2020届浙江卷数学高考模拟试题(有答案)
2020年浙江省高考数学模拟试卷(12)(20201108234812)
(Ⅰ)证明: PC⊥ AD ; (Ⅱ)若平面 PAD⊥平面 ABCD ,求直线 PB 与平面 PCD 所成角的正弦值.
第 3页(共 17页)
1 20.( 15 分)数列 { an} 满足 a1= 1,
= 1 + 1(n∈N *).
2????+1 2????
1 ( 1)求证:数列 { } 是等差数列;
)
3
A .1
B .√2
C. √3
【解答】 解:双曲线 ??2 - y2= 1 的渐近线为
√3 y=± x,
3
3
a2= 3, b2= 1, c2=a2+b2= 3+1= 4,即 C= 2,
设一个焦点
F( 2, 0),渐近线方程为
√3 x+y= 0,
3
则焦点 F 到其渐近线的距离
d= | √33× 2| = √1+( √33) 2
)
3
A .1
B .√2
C. √3
D.( 4,+∞) D.2
3.( 4 分)如图,网格纸上的小正方形的边长为
1,粗线画出的是某几何体的三视图,则该
几何体的体积为(
)
A .4
16 B.
3
32 C.
3
D. 16
??≥ 0 4.( 4 分)若实数 x,y 满足不等式组 {??- 2??≤ 2 ,则 x﹣ 3y( )
所以 z 的最大值为 x﹣ 3y= 2﹣0= 2,且 z 无最小值.
故选: C.
5.( 4 分)“角 θ为第三象限角”是“ sinθtanθ< 0”的(
)
A .充分不必要条件
B.必要不充分条件
第 6页(共 17页)
2020届浙江省金华市义乌市高考数学模拟试卷(6月份) (解析版)
2020年金华市义乌市高考数学模拟试卷(6月份)一、选择题(共10小题).1.已知U =R ,集合A ={x |x 2﹣2x ﹣8≤0},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{x |﹣2≤x <1} B .{x |x ≤4}C .{x |﹣4≤x <1}D .{x |﹣2≤x ≤1}2.已知双曲线C :x 2a −y 2b =1(a >0,b >0)的一条渐近线与直线y =2x +1平行,则C 的离心率为( ) A .√2B .√3C .√5D .√523.已知设m ,n 是两条不同的直线,α,β是两个不同的平面,则( ) A .若m ⊂α,n ⊂β,m ⊥n ,则α⊥β B .若α∥β,m ⊥α,n ∥β,则 m ⊥n C .若α⊥β,m ⊥α,n ∥β,则m ∥n D .若α⊥β,α∩β=m ,n ⊥m ,则n ⊥β 4.已知a ,b ∈R ,则a 2+b 2≥2是ab =1的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.函数的图象如图所示,则函数的解析式可能为( )A.f(x)=(x−1x)cos x B.f(x)=(x+1x)cos xC.f(x)=(x−1x)sin x D.f(x)=(x+1x)sin x6.已知某几何体的三视图如图所示,则该几何体的体积是()A.2B.4C.6D.127.袋子有5个不同的小球,编号分别为1,2,3,4,5,从袋中一次取出三个球,记随机变量ξ是取出球的最大编号与最小编号的差,数学期望为E(ξ),方差为D(ξ).则下列选项正确的是()A.E(ξ)=2,D(ξ)=0.6B.E(ξ)=2,D(ξ)=0.4C.E(ξ)=3,D(ξ)=0.4D.E(ξ)=3,D(ξ)=0.68.已知f(x)为偶函数,f(1+x)=f(3﹣x),当﹣2≤x≤0时,f(x)=3x,若n∈N*,a n=f(n),则a2021=()A.−13B.3C.﹣3D.139.如图,正方体ABCD﹣A1B1C1D1,点P在AB1上运动(不含端点),点E是AC上一点(不含端点),设EP与平面ACD1所成角为θ,则cosθ的最小值为()A.13B.√33C.√53D.√6310.已知函数f(x)=14cos2x+b cos x+c,若对任意x1,x2∈R,都有|f(x1)﹣f(x2)|≤4,则b的最大值为()A.1B.2√2C.2D.4二、填空题(本大题共7小题,多空题每小题4分,单空题每小题4分,共36分)11.《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱令上二人所得与下三人等问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相同,若甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位),则丁所得为钱.12.已知复数z:满足(1+i)z=3+i(i为虚数单位),则复数z的实部为,|z|=.13.若(mx﹣1)(3x−1)5展开式的各项系数之和为32,则m=;展开式中常数项为.14.在△ABC中,内角A,B,C对的边分别为a,b,c,满足a sin2B=b sin A,则B=,若BC 边上的中线AD =1,则△ABC 面积的最大值为 .15.已知点P (x ,y )满足(x ﹣cos θ)2+(y ﹣sin θ)2=1,则满足条件的P 所形成的平面区域的面积为 ,z =|x ﹣1|+|y |的最大值为 .16.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,上顶点为A ,点P 为第一象限内椭圆上的一点,|PF 1|+|PF 2|=4|F 1F 2|,S △PF 1A =2S △PF 1F 2,则直线PF 1的斜率为 .17.已知平面向量a →,b →,c →,满足a →+b →+c →=0→,a →,b →夹角为α,|a →|=1,|b →|+|c →|=2,则cos α的取值范围是 .三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤 18.已知f(x)=sin(x −π6)cosx . (Ⅰ)求f (x )的值域:(Ⅱ)若α∈(0,π2),β∈(0,π],f(α+β2+π12)=−352,tan α2=12,求cos β. 19.在多面体ABCDEF 中,正方形ABCD 和矩形BDEF 互相垂直,G ,H 分别是DE 和BC 的中点,AB =BF =2. (Ⅰ)求证:ED ⊥平面ABCD ;(Ⅱ)在BC 边所在的直线上存在一点P ,使得FP ∥平面AGH ,求FP 的长; (Ⅲ)求直线AF 与平面AHG 所成角的正弦值.20.已知等比数列{a n},满足a1=3,a3=a1a2,数列{b n}满足b1=1,对一切正整数n均有b n+1=b n+2n+1.(Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)记S k=2a1+4a2+6a3+⋯+2k ak,T n=1b1+2+1b2+4+1b3+6+⋯+1b n+2n,若存在实数c和正整数k,使得不等式T n<(c﹣1)•S k对任意正整数n都成立,求实数c的取值范围.21.如图,点P是抛物线x2=2y上位于第一象限内一动点,F是焦点圆M:x2+(y﹣1)2=1,过点P作圆M的切线交准线于A,B两点.(Ⅰ)记直线PF,PM的斜率分别为k PF,k PM,若k PF+k PM=12,求点P的坐标;(Ⅱ)若点P的横坐标x0>2,求△PAB面积S的最小值.22.已知函数f(x)=x(lnx﹣1),g(x)=1−e x 2.(Ⅰ)求证:当0<x<1e时,f(x)<x2−73x;。
浙江省2020届高三高考模拟试题数学试卷及解析word版
浙江省2020届高三高考模拟试题数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知U=R,集合A={x|x<32},集合B={y|y>1},则∁U(A∩B)=()A.[32,+∞)B.(−∞,1]∪[32,+∞)C.(1,32)D.(−∞,32)2.已知i是虚数单位,若z=3+i1−2i,则z的共轭复数z等于()A.1−7i3B.1+7i3C.1−7i5D.1+7i53.若双曲线x2m−y2=1的焦距为4,则其渐近线方程为()A.y=±√33x B.y=±√3x C.y=±√55x D.y=±√5x4.已知α,β是两个相交平面,其中l⊂α,则()A.β内一定能找到与l平行的直线B.β内一定能找到与l垂直的直线C.若β内有一条直线与l平行,则该直线与α平行D.若β内有无数条直线与l垂直,则β与α垂直5.等差数列{a n}的公差为d,a1≠0,S n为数列{a n}的前n项和,则“d=0”是“S2nS n∈Z”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.随机变量ξ的分布列如表:ξ﹣1012P13a b c其中a,b,c成等差数列,若E(ξ)=19,则D(ξ)=()A.181B.29C.89D.80817.若存在正实数y,使得xyy−x =15x+4y,则实数x的最大值为()A.15B.54C.1D.48.从集合{A,B,C,D,E,F}和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( ) A .85B .95C .2040D .22809.已知三棱锥P ﹣ABC 的所有棱长为1.M 是底面△ABC 内部一个动点(包括边界),且M 到三个侧面P AB ,PBC ,P AC 的距离h 1,h 2,h 3成单调递增的等差数列,记PM 与AB ,BC ,AC 所成的角分别为α,β,γ,则下列正确的是( )A .α=βB .β=γC .α<βD .β<γ10.已知|2a →+b →|=2,a →⋅b →∈[−4,0],则|a →|的取值范围是( ) A .[0,1]B .[12,1]C .[1,2]D .[0,2]二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.若α∈(0,π2),sinα=√63,则cosα= ,tan2α= .12.一个长方体被一个平面截去一部分后,剩余部分的三视图如图所示,则该几何体与原长方体的体积之比是 ,剩余部分表面积是 .13.若实数x ,y 满足{x +y −3≥02x −y +m ≤0y ≤4,若3x +y 的最大值为7,则m = .14.在二项式(√x +1ax 2)5(a >0)的展开式中x﹣5的系数与常数项相等,则a 的值是 .15.设数列{a n }的前n 项和为S n .若S 2=6,a n +1=3S n +2,n ∈N *,则a 2= ,S 5= . 16.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a cos B =b cos A ,∠A =π6,边BC 上的中线长为4.则c = ;AB →⋅BC →= .17.如图,过椭圆C:x2a2+y2b2=1的左、右焦点F1,F2分别作斜率为2√2的直线交椭圆C上半部分于A,B两点,记△AOF1,△BOF2的面积分别为S1,S2,若S1:S2=7:5,则椭圆C离心率为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知函数f(x)=sin(2x+π3)+sin(2x−π3)+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[−π4,π2]上的最大值和最小值.19.(15分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1.(1)求证:AB1⊥平面A1BC1;(2)若D在B1C1上,满足B1D=2DC1,求AD与平面A1BC1所成的角的正弦值.20.(15分)已知等比数列{a n}(其中n∈N*),前n项和记为S n,满足:S3=716,log2a n+1=﹣1+log2a n.(1)求数列{a n}的通项公式;(2)求数列{a n•log2a n}(n∈N*)的前n项和T n.21.(15分)已知抛物线C:y=12x2与直线l:y=kx﹣1无交点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.(1)证明:直线AB恒过定点Q;(2)试求△P AB面积的最小值.22.(15分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2).(1)求a的取值范围;(2)证明:f(x1)−f(x2)<12.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【详解详析】∵U=R,A={x|x<32},B={y|y>1},∴A∩B=(1,32),∴∁U(A∩B)=(−∞,1]∪[32,+∞).故选:B.2.【详解详析】∵z=3+i1−2i =(3+i)(1+2i)(1−2i)(1+2i)=15+75i,∴z=15−75i.故选:C.3.【详解详析】双曲线x2m−y2=1的焦距为4,可得m+1=4,所以m=3,所以双曲线的渐近线方程为:y=±√33x.故选:A.4.【详解详析】由α,β是两个相交平面,其中l⊂α,知:在A中,当l与α,β的交线相交时,β内不能找到与l平行的直线,故A错误;在B中,由直线与平面的位置关系知β内一定能找到与l垂直的直线,故B正确;在C中,β内有一条直线与l平行,则该直线与α平行或该直线在α内,故C错误;在D 中,β内有无数条直线与l 垂直,则β与α不一定垂直,故D 错误. 故选:B .5.【详解详析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和, “d =0”⇒“S 2n S n∈Z ”,当S2nS n∈Z 时,d 不一定为0,例如,数列1,3,5,7,9,11中,S 6S 3=1+3+5+7+9+111+3+5=4,d =2,故d =0”是“S 2n S n∈Z ”的充分不必要条件.故选:A .6.【详解详析】∵a ,b ,c 成等差数列,E (ξ)=19, ∴由变量ξ的分布列,知:{a +b +c =232b =a +c (−1)×13+b +2c =19,解得a =13,b =29,c =19,∴D (ξ)=(﹣1−19)2×13+(0−19)2×13+(1−19)2×29+(2−19)2×19=8081.故选:D .7.【详解详析】∵xyy−x =15x+4y , ∴4xy 2+(5x 2﹣1)y +x =0, ∴y 1•y 2=14>0, ∴y 1+y 2=−5x 2−14x ≥0,∴{5x 2−1≥0x <0,或{5x 2−1≤0x >0, ∴0<x ≤√55或x ≤−√55①, △=(5x 2﹣1)2﹣16x 2≥0, ∴5x 2﹣1≥4x 或5x 2﹣1≤﹣4x , 解得:﹣1≤x ≤15②,综上x 的取值范围是:0<x ≤15;x的最大值是15,故选:A.8.【详解详析】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,若字母C和数字4,7都出现,需要在字母A,B,D,E,F中选出1个字母,有5种选法,若字母C和数字4出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C和数字7出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A,B,D,E,F中选出2个字母,有C52=10种选法,则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A44=24种情况,则一共有85×24=2040种不同排法;故选:C.9.【详解详析】依题意知正四面体P﹣ABC的顶点P在底面ABC的射影是正三角形ABC的中心O,由余弦定理可知,cosα=cos∠PMO•cos<MO,AB>,其中<MO,AB>表示直线MO与AB的夹角,同理可以将β,γ转化,cosβ=cos∠PMO•cos<MO,BC>,其中<MO,BC>表示直线MO与BC的夹角,cosγ=cos∠PMO•cos<MO,AC>,其中<MO,AC>表示直线MO与AC的夹角,由于∠PMO是公共的,因此题意即比较OM与AB,BC,AC夹角的大小,设M到AB,BC,AC的距离为d1,d2,d3则d1=sinℎ1θ,其中θ是正四面体相邻两个面所成角,sinθ=2√23,所以d1,d2,d3成单调递增的等差数列,然后在△ABC中解决问题由于d1<d2<d3,可知M在如图阴影区域(不包括边界)从图中可以看出,OM与BC所成角小于OM与AC所成角,所以β<γ,故选:D.10.【详解详析】选择合适的基底.设m →=2a →+b →,则|m →|=2,b →=m →−2a →,a →⋅b →=a →⋅m →−2a →2∈[−4,0], ∴(a →−14m →)2=a →2−12a →•m →+116m →2≤8+116m →2 |m →|2=m →2=4,所以可得:m→28=12,配方可得12=18m →2≤2(a →−14m →)2≤4+18m →2=92,所以|a →−14m →|∈[12,32], 则|a →|∈[0,2]. 故选:D .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.【详解详析】∵α∈(0,π2),sinα=√63, ∴cosα=√1−sin 2α=√33,tanα=sinαcosα=√2,∴tan2α=2tanα1−tan 2α=√21−(√2)2=−2√2.故答案为:√33,﹣2√2.12.【详解详析】根据几何体的三视图转换为几何体为: 如图所示:该几何体为长方体切去一个角.故:V =2×1×1−13×12×2×1×1=53.所以:V 1V =532=56.S =2(1×2+1×2+1×1)−12(1×2+1×2+1×1)+12×√2×√2=9.故答案为:56,9.13.【详解详析】作出不等式组{x +y −3≥02x −y +m ≤0y ≤4对应的平面区域如图:(阴影部分).令z =3x +y 得y =﹣3x +z , 平移直线y =﹣3x +z , 由图象可知当3x +y =7.由 {3x +y =7y =4,解得 {x =1y =4,即B (1,4),同时A 也在2x ﹣y +m =0上, 解得m =﹣2x +y =﹣2×1+4=2. 故答案为:2.14.【详解详析】∵二项式(√x +1ax2)5(a >0)的展开式的通项公式为 T r +1=C 5r •(1a)r•x5−5r 2,令5−5r 2=−5,求得r =3,故展开式中x﹣5的系数为C 53•(1a )3;令5−5r 2=0,求得r =1,故展开式中的常数项为 C 51•1a =5a , 由为C 53•(1a )3=5•1a ,可得a =√2,故答案为:√2.15.