6AB =,8AD =,异面直线PB 与CD 所成的角为2arctan ,求此圆柱的体积.18. 求二项式500(12)x +的展开式中项系数最大的项的系数.19. 如图,弧AEC 是半径为r 的半圆,AC 为直径,点E 为弧AC 的中点,点B 和点C 为线段AD 的三等分点,线段ED 与弧EC 交于点G ,平面AEC 外一点F 满足FC ⊥平面BED ,2FC r =.(1)求异面直线ED 与FC 所成角的大小;(2)将FCG ∆(及其内部)绕FC 所在直线旋转一周形成一几何体,求该几何体的体积.20. 老况、老王、老顾、小周、小郭和两位王女士共7人要排成一排拍散伙纪念照.(1)若两位王女士必须相邻,则共有多少种排队种数?(2)若老王与老况不能相邻,则共有多少种排队种数?(3)若两位王女士必须相邻,若老王与老况不能相邻,小郭与小周不能相邻,则共有多少种排队种数?21. 在一个圆锥内作一个内接等边圆柱(一个底面在圆锥的底面上,且轴截面是正方形的圆柱),再在等边圆柱的上底面截得的小圆锥内做一个内接等边圆柱,这样无限的做下去.(1)证明这些等边圆柱的体积从大到小排成一个等比数列;(2)已知这些等边圆柱的体积之和为原来圆锥体积的37,求最大的等边圆柱的体积与圆锥的体积之比.2018年上海中学高二下期末数学试卷一、填空题(36分):1. 关于x 的方程222424x x C C =的解为_________. 【答案】0或2或4【解析】【分析】因为222424x x C C =,所以:22x x =或2224x x +=,解方程可得. 【详解】解:因为222424x x C C =, 所以:22x x =或2224x x +=,解得:0x =,2x =,4x =,6x =-(舍)故答案为:0或2或4【点睛】本题考查了组合及组合数公式.属于基础题.2. 从总体中抽取一个样本是5,6,7,8,9,则总体方差的估计值是____________.【答案】2【解析】【分析】先求出样本平均数,由此能求出样本方差,由此能求出总体方差的估计值.【详解】解:从总体中抽取一个样本是5,6,7,8,9, 样本平均数为1(56789)75x =++++=, ∴样本方差2222221[(57)(67)(77)(87)(97)]25S =-+-+-+-+-=, ∴总体方差的估计值是2.故答案为:2.【点睛】本题考查总体方差的估计值的求法,考查平均数、总体方差等基础知识,考查运算求解能力,属于基础题.3. 5(31)x -的展开式中,设各项的系数和为a ,各项的二项式系数和为b ,则a b=________. 【答案】1【解析】【分析】分别求得各项系数和a 与各项的二项式系数和b ,从而求得a b的值. 【详解】解:在5(31)x -的展开式中,令1x =可得设各项的系数和为5232a ==,而各项的二项式系数和为5232b ==, ∴1a b=, 故答案为:1.【点睛】本题主要考查二项式定理的应用,注意各项系数和与各项的二项式系数和的区别,属于基础题. 4. 从长度为2、3、5、6的四条线段中任选三条,能构成三角形的概率为_______. 【答案】12【解析】试题分析:这是的道古典概率题,其基本事件有()()()()2,3,5,2,3,6,2,5,6,3,5,6共4个,由于是任意选取的,所以每个基本事件发生的可能性是相等的,记事件A 为“所选三条线段能构成三角形”,则事件A 包含()()2,5,6,3,5,62个基本事件,根据概率公式得:()2142P A ==. 考点:古典概率的计算5. 从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为___【答案】76【解析】【分析】确定系统抽样间隔16k =,根据样本中含编号为28的产品,即可求解,得到答案. 【详解】由系统抽样知,抽样间隔80165k ==, 因为样本中含编号为28的产品,则与之相邻的产品编号为12和44,故所取出的5个编号依次为12,28,44,60,76,即最大编号为76.【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的方法,确定好抽样的间隔是解答的关键,着重考查了运算与求解能力,属于基础题.6. 如果三个球的表面积之比是1:2:3,那么它们的体积之比是__________.【答案】1:【解析】∵三个球的表面积之比是1:2:3,∴三个球的半径之比是∴三个球的体积之比是1:7. 北纬45︒圈上有A ,B 两点,该纬度圈上劣弧AB R (R 为地球半径),则A ,B 两点的球面距离为________. 【答案】3R π 【解析】【分析】先求出北纬45︒圈所在圆的半径,是A 、B 两地在北纬45︒圈上对应的圆心角,得到线段AB 的长,设地球的中心为O ,解三角形求出AOB ∠的大小,利用弧长公式求A 、B 这两地的球面距离.【详解】解:北纬45︒圈所在圆的半径为2R (R R 为地球半径),∴(R θθ=是A 、B 两地在北纬45︒圈上对应的圆心角), 故2πθ=,∴线段AB R =,3AOB π∴∠=,A ∴、B 这两地的球面距离是3R π, 故答案为:3R π. 【点睛】本题考查球的有关经纬度知识,球面距离,弧长公式,考查空间想象能力,逻辑思维能力,属于基础题.8. 一个口袋中装有2个白球和3个红球,每次从袋中摸出两个球,若摸出的两个球颜色相同为中奖,否则为不中奖,则中奖的概率为_________. 【答案】25【解析】试题分析:口袋中五个球分别记为1,2,,,a b c 从中摸出两球的方法有:1,2;1,;1,;1,;2,;2,;2,;,;,;,a b c a b c a b a c b c 共10种,其中颜色相同的有1,2;,;,;,a b a c b c 共四种,有古典概率的求法可知42105P ==. 考点:古典概率的求法.9. 设n A 为1(1)n x ++的展开式中含1n x -项的系数,n B 为1(1)n x -+的展开式中二项式系数的和,则能使n n A B ≥成立的n 的最大值是________.【答案】4【解析】【分析】由题意可得,A n =11n n C -+=21n C +,12n n B -=,若使得A n ≥B n ,即n (n+1)≥2n ,可求n .【详解】∵(1+x )n+1的展开式的通项为T r+11r r n C x +=,由题意可得,A n =11n n C -+=21n C +,又∵n B 为1(1)n x -+的展开式中二项式系数的和,∴12n n B -=, ∵A n ≥B n ,∴2112n n C -+,即n (n+1)≥2n当n =1时,1×2≥2,满足题意;当n =2时,2×3≥22,满足题意;当n =3时,3×4≥23,满足题意;当n =4时,4×5≥24,满足题意;当n =5时,5×6<25,不满足题意,且由于指数函数比二次函数增加的快,故当n≥5时,n (n+1)<2n ,∴n =4. 故答案为4【点睛】本题主要考查了二项展开式的通项公式的应用,二项展开式的性质应用及不等式、指数函数与二次函数的增加速度的快慢的应用,属于中档题.10. 将4个不同的小球任意放入3个不同的盒子中,则每个盒子中至少有1个小球的概率为________. 