广州中考数学易错题专题复习-二次函数练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、二次函数真题与模拟题分类汇编(难题易错题)
1.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.
(1)请用配方法求二次函数图象的最高点P的坐标;
(2)小球的落点是A,求点A的坐标;
(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;
(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.
【答案】(1)(2,4);(2)(,);(3);(4)(,).
【解析】
试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;
(2)联立两解析式,可求出交点A的坐标;
(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;
(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直
线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛
物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.
试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,
故二次函数图象的最高点P的坐标为(2,4);
(2)联立两解析式可得:,解得:,或.
故可得点A的坐标为(,);
(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.
S△POA=S△POQ+S△梯形PQBA﹣S△BOA
=×2×4+×(+4)×(﹣2)﹣××
=4+﹣
=;
(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.
设直线PM的解析式为y=x+b,
∵P的坐标为(2,4),
∴4=×2+b,解得b=3,
∴直线PM的解析式为y=x+3.
由,解得,,
∴点M的坐标为(,).
考点:二次函数的综合题
2.如图,已知抛物线y =﹣x 2+bx+c 与一直线相交于A (1,0)、C (﹣2,3)两点,与y 轴交于点N ,其顶点为D .
(1)求抛物线及直线AC 的函数关系式;
(2)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值及此时点P 的坐标;
(3)在对称轴上是否存在一点M ,使△ANM 的周长最小.若存在,请求出M 点的坐标和△ANM 周长的最小值;若不存在,请说明理由.
【答案】(1)y =﹣x 2﹣2x +3;y =﹣x +1;(2)当x =﹣1
2
时,△APC 的面积取最大值,最大值为
278
,此时点P 的坐标为(﹣12,15
4);(3)在对称轴上存在一点M (﹣1,
2),使△ANM 的周长最小,△ANM 周长的最小值为102 【解析】 【分析】
(1)根据点A ,C 的坐标,利用待定系数法即可求出抛物线及直线AC 的函数关系式;(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),进而可得出PF 的值,由点C 的坐标可得出点Q 的坐标,进而可得出AQ 的值,利用三角形的面积公式可得出S △APC =﹣
32x 2﹣3
2
x +3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N 的坐标,利用配方法可找出抛物线的对称轴,由点C ,N 的坐标可得出点C ,N 关于抛物线的对称轴对称,令直线AC 与抛物线的对称轴的交点为点M ,则此时△ANM 周长取最小值,再利用一次函数图象上点的坐标特征求出点M 的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM 周长的最小值即可得出结论. 【详解】
(1)将A (1,0),C (﹣2,3)代入y =﹣x 2+bx +c ,得:
10423b c b c -++=⎧⎨
--+=⎩,解得:2
3b c =-⎧⎨=⎩
, ∴抛物线的函数关系式为y =﹣x 2﹣2x +3;
设直线AC 的函数关系式为y =mx +n (m ≠0), 将A (1,0),C (﹣2,3)代入y =mx +n ,得:
023m n m n +=⎧⎨
-+=⎩,解得:1
1m n =-⎧⎨=⎩
, ∴直线AC 的函数关系式为y =﹣x +1.
(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,如图1所示.
设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),
∴PE =﹣x 2﹣2x +3,EF =﹣x +1,EF =PE ﹣EF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2. ∵点C 的坐标为(﹣2,3), ∴点Q 的坐标为(﹣2,0), ∴AQ =1﹣(﹣2)=3, ∴S △APC =12AQ •PF =﹣32x 2﹣32x +3=﹣32(x +1
2)2+278
. ∵﹣
3
2
<0, ∴当x =﹣
12时,△APC 的面积取最大值,最大值为278
,此时点P 的坐标为(﹣1
2,15
4
). (3)当x =0时,y =﹣x 2﹣2x +3=3, ∴点N 的坐标为(0,3). ∵y =﹣x 2﹣2x +3=﹣(x +1)2+4, ∴抛物线的对称轴为直线x =﹣1. ∵点C 的坐标为(﹣2,3), ∴点C ,N 关于抛物线的对称轴对称.
令直线AC 与抛物线的对称轴的交点为点M ,如图2所示. ∵点C ,N 关于抛物线的对称轴对称, ∴MN =CM ,
∴AM +MN =AM +MC =AC , ∴此时△ANM 周长取最小值. 当x =﹣1时,y =﹣x +1=2, ∴此时点M 的坐标为(﹣1,2).
∵点A 的坐标为(1,0),点C 的坐标为(﹣2,3),点N 的坐标为(0,3),
∴AC
=,AN , ∴C
△ANM =AM +MN +AN =AC +AN =.
∴在对称轴上存在一点M (﹣1,2),使△ANM 的周长最小,△ANM 周长的最小值为