【详解详析】∵数列{a n }的前n 项和为S n .S 2=6,a n +1=3S n +2,n ∈N *, ∴a 2=3a 1+2,且a 1+a 2=6,解得a 1=1,a 2=5,a 3=3S 2+2=3(1+5)+2=20, a 4=3S 3+2=3(1+5+20)+2=80, a 5=3(1+5+20+80)+2=320, ∴S 5=1+5+20+80+320=426. 故答案为:5,426.16.【详解详析】由a cos B =b cos A ,及正弦定理得sin A cos B =sin B cos A , 所以sin (A ﹣B )=0, 故B =A =π6,所以由正弦定理可得c =√3a ,由余弦定理得16=c 2+(a2)2﹣2c •a2•cos π6,解得c =8√217;可得a =8√77,可得AB →⋅BC →=−ac cos B =−8√77×8√217×√32=−967.故答案为:8√217,−967. 17.【详解详析】作点B 关于原点的对称点B 1,可得S △BOF 2=S△B′OF 1,则有S 1S2=|y A ||y B 1|=75,所以y A =−75y B 1.将直线AB 1方程x =√2y4−c ,代入椭圆方程后,{x =√24y −c x 2a 2+y 2b 2=1,整理可得:(b 2+8a 2)y 2﹣4√2b 2cy +8b 4=0, 由韦达定理解得y A +y B 1=4√2b 2cb 2+8a 2,y A y B 1=−8b 4b 2+8a 2,三式联立,可解得离心率e =ca =12. 故答案为:12.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.【详解详析】(1)f (x )=sin2x +cos2x +1=√2sin(2x +π4)+1 所以最小正周期为π. 因为当π2+2kπ≤2x +π4≤3π2+2kπ时,f (x )单调递减.所以单调递减区间是[π8+kπ,5π8+kπ].(2)当x ∈[−π4,π2]时,2x +π4∈[−π4,5π4],当2x +π4=π2函数取得最大值为√2+1,当2x +π4=−π4或5π4时,函数取得最小值,最小值为−√22×√2+1=0.19.【详解详析】(1)在直三棱柱ABC ﹣A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1, 根据已知条件易得AB 1⊥A 1B ,由A 1C 1⊥面ABB 1A 1,得AB 1⊥A 1C 1, A 1B ∩A 1C 1=A 1,以AB 1⊥平面A 1BC 1;(2)以A 1B 1,A 1C 1,A 1A 为x ,y ,z 轴建立直角坐标系,设AB =a , 则A (0,0,a ),B (a ,0,a ),C 1(0,a ,0),D(a3,2a 3,0),所以AD →=(a3,2a 3,−a),设平面A 1BC 1的法向量为n →,则n →=(1,0,−1), 可计算得到cos <AD →,n →>=2√77,所以AD 与平面A 1BC 1所成的角的正弦值为2√77. 20.【详解详析】(1)由题意,设等比数列{a n }的公比为q , ∵log 2a n +1=﹣1+log 2a n , ∴log 2a n+1−log 2a n =log 2a n+1a n=−1,∴q =a n+1a n =12.由S 3=716,得a 1[1−(12)3]1−12=716,解得a 1=14.∴数列{a n }的通项公式为a n =12n+1.(2)由题意,设b n =a n •log 2a n ,则b n =−n+12n+1. ∴T n =b 1+b 2+…+b n =−(222+323+⋯+n+12n+1) 故−T n =222+323+⋯+n+12n+1,−T n2=223+⋯+n2n+1+n+12n+2.两式相减,可得−T n2=12+123+⋯+12n+1−n+12n+2=34−n+32n+2.∴T n=n+32n+1−32.21.【详解详析】(1)由y=12x2求导得y′=x,设A(x1,y1),B(x2,y2),其中y1=12x12,y2=12x22则k P A=x1,P A:y﹣y1=x1(x﹣x1),设P(x0,kx0﹣1),代入P A直线方程得kx0﹣1+y1=x1x0,PB直线方程同理,代入可得kx0﹣1+y2=x2x0,所以直线AB:kx0﹣1+y=xx0,即x0(k﹣x)﹣1+y=0,所以过定点(k,1);(2)直线l方程与抛物线方程联立,得到x2﹣2kx+2=0,由于无交点解△可得k2<2.将AB:y=xx0﹣kx0+1代入y=12x2,得12x2−xx0+kx0−1=0,所以△=x02−2kx0+2>0,|AB|=2√1+x02√△,设点P到直线AB的距离是d,则d=02√1+x02,所以S△PAB=12|AB|d=(x02−2kx0+2)32=[(x0−k)2+2−k2]32,所以面积最小值为(2−k2)32.22.【详解详析】(1)求导得f′(x)=lnx+1﹣2ax(x>0),由题意可得函数g(x)=lnx+1﹣2ax有且只有两个零点.∵g′(x)=1x −2a=1−2axx.当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,舍去;当a>0时,令g′(x)=0,解得x=12a,所以x∈(0,12a ),g′(x)>0,g(x)单调递增,x∈(12a,+∞),g′(x)<0,g(x)单调递减.所以x=12a 是g(x)的极大值点,则g(12a)>0,解得0<a<12;(2)g(x)=0有两个根x1,x2,且x1<12a<x2,又g(1)=1﹣2a>0,所以x1<1<12a<x2,从而可知f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.所以f(x1)<f(1)=−a<0,f(x2)>f(1)=−a>−1,2.所以f(x1)−f(x2)<12。
2020年浙江省高考数学全真模拟试卷(1)(3月份)(有解析)
2020年浙江省高考数学全真模拟试卷(1)(3月份)一、单项选择题(本大题共10小题,共40.0分)1. 已知全集U ={l,2,3,4,5,6},集合A ={l,2,4,6},集合B ={l,3,5},则A ∪(∁U B)=( )A. {l,2,3,4,5,6}B. {1,2,4,6}C. {2,4,6}D. {2,3,4,5,6}2. 把边长为a 的正方形ABCD 沿对角线AC 折起,当B 、D 两点距离为a 时,二面角B −AC −D 的大小为( )A. 30°B. 45°C. 60°D. 90°3. 某四面体的三视图如图所示,则该四面体的体积为( )A. 4√3B. 4√33C. 8√3D. 8√334. 已知函数f(x)={1−x,x ≤0log 2x,x >0,若关于x 的方程f(f(x))=m 有两个不同的实数根x 1,x 2,则x 1+x 2的取值范围为( )A. [2,3)B. (2,3)C. [2ln2,4)D. (2ln2,4)5. 已知实数x ,y 满足条件{x −y +1≥0y +1≥0x +y +1≤0,那么2x −y 的最大值为( )A. −3B. −2C. 1D. 26. 已知随机变量X 的分布列如表,则D(X)=( )X 0 1 3P 0.2 0.2 yA. 0.4B. 1.2C. 1.6D. 27. 若双曲线x 2−y 2=2右支上一点(s,t)到直线y =x 的距离为2,则s −t 的值等于( )A. 2B. 2√2C. −2D. −2√28.已知数列{a n}满足a1=32,a n+1=3a na n+3,则a2019=()A. 32020B. 20203C. 20193D. 202139.已知[x]表示不超过x的最大整数,则f(x)=√1−log2[x]的定义域为()A. (0,3]B. [0,3)C. (1,3]D. [1,3)10.“α≠β”是“cosα≠cosβ”的()条件.A. 充分不必要B. 必要不充分C. 充要D. 既不充分又不必要二、填空题(本大题共3小题,共12.0分)11.在ΔABC中,已知AB=√3,AC=1,A=30∘,则ΔABC的面积为________________.12.若向量a⃗,b⃗ 满足|a⃗|=8,|b⃗ |=12,则|a⃗+b⃗ |的最小值是__________.13.若函数f(x),g(x)满足:∀x∈(0,+∞),均有f(x)>x,g(x)<x成立,则称“f(x)与g(x)关于y=x分离”.已知函数f(x)=a x与g(x)=log a x(a>0,且a≠1)关于y=x分离,则a的取值范围是______.三、多空题(本大题共4小题,共24.0分)14.已知a,b为正实数,且a+b=2,则2a +1b+1的最小值为(1),(a2+3)(b2+3)的最小值为(2).15.在二项式(x−√x )7的展开式中,所有项系数之和为,含x4的项的系数是.16.已知定义域为R的奇函数f(x),当x>0时,f(x)=−(x−1)2+1. ①当x∈[−1,0]时,f(x)的取值范围是(1); ②当函数f(x)的图像在直线y=x的下方时,x的取值范围是(2).17.如图,长方体ABCD−A1B1C1D1中,ABCD是边长为1的正方形,D1B与平面ABCD所成的角为45∘,则棱AA1的长为;二面角B−DD1−C的大小为.四、解答题(本大题共5小题,共60.0分)18.知函数f(x)=x2+2xsinθ−1,x∈[−√32,12],θ∈[0,2π).(1)当θ=π6时,求f(x)的最值;(2)若f(x)是单调函数,求θ的取值范围.19.如下图,在直四棱柱ABCDA1B1C1D1中,底面是正方形,E,F,G分别是棱B1B,D1D,DA的中点.(1)求证:平面AD1E//平面BGF.(2)求证:D1E⊥AC.20.在等差数列{a n}中,a4+a7+a10=17,a4+a5+⋯+a14=77,求此数列的通项公式.若a k=13,求k的值.21.已知抛物线y2=4x上一点P到焦点F的距离是10,求点P的坐标.(a∈R).22.已知函数f(x)=ax+(1−a)lnx+1x(1)当a=0时,求f(x)的极值;(2)当a<0时,求f(x)的单调区间.【答案与解析】1.答案:B解析:解:∵全集U={1,2,3,4,5,6},集合A={1,2,4,6},集合B={1,3,5},∴∁U B={2,4,6},则A∪(∁U B)={1,2,4,6}.故选:B.根据全集U及B,求出B的补集,找出A与B补集的并集即可此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.答案:D解析:解:如图,连接AC,BD交于O,则DO⊥AC,BO⊥AC,∴∠BOD为二面角B−AC−D的平面角,∵正方形ABCD的边长为a,则BO=DO=√2a,2a,BD=a,可得BO2+OD2=BD2,在△BOD中,由BO=DO=√22则∠BOD=90°.∴二面角B−AC−D的大小为90°.故选:D.由题意画出图形,求出二面角B−AC−D的平面角,解三角形得答案.本题考查二面角的平面角及其求法,考查数形结合的解题思想方法,是中档题.3.答案:B解析:本题是基础题,考查三视图的视图能力,计算能力,空间想象能力,常考题型.依据三视图的数据,求出几何体的体积.解:三视图复原的几何体是以俯视图为底面,高为2的三棱锥, 所以三棱锥的体积为:13×12×2×2√3×2=4√33. 故选:B . 4.答案:A解析:解:函数f(x)={1−x,x ≤0log 2x,x >0,的图象如下:当m ≥1时,f(t)=m ,有两个解t 1,t 2,其中t 1≤0,t 2≥2,f(x)=t 1有一个解,f(x)=t 2有两个解,不符合题意.当m <0时,f(t)=m ,有一个解t ,且t ∈(0,1),f(x)=t 有一个解,不符合题意.当0≤m <1时,f(t)=m ,有一个解t ,且t ∈[1,2),f(x)=t 两个不同的实数根x 1,x 2,符合题意. 可得1−x 1=log 2x 2=t ,且t ∈[1,2),x 1+x 2=2t −t +1,令g(t)=2t −t +1,g′(t)=2t lnt −1>0,故g(t)在[1,2)单调递增,∴g(t)∈[2,3).故选:A .画出函数f(x)={1−x,x ≤0log 2x,x >0,的图象,可求得当0≤m <1时,f(t)=m ,有一个解t ,且t ∈[1,2),f(x)=t 两个不同的实数根x 1,x 2,符合题意.可得1−x1=log2x=t,且t∈[1,2),x1+x2=2t−t+1,令g(t)=2t−t+1,利用导数求解.本题考查了函数与方程思想、数形结合思想,属于中档题.5.答案:C解析:解:由约束条件作出图形:易知可行域为一个三角形,验证当直线过点A(0,−1)时,z取得最大值z=2×0−(−1)=1,故选:C.先根据约束条件画出可行域,z=2x−y表示斜率为2的直线在y轴上的截距的相反数,只需求出可行域直线在y轴上的截距最小值即可.本题是考查线性规划问题,准确作图以及利用几何意义求最值是解决问题的关键,属中档题.6.答案:C解析:解:由题意0.2+0.2+y=1,所以y=0.6所以E(X)=1×0.2+3×0.6=2所以D(X)=4×0.2+1×0.2+1×0.6=1.6故选C.利用概率和为1,确定y的值,计算出期望,即可求得方差.本题考查期望、方差和分布列中各个概率之间的关系,考查学生的计算能力,属于基础题.7.答案:B解析:解:∵双曲线x2−y2=2右支上一点(s,t)到直线y=x的距离为2,∴d=√2=2,∴|s−t|=2√2.又P点在右支上,则有s>t,∴s−t=2√2.故选B.根据点到直线的距离公式能够求出s−t的值.本题考查双曲线的性质和点到直线的距离,解题时要注意公式的灵活运用.8.答案:A解析:本题考查了数列的通项公式与数列的递推关系,考查了推理能力与计算能力,属于基础题.运用数列的递推公式可得数列{1an }是以首项为1a1=23,公差为13的等差数列,进而由等差数列的通项公式可求出a2019.解:∵a n+1=3a na n+3⇒1a n+1=13+1a n⇒1a n+1−1a n=13,∴数列{1a n }是以首项为1a1=23,公差为13的等差数列,∴1a2019=23+(2019−1)×13=20203,∴a2019=32020.故选A.9.答案:D解析:本题主要考查函数定义域的求解,结合根式和对数的性质建立不等式关系是解决本题的关键,属基础题.根据函数表达式建立不等式,结合[x]的定义进行求解即可.解:要使函数有意义,则1−log2[x]≥0,即log2[x]≤1且[x]>0得0<[x]≤2,则1≤x<3,即函数的定义域为[1,3),故选:D.10.答案:B解析:解:若“α≠β”则“cosα≠cosβ”的逆否命题是:若“cosα=cosβ”则“α=β”,∵α=β⇒cosα=cosβ,又当cosα=cosβ时,α=±β+2kπ,k∈Z,∴cosα=cosβ推不出α=β,∴“cosα=cosβ”是“α=β”的必要非充分条件,即“α≠β”是“cosα≠cosβ”的必要不充分条件.故选:B.根据充分必要条件的定义结合三角函数的性质判断即可.本题考查必要条件、充分条件和充要条件的求法,是基础题,解题时要认真审题,仔细解答.11.答案:√34解析:本题考查三角面积公式,根据题意利用三角形面积公式SΔABC=12AB·AC·sinA,即可求得结果.解:S△ABC=12AB·ACsinA=12×√3×1×sin30°=√34,故答案为√34.12.答案:4解析:本题考查了平面向量数量积中模长公式的应用问题,属于基础题.设a⃗与b⃗ 的夹角为θ,则θ∈[0,π],利用|b⃗ |−|a⃗|≤|a⃗+b⃗ |≤|a⃗|+|b⃗ |,得出θ=π时,|a⃗+b⃗ |取得最小值.解:设a⃗与b⃗ 的夹角为θ,则θ∈[0,π],∵|a⃗|=8,|b⃗ |=12,∴|b⃗ |−|a⃗|≤|a⃗+b⃗ |≤|a⃗|+|b⃗ |,即4≤|a⃗+b⃗ |≤20,∴θ=π时,|a⃗+b⃗ |的最小值为4.故答案为4.13.答案:(e1e,+∞)解析:解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x−x,则f′(x)=a x lna−1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有a log a(log a e)−log a(log a e)>0,解得a>e1e.故答案为:(e1e,+∞).由题意可得y=a x与y=log a x互为反函数,a>1,故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立,利用导数进行解决.本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.14.答案:3+2√2316解析:本题考查了利用基本不等式求最值,构造13(a+b+1)=1,由“1”的用法利用基本不等式得2a+1b+1的最小值,由a2+b2=4−2ab可得(a2+3)(b2+3)=(ab−3)2+12,由2=a+b≥2√ab,得0<ab≤1,即可得出最小值.解:由a+b=2,则13(a+b+1)=1,所以2a +1b+1=13(a+b+1)(2a+1b+1)=13[3+2(b+1)a+ab+1]≥13(3+2√2(b+1)a·ab+1)=3+2√23,当且仅当2(b+1)a =ab+1时等号成立,由a+b=2得a2+b2=4−2ab,所以(a2+3)(b2+3)=a2b2+3(a2+b2)+9=a2b2+3(4−2ab)+9=(ab−3)2+12,由a+b=2得2=a+b≥2√ab,得0<ab≤1,当且仅当a=b=1等号成立,所以当ab=1时,(ab−3)2+12取得最小值为16,即(a2+3)(b2+3)的最小值为16,故答案为3+2√23;16.15.答案:−184解析:本题主要考查二项式定理的应用,二项展开式的通项公式,赋值法求所有项的系数和,属于基础题.赋值法求出所有项的系数之和,写出二项展开式的通项公式,令7−32r=4,得r=2,再代入公式中即可求出含x4项的系数.解:二项式(x−√x )7的展开式中,令x=1,所有项的项式系数之和为(1−2)7=−1,二项展开式的通项公式T r+1=C7r(x)7−rx)r=C7r·(−2)r·x7−32r,由7−32r=4,得r=2,∴含x4项的系数为C72·(−2)2 =21×4=84.故答案为−1;84.16.答案:[−1,0](−1,0)∪(1,+∞)解析:本题考查函数的奇偶性的应用,二次函数的图像以及性质的应用,属于中档题.①由函数的奇偶性,以及二次函数在x ∈[0,1]时的值域即可求得在x ∈[−1,0]时的值域; ②由函数的图像可得x 的取值范围.