【答案】49【解析】试题分析:将4个不同的小球任意放入3个不同的盒子中,每个小球有3种不同的放法,共有4381=种放法,每个盒子中至少有1个小球的放法有12234236C C C =种,故所求的概率P =3681=49. 考点:1、排列组合;2、随机变量的概率.11. 若对于任意实数x ,都有1021001210(2)(2)(2)xa a x a x a x =+++++++,则3a 的值为_________.【答案】15360-【解析】【分析】 根据题意,分析可得1010[(2)2]x x =+-,求出其展开式,可得3a 为其展开式中含3(2)x +项的系数,由二项式定理求出3(2)x +项,分析可得答案.【详解】解:根据题意,1010[(2)2]x x =+-,其展开式的通项为10110(2)(2)r r r r T C x -+=+⨯-, 又由1021001210(2)(2)(2)x a a x a x a x =+++++⋯++,则3a 为其展开式中含3(2)x +项的系数,令7r =可得:7373810(2)(2)15360(2)T C x x =+⨯-=-+; 即315360a =-;故答案为:15360-.【点睛】本题考查二项式定理的应用,注意二项式定理的形式,属于基础题.12. 校园某处并排连续有6个停车位,现有3辆汽车需要停放,为了方便司机上下车,规定:当有汽车相邻停放时,车头必须同向;当车没有相邻时,车头朝向不限,则不同的停车方法共有__________种.(用数学作答)【答案】528【解析】(1)当三辆车都不相邻时有3348192A ⨯=(种)(2)当两辆车相邻时有33333333333424242434288A A A A A ⨯+⨯+⨯+⨯+⨯=(种)(3)当三辆车相邻时有334248A ⨯=(种)则共有19228848528++=(种)点睛:本题考查了排列组合问题,由于本题里是三辆车有六个位置,所以情况较多,需要逐一列举出来,注意当三辆车都不相邻时的情况要考虑周全,容易漏掉一些情况,然后利用排列组合进行计算即可.二、选择题(16分):13. 某几何体的三视图如图所示,则该几何体的体积(单位:3cm )是( )A. 43π+B. 23π+C. 43π+D. 423π+ 【答案】A【解析】由三视图可知,该几何体是半个圆柱和以圆柱轴截面为底面的四棱锥组成的组合体,其中半圆柱底面半径为1,高为2,体积为21122ππ⨯⨯⨯=,四棱锥体积为144133⨯⨯=,所以该几何体体积为43π+,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.14. 设A ,B ,C 是三个事件,给出下列四个事件: (Ⅰ)A ,B ,C 中至少有一个发生;(Ⅱ)A ,B ,C 中最多有一个发生;(Ⅲ)A ,B ,C 中至少有两个发生;(Ⅳ)A ,B ,C 最多有两个发生;其中相互为对立事件的是( )A. Ⅰ和ⅡB. Ⅱ和ⅢC. Ⅲ和ⅣD. Ⅳ和Ⅰ 【答案】B【解析】【分析】利用互斥事件、对立事件的定义直接求解.【详解】解:A ,B ,C 是三个事件,给出下列四个事件: (Ⅰ)A ,B ,C 中至少有一个发生; (Ⅱ)A ,B ,C 中最多有一个发生; (Ⅲ)A ,B ,C 中至少有两个发生 (Ⅳ)A ,B ,C 最多有两个发生;在A 中,Ⅰ和Ⅱ能同时发生,不是互斥事件,故A 中的两个事件不能相互为对立事件; 在B 中,Ⅱ和Ⅲ既不能同时发生,也不能同时不发生,故B 中的两个事件相互为对立事件; 在C 中,Ⅲ和Ⅳ能同时发生,不是互斥事件,故C 中的两个事件不能相互为对立事件; 在D 中,Ⅳ和Ⅰ能同时发生,不是互斥事件,故D 中的两个事件不能相互为对立事件. 故选:B .【点睛】本题考查相互为对立事件的判断,考查互斥事件、对立事件的定义等基础知识,考查运算求解能力,属于基础题.15. 由曲线24x y =,24x y =-,4x =,4x =-围成图形绕y 轴旋转一周所得为旋转体的体积为1V ,满足2216x y +≤,22(2)4x y +-≥,22(2)4x y ++≥的点(,)x y 组成的图形绕y 轴旋一周所得旋转体的体积为2V ,则( ) A. 1212V V =B. 1223V V =C. 12V V =D. 122V V =【答案】C 【解析】 【分析】由题意可得旋转体夹在两相距为8的平行平面之间,用任意一个与y 轴垂直的平面截这两个旋转体,设截面与原点距离为||y ,求出所得截面的面积相等,利用祖暅原理知,两个几何体体积相等. 【详解】解:如图,两图形绕y 轴旋转所得的旋转体夹在两相距为8的平行平面之间,用任意一个与y 轴垂直的平面截这两个旋转体,设截面与原点距离为||y ,所得截面面积21(44||)S y π=-,22222(4)[4(2||)](44||)S y y y πππ=----=-12S S ∴=,由祖暅原理知,两个几何体体积相等,故选:C .【点睛】本题主要考查祖暅原理的应用,求旋转体的体积的方法,体现了等价转化、数形结合的数学思想,属于基础题.16. a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴选择,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°;其中正确的是_______.(填写所以正确结论的编号). A. ①③ B. ①④C. ②③D. ②④【答案】C 【解析】 【分析】由题意知,a 、b 、AC 三条直线两两相互垂直,构建如图所示的边长为1的正方体,||1AC =,||2AB =斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,利用向量法能求出结果. 【详解】解:由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图, 不妨设图中所示正方体边长为1, 故||1AC =,||2AB =斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴, 建立空间直角坐标系,则(1D ,0,0),(0A ,0,1),直线a 的方向单位向量(0a =,1,0),||1a =, 直线b 的方向单位向量(1b =,0,0),1b ||=,设B 点在运动过程中的坐标中的坐标(cos B θ',sin θ,0), 其中θ为B C '与CD 的夹角,[0θ∈,2)π,AB ∴'在运动过程中的向量,(cos AB θ'=,sin θ,1)-,||2AB '=,设AB '与a 所成夹角为[0α∈,]2π,则2cos |||sin |[012αθ==∈⨯,2], [4πα∴∈,]2π,∴③正确,④错误.设AB '与b 所成夹角为[0β∈,]2π,2cos |||cos |12βθ==⨯, 当AB '与a 夹角为60︒时,即3πα=,22|sin |cos 2cos 3πθα===, 22cos sin 1θθ+=,21cos |cos |22βθ∴==, [0β∈,]2π,3πβ∴=,此时AB '与b 的夹角为60︒,∴②正确,①错误.故选:C .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,属于中档题.三、解答题(48分)17. 已知矩形ABCD 内接于圆柱下底面的圆O ,PA 是圆柱的母线,若6AB =,8AD =,异面直线PB 与CD 所成的角为2arctan ,求此圆柱的体积.