解:①当x >0时,f(x)=−(x −1)2+1,∴当x ∈[0,1]时,f (x )∈[0,1],因为f(x)为奇函数,∴当x ∈[−1,0]时,f(x)的取值范围是[−1,0];②函数f(x)的图像如图所示,当函数f(x)的图像在直线y =x 的下方时,得x 的取值范围是(−1,0)∪(1,+∞).故答案为①[−1,0] ;② (−1,0)∪(1,+∞).17.答案:√245∘解析:(1)由D 1B 与平面ABCD 所成的角为45∘可知∠D 1BD =45∘,又易知在等腰直角三角形DD 1B 中,DD 1=DB =√2,所以AA 1=√2.(2)BD ⊥DD 1,CD ⊥DD 1,∠BDC 即为所求二面角的平面角,为45∘. 18.答案:解:(1)当θ=π6时,f(x)=x 2+x −1=(x +12)2−54,又x ∈[−√32,12], 所以当x =−12时,f(x)min =−54;x =12时,f(x)max =−14;(2)因为f(x)=x 2+2xsinθ−1的对称轴为x =−sinθ,又欲使f(x)在x ∈[−√32,12]上单调,则−sinθ≤−√32或−sinθ≥12,又θ∈[0,2π),所以θ∈[π3,2π3]∪[7π6,11π6].解析:本题主要考查三角函数性质的应用,熟悉三角函数求最值的方法是解答本题的关键,属于中档题,(1)由题意得,直接运用三角函数和二次函数的性质即可求解;(2)由题意得,直接运用三角函数的图像与性质即可求解.19.答案:证明:(1)∵E,F分别是B1B和D1D的中点,∴D1F=BE,且D1F//BE,∴四边形BED1F是平行四边形,∴D1E//BF.∵D1E不在平面BGF内,BF⊂平面BGF,∴D1E//平面BGF.∵FG是△DAD1的中位线,∴FG//AD1.又AD1不在平面BGF内,FG⊂平面BGF,∴AD1//平面BGF.∵AD1∩D1E=D1,∴平面AD1E//平面BGF.(2)如图,连接BD,B1D1,∵底面是正方形,∴AC⊥BD.∵D1D⊥AC,D1D∩BD=D,∴AC⊥平面BDD1B1.∵D1E⊂平面BDD1B1,∴ D 1E ⊥AC.解析:(1)由于E ,F 分别是B 1B 和D 1D 的中点可证得D 1E//BF 再由线面平行的性质定理得到D 1E//平面BGF.同理证得FG//AD 1再由线面平行的性质定理得到AD 1//平面BGF ,再由面面平行的性质定理得到平面AD 1E//平面BGF.(2)由已知可证得AC ⊥平面BDD 1B 1.再由线面垂直的性质定理得到D 1E ⊥AC.20.答案:解:(1)设等差数列{a n }的公差为d ,∵a 4+a 7+a 10=17,a 4+a 5+a 6+⋯+a 14=77.∴3a 1+18d =17,14a 1+14×132d −(3a 1+3d )=77,化为{3a 1+18d =17a 1+8d =7,解得a 1=53,d =23. ∴a n =53+23(n −1)=2n+33.(2)∵13=a k =2k+33,解得k =18.解析:本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.(1)设等差数列{a n }的公差为d ,由a 4+a 7+a 10=17,a 4+a 5+a 6+⋯+a 14=77.可得3a 1+18d =17,14a 1+14×132d −(3a 1+3d )=77,联立解出即可.(2)由(1)可得:13=a k=2k+33,解得k.21.答案:解:设p(x,y)由抛物线的焦半径公式知|PF|=x+p2,又p=1,所以10=x+1,解得x=9,又P在y2=4x上,解出y=±6.所以P(9,6)或(9,−6)解析:本题考察抛物线的焦半径公式,利用焦半径公式|PF|=x+p2求出P的横坐标,然后P在抛物线上,求出纵坐标。
浙江专用2020高考数学模拟仿真试卷(含两套,解析版)
浙江高考仿真卷(一)一、选择题(本大题共10小题,每小题4分,共40分)1.已知集合A ={x ∈Z |x ≤0},B ={}x |-1≤x ≤6,则A ∩B 等于( ) A .{x |-1≤x ≤0} B .{x |x ≤6} C .{0,1,2,3,4,5,6} D .{0,-1}答案 D解析 A ={x ∈Z |x ≤0},B ={x |-1≤x ≤6},则A ∩B ={0,-1}. 2.若双曲线x 2a 2-y 2=1(a >0)的实轴长为2,则其渐近线方程为( )A .y =±xB .y =±2xC .y =±12xD .y =±2x 答案 A解析 双曲线的实轴长为2,得a =1,又b =1,所以双曲线的渐近线方程为y =±x . 3.设α是空间中的一个平面,l ,m ,n 是三条不同的直线. ①若m ⊂α,n ⊂α,l ⊥m ,l ⊥n ,则l ⊥α; ②若l ∥m ,m ∥n ,l ⊥α,则n ⊥α; ③若l ∥m ,m ⊥α,n ⊥α,则n ∥l ; ④若m ⊂α,n ⊥α,l ⊥n ,则l ∥m . 则上述命题中正确的是( )A .①②B .①④C .③④D .②③ 答案 D解析 对于①,当m ,n 相交时,才能得到l ⊥α,①错误;对于②,由l ∥m ,m ∥n 得l ∥n ,又因为l ⊥α,所以n ⊥α,②正确;对于③,因为m ⊥α,n ⊥α,所以m ∥n ,又因为l ∥m ,所以n ∥l ,③正确;对于④,直线l 与m 可能相交、平行或互为异面直线,④错误.综上所述,正确命题的序号为②③.4.函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将该函数的图象向右平移π6个单位长度后得到的函数图象关于直线x =π2对称,则函数f (x )的解析式为( )A .f (x )=sin ⎝⎛⎭⎫2x +π3B .f (x )=sin ⎝⎛⎭⎫2x -π3 C .f (x )=sin ⎝⎛⎭⎫2x +π6 D .f (x )=sin ⎝⎛⎭⎫2x -π6 答案 D解析 因为函数f (x )=sin(ωx +φ)的最小正周期是π, 所以2πω=π,解得ω=2,所以f (x )=sin(2x +φ),将该函数的图象向右平移π6个单位长度后,得到图象所对应的函数解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+φ=sin ⎝⎛⎭⎫2x +φ-π3, 由此函数图象关于直线x =π2对称,得2×π2+φ-π3=k π+π2,k ∈Z ,即φ=k π-π6,k ∈Z , 取k =0,得φ=-π6,满足|φ|<π2,所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x -π6. 5.函数f (x )=3x 34|x |-4的图象大致为( )答案 A解析 由题意知,函数f (x )的定义域为{x |x ≠±1}且满足f (-x )=3(-x )34|-x |-4=-3x 34|x |-4=-f (x ),所以函数f (x )是奇函数,图象关于原点对称,排除C ,D 项;又由当x ∈(0,1)时,函数f (x )的值小于0,排除B 项,故选A.6.已知等比数列{a n }的前n 项和为S n ,则“a 1>0”是“S 3>S 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 C解析 设等比数列{a n }的公比为q ,S 3>S 2⇔a 3>0⇔a 1q 2>0⇔a 1>0,故选C.7.一个箱子中装有形状完全相同的5个白球和n (n ∈N *)个黑球.现从中有放回的摸取4次,每次都是随机摸取一个球,设摸得白球个数为X ,若D (X )=1,则E (X )等于( ) A .1 B .2 C .3 D .4 答案 B解析 设摸取一次摸得白球的概率为p ,则易得X ~B (4,p ),D (X )=4p (1-p )=1,解得p =12,则E (X )=4×12=2.8.将颜色分别为红色、黄色、蓝色的3个球,放入编号为1,2,…,7的七个盒子中,每一个盒子至多放2个球,则不同的放法有( ) A .98种 B .196种 C .252种 D .336种 答案 D解析 3个球放入编号为1,2,…,7的七个盒子中,每个盒子至多放2个球,应采用排除法,每个球放入盒子的放法各有7种,共73种,排除3个球放在同一个盒中的7种放法,则共有73-7=336(种)放法.9.已知向量a ,b 满足|a |=|a +b |=2,则|2a +b |+|b |的最大值为( ) A .4 B .4 2 C .4+2 2 D .8 答案 B解析 记a +b =m ,则|a |=|m |=2,|2a +b |+|b |=|a +m |+|m -a |≤2(|a +m |2+|m -a |2)=2m 2+a 2=42,当且仅当|a +m |=|m -a |,即a ·(a +b )=0,a ·b =-4时,取等号,则所求的最大值为4 2.10.已知偶函数f (x )满足f (1-x )=f (1+x ),当x ∈[0,1]时,f (x )=ax 2-bx +c ,a ,b ,c ∈N *.若函数f (x )在[-100,100]上有400个零点,则a +b +c 的最小值为( ) A .5 B .8 C .11 D .12 答案 C解析 由f (1-x )=f (1+x ),得f (x +2)=f (-x )=f (x ),则函数f (x )是以2为周期的周期函数,函数f (x )在[-100,100]上有400个零点等价于函数f (x )在[0,1]上有两个不同的零点,又因为a ,b ,c ∈N *,所以⎩⎪⎨⎪⎧ f (0)=c >0,f (1)=a -b +c >0,0<--b2a<1,(-b )2-4ac >0,即⎩⎪⎨⎪⎧c >0,a -b +c >0,b -2a <0,b 2-4ac >0,所以要使a +b +c 取得最小值,不妨取c =1,则不等式组化为⎩⎪⎨⎪⎧a -b +1>0,b -2a <0,b 2-4a >0,以a 为横轴,b 为纵轴建立平面直角坐标系,在平面直角坐标系内画出不等式组表示的平面区域如图中阴影部分(不含边界)所示,由图易得区域内横纵坐标之和最小的整数点为(5,5),此时a =b =5,所以a +b +c 的最小值为11.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) 11.复数z =(3+4i)2的虚部为________,z 的共轭复数z =________. 答案 24 -7-24i解析 ∵z =(3+4i)2=32+2×3×4i +(4i)2=-7+24i ,∴虚部为24,共轭复数z =-7-24i. 12.若变量x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -2y +3≥0,x ≥0,则2x+y的最大值为________,y +1x -2的取值范围为________.答案 8 ⎣⎡⎦⎤-3,-12 解析 不等式组表示的平面区域如图中阴影部分(含边界)所示,令z =x +y ,则y =-x +z 表示的是斜率为-1,在y 轴上的截距为z 的直线,当直线在y 轴上的截距最大时,z 最大,即直线过点C 时,z 最大,由⎩⎪⎨⎪⎧ 2x -y =0,x -2y +3=0,得⎩⎪⎨⎪⎧x =1,y =2,z max =3,2x +y 的最大值为23=8.y +1x -2表示的是可行域内的点(x ,y )与点(2,-1)连线的斜率,设D (2,-1),k AD =-12,k CD =3-1=-3,因此y +1x -2的取值范围⎣⎡⎦⎤-3,-12.13.某多面体的三视图如图所示,则该多面体最长的棱长为________;其外接球的体积为________.答案 4323π 解析 由三视图知该几何体是如图所示的四棱锥O -ABCD ,且AB =CD =2,AD =BC =3,AO =3,四边形ABCD 是矩形,OA ⊥平面ABCD , 所以该多面体最长的棱长为OC =OA 2+AD 2+CD 2=3+4+9=4,该几何体外接球的半径为2,其体积V =43π×23=323π.14.已知⎝⎛⎭⎫3x 2-1x n 的展开式中所有二项式系数和为64,则n =________;二项展开式中含x 3的系数为________. 答案 6 -540解析 ⎝⎛⎭⎫3x 2-1x n 展开式中所有二项式系数和为64, ∴2n =64,解得n =6;∴⎝⎛⎭⎫3x 2-1x 6展开式的通项公式为 T k +1=C k 6·(3x 2)6-k ·⎝⎛⎭⎫-1x k =(-1)k ·36-k ·C k 6·x 12-3k,令12-3k =3,解得k =3,∴二项式展开式中含x 3项的系数为(-1)3×33×C 36=-540. 15.已知实数a ≥12,b ≥12,且a 2-a =b -b 2,则M =b 2a +a 2b 的最大值是________.答案322+1 解析 由a 2-a =b -b 2化简得,⎝⎛⎭⎫a -122+⎝⎛⎭⎫b -122=12,又实数a ≥12,b ≥12,图形为14圆,如图:由a 2-a =b -b 2,可得a 2=a +b -b 2,b 2=a +b -a 2,则M =b 2a +a 2b =a +b -a 2a +a +b -b 2b =1+b a -a +1+a b -b =b a +ab-a -b +2,由几何意义得,b a ∈[2-1,1+2],则ab ∈[2-1,1+2],则当过点A 或点B 时,a +b 取最小值,可得M max =2-1+1+2-⎝⎛⎭⎫12+12+22+2=322+1,所以M =b 2a +a 2b 的最大值是322+1.16.如图,椭圆M :x 2a 2+y 2b 2=1(a >b >0)的两个顶点A (a,0),B (0,b ),过A ,B 分别作AB 的垂线交椭圆M 于D ,C (不同于顶点),若|BC |=3|AD |,则椭圆M 的离心率e =________.答案63解析 直线AB 的斜率为-b a ,故直线BC ,AD 的斜率都为a b ,所以直线BC 的方程为y =ab x+b ,直线AD 的方程为y =ab ()x -a .将直线BC 的方程代入椭圆方程,求得C 点的坐标为⎝ ⎛⎭⎪⎫-2a 3b 2a 4+b 4,b 5-a 4b a 4+b 4,将直线AD 的方程代入椭圆方程,求得D 点的坐标为⎝ ⎛⎭⎪⎫a 5-ab 4a 4+b 4,-2a 2b 3a 4+b 4,由于|BC |=3|AD |,即BC →=3AD →,也即⎝ ⎛⎭⎪⎫-2a 3b 2a 4+b 4,-2a 4b a 4+b 4=3⎝ ⎛⎭⎪⎫-2ab 4a 4+b 4,-2a 2b 3a 4+b 4,即-2a 3b 2a 4+b 4=-6ab 4a 4+b 4,化简得b 2a 2=13.故离心率为e =1-⎝⎛⎭⎫b a 2=63.17.已知f (x )=2x 2+2x +b 是定义在[-1,0]上的函数, 若f (f (x ))≤0在定义域上恒成立,而且存在实数x 0满足:f (f (x 0))=x 0且f (x 0)≠x 0,则实数b 的取值范围是________. 答案 ⎣⎡⎭⎫-12,-38 解析 因为f (x )min =f ⎝⎛⎭⎫-12=b -12,f (x )max =f (0)=f (-1)=b ,所以⎩⎪⎨⎪⎧-1≤b -12≤0,-1≤b ≤0,得b ∈⎣⎡⎦⎤-12,0时满足 f (f (x ))≤0;设f (x 0)=y 0,则f (y 0)=x 0且y 0≠x 0,所以函数f (x )=2x 2+2x +b 图象上存在两点关于直线y =x 对称, 令l :y =-x +m ,由⎩⎪⎨⎪⎧y =-x +m ,y =2x 2+2x +b ,得2x 2+3x +b -m =0, 设M (x 1,y 1),N (x 2,y 2)为直线与抛物线的交点,线段MN 的中点为E (x E ,y E ), 所以⎩⎪⎨⎪⎧Δ=9-8(b -m )>0,x 1+x 2=-32, 所以E ⎝⎛⎭⎫-34,34+m ,而E 在y =x 上, 所以m =-32,从而2x 2+3x +b +32=0在[-1,0]上有两个不相等的实数根,令h (x )=2x 2+3x +b +32,所以⎩⎪⎨⎪⎧Δ=9-8⎝⎛⎭⎫b +32>0,h (-1)=b +12≥0,h (0)=32+b ≥0,-1<-34<0,得b ∈⎣⎡⎭⎫-12,-38. 三、解答题(本大题共5小题,共74分.)18.(14分)已知函数f (x )=cos x ()3sin x -cos x +12.(1)求f ⎝⎛⎭⎫π3的值;(2)当x ∈⎣⎡⎦⎤0,π2时,不等式c <f (x )<c +2恒成立,求实数c 的取值范围.解 (1)f (x )=3sin x cos x -cos 2x +12=32sin 2x -12cos 2x =sin ⎝⎛⎭⎫2x -π6, 所以f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3-π6=sin π2=1. (2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.所以-12≤sin ⎝⎛⎭⎫2x -π6≤1. 由不等式c <f (x )<c +2恒成立, 所以⎩⎪⎨⎪⎧c <-12,c +2>1,解得 -1<c <-12.所以实数c 的取值范围为⎝⎛⎭⎫-1,-12. 19.(15分)如图,四边形ABEF 是正方形,AB ∥CD ,AD =AB =BC =12CD .(1)若平面ABEF ⊥平面ABCD ,求证:DB ⊥平面EBC ; (2)若DF ⊥BC ,求直线BD 与平面ADF 所成角的正弦值.(1)证明 ∵四边形ABEF 是正方形,∴EB ⊥AB .又∵平面ABEF ⊥平面ABCD ,平面ABEF ∩平面ABCD =AB , ∴EB ⊥平面ABCD ,可得EB ⊥BD . 又∵AD =AB =BC =12CD ,不妨设AB =BC =AD =1,DC =2, 可求BD =3,可得BD ⊥BC , ∵EB ∩BC =B ,EB ,BC ⊂平面EBC , ∴DB ⊥平面EBC .(2)解 方法一 过点F 作FH ⊥平面ABCD ,连接AH 交CD 于点G ,过点H 作HI ⊥AD 交AD 于点I ,连接FI ,作HO ⊥FI 交FI 于点O ,∵FH ⊥平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥BC , 又∵DF ⊥BC ,且FH ∩DF =F ,FH ,DF ⊂平面FDH , ∴BC ⊥平面FDH ,又DH ⊂平面FDH ,∴BC ⊥DH ,即H 在BD 上,又∵FH ⊥AB ,F A ⊥AB ,且FH ∩F A =F ,FH ,F A ⊂平面F AH ,∴AB ⊥平面F AH , 又AH ⊂平面F AH ,∴AB ⊥AH .又∵AD ⊥FH ,AD ⊥HI ,FH ∩HI =H ,FH ,HI ⊂平面FHI ,∴AD ⊥平面FHI , 又∵AD ⊂平面F AD ,∴平面FHI ⊥平面F AD , ∴H 到平面AFD 的距离为HO ,由(1)知DG =12,HG =HI =36,HO =69,又∵DB =3DH ,∴B 到平面AFD 的距离为63, 设直线BD 与平面ADF 所成角为θ,则sin θ=23, 方法二 设AD =AB =BC =1,以A 为坐标原点,AB 为y 轴建立空间直角坐标系, 则A (0,0,0),B (0,1,0),C ⎝⎛⎭⎫32,32,0,D⎝⎛⎭⎫32,-12,0, 设F (x ,y ,z ),由题意得⎩⎨⎧F A =1,FB =2,DF →·BC →=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=1,x 2+(y -1)2+z 2=2,⎝⎛⎭⎫x -32,y +12,z ·⎝⎛⎭⎫32,12,0=0,解得x =33,y =0,z =63,即F ⎝⎛⎭⎫33,0,63. 设平面ADF 的法向量为m =(r ,s ,t ), 又AD →=⎝⎛⎭⎫32,-12,0,AF →=⎝⎛⎭⎫33,0,63,∴⎩⎪⎨⎪⎧AD →·m =0,AF →·m =0,即⎩⎨⎧32r -12s =0,33r +63t =0,令r =2,则s =6,t =-1,即m =(2,6,-1).设直线BD 与平面ADF 所成角为θ,且BD →=⎝⎛⎭⎫32,-32,0,则sin θ=|cos 〈m ,BD →〉|=|m ·BD →||m ||BD →|=23,∴直线BD 与平面ADF 所成角的正弦值为23. 20.(15分)已知数列{a n }是等差数列,满足a 2=6,S 4=28,数列{b n }满足:b 1=1,1b 1+12b 2+…+1nb n =1b n +1-1(n ∈N *). (1)求a n 和b n ;(2)记数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和为S n ,求S n .解 (1)设数列{a n }的首项和公差分别为a 1,d ,则⎩⎪⎨⎪⎧ a 1+d =6,4a 1+6d =28,解得⎩⎪⎨⎪⎧a 1=4,d =2,∴a n =2n+2,n ∈N *.1b 1+12b 2+…+1nb n =1b n +1-1,① 1b 1+12b 2+…+1(n -1)b n -1=1b n-1(n ≥2),② ①-②得1nb n =1b n +1-1b n ,b n +1b n =n n +1(n ≥2),当n =1时,1b 1=1b 2-1,b 2=12,当n ≥2时,b n=b n b n -1·b n -1b n -2·…·b 2b 1·b 1=1n .当n =1时,b 1=1符合上式,所以b n =1n ,n ∈N *.(2)b n a n =1n 2n +2=1(2n +2)n =12·1(n +1)n =12⎝⎛⎭⎫1n -1n +1, S n =b 1a 1+b 2a 2+…+b n a n=12⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =12⎝⎛⎭⎫1-1n +1=n 2n +2.21.(15分)已知抛物线C :y 2=2px (p >0)的焦点是F (1,0),直线l 1:y =k 1x ,l 2:y =k 2x 分别与抛物线C 相交于点A 和点B ,过A ,B 的直线与圆O :x 2+y 2=4相切.(1)求直线AB 的方程(含k 1,k 2);(2)若线段OA 与圆O 交于点M ,线段OB 与圆O 交于点N ,求S △MON 的取值范围. 解 (1)焦点是F (1,0),可得p2=1,即p =2,设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=4x ,联立⎩⎪⎨⎪⎧y 2=4x ,y =k 1x ,可得A ⎝⎛⎭⎫4k 21,4k 1,同理可得B ⎝⎛⎭⎫4k 22,4k 2, 若AB 的斜率存在,可得k AB =y 1-y 2x 1-x 2=k 1k 2k 1+k 2, AB 的方程为y -4k 1=k 1k 2k 1+k 2⎝⎛⎭⎫x -4k 21, 化为k 1k 2x -(k 1+k 2)y +4=0,若AB 的斜率不存在,也满足上面的方程,则直线AB 的方程为k 1k 2x -(k 1+k 2)y +4=0. (2)过A ,B 的直线与圆O :x 2+y 2=4相切,可得d =4()k 1k 22+()k 1+k 22=r =2,化简为(k 1k 2)2+(k 1+k 2)2=4,即有-2≤k 1k 2<0, cos ∠AOB =OA →·OB→|OA →||OB →|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22 =1+k 1k 2(k 1k 2)2+k 21+k 22+1, 由(k 1k 2)2+(k 1+k 2)2=4,可得cos ∠AOB =1+k 1k 25-2k 1k 2,sin 2∠MON =-(k 1k 2)2-4k 1k 2+45-2k 1k 2,设t =5-2k 1k 2∈(5,9],则S2△MON=4sin 2∠MON=4·-(k 1k 2)2-4k 1k 2+45-2k 1k 2=4·-(5-t )24-2(5-t )+4t =-t 2+18t -49t =18-⎝⎛⎭⎫t +49t ≤18-249=4, 当t =7时取等号,即k 1k 2=-1∈[-2,0),所以(S △MON )max =2,又S 2△MON >18-⎝⎛⎭⎫5+495=165,即S △MON >455, 即有S △MON 的取值范围为⎝⎛⎦⎤455,2.22.(15分)已知函数f (x )=k e x ()x -1-12x 2,k ∈R .(1)当k =-1时,求f (x )的最大值;(2)若函数f (x )有两个零点,求k 的取值范围.解 (1)函数f (x )的定义域为R ,当k =-1时,f (x )=-e x (x -1)-12x 2,f ′(x )=-e x x -x =-x (e x +1).当x <0时,f ′(x )>0,当x >0时,f ′(x )<0,所以f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以f (x )在x =0时取到最大值,最大值为f (0)=1. (2)f ′(x )=k e x x -x =x (k e x -1),当k <0时,f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,又因为f (0)=-k >0,f (1)=-12<0,f (2k -1)=k e 2k -1(2k -2)-12(2k -1)2<k (2k -2)-12(2k -1)2=-12<0,所以f (x )有两个零点;当k =0时,f (x )=-12x 2,所以此时f (x )只有一个零点;当k =1时,f ′(x )=e x x -x =x (e x -1)≥0恒成立,f (x )在R 上单调递增,f (x )不存在两个零点; 当k >0且k ≠1时,令f ′(x )=0,得x =0或x =ln 1k,当0<k <1时,ln 1k =-ln k >0,f (x )在(-∞,0)上单调递增,在(0,-ln k )上单调递减,在(-ln k ,+∞)上单调递增,且f (0)=-k <0,f (x )不存在两个零点;当k >1时,ln 1k =-ln k <0,f (x )在(-∞,-ln k )上单调递增,在(-ln k ,0)上单调递减,在(0,+∞)上单调递增,且f ()-ln k =-(ln k +1)2+12<0,f (x )不存在两个零点.综上,当f (x )有两个零点时,k 的取值范围是(-∞,0).浙江高考仿真卷(四)一、选择题(本大题共10小题,每小题4分,共40分)1.已知集合A ={}x |x 2<1,B ={}x |log 2x <0,则A ∩B 等于( ) A .(-∞,1) B .(0,1) C .(-1,0) D .(-1,1) 答案 B解析 由题得A ={x |-1<x <1},B ={x |0<x <1}, 所以A ∩B =(0,1).2.已知双曲线的中心在原点,焦点在坐标轴上,一条渐近线方程为3x +4y =0,则该双曲线的离心率是( )A.53B.54C.43或53D.53或54 答案 D解析 3x +4y =0⇒y =-34x ,当焦点位于x 轴时,b a =34⇒b 2a 2=916,而c 2=a 2+b 2,所以c 2-a 2a 2=916⇒e =c a =54; 当焦点位于y 轴时,b a =43⇒b 2a 2=169,c 2=a 2+b 2⇒c 2-a 2a 2=169⇒e =c a =53.3.如果实数x ,y 满足条件⎩⎪⎨⎪⎧x -y +1≥0,y +1≥0,x +y +1≤0,那么z =2x -y 的最大值为( )A .2B .-2C .1D .-3 答案 C解析 由约束条件⎩⎪⎨⎪⎧x -y +1≥0,y +1≥0,x +y +1≤0画出可行域如图中阴影部分所示(含边界),再画出目标函数z =2x -y 如图中过原点的虚线, 平移目标函数易得过点A (0,-1)处时取得最大值, 代入得z max =1.4.如图是一个几何体的三视图,且正视图、侧视图都是矩形,则该几何体的体积为( )A .12B .14C .16D .18 答案 D解析 由题意可得,该几何体是由一个四棱柱和一个三棱柱组成的几何体, 其中四棱柱的体积V 1=1×3×4=12,三棱柱的体积V 2=12×3×1×4=6,该几何体的体积为V =V 1+V 2=18.5.“对任意正整数n ,不等式n lg a <(n +1)lg a a (a >1)都成立”的一个必要不充分条件是( ) A .a >0 B .a >1 C .a >2 D .a >3 答案 A解析 由n lg a <(n +1)lg a a 得n lg a <a (n +1)lg a , ∵a >1,∴lg a >0,∴n <a (n +1),即a >n n +1=1-1n +1,又1-1n +1<1,∴a >1. 即a >1时,不等式n lg a <(n +1)lg a a ()a >1成立,则a >0是其必要不充分条件;a >1是其充要条件;a >2,a >3均是其充分不必要条件. 6.与函数f (x )=sin x 2+cos x 的部分图象符合的是( )答案 B解析 f (0)=sin 0+cos 0=1排除C , F ⎝⎛⎭⎫π2=sin π24+cos π2=sin π24>0,排除A ,D.7.已知随机变量ξ的分布列如下表所示:ξ 1 3 5 P0.40.1x则ξ的标准差为( )A .3.56 B. 3.56 C .3.2 D. 3.2 答案 B解析 由题意,E (ξ)=1×0.4+3×0.1+5×(1-0.4-0.1)=3.2,∴D (ξ)=(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=1.936+0.004+1.62=3.56, ∴ξ的标准差为 3.56.8.如图,正四面体ABCD 中,P ,Q ,R 分别在棱AB ,AD ,AC 上,且AQ =QD ,AP PB =CRRA =12,分别记二面角A -PQ -R ,A -PR -Q ,A -QR -P 的平面角为α,β,γ,则( )A .β>γ>αB .γ>β>αC .α>γ>βD .α>β>γ答案 D解析 ∵ABCD 是正四面体,P ,Q ,R 分别在棱AB ,AD ,AC 上,且AQ =QD ,AP PB =CR RA =12,可得α为钝角,β,γ为锐角,设P 到平面ACD 的距离为h 1,P 到QR 的距离为d 1,Q 到平面ABC 的距离为h 2,Q 到PR 的距离为d 2,设正四面体的高为h ,棱长为6a ,可得h 1=13h ,h 2=12h ,h 1<h 2,由余弦定理可得QR =13a ,PR =23a ,由三角形面积相等可得到d 1d 2=PR QR =2313,因为sin γ=h 1d 1,sin β=h 2d 2,所以sin βsin γ=3313>1,即sin β>sin γ,所以γ<β,∴α>β>γ.9.如图,点C 在以AB 为直径的圆上,其中AB =2,过A 向点C 处的切线作垂线,垂足为P ,则AC →·PB →的最大值是( )A .2B .1C .0D .-1 答案 B解析 连接BC (图略),则∠ACB =90°, ∵AP ⊥PC ,∴AC →·PB →=AC →·()PC →+CB →=AC →·PC →=()AP →+PC →·PC →=PC →2,依题意可证Rt △APC ∽Rt △ACB ,则PC CB =AC AB ,即PC =AC ·CB 2,∵AC 2+CB 2=AB 2, ∴AC 2+CB 2=4≥2AC ·BC ,即AC ·BC ≤2,当且仅当AC =CB 时取等号. ∴PC ≤1,∴AC →·PB →=PC →2≤1, ∴AC →·PB →的最大值为1.10.设等差数列{a n }的前n 项和为S n ,已知()a 2 017-1 2 019+2 019a 2 017+()a 2 017-1 2 021=2 000,(a 2 020-1)2 019+2 019a 2 020+(a 2 020-1)2 021=2 038,则S 4 036等于( ) A .2 019 B .2 020 C .2 021 D .4 036 答案 D解析 由(a 2 017-1)2 019+2 019a 2 017+(a 2 017-1)2 021=2 000得:(a 2 017-1)2 019+2 019(a 2 017-1)+(a 2 017-1)2 021=-19,①由(a 2 020-1)2 019+2 019a 2 020+(a 2 020-1)2 021=2 038得:()a 2 020-1 2 019+2 019()a 2 020-1+()a 2 020-1 2 021=19,②令f (x )=x 2 019+2 019x +x 2 021, 则①式即为f ()a 2 017-1=-19, ②式即为f ()a 2 020-1=19,又f ()-x +f (x )=0,即f (x )为奇函数,且()a 2 017-1+()a 2 020-1=0,∴a 2 017+a 2 020=2, ∴S 4 036=2 018()a 1+a 4 036=2 018(a 2 017+a 2 020)=4 036.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.复数z =11-i 的共轭复数是________,复数z 对应的点位于复平面内的第________象限.答案 12-12i 一解析11-i =1+i ()1-i ()1+i =12+12i ,其共轭复数为12-12i ,复数z 对应的点位于复平面内的第一象限.12.已知圆C :x 2+y 2-2ax +4ay +5a 2-25=0的圆心在直线l 1:x +y +2=0上,则a =________;圆C 被直线l 2:3x +4y -5=0截得的弦长为________. 答案 2 8解析 圆C :x 2+y 2-2ax +4ay +5a 2-25=0的标准方程为(x -a )2+(y +2a )2=52,可得圆心坐标是(a ,-2a ),把圆心坐标代入直线l 1:x +y +2=0的方程中得a =2; 即圆心为(2,-4),圆心到直线l 2:3x +4y -5=0的距离d =||3×2-4×4-532+42=3,所以弦长等于2r 2-d 2=252-32=8.13.若x (1-mx )4=a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,其中a 2=-6,则实数m =________; a 1+a 3+a 5=________. 答案 32 31316解析 x (1-mx )4=a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5 ,则x (1-mx )4=x ()1-4mx +C 24m 2x 2+…,则-4m =a 2=-6, 解得m =32.令x =1,则⎝⎛⎭⎫1-324=a 1+a 2+a 3+a 4+a 5 , 令x =-1, 则-⎝⎛⎭⎫1+324=-a 1+a 2-a 3+a 4-a 5, ∴2()a 1+a 3+a 5=⎝⎛⎭⎫124+⎝⎛⎭⎫524, 解得a 1+a 3+a 5=31316.14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin A +sin B =54sin C ,且△ABC的周长为9,△ABC 的面积为3sin C ,则c =________,cos C =________. 答案 4 -14解析 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c , 已知sin A +sin B =54sin C ,则a +b =5c4,且△ABC 的周长为9, 则c +5c4=9,解得c =4 .因为△ABC 的面积等于3sin C , 所以12ab sin C =3sin C ,整理得ab =6. ∵a +b =5c4=5,∴⎩⎪⎨⎪⎧ a +b =5,ab =6,解得⎩⎪⎨⎪⎧ a =2,b =3,或⎩⎪⎨⎪⎧a =3,b =2, ∴cos C =a 2+b 2-c 22ab =-14.15.某地火炬接力传递路线共分6段,传递活动分别由6名火炬手完成,如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种(用数字作答). 答案 96解析 若第一棒火炬手为甲或乙,则最后一棒只能由甲、乙中不跑第一棒的火炬手完成,剩下的4段路线全排列,此时有2A 44种不同的传递方案;若第一棒火炬手为丙,则最后一棒由甲或乙完成,剩下的4段路线全排列,此时有2A 44种不同的传递方案,则由分类加法计数原理得共有2A 44+2A 44=96(种)不同的传递方案.16.设椭圆C 的两个焦点是F 1,F 2,过F 1的直线与椭圆C 交于P ,Q ,若|PF 2|=|F 1F 2|,且5|PF 1|=6|F 1Q |,则椭圆的离心率为________. 答案911解析 画出图形如图所示.由椭圆的定义可知:|PF 1|+|PF 2|=|QF 1|+|QF 2|=2a ,|F 1F 2|=2c . ∵|PF 2|=|F 1F 2|,∴|PF 2|=2c , ∴|PF 1|=2(a -c ). ∵5|PF 1|=6|F 1Q |,∴|QF 1|=56|PF 1|=53(a -c ),∴|QF 2|=a 3+5c3.