【答案】300π 【解析】【分析】根据底面圆的内接矩形的长和宽求出圆的半径,再由母线垂直于底面和“异面直线PB 与CD 所成的角为2arctan ”求出母线长,代入圆柱的体积公式求出值.【详解】解:设圆柱下底面圆O 的半径为r ,连AC ,由矩形ABCD 内接于圆O , 可知AC 是圆O 的直径,∴2226810r AC ==+=,得=5r ,由//AB CD ,可知PBA ∠就是异面直线PB 与CD 所成的角,即arctan2PBA ∠=, tan 2PBA ∴∠=.在直角三角形PAB 中,tan 12PA AB PBA =∠=,∴圆柱的体积22512300V r PA πππ==⨯⨯=.【点睛】本题考查了圆柱的体积求法,主要根据圆内接矩形的性质、母线垂直于底面圆求出它的底面圆半径和母线,即关键求出半径和母线长即可.18. 求二项式500(12)x +的展开式中项系数最大的项的系数.【答案】3333335002C ⋅或3343345002C ⋅【解析】 【分析】根据题意,求出500(12)x +的展开式的通项,求出其系数,设第1r +项的系数最大,则有11500500115005002222r r r r r r r r C C C C --++⎧⎨⎩,解可得r 的值,代入通项中计算可得答案.【详解】解:根据题意,500(12)x +的展开式的通项为1500(2)rr r T C x +=,其系数为5002r r C ⨯,设第1r +项的系数最大,则有11500500115005002222r r r r r r r r C C C C --++⎧⎨⎩, 即11500499(5001)500499(5002)22!(1)!500499(5001)500499(500)22!(1)!r r r r r r r r r r r r -+⨯⨯⨯-+⨯⨯⨯-+⎧⎪-⎪⎨⨯⨯⨯-+⨯⨯⨯-⎪⎪+⎩解可得:333334r ,故当333r =或334r =时,展开式中项系数最大,则有4334334333355002T C x =,3333333333345002T C x =; 即系数最大的项的系数为3335003332C 或4335004332C . 【点睛】本题考查二项式定理的应用,注意项的系数与二项式系数的区别,属于基础题.19. 如图,弧AEC 是半径为r 的半圆,AC 为直径,点E 为弧AC 的中点,点B 和点C 为线段AD 的三等分点,线段ED 与弧EC 交于点G ,平面AEC 外一点F 满足FC ⊥平面BED ,2FC r =.(1)求异面直线ED 与FC 所成角的大小;(2)将FCG ∆(及其内部)绕FC 所在直线旋转一周形成一几何体,求该几何体的体积.【答案】(1)90︒;(2)3415r π; 【解析】 【分析】(1)由FC ⊥平面BED ,利用线面垂直的性质定理可得FC ED ⊥,即可得到异面直线ED 与FC 所成角的大小为90︒.(2)连接GC ,在BGC ∆中,利用余弦定理得:2222222cos 5CG r r r CBG r =+-∠=,由题设知,所得几何体为圆锥,分别计算其其底面积及高为F ,即可得到该圆锥的体积V . 【详解】解:(1)FC ⊥平面BED ,ED ⊂平面BED ,FC ED ∴⊥,∴异面直线ED 与FC 所成角的大小为90︒.(2)连接GC ,在BGC ∆中,由余弦定理得: 2222222cos 5CG r r r CBG r =+-∠=,由题设知,所得几何体为圆锥,其底面积为2225CG r ππ=,高为2FC r =.该圆锥的体积为2312423515V r r r ππ=⨯⨯=.【点睛】熟练掌握线面垂直的性质定理、余弦定理、圆锥的体积计算公式是解题的关键. 20. 老况、老王、老顾、小周、小郭和两位王女士共7人要排成一排拍散伙纪念照. (1)若两位王女士必须相邻,则共有多少种排队种数? (2)若老王与老况不能相邻,则共有多少种排队种数?(3)若两位王女士必须相邻,若老王与老况不能相邻,小郭与小周不能相邻,则共有多少种排队种数?【答案】(1)26261440A A =;(2)52563600A A =;(3)2222352116720C A A A A =; 【解析】 【分析】(1)利用捆绑法即可求出, (2)利用插空法即可求出, (3)利用捆绑和插空法,即可求出.【详解】解:(1)首先把两位女士捆绑在一起看做一个符合元素,和另外5人全排列,故有26261440A A =种,(2)将老王与老况插入另外5人全排列所形成的6个空的两个,故有52563600A A =种,(3)先安排老王与老况,在形成的3个空中选2个插入小郭与小周,在形成的5个空中选1个插入老顾,最后将两位女士捆绑在一起看做一个符合元素,选1个位置插入到其余5人形成的6个空中故有2222352116720C A A A A =种. 【点睛】本题考查了简单的排列组合,考查了相邻问题和不相邻问题,属于中档题.21. 在一个圆锥内作一个内接等边圆柱(一个底面在圆锥的底面上,且轴截面是正方形的圆柱),再在等边圆柱的上底面截得的小圆锥内做一个内接等边圆柱,这样无限的做下去.(1)证明这些等边圆柱的体积从大到小排成一个等比数列; (2)已知这些等边圆柱的体积之和为原来圆锥体积的37,求最大的等边圆柱的体积与圆锥的体积之比. 【答案】(1)证明见解析;(2)38【解析】 【分析】(1)求出第一个等边圆柱的体积,设第n 个等边圆柱的底面半径为a ,其外接圆锥的底面半径为r ,高为h ,则其体积3322()2n rh V a r hππ==+,进一步求得第1n +个等边圆柱的体积,作比可得这些等边圆柱的体积从大到小排成一个等比数列;(2)由这些等边圆柱的体积之和为原来圆锥体积的37可得r 与h 的关系,则答案可求. 【详解】(1)证明:如图,设圆锥的底面半径为r ,高为h ,内接等边圆柱的底面半径为a , 则由三角形相似可得:2a r a h r -=,可得2rha r h=+. 其体积233222()2rh V a a a r hπππ===+. 设第n 个等边圆柱的底面半径为a ,其外接圆锥的底面半径为r ,高为h ,则其体积3322()2n rh V a r hππ==+,再设第1n +个等边圆柱的底面半径为b ,则其外接圆锥的底面半径为2rha r h=+, 高为22ah h r r h=+, 则第1n +个等边圆柱的体积223331222222()()2(2)22n rh h rh r h r h V b rh h r h r h r hππ+++===++++. ∴31()2n n V h V r h+=+为定值, 则这些等边圆柱的体积从大到小排成一个以312()2rh V r h π=+为首项,以3()2h r h+为公比的等比数列; (2)解:原来圆锥的体积为213r h π,这些等边圆柱的体积之和为32312232()214631()2rh V r h r h h q r rh h r hππ+==-++-+. 由232223146373r h r h r rh hππ=++,得222320r rh h +-=, 2h r ∴=.则最大的等边圆柱的体积为34r π,圆锥的体积为323r π,体积之比为38.【点睛】本题考查圆柱、圆锥体积的求法,考查等比数列的确定及所有项和公式的应用,是中档题.。