在△PF 1F 2中,由余弦定理可得: cos ∠PF 1F 2=|F 1F 2|2+|F 1P |2-|F 2P |22|F 1F 2||F 1P |=a -c2c ,在△QF 1F 2中,由余弦定理可得: cos ∠QF 1F 2=|F 1F 2|2+|F 1Q |2-|F 2Q |22|F 1F 2||F 1Q |=2a -3c5c .∵∠PF 1F 2+∠QF 1F 2=180°,∴cos ∠PF 1F 2=-cos ∠QF 1F 2, ∴a -c 2c =-2a -3c5c,整理得9a =11c , ∴e =c a =911.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若对任意λ∈R ,不等式|λBC →-BA →|≥|BC →|恒成立,则c b +bc 的最大值为________.答案5解析 由对任意λ∈R ,不等式|λBC →-BA →|≥|BC →|恒成立得BC 边上的高h ≥a . 在△ABC 中,有12ah =12bc sin A ,即bc =ahsin A ,在△ABC 中,由余弦定理得 b 2+c 2=a 2+2bc cos A =a 2+2ah cos Asin A, 则c b +bc =b 2+c 2bc =a 2+2ah cos A sin A ahsin A =a 2sin A +2ah cos A ah =a sin A +2h cos A h≤h sin A +2h cos Ah=sin A +2cos A=5sin(A +φ), 其中tan φ=2,则当A +φ=π2且h =a 时,c b +bc 取得最大值 5.三、解答题(本大题共5小题,共74分.) 18.(14分)已知:函数f (x )=2(sin x -cos x ). (1)求函数f (x )的最小正周期和值域;(2)若函数f (x )的图象过点⎝⎛⎭⎫α,65,π4<α<3π4.求f ⎝⎛⎭⎫π4+α的值. 解 (1)f (x )=2(sin x -cos x ) =2⎝⎛⎭⎫sin x ·22-cos x ·22=2sin ⎝⎛⎭⎫x -π4. ∴函数的最小正周期为2π,值域为{y |-2≤y ≤2}. (2)依题意得,2sin ⎝⎛⎭⎫α-π4=65,sin ⎝⎛⎭⎫α-π4=35,∵π4<α<3π4,∴0<α-π4<π2, ∴cos ⎝⎛⎭⎫α-π4=1-sin 2⎝⎛⎭⎫α-π4=1-⎝⎛⎭⎫352=45,∴f ⎝⎛⎭⎫π4+α=2sin ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-π4 =2sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =2⎣⎡⎦⎤sin ⎝⎛⎭⎫α-π4cos π4+cos ⎝⎛⎭⎫α-π4sin π4 =2×22×⎝⎛⎭⎫35+45=725. 19.(15分)如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,AB ∥CD ,AB ⊥BC ,CD =2AB =4,BC =2 2.(1)求证:PC ⊥BD ;(2)若直线AB 与平面PBD 所成的角为π6,求P A 的长.解 (1)连接AC ,在△ABC 中,因为AB ⊥BC ,AB =2,BC =22, 所以tan ∠ACB =AB BC =22.因为AB ∥CD ,AB ⊥BC ,所以CD ⊥BC .在Rt △BCD 中,因为CD =4,所以tan ∠BDC =BC CD =22,所以tan ∠ACB =tan ∠BDC , 所以∠ACB =∠BDC .因为∠ACB +∠ACD =π2,所以∠BDC +∠ACD =π2,所以BD ⊥AC .因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ⊂平面P AC ,AC ⊂平面P AC ,P A ∩AC =A ,所以BD ⊥平面P AC . 因为PC ⊂平面P AC ,所以PC ⊥BD .(2)方法一 如图,设P A =t ,AC 与BD 交于点M ,连接PM ,过点A 作AH ⊥PM 于点H ,连接BH .由(1)知,BD ⊥平面P AC ,又AH ⊂平面P AC ,所以BD ⊥AH .因为AH ⊥PM ,PM ⊂平面PBD ,BD ⊂平面PBD ,PM ∩BD =M ,所以AH ⊥平面PBD , 所以∠ABH 为直线AB 与平面PBD 所成的角.在Rt △ABC 中,因为AB =2,BC =22,所以AC =AB 2+BC 2=23, 所以由三角形相似得AM =AB 2AC =233.在Rt △P AM 中,易知AH =P A ·AM PM =P A ·AMP A 2+AM 2=t ×233t 2+43. 因为直线AB 与平面PBD 所成的角为π6,所以∠ABH =π6.所以sin ∠ABH =AHAB =t ×233t 2+432=12,所以t =2, 所以P A 的长为2.方法二 取CD 的中点E ,连接AE ,因为AB ∥CD ,CD =2AB =4,所以AB ∥CE 且AB =CE , 所以四边形ABCE 是平行四边形,所以BC ∥AE . 因为AB ⊥BC ,所以AB ⊥AE .又P A ⊥平面ABCD ,所以P A ⊥AB ,P A ⊥AE ,故AE ,AB ,AP 两两垂直,故以A 为坐标原点,AE ,AB ,AP 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,设P A =t ,因为CD =2AB =4,所以A (0,0,0),B (0,2,0),P (0,0,t ),D (22,-2,0),所以AB →=(0,2,0),BP →=(0,-2,t ),BD →=(22,-4,0).设平面PBD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP →=0,n ·BD →=0,即⎩⎨⎧-2y +tz =0,22x -4y =0,令x =2,则y =1,z =2t ,故n =⎝⎛⎭⎫2,1,2t 为平面PBD 的一个法向量. 因为直线AB 与平面PBD 所成的角为π6,所以sin π6=|cos 〈n ,AB →〉|=|n ·AB →||n |·|AB →|=23+4t2×2=12, 所以t =2. 所以P A 的长为2.20.(15分)数列{a n }满足: a 1=1,a 2=2,a n +2=[2+(-1)n ]a n +2,n =1,2,3,…. (1)求a 3,a 4,并证明数列{a 2n +1}是等比数列; (2)求数列{a n }的前2n 项和S 2n . 解 (1) 当n =1时,a 3=a 1+2=3, 当n =2时,a 4=3a 2+2=8,令n =2k ,a 2k +2=3a 2k +2(k =1,2,3,…), 即a 2k +2+1=3(a 2k +1)(k =1,2,3,…). 所以数列{a 2n +1}是等比数列.(2)由(1)得,当n 为偶数时,a n =23n -1,当n 为奇数时, a n +2=a n +2,即数列{a n }的奇数项构成等差数列,可求得a n =n ,{a n }的通项公式a n =⎩⎪⎨⎪⎧n ,n 是奇数,23n -1,n 是偶数.所以在前2n 项中,S 奇=n ·1+12n ()n -1·2=n 2,S 偶=3()1-3n 1-3-n =12()3n +1-3-n ,S 2n =S 奇+S 偶=12()3n +1-3+n 2-n .21.(15分)已知平面上一动点P 到定点C (1,0)的距离与它到直线l :x =4的距离之比为12.(1)求点P 的轨迹方程;(2)点O 是坐标原点,A ,B 两点在点P 的轨迹上,F 是点C 关于原点的对称点,若F A →=λBF →,求λ的取值范围.解 (1)设P (x ,y )是所求轨迹上的任意一点,由动点P 到定点C (1,0)的距离与它到直线l :x =4的距离之比为12,则(x -1)2+y 2|x -4|=12,化简得x 24+y 23=1,即点P 的轨迹方程为x 24+y 23=1.(2)由F 是点C 关于原点的对称点,所以点F 的坐标为(-1,0), 设A (x 1,y 1),B (x 2,y 2),因为F A →=λBF →, 则(x 1+1,y 1)=λ(-1-x 2,-y 2),可得⎩⎪⎨⎪⎧x 1=-1-λ-λx 2,y 1=-λy 2,∵x 214+y 213=1,即(-1-λ-λx 2)24+(-λy 2)23=1,① 又由x 224+y 223=1,则(λx 2)24+(λy 2)23=λ2,②①-②得2λ(λ+1)x 2+(λ+1)24=1-λ2,化简得x 2=3-5λ2λ,∵-2≤x 2≤2,∴-2≤3-5λ2λ≤2,解得13≤λ≤3,所以λ的取值范围是⎣⎡⎦⎤13,3.22.(15分)已知函数f (x )=e x -ln(x +m ),其中m ≥1. (1)设x =0是函数f (x )的极值点,讨论函数f (x )的单调性; (2)若y =f (x )有两个不同的零点x 1和x 2,且x 1<0<x 2, ①求参数m 的取值范围; ②求证:21ex x --ln(x 2-x 1+1)>e -1.(1)解 f ′(x )=e x -1x +m, 若x =0是函数f (x )的极值点,则f ′(0)=1-1m =0,得m =1,经检验满足题意,此时f ′(x )=e x -1x +1,x >-1, 所以当x ∈(-1,0)时,f ′(x )<0,f (x )单调递减; 当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增. (2)①解 m ≥1, f ′(x )=e x -1x +m,x >-m ,记h (x )=f ′(x ),则h ′(x )=e x +1()x +m 2>0,知f ′(x )在区间(-m ,+∞)内单调递增. 又∵f ′(0)=1-1m >0, f ′(-m +1)=e 1-m -1<0,∴f ′(x )在区间(1-m ,0)内存在唯一的零点x 0, 即f ′(x 0)=0e x -1x 0+m =0,于是0e x=1x 0+m ,x 0=-ln(x 0+m ).当-m <x <x 0时, f ′(x )<0,f (x )单调递减; 当x >x 0时, f ′(x )>0,f (x )单调递增.若y =f (x )有两个不同的零点x 1和x 2,且x 1<0<x 2, 易知x →-m 时,f (x )→+∞,x →+∞时,f (x )→+∞, 所以f (0)=1-ln m <0,解得m >e.②证明 由①中的单调性知,当x ∈(x 1,x 2)时,f (x )<0,又m >e ,所以f (-1)=1e -ln(m -1)<1e -ln(e -1)<12-ln(e -1)<12-ln 1.7=ln e1.7<0,所以x 1<-1.所以x 1<-1<0<x 2,所以x 2-x 1>1,令t =x 2-x 1>1, 要证21ex x --ln(x 2-x 1+1)>e -1,即证e t -ln(t +1)>e -1. 令h (t )=e t -ln(t +1),t ≥1, 则h ′(t )=e t -1t +1单调递增,又h ′(1)=e -12>0,所以h ′(t )>0,h (t )单调递增, 所以h (t )>h (1)=e -ln 2>e -1, 即21e x x --ln(x 2-x 1+1)>e -1.。
2020年普通高等学校招生全国统一考试(浙江卷)数学模拟题(含答案解析)
2020年普通高等学校招生全国统一考试(浙江卷)数学模拟题选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合P {|14}{|2}x x Q x x =−<<=<,那么()R P C Q ⋂=() A. [2,4)B.(-1,+∞)C. [2,+∞)D. (-1,2]2. 复数z 满足(1+2i)z=2 (i 为虚数单位),则z 的虚部是( )4.5A −4.5i B −4.3C4.3i D 3.已知双曲线的中心在原点,焦点在坐标轴上,一条渐近线方程为3x+4y=0,则该双曲线的离心率是( )5.3A5.4B4.3C 或535.3D 或544.如图是一个几何体的三视图,且正视图、侧视图都是矩形,则该几何体的体积为()A.12B.14C.16D.185.已知函数f (x )的图象如右图所示,则f (x )的解析式可能是( )A.2()2ln ||f x x x =−B.2()ln ||f x x x =−C. f(x)=|x|-2ln |x|D. f(x)=|x|-1n|x|6.在《青春有你2》录制现场,有5名学员和3名导师排成一列,则5名学员至少2人排在一起且不与导师相邻的排法有几种()A.720B.1440C.1880D.2567.随机变量ξ的分布列是若5()3E ξ=,则随机变量ξ的方差D (ξ)=() 1.9A3.9B5.9C D.798.如图,已知三棱锥D-ABC ,记二面角C-AB-D 的平面角是θ,直线DA 与平面ABC 所成的角是1,θ直线DA 与BC 所成的角是2,θ则()A.θ≥θ1B.θ≤θ1C.θ≥θ2D.θ≤θ29.已知向量a, b 满足|a|=|a+b|=2,则|2a+b|+|b|的最大值为 A.4.42B + 2D.810.已知数列{}n a 满足1110,4,a a >=2112n n n a a a +=+,数列{}n b 满足0n b >,112b a =,21112n n n b b b ++=+若存在正整数P,q(p≤q),使得14p q b b +=,则()A.p=10, q=12B. p=9, q=11C. p=4, q=6D. p=1, q=3非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
【附20套高考模拟试题】2020届浙江省普通高等学校高考科目模拟考试数学试题5高考数学模拟试卷含答案
2020届浙江省普通高等学校高考科目模拟考试数学试题5高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知x ,y 满足约束条件0,2,0,x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z =ax +y 的最大值为4,则a = ( )A .3B .2C .-2D .-32.已知双曲线的中心在原点且一个焦点为(7,0)F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -= D .22125x y -=3.某几何体的三视图如图所示,则该几何体的表面积为( )A .8012π+B .8013.5π+C .5913.5π+D .5912π+4.三棱锥S ABC -中,SA ⊥底面ABC ,若3SA AB BC AC ====,则该三棱锥外接球的表面积为( )A .18πB .212πC .21πD .42π551+的双曲线为“黄金双曲线”51+的双曲线为“亚黄金双曲线”.若双曲线2222:1(0,0)x y C a b a b -=>>为“黄金双曲线”,则22b a =( )A 51B .51+C 51D .51-6.已知双曲线E :22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,以坐标原点O 为圆心,1OF 的长为半径作圆,O e 与E 在第一象限交于点P ,若直线1PF 的倾斜角为θ且3sin 24θ=,则双曲线E 的离心率为( )A .2B .43 C .2D .47.已知抛物线1C :22(0)y px p =>的焦点F 为双曲线2C :2213y x -=的顶点,过点F 的直线与抛物线1C 相交于M 、N 两点,点A 在x 轴上,且满足8MN =,若AM AN =,则AMN ∆的面积为( ) A .36B .63C .62D .828.已知双曲线2222:1x y C a b -=(,0)a b >满足52b a =,且与椭圆221123x y +=有公共焦点,则双曲线C 的方程为A .22145x y -=B .221810x y -=C .22154x y -=D .22143x y -=9.《九章算术》卷第六《均输》中,有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”若将这五人从上到下分别记为甲、乙、丙、丁、戊,且五人所得依次成等差数列,则乙与丙两人共分得( )A .83钱 B .72钱 C .136钱D .3钱10.设函数()23211(22)32xf x x x e x x =-+--的极值点的最大值为0x ,若0(,1)x n n ∈+,则整数n 的值为( ) A .-2B .-1C .0D .111.若关于x 的方程2||4x kx x =+有4个不同的实数根,则k 的取值范围是( ) A .1(0,)4 B .(1,4)C .1(,)4+∞D .1(,4)412.如图,在四个图形中,二次函数2y ax bx =+与指数函数()xby a=的图像只可能是( )A .B .C .D . 二、填空题:本题共4小题,每小题5分,共20分。
浙江省温州中学2020届高三下学期3月高考模拟测试数学试题含答案.pdf
y=________.
C. 5+ 1
D. 5+ 1 2
5. “α≠β”是 “ coαs≠ coβs”的 ( )
A .充分不必要条件
B.必要不充分条件
C .充要条件
D .既不充分也不必要条件
6.函数 f(x)= ln|x|的图象大致为 (
)
x
7.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲 评顺序表, 若化学排在生物前面, 数学与物理不相邻且都不排在最后, 则不同的排表方法共 有( )
下列两个命题 ( )
①数列 { an} 的任意一项都是正整数; ②数列 { an} 存在某一项是 5 的倍数.
A .①正确,②错误
B.①错误,②正确
C .①②都正确
D .①②都错误
第 Ⅱ 卷(非选择题 共 110 分)
二、填空题:本大题共 7 小题 , 多空题每小题 6 分,单空题每小题 4 分 , 共 36 分.
x y+1
16.已知 F1, F 2 为椭圆 C:x2+ y2=1 的左、右焦点,点 43
内心 I 的轨迹方程为 ____________________________ .
P 在椭圆 C 上移动时,△ PF 1F2 的
17.如图,在△ ABC 中,已知 AB= AC= 1,∠ A= 120 ,°E, F 分别是边 AB,AC 上的点, 且A→E= λ→AB, A→F= μ→AC,其中 λ, μ∈ (0,1) ,且 λ+ 4μ= 1,若线段 EF , BC 的中点分别为 M , N,则 |M→N|的最小值为 ________.
浙江专用2020版高考数学模拟试卷(含两套,解析版)
浙江高考仿真卷(一)一、选择题(本大题共10小题,每小题4分,共40分)1.若集合A ={}x | x 2<1,B ={}x | 0<x <2,则A ∪B 等于( )A.{}x | 0<x <1B.{}x | -1<x <0C.{}x | 1<x <2D.{}x | -1<x <2答案 D解析 ∵集合A ={}x | x 2<1={}x | -1<x <1,B ={}x | 0<x <2,∴A ∪B ={}x | -1<x <2.2.双曲线x 24-y 2=1的顶点到渐近线的距离等于( )A.255B.45C.25D.455答案 A解析 双曲线x 24-y 2=1的顶点为()±2,0.渐近线方程为y =±12x . 双曲线x 24-y 2=1的顶点到渐近线的距离等于11+14=255.3.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,3x +y ≤3,y ≥0,则z =x +2y 的最大值是( )A .0B .1C .5D .6 答案 D解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示:由z =x +2y ,得y =-12x +12z ,平移直线y =-12x +12z ,由图象可知,当直线y =-12x +12z 经过点A 时,直线y =-12x +12z 在y 轴上的截距最大,此时z 最大.由⎩⎪⎨⎪⎧x =0,3x +y =3,得A (0,3), 此时z 的最大值为z =0+2×3=6.4.已知一个几何体的三视图如图所示,其中俯视图是一个边长为2的正方形,则该几何体的表面积为( )A.223 B .20 C .20+ 6 D .20+10答案 C解析 该几何体是棱长为2的正方体削去一个角后得到的几何体(如图),其表面积为S =3×2×2+2×(1+2)×22+12×2×2+12×22×3=20+ 6.5.设x ∈R ,则x 3<1是x 2<1的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由x 3<1,可得x <1, 由x 2<1,解得-1<x <1, 所以(-1,1)(-∞,1),所以x 3<1是x 2<1的必要不充分条件.6.函数y=x3+ln(x2+1-x)的图象大致为()答案 C解析因为f(x)的定义域为R,且f(-x)=(-x)3+ln()x2+1+x(-x)2+1+x=-x3+ln()=-x3-ln()x2+1-x=-f()x,所以f()x为奇函数,图象关于原点x2+1+x-1=-x3-ln()2-1>0,所以排除A.对称,排除B,D,因为f(1)=1+ln()7.设随机变量X的分布列如下:则方差D(X)等于()A.0 B.1 C.2 D.3答案 B解析a=1-0.1-0.3-0.4=0.2,E(X)=1×0.2+2×0.3+3×0.4=2,故D(X)=(0-2)2×0.1+(1-2)2×0.2+(2-2)2×0.3+(3-2)2×0.4=1.8.已知在矩形ABCD中,AD=2AB,沿直线BD将△ABD折成△A′BD,使点A′在平面BCD上的射影在△BCD内(不含边界).设二面角A′-BD-C的大小为θ,直线A′D, A′C 与平面BCD所成的角分别为α,β则()A.α<θ<βB.β<θ<αC.β<α<θD.α<β<θ答案 D解析如图,作A′E⊥BD于E, O是A′在平面BCD内的射影,连接OE,OD,OC,易知∠A′EO=θ,∠A′DO=α,∠A′CO=β,在矩形ABCD中,作AE⊥BD于E,延长AE交BC于F,由O点必落在EF上,由AD=2AB知OE<AE<CF<CO<OD,从而tan θ>tan β>tan α,即θ>β>α.9.已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x ≤2,f (4-x ),2<x <4,设方程f (x )-1e x =t (t ∈R )的四个不等实数根从小到大依次为x 1,x 2,x 3,x 4,则下列判断中一定成立的是( ) A.x 1+x 22=1B .1<x 1x 2<4C .4<x 3x 4<9D .0<()x 3-4()x 4-4<4答案 C解析 由题意,作出函数的图象如图所示,由图可知,0<x 1<1<x 2<2<x 3<3<x 4<4, 所以4<x 3x 4<16,又||log 2()4-x 3>||log 2()4-x 4, 得log 2()4-x 3>-log 2()4-x 4,所以log 2()4-x 3()4-x 4>0,得()4-x 3()4-x 4>1,即x 3x 4-4()x 3+x 4+15>0, 又x 3+x 4>2x 3x 4,所以2x 3x 4<x 3x 4+154, 所以()x 3x 4-3()x 3x 4-5>0,所以x 3x 4<9, 综上,4<x 3x 4<9.10.已知a ,b ,c ∈R 且a +b +c =0,a >b >c ,则ba 2+c 2的取值范围是( ) A.⎝⎛⎭⎫-55,55 B.⎝⎛⎭⎫-15,15 C .(-2,2) D.⎝⎛⎭⎫-2,55 答案 A解析 由a +b +c =0,a >b >c ,得a >0,c <0,b =-a -c .因为a >b >c ,即a >-a -c >c ,解得-2<c a <-12.设t =b a 2+c 2,则t 2=b 2a 2+c 2=(-a -c )2a 2+c 2=1+2ac a 2+c 2=1+2c a +a c .令y =c a +a c ,x =c a ,x ∈⎝⎛⎭⎫-2,-12,则y =x +1x,由对勾函数的性质知函数在(-2,-1]上单调递增,在⎣⎡⎭⎫-1,-12上单调递减,所以y max =-2,y >-52,即c a +ac ∈⎝⎛⎦⎤-52,-2, 所以2c a +ac∈⎣⎡⎭⎫-1,-45, 所以t 2∈⎣⎡⎭⎫0,15. 所以t ∈⎝⎛⎭⎫-55,55. 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) 11.二项式(1+2x )5中,所有的二项式系数之和为_________________; 系数最大的项为________. 答案 32 80x 3,80x 4解析 所有的二项式系数之和为C 05+C 15+…+C 55=25=32,展开式为1+10x +40x 2+80x 3+80x 4+32x 5,系数最大的项为80x 3和80x 4.12.圆x 2+y 2-2x -4y =0的圆心C 的坐标是__________,设直线l :y =k (x +2)与圆C 交于A ,B 两点,若|AB |=2,则k =__________. 答案 (1,2) 0或125解析 由圆的一般方程x 2+y 2-2x -4y =0可得(x -1)2+(y -2)2=5,故圆心为C (1,2).又圆心到直线l 的距离d =|3k -2|1+k 2,由弦心距、半径及半弦长之间的关系可得⎝ ⎛⎭⎪⎫|3k -2|1+k 22+1=5,解得k =0或k =125.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =3,b =2,A =π3,则B=________;S △ABC =_____________. 答案 π4 3+34解析 由已知及正弦定理可得sin B =b sin A a =2×sin π33=22, 由于0<B <π,可解得B =π4或B =3π4,因为b <a ,利用三角形中大边对大角可知B <A , 所以B =π4,C =π-π3-π4=5π12,所以S △ABC =12ab sin C =12×3×2×sin 5π12=3+34.综上,B =π4,S △ABC =3+34.14.在政治、历史、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则甲的不同的选法种数为____.乙、丙两名同学都选物理的概率是________. 答案 15949解析 由题意知同学甲只要在除物理之外的六门学科中选两门即可,故甲的不同的选法种数为C 26=6×52=15(种);由题意知同学乙、丙两人除选物理之外,还要在剩下的六门学科中选两门,故乙、丙的所有不同的选法种数为m =C 26C 26=6×52×6×52=225(种),而同学乙、丙两人从7门学科中选3门的所有选法种数为n =C 37C 37=7×6×53×2×1×7×6×53×2×1=35×35=1 225(种),故所求事件的概率是P =2251 225=949.15.已知正实数x ,y 满足x +2y =4,则2x (y +1)的最大值为________. 答案 3解析 已知正实数x ,y 满足x +2y =4,根据基本不等式得到2x ()y +1=x ()2y +2≤x +2y +22=3.当且仅当x =2y +2,即x =3,y =12时,等号成立. 16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若对任意λ∈R ,不等式|λBC →-BA →|≥|BC →|恒成立,则c b +bc 的最大值为________.答案5解析 由对任意λ∈R ,不等式|λBC →-BA →|≥|BC →|恒成立,得BC 边上的高h ≥a . 在△ABC 中,有12ah =12bc sin A ,即bc =ahsin A ,在△ABC 中,由余弦定理得 b 2+c 2=a 2+2bc cos A =a 2+2ah cos Asin A, 则c b +b c =b 2+c2bc =a 2+2ah cos A sin A ahsin A =a 2sin A +2ah cos A ah =a sin A +2h cos A h≤h sin A +2h cos Ah=sin A +2cos A=5sin(A +φ),其中tan φ=2,则当A +φ=π2且h =a 时,c b +bc取得最大值 5.17.等差数列{a n }满足a 21+a 22n +1=1,则a 2n +1+a 23n +1的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤3-52,3+52解析 设⎩⎪⎨⎪⎧a 1=sin α,a 2n +1=cos α⇒a 2n +1=a 1+2nd =cos α⇒2nd =cos α-sin α⇒a 2n +1+a 23n +1=(a 2n +1-nd )2 +(a 2n +1+nd )2=2[a 22n +1+(nd )2]=2⎣⎡⎦⎤cos 2α+⎝⎛⎭⎫cos α-sin α22=2cos 2α+1-2sin αcos α2=3+2cos 2α-sin 2α2=3+5cos ()2α+φ2⎝⎛⎭⎫其中sin φ=15,cos φ=25,所以所求的范围为 ⎣⎢⎡⎦⎥⎤3-52,3+52.三、解答题(本大题共5小题,共74分.)18.(14分)已知函数f (x )=cos x ()sin x -3cos x ,x ∈R . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在区间⎣⎡⎦⎤π3,2π3上的单调性. 解 (1)由题意得f (x )=cos x sin x -3cos 2x =12sin 2x -32()1+cos 2x =12sin 2x -32cos 2x -32 =sin ⎝⎛⎭⎫2x -π3-32. 所以f (x )的最小正周期T =2π2=π,其最大值为1-32.(2)令z =2x -π3,则函数y =sin z 的单调递增区间是⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎡⎦⎤π3,2π3,B =⎩⎨⎧⎭⎬⎫x ⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z , 易知A ∩B =⎣⎡⎦⎤π3,5π12.所以当x ∈⎣⎡⎦⎤π3,2π3时,f (x )在区间⎣⎡⎦⎤π3,5π12上单调递增;在区间⎣⎡⎦⎤5π12,2π3上单调递减. 19.(15分)在四棱锥E -ABCD 中,BC ∥AD ,AD ⊥DC ,AD =DC =2BC ,AB =AE =ED =BE ,F 是AE 的中点.(1)证明:BF ∥平面EDC ;(2)求BF 与平面EBC 所成角的正弦值. (1)证明 取ED 的中点G ,连接FG ,GC , 则FG ∥AD ,且FG =12AD ,又因为BC ∥AD ,且BC =12AD ,所以FG ∥BC ,且FG =BC , 所以四边形BFGC 是平行四边形, 所以BF ∥CG ,因为BF ⊄平面EDC ,CG ⊂平面EDC , 所以BF ∥平面EDC .(2)解 分别取AD ,BC 的中点H ,N ,连接EH 交FG 于点M ,则M 是FG 的中点,连接MN ,则BF ∥MN ,所以BF 与平面EBC 所成角即为MN 与平面EBC 所成角, 由EA =ED ,H 是AD 的中点,得EH ⊥AD ,由于BC ∥AD ,所以BC ⊥EH ,易知四边形BHDC 是平行四边形,所以CD ∥BH , 由BC ⊥CD ,得BC ⊥BH ,又EH ∩BH =H ,所以BC ⊥平面EBH ,因为BC ⊂平面EBC ,所以平面EBC ⊥平面EBH , 过点M 作MI ⊥BE ,垂足为I ,则MI ⊥平面EBC , 连接IN ,∠MNI 即为所求的角.设BC =1,则AD =CD =2,所以AB =5, 由AB =BE =AE =5,得BF =152, 所以MN =BF =152, 在Rt △AHE 中,由AE =5,AH =1,得EH =2, 在△EBH 中,由BH =EH =2,BE =5, MI ⊥BE ,M 为HE 的中点,可得MI =114, 因此sin ∠MNI =MI MN =16530.20.(15分)正项数列{}a n 满足a 2n +a n =3a 2n +1+2a n +1,a 1=1.(1)求a 2的值;(2)证明:对任意的n ∈N *,a n <2a n +1;(3)记数列{a n }的前n 项和为S n ,证明:对任意的n ∈N *,2-12n -1≤S n <3.(1)解 当n =1时,由a 21+a 1=3a 22+2a 2=2及a 2>0,得a 2=7-13. (2)证明 由a 2n +a n =3a 2n +1+2a n +1<4a 2n +1+2a n +1=(2a n +1)2+2a n +1,又因为y =x 2+x 在x ∈(0,+∞)上单调递增,故a n <2a n +1. (3)证明 由(2)知当n ≥2时,a n a n -1>12,a n -1a n -2>12,…,a 2a 1>12,相乘得a n >12n -1a 1=12n -1,即a n >12n -1, 故当n ≥2时,S n =a 1+a 2+…+a n >1+12+…+12n -1=2-12n -1,当n =1时,S 1=1=2-12n -1.所以当n ∈N *时,S n ≥2-12n -1.另一方面,a 2n +a n =3a 2n +1+2a n +1>2a 2n +1+2a n +1=2(a 2n +1+a n +1),令a 2n +a n =b n ,则b n >2b n +1,于是当n ≥2时,b n b n -1<12,b n -1b n -2<12,…,b 2b 1<12,相乘得b n <12n -1b 1=12n -2, 即a 2n +a n =b n <12n -2,故a n <12n -2, 故当n ≥2时,S n =a 1+(a 2+…+a n )<1+⎝⎛⎭⎫1+12+…+12n -2=3-12n -2<3.当n =1时,S 1=1<3, 综上,对任意的n ∈N *,2-12n -1≤S n <3.21.(15分)已知抛物线C 1:y 2=4x 和C 2:x 2=2py ()p >0的焦点分别为F 1,F 2,点P ()-1,-1且F 1F 2⊥OP (O 为坐标原点). (1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,求△PMN 面积的最小值. 解 (1)F 1(1,0),F 2⎝⎛⎭⎫0,p2, ∴F 1F 2→=⎝⎛⎭⎫-1,p 2, F 1F 2→·OP →=⎝⎛⎭⎫-1,p 2·()-1,-1=1-p 2=0, ∴p =2,∴抛物线C 2的方程为x 2=4y .(2)由题意知,过点O 的直线的斜率一定存在且不为0,设直线方程为y =kx ,联立⎩⎪⎨⎪⎧ y 2=4x ,y =kx ,得(kx )2=4x ,求得M ⎝⎛⎭⎫4k 2,4k , 联立⎩⎪⎨⎪⎧x 2=4y ,y =kx ,得N (4k,4k 2)(k <0),从而|MN |=1+k 2⎪⎪⎪⎪4k 2-4k =1+k 2⎝⎛⎭⎫4k 2-4k , 点P 到直线MN 的距离d =|k -1|1+k 2,S △PMN =12·|k -1|1+k 2·1+k 2⎝⎛⎭⎫4k 2-4k =2(1-k )(1-k 3)k 2=2(1-k )2()1+k +k 2k 2=2⎝⎛⎭⎫k +1k -2⎝⎛⎭⎫k +1k +1, 令t =k +1k ()t ≤-2,有S △PMN =2(t -2)(t +1),当t =-2,k =-1时,S △PMN 取得最小值. 即当过原点的直线为y =-x 时, △PMN 的面积取得最小值为8. 22.(15分)已知函数f (x )=ln x -ax +1. (1)讨论函数f (x )的单调性;(2)设函数g (x )=(x -2)e x +f (x )-1-b ,当a ≥1时,g (x )≤0对任意的x ∈⎝⎛⎭⎫12,1恒成立,求满足条件的b 最小的整数值.解 (1)由题意知,函数的定义域为(0,+∞),f ′(x )=1x -a ,当a ≤0时,f ′(x )=1x -a >0,f (x )的单调递增区间为(0,+∞),当a >0时,令f ′(x )=1x -a =0,x =1a,由f ′(x )>0,得x ∈⎝⎛⎭⎫0,1a ,由f ′(x )<0,得x ∈⎝⎛⎭⎫1a ,+∞, 所以f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,f (x )的单调递减区间为⎝⎛⎭⎫1a ,+∞. 综上,当a ≤0时,f (x )的单调递增区间为(0,+∞),当a >0时,f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞. (2)由g (x )=()x -2e x +ln x -ax -b , 因为g (x )≤0对任意的x ∈⎝⎛⎭⎫12,1恒成立,b ≥()x -2e x +ln x -ax 在a ≥1时对任意的x ∈⎝⎛⎭⎫12,1恒成立, 因为a ≥1,x >0,所以()x -2e x +ln x -ax ≤()x -2e x +ln x -x ,只需b ≥()x -2e x +ln x -x 对任意的x ∈⎝⎛⎭⎫12,1恒成立即可. 构造函数h (x )=()x -2e x +ln x -x , h ′(x )=(x -1)e x +1x -1=(x -1)⎝⎛⎭⎫e x -1x , 因为x ∈⎝⎛⎭⎫12,1,所以x -1<0,且t (x )=e x -1x单调递增,因为t ⎝⎛⎭⎫12=12e -2<0,t ()1=e -1>0,所以一定存在唯一的x 0∈⎝⎛⎭⎫12,1,使得t (x 0)=0, 即e x 0=1x 0,x 0=-ln x 0.