上海市高二下学期期末考试数学试题(带答案)

上海市高二下学期期末考试数学试题(带答案)

高二下学期期末考试数学试题(考试时间:120分钟 满分:150分 )一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.过点)2,1(、)6,3(的直线的斜率为______________.2.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________.3.正四面体ABC S -的所有棱长都为2,则它的体积为________.4.以)2,1(-为圆心且过原点的圆的方程为_____________.5.某几何体的三视图如图所示,则该几何体的体积为__________.6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.7.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________. 8.双曲线1422=-y x 的顶点到其渐近线的距离等于_________. 9.已知球的半径为1,A 、B 是球面上两点,线段AB 的长度为3,则A 、B 两点的球面距离为 ________.10.在长方体1111D C B A ABCD -中,已知36,91==BC AA ,N 为BC 的中点,则直线11C D 与 平面N B A 11的距离是___________.11.从3名骨科、4名脑外科和5名内科医生中选派6人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答).12. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若 AB 的中点坐标为(1,1)-,则E 的方程为_________________.13.设实数y x ,满足⎪⎩⎪⎨⎧≤-≥-+≤--,032,042,02y y x y x 则y x z -=2的最大值为____________.14.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一 个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直 线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计)二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编 号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.在正方体1111D C B A ABCD -中,任取两条棱,则这两条棱为异面直线的概率为( )A .112B .114C .116D .11816.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80),[80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .12017.=++-+++-+1)1(4)1(6)1(4)1(234x x x x ( )A .4xB .4x -C .1D .1- 18.若直线m x y l +-=2:与曲线|4|21:2x y C -=有且仅有三个交点,则m 的取值范围是() A .)12,12(+- B .)2,1( C .)12,1(+ D .)12,2(+三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤.19.(12分)求8)32(xx +的二项展开式中的第5项的二项式系数和系数.20.(14分)求半径为10,且与直线07034=-+y x 相切于)10,10(的圆的方程.21.(14分)已知椭圆13422=+y x 上存在两点A 、B 关于直线m x y +=4对称,求m 的取值范围.22.(16分)如图,四棱柱1111D C B A ABCD -中, 侧棱⊥A A 1底面ABCD ,AD AB DC AB ⊥,//, 1==CD AD ,21==AB AA ,E 为棱1AA 的中点.(1) 证明:CE C B ⊥11;(2) 求异面直线E C 1与AD 所成角的大小.(结果用反三角函数值表示)23.(18分)下图是利用计算机作图软件在直角坐标平面xOy 上绘制的一列抛物线和一列直线,在焦点为n F 的抛物线列x p y C n n 4:2=中,n p 是首项和公比都为)10(<<p p 的等比数列,过n F 作斜率2的直线n l 与n C 相交于n A 和n B (n A 在x 轴的上方,n B 在x 轴的下方).(1)证明:n OA 的斜率是定值;(2)求1A 、2A 、Λ、n A 、Λ所在直线的方程;(3)记n n OB A ∆的面积为n S ,证明:数列}{n S 是等比数列,并求所有这些三角形的面积的和.第23题图第二学期高二年级数学学科期末考试卷参考答案19.(12分)解:4485)32)((x x C T =, 所以二项式系数为7048=C ,系数为811120.21.(14分)解:设直线AB 方程为b x y +-=4,联立 ⎪⎩⎪⎨⎧+-==+,4,124322b x y y x 得,0481681322=-+-b bx x 从而,138b x x B A =+ ,13242)(41b b x x y y B A B A =++-=+则B A ,中点是)1312,134(b b, 则,013121344=+-⋅m b b 解得.134b m -= 由0481681322=-+-b bx x 有实数解得,0)4816(526422≥--=∆b b 即.4132≤b 于是.413)413(2≤-m 则m 的取值范围是.1313213132≤≤-m23.(18分)解:(1)由已知得n n p p =,抛物线焦点)0,(n n p F ,抛物线方程为x p y n42=,直线n l 的方程为).(2n p x y -=于是,抛物线n C 与直线n l 在x 轴上方的交点),(11y x A n 的坐标满足⎪⎩⎪⎨⎧-==),(2,411121n n p x y x p y 则有,042211121=-+x y x y而直线n OA 的斜率为11x y k n OA =,则,042112=-+OA OA k k 解得,51±-=n OA k 又,0>k 点n A 在第一象限,则51+-=n OA k ;(2)直线方程为x y )51(+-=;(3)由⎪⎩⎪⎨⎧-==),(2,42n n p x y x p y 得,04222=--n n p y p y 则n p AB 10||=, 而O 到直线n l 的距离为52np ,于是n n OB A ∆的面积n n p S 252=,所以数列}{n S 是以252p 为首项,2p 为公比的等比数列.由于10<<p , 所以所有三角形面积和为22152p p -.。