所以h (x )的单调递增区间为⎝⎛⎭⎫12,x 0,单调递减区间为()x 0,1. 所以h (x )max =h ()x 0=()x 0-2e x 0+ln x 0-x 0 =1-2⎝⎛⎭⎫x 0+1x 0∈()-4,-3, 所以b 的最小的整数值为-3.浙江高考仿真卷(二)一、选择题(本大题共10小题,每小题4分,共40分)1.已知集合M ={x |1≤x ≤3},N ={x |x >2},则集合M ∩(∁R N )等于( ) A .{x |1≤x ≤2} B .{x |x ≥1} C .{x |1≤x <2} D .{x |2<x ≤3}答案 A解析 ∵N ={x |x >2}, ∴∁R N ={x |x ≤2},∴集合M ∩(∁R N )={x |1≤x ≤2}.2.设双曲线x 2a 2-y 29=1(a >0)的两焦点之间的距离为10,则双曲线的离心率为( )A.35B.45C.54D.53 答案 C解析 因为双曲线x 2a 2-y 29=1(a >0)的两焦点之间的距离为10,所以2c =10,c =5,所以a 2=c 2-9=16,所以a =4.所以离心率e =54.3.已知x ,y ∈R ,且x >y >0,若a >b >1,则一定有( ) A .log a x >log b y B .sin a x >sin b y C .ay >bx D .a x >b y答案 D解析 当x >y >0,a >b >1时,由指数函数和幂的性质易得a x >a y >b y .4.将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到的函数为奇函数,则|φ|的最小值为( )A.π12B.π6C.π3D.5π6 答案 B解析 设y =cos(2x +φ)向右平移π3个单位长度得到的函数为g (x ),则g (x )=cos ⎝⎛⎭⎫2x -2π3+φ,因为g (x )为奇函数,且在原点有定义,所以-2π3+φ=k π+π2(k ∈Z ),解得φ=k π+7π6(k ∈Z ),故当k =-1时,|φ|min =π6.5.函数f (x )=e |x -1|-2cos(x -1)的部分图象可能是( )答案 A解析 因为f (1)=-1,所以排除B ;因为f (0)=e -2cos 1>0,所以排除D ;因为当x >2时,f (x )=e x -1-2cos (x -1),∴f ′(x )=e x -1+2sin(x -1)>e -2>0,即x >2时,f (x )具有单调性,排除C.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则D (ξ)的最大值为( ) A.23 B.59 C.29 D.34 答案 A解析 由分布列得a +b +c =1,又因为a ,b ,c 成等差数列,所以2b =a +c ,则a +c =23,所以E (ξ)=c -a ,D (ξ)=a (c -a +1)2+b (c -a )2+c (c -a -1)2=a (c -a )2+b (c -a )2+c (c -a )2+2a (c -a )+a -2c (c -a )+c =-(c -a )2+23,则当a =c 时,D (ξ)取得最大值23.7.已知单位向量e 1,e 2,且e 1·e 2=-12,若向量a 满足(a -e 1)·(a -e 2)=54,则|a |的取值范围为( ) A.⎣⎡⎦⎤2-32,2+32 B.⎣⎡⎦⎤2-12,2+12 C.⎝⎛⎦⎤0,2+12 D.⎝⎛⎦⎤0,2+32 答案 B解析 因为向量e 1,e 2为单位向量, 且e 1·e 2=|e 1|·|e 2|·cos 〈e 1,e 2〉=-12,所以|e 1+e 2|=1+1+2×⎝⎛⎭⎫-12=1. 因为(a -e 1)·(a -e 2)=54,所以a 2-a ·(e 1+e 2)+e 1·e 2=54,所以|a |2-a ·(e 1+e 2)=74,所以|a |2-|a |·cos 〈a ,e 1+e 2〉=74,所以cos 〈a ,e 1+e 2〉=|a |2-74|a |,又因为-1≤cos 〈a ,e 1+e 2〉≤1, 所以|a |的取值范围为⎣⎡⎦⎤2-12,2+12. 8.在等腰梯形ABCD 中,已知AB =AD =CD =1,BC =2,将△ABD 沿直线BD 翻折成△A ′BD ,如图,则直线BA ′与CD 所成角的取值范围是( )A.⎣⎡⎦⎤π3,π2 B.⎣⎡⎦⎤π6,π3 C.⎣⎡⎦⎤π6,π2 D.⎣⎡⎦⎤0,π3 答案 A解析 在等腰梯形ABCD 中,易知∠ABC =π3,∠ABD =∠CBD =π6,则∠A ′BD =π6,为定值,所以BA ′的轨迹可看作是以BD 为轴,B 为顶点,母线与轴的夹角为π6的圆锥的侧面,故点A ′的轨迹如图中AF 所示,其中F 为BC 的中点.过点B 作CD 的平行线,过点C 作BD 的平行线,两平行线交于点E ,则直线BA ′与BE 所成的角即直线BA ′与CD 所成的角.又易知CD ⊥BD ,所以直线A ′B 与CD 所成角的取值范围是⎣⎡⎦⎤π3,π2,故选A.9.已知函数f (x )=⎩⎨⎧2x -x 2,0≤x <2,2f (x -2),x ≥2, g (x )=kx +2,若函数F (x )=f (x )-g (x )在[0,+∞)上只有两个零点,则实数k 的值不可能为( ) A .-23 B .-12 C .-34 D .-1答案 A解析 函数F (x )=f (x )-g (x )的零点为函数y =f (x )与y =g (x )图象的交点,在同一直角坐标系下作出函数y =f (x )与y =g (x )的图象,如图所示,当函数y =g (x )的图象经过点(2,0)时满足条件,此时k =2-00-2=-1 ,当函数y =g (x )的图象经过点(4,0)时满足条件,此时k =2-00-4=-12 ,当函数y =g (x )的图象与(x -1)2+y 2=1(x >0,y >0)相切时也满足题意,此时|k +2|1+k2=1,解得k =-34, 故选A.10.已知数列满足,a 1=1,a 2=12,且[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *,记T 2n为数列{a n }的前2n 项和,数列{b n }是首项和公比都是2的等比数列,则使不等式⎝⎛⎭⎫T 2n +1b n ·1b n <1成立的最小整数n 为( ) A .7 B .6 C .5 D .4 答案 C解析 因为[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *,∴当n 为偶数时,可得(3+1)a n +2-2a n +2(1-1)=0,n ∈N *,即a n +2a n =12,∴a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列;当n 为奇数时,可得(3-1)a n +2-2a n +2(-1-1)=0,n ∈N *,即a n +2-a n =2,∴a 1,a 3,a 5,…是以a 1=1为首项,以2为公差的等差数列,T 2n =(a 1+a 3+a 5+…+a 2n -1)+(a 2+a 4+a 6+…+a 2n )=n 2+1-12n ,∵数列{b n }是首项和公比都是2的等比数列,b n =2×2n -1=2n ,则⎝⎛⎭⎫T 2n +1b n ·1b n <1等价为⎝⎛⎭⎫n 2+1-12n +12n ·12n <1,即(n 2+1)·12n <1,即n 2+1<2n ,分析函数y =n 2+1与y =2n ,则当n =1时,2=2,当n =2时,5<4不成立,当n =3时,10<8不成立,当n =4时,17<16不成立,当n =5时,26<32成立,当n ≥5时,n 2+1<2n 恒成立,故使不等式⎝⎛⎭⎫T 2n +1b n ·1b n <1成立的最小整数n 为5.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.若⎝⎛⎭⎫3x -1x n 的展开式中所有项的系数的绝对值之和为64,则n =________;该展开式中的常数项是____________. 答案 3 -27解析 所求系数的绝对值之和相当于⎝⎛⎭⎫3x +1x n 中所有项的系数之和,则在⎝⎛⎭⎫3x +1x n 中令x =1,得(3+1)n =64,所以n =3;⎝⎛⎭⎫3x -1x 3的通项为T k +1=C k 3(3x )3-k ⎝⎛⎭⎫-1x k =C k 3·33-k · (-1)k 332kx-,令3-3k 2=0,则k =1,常数项为C 13×32×(-1)1=-27. 12.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,x -2y +1≤0,x +y ≤m ,若此不等式组所表示的平面区域形状为三角形,则m 的取值范围为_______,如果目标函数z =2x -y 的最小值为-1,则实数m =________. 答案 (2,+∞) 4解析 要使不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +1≤0,x +y ≤m 所表示的平面区域形状为三角形,直线x =1与直线x-2y +1=0的交点(1,1)必在直线的左下方,所以m >2,画出该区域如图阴影部分所示(含边界),由z =2x -y 得y =2x -z ,由图可知,当直线y =2x -z 过点A (1,m -1)时在y 轴上的截距最大,z 最小,所以,-1=2×1-(m -1),解得m =4.13.如图是一个几何体的三视图,若它的体积是23,则a =________,该几何体的表面积为________.答案 1 3+ 5解析 如图所示,此几何体是四棱锥,底面是边长为a 的正方形,平面SAB ⊥平面ABCD ,并且∠SAB =90°,SA =2,所以体积是V =13×a 2×2=23,解得a =1,四个侧面都是直角三角形,所以计算出表面积是S =12+12×1×2+12×1×5+12×1×2+12×1×5=3+ 5.14.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c 若a =7,c =3,A =60°,则b =________,△ABC 的面积S =________. 答案 1或2334或332解析 由余弦定理得a 2=b 2+c 2-2bc cos A ,即7=b 2+9-2b ×3cos 60°,即b 2-3b +2=0,解得b =1或2, 当b =1时, S =12bc sin A =12×1×3×sin 60°=334,同理当b =2时, S =332.15.如图所示,在排成4×4方阵的16个点中,中心位置4个点在某圆内,其余12个点在圆外.从16个点中任选3点,作为三角形的顶点,其中至少有一个顶点在圆内的三角形共有____个.答案 312解析 根据题意,分3种情况讨论:①取出的3个点都在圆内,C 34=4,即有4种取法;②在圆内取2点,圆外12点中有10个点可供选择,从中取1点,C 24C 110=60,即有60种取法;③在圆内取1点,圆外12点中取2点,C 14()C 212-4=248,即有248种取法.则至少有一个顶点在圆内的三角形有 4+60+248=312(个).16.已知F 1,F 2为椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上移动时,△PF 1F 2的内心I 的轨迹方程为____________________________. 答案 x 2+3y 2=1(y ≠0)解析 由题意得F 1(-1,0),F 2(1,0),设点P (x ,y ),I (m ,n ),-2<x <2,y ≠0,则|PF 1|=(x +1)2+y 2=(x +1)2+3-3x 24=⎪⎪⎪⎪x 2+2=2+x 2,则|PF 2|=2a -|PF 1|=4-⎝⎛⎭⎫2+x 2=2-x 2,|F 1F 2|=2c =2,|PF 1|+|PF 2|+|F 1F 2|=2a +2c =6,则由点I 为△PF 1F 2的内心结合图形(图略)得⎩⎨⎧2+x 2=m +1+2-x2-(1-m ),12×|n |×6=12×2×|y |,则⎩⎪⎨⎪⎧x =2m ,y =3n ,代入椭圆C 的方程得三角形的内心I 的轨迹方程为m 2+3n 2=1(n ≠0),即x 2+3y 2=1(y ≠0).17.设点P 是△ABC 所在平面内一动点,满足CP →=λCA →+μCB →,3λ+4μ=2(λ,μ∈R ),|P A →|=|PB →|=|PC →|.若|A B →|=3,则△ABC 面积的最大值是________. 答案 9解析 由3λ+4μ=2,得32λ+2μ=1,所以CP →=λCA →+μCB →=32λ·23CA →+2μ·12CB →.设23CA →=CM →,12CB →=CN →, 则由平面向量基本定理知点P ,M ,N 在同一直线上, 又|P A →|=|PB →|=|PC →|,所以P 为△ABC 的外心,且∠ACB 为锐角,PN ⊥BC ,由此可作图,如图所示,设∠ACB =θ,CN =x ,则BC =2x , CM =x cos θ,CA =3x2cos θ,所以S △ABC =12AC ·BC sin θ=12·3x 2cos θ·2x ·sin θ=3tan θ2x 2, 在△ABC 中,AB 2=AC 2+BC 2-2AC ·BC cos θ, 即4x 2+9x 24cos 2θ-2·2x ·3x 2cos θ·cos θ=9, 所以x 2=36cos 2θ9-8cos 2θ,所以S △ABC =3tan θ2·36cos 2θ9-8cos 2θ=54sin θcos θ9sin 2θ+cos 2θ=54tan θ9tan 2θ+1=549tan θ+1tan θ≤9. 当且仅当9tan θ=1tan θ,即tan θ=13时等号成立,所以△ABC 面积的最大值是9.三、解答题(本大题共5小题,共74分.)18.(14分)已知函数f (x )=4cos ⎝⎛⎭⎫π2-x cos ⎝⎛⎭⎫x -π3- 3. (1)求f (x )的单调递增区间; (2)求f (x )在区间⎣⎡⎦⎤π4,π3上的值域.解 (1)f (x )=4sin x ·⎝⎛⎭⎫cos x cos π3+sin x sin π3- 3 =4sin x ·⎝⎛⎭⎫12cos x +32sin x - 3 =2sin x cos x +23sin 2x - 3=sin 2x +3·()1-cos 2x - 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3. 令2k π-π2≤2x -π3≤2k π+π2,得k π-π12≤x ≤k π+5π12,k ∈Z ,f (x )的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12()k ∈Z . (2)由π4≤x ≤π3,得π6≤2x -π3≤π3,故而2sin ⎝⎛⎭⎫2x -π3∈[1,3], 即f (x )在区间⎣⎡⎦⎤π4,π3上的值域为[1,3].19.(15分)如图,已知四边形ABCD 是正方形,AE ⊥平面ABCD ,PD ∥AE ,PD =AD =2EA =2,G ,F ,H 分别为BE ,BP ,PC 的中点.(1)求证:平面ABE ⊥平面GHF ;(2)求直线GH 与平面PBC 所成的角θ的正弦值.解 (1)因为AE ⊥平面ABCD ,BC ⊂平面ABCD ,所以AE ⊥BC , 因为四边形ABCD 是正方形,所以AB ⊥BC ,又BA ∩AE =A ,BA ,AE ⊂平面ABE ,所以BC ⊥平面AEB , 因为F ,H 分别为BP ,PC 的中点,所以FH 为△PBC 的中位线, 所以FH ∥BC , 所以FH ⊥平面ABE ,又FH ⊂平面GHF ,所以平面ABE ⊥平面GHF .(2)解 方法一 因为AE ⊥平面ABCD ,PD ∥AE ,所以PD ⊥平面ABCD ,又BC ⊂平面ABCD ,所以PD ⊥BC ,因为四边形ABCD 是正方形,所以CD ⊥BC , 又PD ∩CD =D ,PD ,CD ⊂平面PCD , 所以BC ⊥平面PCD ,又BC ⊂平面PBC ,所以平面PBC ⊥平面PCD . 连接DH ,则DH ⊥PC ,因为平面PBC ∩平面PCD =PC ,所以DH ⊥平面PBC ,所以∠DHG 为直线GH 与平面PBC 所成角的余角,即θ=π2-∠DHG .在等腰直角三角形PDC 中,因为PD =DC =2,所以PC =22, 所以DH =PD ·DCPC = 2.连接DG ,易知DG =22+12+⎝⎛⎭⎫122=212,GH =22+⎝⎛⎭⎫122=172, 所以在△DHG 中,cos ∠DHG =DH 2+HG 2-DG 22DH ·GH =3434,所以sin θ=sin ⎝⎛⎭⎫π2-∠DHG =cos ∠DHG =3434, 即直线GH 与平面PBC 所成的角θ的正弦值为3434. 方法二 易知DA ,DC ,DP 两两垂直,所以以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴,建立如图所示的空间直角坐标系,由PD =AD =2EA =2,易得B (2,2,0),C (0,2,0),P (0,0,2),H (0,1,1),G ⎝⎛⎭⎫2,1,12,则CP →=(0,-2,2),CB →=(2,0,0),HG →=⎝⎛⎭⎫2,0,-12.设平面PBC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CB →=(x ,y ,z )·(2,0,0)=0,n ·CP →=(x ,y ,z )·(0,-2,2)=0,则⎩⎪⎨⎪⎧ 2x =0,-2y +2z =0,则⎩⎪⎨⎪⎧x =0,y =z .令y =1,则z =1,所以n =(0,1,1)为平面PBC 的一个法向量, 所以sin θ=|cos 〈n ,HG →〉|=|n ·HG →|02+12+12×22+02+⎝⎛⎭⎫-122=122×172=3434, 故直线GH 与平面PBC 所成的角θ的正弦值为3434. 20.(15分)已知数列{a n }满足:a 1=12,a n +1=1e n a -(n ∈N *).(其中e 为自然对数的底数,e =2.71828…)(1)证明:a n +1>a n (n ∈N *);(2)设b n =1-a n ,是否存在实数M >0,使得b 1+b 2+…+b n ≤M 对任意n ∈N *成立?若存在,求出M 的一个值;若不存在,请说明理由. (1)证明 设f (x )=e x -x -1,令f ′(x )=e x -1=0, 得到x =0.当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减; 当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.故f (x )≥f (0)=0,即e x ≥x +1(当且仅当x =0时取等号). 故a n +1=1en a -≥a n ,且取不到等号,所以a n +1>a n .