2017-2018学年高二下学期期末考试数学试题含答案

2017-2018学年高二下学期期末考试数学试题含答案

2015*2016学年度第二学期期末考试慕高二数学一、填空题1. 函数f (x) =cos( .X )( ■ • 0)的最小正周期为,则.=•6 52. 已知z=(2-i)2(i为虚数单位),则复数z的虚部为•3.若sin :• =2cos_:>,贝y sin2二亠6cos2〉的值为.4. 某班有学生60人,现将所有学生按1, 2, 3, , , 60随机编号,若采用系统抽样的方法抽取一个容量为5的样本,已知编号为4, a, 28, b , 52的学生在抽取的样本中,则a • b =.5. 从1, 2, 3, 4, 5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是.6. 某老师星期一到星期五收到信件数分别是10, 6, 8, 5, 6,该组数据的标准差为./ Z/1L *ci9.观察下列各式:55-3125 , 56=15625 , 57=78125,…,则52011的末四位数字为.10.在长为12cm的线段AB上任取一点C ,现作一矩形,邻边长分别等于线段AC , CB的长,则该矩形面积小于32cm2的概率为.7.已知函数隈三(0,二),cos.::5’8.阅读如图所示的程序框图,运行相应的程序,若输入n的值为4,则输出S的值为.t| £ = $#2*七上|/Z/11. 已知函数f(x) =sin(• x;;'::「:)(八0,-…::::::::…)图象上每一点的纵坐标不变,横坐标缩短为原来的一半后再向右平移 --个单位长度得到函数y二sin x的图象,贝U f (;) = •12. 若cos ) 3,则cos(5)-sin1 2)=.6 3 6 6113. 函数f(x)=3x3—3x,若方程f(x)=x2F在(U上两个解,则实数m的取值范围为•14. 若对任意的X・D,均有£(X)乞f(X)空f2(X)成立,则称函数f (x)为函数f1(x)到函数f2 (x)在区间f(x)上的“折中函数” •已知函数f (x) =(k -1)) x -1, g(x) =0,h(x) =(x T)ln x,且f (x)是g(x)到h(x)在区间[1,2e] 上的“折中函数”,则实数k的取值范围为.二、解答题15. 设复数z = -3cosv is in v . ( i为虚数单位)4(1 )当时,求| z |的值;3(2)当—[$,二]时,复数吕二COST - isi,且z,z为纯虚数,求二的值.16. 某校为调研学生的身高与运动量之间的关系,从高二男生中随机抽取100名学生的身高数据,得到如下频率分布表:1求频率分布表中①、②位置相应的数据;2为了对比研究学生运动量与身高的关系,学校计划采用分层抽样的方法从第2组和第5组中随机抽取7名学生进行跟踪调研,求第2组和第5组分别抽取的学生数?(3)在(2)的前提下,学校决定从7名学生中随机抽取2名学生接受调研访谈,求至少有1名学生来自第5组的概率?17. 已知函数f(x) = 2sin(x ) cosx.6IT(1 )若0 _ x _㊁,求函数f (x)的值域;(2)设:ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A) =1,b =2,c =3,求cos(A-B)的值.18. 某公园准备建一个摩天轮,摩天轮的外围是一个周长为k米的圆,在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连,经预算,摩天轮上的每个座位与支点相连的钢管的费用为8k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为[(1024 x 20)x■ 2]k元,假设座位等距离分布,且至少100有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k -100米时,试确定座位的个数,使得总造价最低?19. 已知函数f (x)二e x -mx k(m,k • R)定义域为(0, •::).(1 )若k=2时,曲线y=f(x)在x=1和x=3处的切线互相平行,求实数m的值;(2 )若k =1时,函数f(x)在(1/::)上有最小值,求实数m的取值范围;(3)若m =1时,函数f(x)在(1,=)上单调递增,求整数k的最大值.20. 已知函数f(x)=2x3 -3(k 1)x2 6kx t,其中k,t 为实数.(1)若函数f (x)在x=2处有极小值0,求k,t的值;(2)已知k _1且t =1-3k,如果存在(1,2],使得「(冷)乞f(x。

最新2017-2018高二数学理科下学期期末试题(附全套答案)

最新2017-2018高二数学理科下学期期末试题(附全套答案)

最新2017-2018高二数学理科下学期期末试题(附全套答案)第Ⅰ卷(共60分)一、选择题(本大题共12个小题.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的为()A.(为常数)B.C.D.2.已知,则复数()A.B.C.D.3.已知曲线在点处的切线平行于直线,那么点的坐标为()A.或B.或C.D.4.随机变量,且,则()A.0.20 B.0.30 C.0.70 D.0.805.设,那么()A.B.C.D.6.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件“第一次取到的是偶数”,“第二次取到的是偶数”,则()A.B.C.D.7.用反证法证明命题“已知函数在上单调,则在上至多有一个零点”时,要做的假设是()A.在上没有零点B.在上至少有一个零点C.在上恰好有两个零点D.在上至少有两个零点8.在的展开式中,各项系数与二项式系数和之比为,则的系数为()A.21 B.63 C.189 D.729 9.如图是函数的导函数的图象,则下面判断正确的是()A.在上是增函数B.在上是减函数C.在上是增函数D.在时,取极大值10.若是离散型随机变量,,,又已知,,则的值为()A.B.C.3 D.111.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种A.19 B.26 C.7 D.12 12.已知在上的可导函数的导函数为,满足,且为偶函数,,则不等式的解集为()A.B.C.D.第Ⅱ卷(共90分)二、填空题(每小题5分,共计20分)13.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表玩手机不玩手机合计学习成绩优秀 4 8 12学习成绩不优秀 16 2 18合计 20 10 30经计算的值,则有的把握认为玩手机对学习有影响.附:0.15 0.10 0.05 0.025 0.010 0.005 0.0012.072 2.7063.841 5.024 6.635 7.879 10.828, .14.由曲线与围成的封闭图形的面积是.15.对于三次函数,定义:设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”,有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”根据此发现,若函数,计算.16.对于函数,若存在区间,当时,的值域为,则称为倍值函数.下列函数为2倍值函数的是(填上所有正确的序号).①②③④三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知,,为实数.(Ⅰ)若,求;(Ⅱ)若,求实数,的值.18.已知函数 .(Ⅰ)若在处取得极值,求的单调递减区间;(Ⅱ)若在区间内有极大值和极小值,求实数的取值范围.19.某校倡导为特困学生募捐,要求在自动购水机处每购买一箱矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:售出水量(单位:箱)7 6 6 5 6收入(单位:元)165 142 148 125 150学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21~50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.(Ⅰ)若售出水量箱数与成线性相关,则某天售出9箱水时,预计收入为多少元?(Ⅱ)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望.附:回归直线方程,其中, .20.如图(1)是一个仿古的首饰盒,其左视图是由一个半径为分米的半圆和矩形组成,其中长为分米,如图(2).为了美观,要求 .已知该首饰盒的长为分米,容积为4立方分米(不计厚度),假设该首饰盒的制作费用只与其表面积有关,下半部分的制作费用为每平方分米2百元,上半部制作费用为每平方分米4百元,设该首饰盒的制作费用为百元.(Ⅰ)写出关于的函数解析式;(Ⅱ)当为何值时,该首饰盒的制作费用最低?21.已知函数在点处的切线与直线垂直.(Ⅰ)求函数的极值;(Ⅱ)若在上恒成立,求实数的取值范围.22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 .(Ⅰ)求直线的普通方程与曲线的直角坐标方程;(Ⅱ)若直线与曲线交于、两点,求的最小值.23.选修4-5:不等式选讲已知函数, .(Ⅰ)若恒成立,求的取值范围;(Ⅱ)已知,若使成立,求实数的取值范围.高二数学(理科)试题参考答案一、选择题1-5: CABBD 6-10: BDCCD 11、12:BA二、填空题13. 99.5 14. 1 15. 2018 16. ①②④三、解答题17.解:(Ⅰ)∵,∴ .∴,∴;(Ⅱ)∵,∴.∴,解得,∴,的值为:-3,2.18.解:,(Ⅰ)∵在处取得极值,∴,∴,∴,∴,令,则,∴,∴函数的单调递减区间为 .(Ⅱ)∵在内有极大值和极小值,∴在内有两不等实根,对称轴,∴,即,∴ .19.解:(Ⅰ),,,,所以线性回归方程为,当时,的估计值为206元;(Ⅱ)甲乙两名同学所获得奖学金之和的可能取值为0,300,500,600,800,1000;;;;;;.0 300 500 600 800 1000所以的数学期望 .20.解:(Ⅰ)由题知,∴ .又因,得,∴.(Ⅱ)令,∴,令则,∵,当时,函数为增函数.∴时,最小.答:当分米时,该首饰盒制作费用最低.21.解:(Ⅰ)函数的定义域为,,所以函数在点处的切线的斜率 .∵该切线与直线垂直,所以,解得 .∴,,令,解得 .显然当时,,函数单调递增;当时,,函数单调递减.∴函数的极大值为,函数无极小值.(Ⅱ)在上恒成立,等价于在上恒成立,令,则,令,则在上为增函数,即,①当时,,即,则在上是增函数,∴,故当时,在上恒成立.②当时,令,得,当时,,则在上单调递减,,因此当时,在上不恒成立,22.解:(Ⅰ)将(为参数,)消去参数,得直线,,即 .将代入,得,即曲线的直角坐标方程为 .(Ⅱ)设直线的普通方程为,其中,又,∴,则直线过定点,∵圆的圆心,半径,,故点在圆的内部.当直线与线段垂直时,取得最小值,∴ .23.解:(Ⅰ)∵,若恒成立,需,即或,解得或 .(Ⅱ)∵,∴当时,,∴,即,成立,由,∵,∴(当且仅当等号成立),∴ .又知,∴的取值范围是 .。

上海市松江区2018-2019学年高二数学下学期期末考试试题(含解析)

上海市松江区2018-2019学年高二数学下学期期末考试试题(含解析)

【答案】3
【解析】
【分析】
先求出样本的平均数,再求出其标准差.
x 3 70 3 67 1 64 1 61 67
【详解】这八个人生物成绩的平均分为
8

所以这八个人生物成绩的标准差为
s
1 8
3 70
672
3 67
672
64
672
61
672
3
故得解.
【点睛】本题考查样本的标准差,属于基础题.
7.已知正三棱锥底面边长为 2 ,侧棱长为 3 ,则它的侧面与底面所成二面角的余弦值为
33 【答案】 6
【解析】 【分析】
在四面体中找出与 AB 垂直的面,在旋转的过程中 CD 在面 内的射影始终与 AB 垂直求解.
【详解】 ABD 和 ABC 都是等边三角形,取 AB 中点 M , 易证 MD AB , MC AB ,即 AB 平面 CDM ,所以 AB CD . 设 CD 在平面 内的投影为 CD ,则在四面体 ABCD 绕着 AB 旋转时,恒有 CD AB . 因为 AB∥ 平面 ,所以 AB 在平面 内的投影为 AB AB 2 . 因此,四面体 ABCD 在平面 内的投影四边形 ABCD 的面积
cos x
所以,
3 sin x cos x
2
f
(x)
0
,化简得,
f
(x)
1 2
sin
2x
6
1 4


sin
2x
6
1
时,
f
(x)
1 2
sin
2x
6
1 4
取得最大值为
1 4
.
【点睛】本题考查向量的 数量积运算和三角函数的最值,属于基础题.

上海市高二下学期期末考试数学试题(共3套,含答案)

上海市高二下学期期末考试数学试题(共3套,含答案)

高二下学期期末考试数学试题(考试时间:120分钟 满分:150分 )一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.过点)2,1(、)6,3(的直线的斜率为______________.2.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________.3.正四面体ABC S -的所有棱长都为2,则它的体积为________.4.以)2,1(-为圆心且过原点的圆的方程为_____________.5.从一副52张扑克牌中第一张抽到“Q ”,重新放回,第二张抽到一张有人头的牌,则这两个事件都发生的概率为________.6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.7.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________.8.双曲线1422=-y x 的顶点到其渐近线的距离等于_________. 9.某人5次上班途中所花的时间(单位:分钟)分别为9,11,10,,y x .已知这组数据的平均数为10,方差为2,则=-||y x __________.10.在长方体1111D C B A ABCD -中,已知36,91==BC AA ,N 为BC 的中点,则直线11C D 与平面N B A 11的距离是___________.11.棱长为1的正方体1111D C B A ABCD -的8个顶点都在球面O 的表面上,E 、F 分别是棱1AA 、1DD 的中点,则直线EF 被球O 截得的线段长为________.12.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外 科和内科医生都至少有1人的选派方法种数是___________.(用数字作答)13.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计)14.设焦点是)5,0(1-F 、)5,0(2F 的双曲线C 在第一象限内的部分记为曲线T ,若点ΛΛ),,(),,2(),,1(2211n n y n P y P y P 都在曲线T 上,记点),(n n y n P到直线02:=+-k y x l 的距离为),2,1(Λ=n d n ,又已知5lim =∞→n n d ,则常数=k ___________. 二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是( )平方米.A .32424-πB .33636-πC .32436-πD .33648-π第15题图16.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80),[80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .12017.使得*)()13(N n x x x n ∈+的展开式中含有常数项的最小的n 为 ( ) A .4B .5C .6D .7 18.若直线m x y l +-=2:与曲线|4|21:2x y C -=有且仅有三个交点,则m 的取值范围是() A .)12,12(+- B .)2,1( C .)12,1(+ D .)12,2(+三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤.19.(12分)求8)32(xx +的二项展开式中的第5项的二项式系数和系数.20.(14分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者从装有3个红球、1 个蓝球、6奖如下:奖级 摸出红、蓝球个数 获奖金额一等奖 3红1蓝 200元二等奖 3红1白 50元三等奖 2红1蓝或2红2白 10元(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X 的分布列与期望()E X .21.(14分)已知椭圆13422=+y x 上存在两点A 、B 关于直线m x y +=4对称,求m 的取值范围.22.(16分)如图,四棱柱1111D C B A ABCD -中, 侧棱⊥A A 1底面ABCD ,AD AB DC AB ⊥,//, 1==CD AD ,21==AB AA ,E 为棱1AA 的中点.(1) 证明:CE C B ⊥11;(2) 设点M 在线段E C 1上, 且直线AM 与平面11A ADD 所成角的正弦值为62, 求线段AM 的长.23.(18分)下图是利用计算机作图软件在直角坐标平面xOy 上绘制的一列抛物线和一列直线,在焦点为n F 的抛物线列x p y C n n 4:2=中,n p 是首项和公比都为)10(<<p p 的等比数列,过n F 作斜率2的直线n l 与n C 相交于n A 和n B (n A 在x 轴的上方,n B 在x 轴的下方).(1)证明:n OA 的斜率是定值;(2)求1A 、2A 、Λ、n A 、Λ所在直线的方程;(3)记n n OB A ∆的面积为n S ,证明:数列}{n S 是等比数列,并求所有这些三角形的面积的和.第22题图 E D 1 C 1 B 1 A 1 D C B A金山中学第二学期高二年级数学学科期末考试卷参考答案19.(12分)解:4485)32)((xx C T =, 所以二项式系数为7048=C ,系数为811120. 20.(14分)解:(1)214103713=C C C ; X0 10 50 200 P(X) 4231 358 351 2101 321020035503510420)(=⋅+⋅+⋅+⋅=X E . 21.(14分)解:设直线AB 方程为b x y +-=4,联立 ⎪⎩⎪⎨⎧+-==+,4,124322b x y y x 得,0481681322=-+-b bx x 从而,138b x x B A =+ ,13242)(41b b x x y y B A B A =++-=+ 则B A ,中点是)1312,134(b b ,则,013121344=+-⋅m b b 解得.134b m -= 由0481681322=-+-b bx x 有实数解得,0)4816(526422≥--=∆b b 即.4132≤b 于是.413)413(2≤-m 则m 的取值范围是.1313213132≤≤-m23.(18分)解:(1)由已知得n n p p =,抛物线焦点)0,(n n p F ,抛物线方程为x p y n 42=,直线n l 的方程为).(2np x y -=于是,抛物线n C 与直线n l 在x 轴上方的交点),(11y x A n 的坐标满足⎪⎩⎪⎨⎧-==),(2,411121n n p x y x p y 则有,042211121=-+x y x y而直线n OA 的斜率为11x y k n OA =,则,042112=-+OA OA k k 解得,51±-=n OA k 又,0>k 点n A 在第一象限,则51+-=n OA k ;(2)直线方程为x y )51(+-=;(3)由⎪⎩⎪⎨⎧-==),(2,42n n p x y x p y 得,04222=--n n p y p y 则n p AB 10||=, 而O 到直线n l 的距离为52np ,于是n n OB A ∆的面积n n p S 252=,所以数列}{n S 是以252p 为首项,2p 为公比的等比数列.由于10<<p , 所以所有三角形面积和为22152pp -.高二下学期期末考试数学试题(考试时间:120分钟 满分:150分 )一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.过点)2,1(、)6,3(的直线的斜率为______________.2.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________.3.正四面体ABC S -的所有棱长都为2,则它的体积为________.4.以)2,1(-为圆心且过原点的圆的方程为_____________.5.某几何体的三视图如图所示,则该几何体的体积为__________.6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.7.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________. 8.双曲线1422=-y x 的顶点到其渐近线的距离等于_________. 9.已知球的半径为1,A 、B 是球面上两点,线段AB 的长度为3,则A 、B 两点的球面距离为 ________.10.在长方体1111D C B A ABCD -中,已知36,91==BC AA ,N 为BC 的中点,则直线11C D 与 平面N B A 11的距离是___________.11.从3名骨科、4名脑外科和5名内科医生中选派6人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答).12. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若 AB 的中点坐标为(1,1)-,则E 的方程为_________________.13.设实数y x ,满足⎪⎩⎪⎨⎧≤-≥-+≤--,032,042,02y y x y x 则y x z -=2的最大值为____________.14.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一 个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直 线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计)二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编 号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.在正方体1111D C B A ABCD -中,任取两条棱,则这两条棱为异面直线的概率为( )A .112B .114C .116D .11816.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80),[80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .12017.=++-+++-+1)1(4)1(6)1(4)1(234x x x x ( )A .4xB .4x -C .1D .1- 18.若直线m x y l +-=2:与曲线|4|21:2x y C -=有且仅有三个交点,则m 的取值范围是() A .)12,12(+- B .)2,1( C .)12,1(+ D .)12,2(+三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤.19.(12分)求8)32(xx +的二项展开式中的第5项的二项式系数和系数.20.(14分)求半径为10,且与直线07034=-+y x 相切于)10,10(的圆的方程.21.(14分)已知椭圆13422=+y x 上存在两点A 、B 关于直线m x y +=4对称,求m 的取值范围.22.(16分)如图,四棱柱1111D C B A ABCD -中, 侧棱⊥A A 1底面ABCD ,AD AB DC AB ⊥,//, 1==CD AD ,21==AB AA ,E 为棱1AA 的中点.(1) 证明:CE C B ⊥11;(2) 求异面直线E C 1与AD 所成角的大小.(结果用反三角函数值表示)24.(18分)下图是利用计算机作图软件在直角坐标平面xOy 上绘制的一列抛物线和一列直线,在焦点为n F 的抛物线列x p y C n n 4:2=中,n p 是首项和公比都为)10(<<p p 的等比数列,过n F 作斜率2的直线n l 与n C 相交于n A 和n B (n A 在x 轴的上方,n B 在x 轴的下方).(4)证明:n OA 的斜率是定值;(5)求1A 、2A 、Λ、n A 、Λ所在直线的方程;(6)记n n OB A ∆的面积为n S ,证明:数列}{n S 是等比数列,并求所有这些三角形的面积的和.第23题图第二学期高二年级数学学科期末考试卷参考答案19.(12分)解:4485)32)((x x C T =, 所以二项式系数为7048=C ,系数为811120.22.(14分)解:设直线AB 方程为b x y +-=4,联立 ⎪⎩⎪⎨⎧+-==+,4,124322b x y y x 得,0481681322=-+-b bx x 从而,138b x x B A =+ ,13242)(41b b x x y y B A B A =++-=+则B A ,中点是)1312,134(b b, 则,013121344=+-⋅m b b 解得.134b m -= 由0481681322=-+-b bx x 有实数解得,0)4816(526422≥--=∆b b 即.4132≤b 于是.413)413(2≤-m 则m 的取值范围是.1313213132≤≤-m24.(18分)解:(1)由已知得n n p p =,抛物线焦点)0,(n n p F ,抛物线方程为x p y n42=,直线n l 的方程为).(2np x y -=于是,抛物线n C 与直线n l 在x 轴上方的交点),(11y x A n 的坐标满足⎪⎩⎪⎨⎧-==),(2,411121nnp x y x p y 则有,042211121=-+x y x y 而直线n OA 的斜率为11x y k n OA =,则,042112=-+OA OA k k 解得,51±-=n OA k 又,0>k 点n A 在第一象限,则51+-=n OA k ; (4)直线方程为x y )51(+-=;(5)由⎪⎩⎪⎨⎧-==),(2,42nn p x y x p y 得,04222=--n n p y p y 则np AB 10||=,而O 到直线n l 的距离为52np ,于是n n OB A ∆的面积nn pS 252=,所以数列}{n S 是以252p 为首项,2p 为公比的等比数列.由于10<<p ,所以所有三角形面积和为22152pp -.上海市高二年级第二学期数学学科期终考试试卷(注意事项:本试卷共2页,满分100分,答题时间90分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年上海市松江二中高二下学期期末考试
数学试题
2018.06
一. 填空题
1. 若31010
r C C =,则r = 2. 函数21y x =-(0)x <的反函数是
3. 已知,{3,2,1,1,2,3}a b ∈---且a b ≠,则复数z a bi =+对应点在第二象限的概率 为 (用最简分数表示)
4. n a 是(3)n
x -(2,)n n ≥∈N 展开式中x 的一次项系数,则2323333lim()n
n n a a a →∞++⋅⋅⋅+= 5. 已知x 是1、2、3、x 、5、6、7这七个数据的中位数,且1、3、2x 、y -这四个数据的 平均数为1,则1y x
-的最小值为 6. 如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直 径为1的圆,那么这个几何体的全面积为
7. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余 部分体积的比值为
8. 从1、2、3、4、5、6、7、8中任取三个数,能组成等差数列的概率是
9. 我校家长会学校邀请了6位同学的父母共12人,请这12位家长中的4位介绍对子女的 教育情况,则这4位中恰有一对是夫妻的概率是 (结果用分数表示)
10. 设集合{72,94,120,137,146}M =,甲、乙、丙三位同学在某次数学测验中的成绩分别 为a 、b 、c ,且a 、b 、c M ∈,a b c <≤,则这三位同学的考试成绩的所有可能的情况种 数为
11. 设集合12312{(,,,,)|{1,0,1},1,2,3,,12}i A x x x x x i =⋅⋅⋅∈-=⋅⋅⋅,则集合A 中满足条件 “123121||||||||9x x x x ≤+++⋅⋅⋅+≤”的元素个数为
12. 甲、乙、丙3位大学生同时应聘某个用人单位,3人能被选中的概率分别为25、34、13,
且各自能否被选中互不影响. 记i P 为三人中共有i 人被选中的概率(1,2,3)i =,则i P 的最大 值为
二. 选择题
13. 8名学生和2位教师站成一排合影,2位教师不相邻的排法种数为( )
A. 8289P P
B. 8289P C
C. 8287P P
D. 8287P C
14. 组合数r n
C (1,,)n r n r >≥∈Z 恒等于( ) A. 1111
r n r C n --++ B. 11(1)(1)r n n r C --++ C. 11r n nrC -- D. 11r n n C r -- 15. 从装有2个红球和2个白球的袋内任取2球,那么互不相容的两个事件是( )
A. “至少一个白球”与“都是白球”
B. “至少一个白球”与“至少一个红球”
C. “恰有一个白球”与“恰有两个白球”
D. “至多一个白球”与“都是红球”
16. 圆柱被一平面截去一部分后与半球(半径为r )
组成一个几何体,该几何体的三视图中的正视图和
俯视图如图所示,若该几何体表面积为1620π+,
则r =( )
A. 1
B. 2
C. 4
D. 8
三. 解答题
17. 从5个男生和3个女生中选5人担任5门不同学科的课代表,分别求符合下列条件的选法种数.
(1)女生人数少于男生人数;
(2)某女生一定选中且担任语文课代表,某男生也必须选中且不担任数学课代表.
18. 已知函数1()22x x f x a --=⋅+(a 为常数,x ∈R )为偶函数.
(1)求a 的值,并用定义证明()f x 在[0,)+∞上单调递增;
(2)解不等式:(2log 1)(log 1)a a f x f x ->+.
19. 设数列{}n a 是等比数列,3112m m
a C -=()m ∈*N ,公比0q >. (1)求常数m 与1a 的值;
(2)若1212n n n n n n T C S C S C S =++⋅⋅⋅+,用n 、q 表示n T .
20. 已知函数()f x 定义在区间(1,1)-上,1()12f =-,对任意x 、(1,1)y ∈-, 恒有()()(
)1x y f x f y f xy ++=+成立,又数列{}n a 满足112a =,1221n n n a a a +=+, 设1231111()()()()
n n b f a f a f a f a =+++⋅⋅⋅+. (1)在(1,1)-内求一个实数t ,使得1
()2()2f t f =,并求此时()f t 的值;
(2)证明数列{()}n f a 是等比数列,并求()n f a 的表达式和lim n n b →∞
的值; (3)设22n n n c b =+,是否存在m ∈*N ,使得对任意n ∈*N ,222618log log 77n c m m <- 恒成立?若存在,求出m 的最小值;若不存在,请说明理由.
21. 已知数列{}n a 满足:124a =,13(1)(2)(3)n n n a a n n n n ++=
++++. (1)求数列{}n a 的通项公式;
(2)用适当的组合数形式表示n a ,并求数列{}n a 的前n 项和n S ;
(3)若122(2)(3)n n n a b n n +=
⋅++,记数列1{}n
b 的前n 项和为n T ,求lim n n T →∞.。

相关文档
最新文档