(2)解 先用数学归纳法证明a n ≤1-1n +1.①当n =1时,a 1≤1-12成立.②假设当n =k (k ≥1,k ∈N *)时,不等式a k ≤1-1k +1成立,那么当n =k +1时,a k +1=1ek a -≤11ek -+=111ek +≤11+1k +1=k +1k +2 =1-1k +2,即a k +1≤1-1k +2也成立.故对n ∈N *都有a n ≤1-1n +1. 所以b n =1-a n ≥1n +1.取n =2t -1(t ∈N *),b 1+b 2+…+b n ≥12+13+…+1n +1 =12+⎝⎛⎭⎫13+14+… +⎝⎛⎭⎫12t -1+1+12t -1+2+…+12t . 即b 1+b 2+…+b n ≥12+12+…+12=t2.其中t =log 2n +1,t ∈N *,当n →+∞时,t →+∞,t2→+∞,所以不存在满足条件的实数M ,使得b 1+b 2+…+b n ≤M 对任意n ∈N *成立. 21.(15分)抛物线C :y =x 2,直线l 的斜率为2. (1)若l 与抛物线C 相切,求直线l 的方程;(2)若l 与抛物线C 相交于A ,B ,线段AB 的中垂线交C 于P ,Q ,求|PQ ||AB |的取值范围.解 (1)设直线l 的方程为y =2x +b ,联立直线l 与抛物线C 的方程⎩⎪⎨⎪⎧y =2x +b ,y =x 2,得x 2-2x -b =0,Δ=4+4b =0,所以b =-1, 因此,直线l 的方程为y =2x -1.(2)设直线l 的方程为y =2x +b ,设点A ()x 1,y 1, B ()x 2,y 2,P ()x 3,y 3,Q ()x 4,y 4,联立直线l 与抛物线C 的方程⎩⎪⎨⎪⎧y =2x +b ,y =x 2, 得x 2-2x -b =0,Δ=4+4b >0,所以b >-1. 由根与系数的关系得x 1+x 2=2,x 1x 2=-b . 所以|AB |=5|x 1-x 2|=25(b +1), 且y 1+y 2=2(x 1+x 2)+2b =4+2b , 所以线段AB 的中点为(1,2+b ),所以直线PQ 的方程为y =-12x +52+b ,由⎩⎪⎨⎪⎧y =-12x +52+b ,y =x 2,得2x 2+x -5-2b =0, 由根与系数的关系得x 3+x 4=-12,x 3x 4=-52-b ,所以|PQ |=52|x 3-x 4|=5441+16b , 所以|PQ ||AB |=1841+16b 1+b=1816+25b +1>12,所以|PQ ||AB |的取值范围是⎝⎛⎭⎫12,+∞. 22.(15分)已知函数f (x )=e x -e x sin x ,x ∈⎣⎡⎦⎤0,π2(e 为自然对数的底数). (1)求函数f (x )的值域;(2)若不等式f (x )≥k (x -1)(1-sin x )对任意x ∈⎣⎡⎦⎤0,π2恒成立,求实数k 的取值范围; (3)证明:e x -1>-12(x -32)2+1.(1)解 因为f (x )=e x -e x sin x ,所以f ′(x )=e x -e x (sin x +cos x )=e x (1-sin x -cos x )=e x ⎣⎡⎦⎤1-2sin ⎝⎛⎭⎫x +π4, ∵x ∈⎣⎡⎦⎤0,π2,∴x +π4∈⎣⎡⎦⎤π4,3π4, ∴sin ⎝⎛⎭⎫x +π4≥22,所以f ′(x )≤0, 故函数f (x )在⎣⎡⎦⎤0,π2上单调递减,函数f (x )的最大值为f (0)=1-0=1; f (x )的最小值为f ⎝⎛⎭⎫π2=2πe -2πe sin π2=0, 所以函数f (x )的值域为[0,1].(2)解 原不等式可化为e x (1-sin x )≥k (x -1)(1-sin x ),(*) 因为1-sin x ≥0恒成立,故(*)式可化为e x ≥k (x -1). 令g (x )=e x -kx +k ,x ∈⎣⎡⎦⎤0,π2,则g ′(x )=e x -k , 当k ≤0时,g ′(x )=e x -k >0,所以函数g (x )在⎣⎡⎦⎤0,π2上单调递增,故g (x )≥g (0)=1+k ≥0,所以-1≤k ≤0;当k >0时,令g ′(x )=e x -k =0,得x =ln k ,所以当x ∈(0,ln k )时,g ′(x )=e x -k <0; 当x ∈(ln k ,+∞)时,g ′(x )=e x -k >0.所以当ln k <π2,即0<k <2πe 时,函数g (x )min =g (ln k )=2k -k ln k >0成立;当ln k ≥π2,即k ≥2πe 时,函数g (x )在⎣⎡⎦⎤0,π2上单调递减,g (x )min =g ⎝⎛⎭⎫π2=2πe -k ·π2+k ≥0,解得2πe ≤k ≤2πeπ12-, 综上,-1≤k ≤2πeπ12-. (3)证明 令h (x )=e x -1+12⎝⎛⎭⎫x -322-1, 则h ′(x )=e x -1+x -32.令t (x )=h ′(x )=e x -1+x -32,则t ′(x )=e x -1+1>0,所以h ′(x )在R 上单调递增,由h ′⎝⎛⎭⎫12=12e --1<0,h ′⎝⎛⎭⎫34=14e --34>0, 故存在x 0∈⎝⎛⎭⎫12,34,使得h ′()x 0=0, 即01ex -=32-x 0. 所以当x ∈(-∞,x 0)时,h ′(x )<0; 当x ∈(x 0,+∞)时,h ′(x )>0.故当x =x 0时,函数h (x )有极小值,且是唯一的极小值, 故函数h (x )min =h (x 0)=01ex -+12⎝⎛⎭⎫x 0-322-1 =-⎝⎛⎭⎫x 0-32+12⎝⎛⎭⎫x 0-322-1 =12×⎣⎡⎦⎤⎝⎛⎭⎫x 0-32-12-32=12⎝⎛⎭⎫x 0-522-32, 因为x 0∈⎝⎛⎭⎫12,34,所以12⎝⎛⎭⎫x 0-522-32> 12×⎝⎛⎭⎫34-522-32=132>0,故h (x )=e x -1+12⎝⎛⎭⎫x -322-1>0, 即e x -1>-12⎝⎛⎭⎫x -322+1.。
2020年浙江省高考模拟考试文科数学试题与答案
A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m
C.若l∥β,则α∥βD.若α∥β,则l∥m
8.已知双曲线 的离心率为2,则
A. 2 B. C. D. 1
9.函数 的图象大致为
A. B.
C. D.
10.已知函数 的图象与一条平行于 轴的直线有两个交点,其横坐标分别为 , ,则
20.(1)因为 在椭圆 上,所以 ,
又因为椭圆四个顶点组成的四边形的面积为 ,所以 ,
解得 ,所以椭圆 的方程为
(2)由(1)可知 ,设 ,
则当 时, ,所以 ,
直线 的方程为 ,即 ,
由 得 ,
则 ,
,
,
又 ,所以 ,
由 ,得 ,所以 ,
所以 ,
当 ,直线 , , , , ,
所以当 时, .
21.解:(1)由 ,得 ,则 .
∴ .
若 ,则 , 在 上递增.
又 ,∴.当 时, 不符合题意.
②若 ,则当 时, , 递增;当 时, , 递减.
∴当 时, .
欲使 恒成立,则需
记 ,则 .
∴当 时, , 递减;当 时, , 递增.
∴当 时,
综上所述,满足题意的 .
(2)由(1)知,欲使 恒成立,则 .
而 恒成立 恒成立 函数 的图象不在函数 图象的上方,
(1)写出直线 的普通方程及曲线 的直角坐标方程;
(2)已知点 ,点 ,直线 过点 且与曲线 相交于 , 两点,设线段 的中点为 ,求 的值.
23.[选修4—5:不等式选讲](10分)
23.已知函数
(1)求函数 的值域;
(2)若 ,使 成立,求 的取值范围.
2020年浙江省高考数学模拟试卷及答案
2020年浙江省高考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x |x 2﹣4x ≤0},则A ∩B =( ) A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.(4分)设i 为虚数单位,复数z =2+3ii,则z 的共轭复数是( ) A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i3.(4分)设变量x ,y 满足约束条件{x +y ≥1,2x −y ≤2,x −y +1≥0,则z =(x ﹣3)2+y 2的最小值为( )A .2B .4√55C .4D .1654.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要5.(4分)函数f (x )=x 2+e |x |的图象只可能是( )A .B .C .D .6.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点,则下列说法中错误的是( )A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成角为π4C .PQ ≥√2ABD .CD 1与PQ 不可能垂直7.(4分)已知0<a <23,随机变量ξ的分布列如图:则当a 增大时,ξ的期望E (ξ)变化情况是( )ξ ﹣10 1 P13abA .E (ξ)增大B .E (ξ)减小C .E (ξ)先增后减D .E (ξ)先减后增8.(4分)已知函数f(x)={x 2+4x +2,x ≤0log 2x ,x >0,且方程f (x )=a 有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围为( ) A .(−154,0]B .(−154,2]C .[﹣4,+∞)D .[﹣4,2)9.(4分)如图,在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.则( )A .α≥β,β≤γB .α≤β,β≤γC .α≥β,β≥γD .α≤β,β≥γ10.(4分)设数列{a n }满足a n +1=a n 2+2a n ﹣2(n ∈N *),若存在常数λ,使得a n ≤λ恒成立,则λ的最小值是( ) A .﹣3B .﹣2C .﹣1D .1二.填空题(共7小题,满分36分)11.(6分)过点P (1,1)作直线l 与双曲线x 2−y 22=λ交于A ,B 两点,若点P 恰为线段AB 的中点,则实数λ的取值范围是 .12.(6分)一个几何体的三视图如图所示,则该几何体的体积为 .13.(6分)已知(1﹣x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则a 2= ,a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6= . 14.(6分)在△ABC 中,a =1,cos C =34,△ABC 的面积为√74,则c = . 15.(4分)在平面直角坐标系xOy 中,已知椭圆x 2a +y 2b =1(a >b >0)的上、下顶点分别为B 2,B 1,若一个半径为√2b ,过点B 1,B 2的圆M 与椭圆的一个交点为P (异于顶点B 1,B 2),且|k PB 1−kPB 2|=89,则椭圆的离心率为 .16.(4分)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BCD =60°, CB =CD =2√3.若点M 为边BC 上的动点,则AM →•DM →的最小值为 .17.(4分)设f (x )是定义在(0,+∞)上的可导函数,且满足f (x )+xf '(x )>0,则不等式f (x +1)>(x ﹣1)f (x 2﹣1)的解集为 三.解答题(共5小题,满分74分)18.(14分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且b ﹣c =1,cos A =13,△ABC 的面积为2√2.(Ⅰ)求a 及sin C 的值; (Ⅱ)求cos (2A −π6)的值.19.(15分)如图,三棱锥D ﹣ABC 中,AD =CD ,AB =BC =4√2,AB ⊥BC . (1)求证:AC ⊥BD ;(2)若二面角D ﹣AC ﹣B 的大小为150°且BD =4√7时,求直线BM 与面ABC 所成角的正弦值.20.(15分)在等差数列{a n }和正项等比数列{b n }中,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,数列{b n }的前n 项和为Sn ,且S 3=14. (1)求数列{a n },{b n }的通项公式;(2)令c n =a b n ,(﹣1)n d n =n c n +n ,求数列{d n }的前项和为T n .21.(15分)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.22.(15分)设函数f(x)=e x cos x,g(x)=e2x﹣2ax.(1)当x∈[0,π3]时,求f(x)的值域;(2)当x∈[0,+∞)时,不等式g(x)≥f′(x)e2x恒成立(f'(x)是f(x)的导函数),求实数a的取值范围.2020年浙江省高考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x |x 2﹣4x ≤0},则A ∩B =( ) A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]【解答】解:由题意得:A ={x ∈N *|x ≤3}={1,2,3},B ={x |x 2﹣4x ≤0}={x |0≤x ≤4}, ∴所以A ∩B ={1,2,3}, 故选:A .2.(4分)设i 为虚数单位,复数z =2+3ii,则z 的共轭复数是( ) A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i【解答】解:∵z =2+3i i =(2+3i)(−i)−i2=3−2i , ∴z =3+2i . 故选:B .3.(4分)设变量x ,y 满足约束条件{x +y ≥1,2x −y ≤2,x −y +1≥0,则z =(x ﹣3)2+y 2的最小值为( )A .2B .4√55C .4D .165【解答】解:画出变量x ,y 满足约束条件{x +y ≥1,2x −y ≤2,x −y +1≥0,的可行域,可发现z =(x ﹣3)2+y 2的最小值是(3,0)到2x ﹣y ﹣2=0距离的平方. 取得最小值:(6−24+1)2=165.故选:D .4.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要【解答】解:若cos2α=13,则cos2α=1﹣2sin 2α,sin α=±√33,则cos2α=13”是“sin α=√33”的不充分条件;若sin α=√33,则cos2α=1﹣2sin 2α,cos2α=13,则cos2α=13”是“sin α=√33”的必要条件; 综上所述:“cos2α=13”是“sin α=√33”的必要不充分条件.故选:B .5.(4分)函数f (x )=x 2+e |x |的图象只可能是( )A .B .C .D .【解答】解:因为对于任意的x ∈R ,f (x )=x 2+e |x |>0恒成立,所以排除A ,B , 由于f (0)=02+e |0|=1,则排除D , 故选:C .6.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点,则下列说法中错误的是( )A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成角为π4C .PQ ≥√2ABD .CD 1与PQ 不可能垂直【解答】解:在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点, 在A 中,当Q 为线段B 1C 1中点时,线段PQ 与平面CDD 1C 1平行,故A 正确; 在C 中,当Q 为线段B 1C 1的中点时,PQ ∥DC 1, ∴线段PQ 与DD 1所成角为∠C 1DD 1=π4,故B 正确;在C 中,PQ ≥√2AB ,当且仅当Q 为线段B 1C 1的中点时取等号,故C 正确; 在D 中,当Q 为线段B 1C 1的中点时,PQ ∥DC 1,CD 1与PQ 垂直,故D 错误. 故选:D .7.(4分)已知0<a <23,随机变量ξ的分布列如图:则当a 增大时,ξ的期望E (ξ)变化情况是( )ξ ﹣10 1 P13abA .E (ξ)增大B .E (ξ)减小C .E (ξ)先增后减D .E (ξ)先减后增【解答】解:依题可知{E(ξ)=−13+b a +b =23,∴E(ξ)=−13+23−a ,∴当a 增大时,ξ的期望E (ξ)减小.故选:B .8.(4分)已知函数f(x)={x 2+4x +2,x ≤0log 2x ,x >0,且方程f (x )=a 有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围为( ) A .(−154,0] B .(−154,2] C .[﹣4,+∞) D .[﹣4,2)【解答】解:作出函数f (x )的图象,方程f (x )=a 有三个不同的实数根 即等价于函数y =f (x )的图象与直线y =a 有三个交点A ,B ,C ,故有﹣2<a ≤2, 不妨设x 1<x 2<x 3,因为点A ,B 关于直线x =﹣2对称,所以x 1+x 2=﹣4, ﹣2<log 2x 3≤2,即14<x 3≤4,故−154<x 1+x 2+x 3≤0.故选:A .9.(4分)如图,在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.则( )A .α≥β,β≤γB .α≤β,β≤γC .α≥β,β≥γD .α≤β,β≥γ【解答】解:∵在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点, 记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β, 二面角M ﹣AC ﹣B 的平面角为γ. ∴根据最小角定理得α≥β, 根据最大角定理得β≤γ. 故选:A .10.(4分)设数列{a n }满足a n +1=a n 2+2a n ﹣2(n ∈N *),若存在常数λ,使得a n ≤λ恒成立,则λ的最小值是( ) A .﹣3B .﹣2C .﹣1D .1【解答】解:a n+1−a n =a n 2+a n −2=(a n +2)(a n −1),若a n <﹣2,则a n +1>a n ,则该数列单调递增,所以无限趋于﹣2.若a n =﹣2,则a n +1=a n ,则该数列为常数列,即a n =2.所以,综上所述,λ≥﹣2.∴λ的最小值是﹣2.故选:B . 二.填空题(共7小题,满分36分)11.(6分)过点P (1,1)作直线l 与双曲线x 2−y 22=λ交于A ,B 两点,若点P 恰为线段AB 的中点,则实数λ的取值范围是 (﹣∞,0)∪(0,12) .【解答】解:设A (x 1,y 1),B (x 2,y 2),代入双曲线可得:{x 12−y 122=λx 22−y 222=λ,两式相减可得:y 1−y 2x 1−x 2=2(x 1+x 2)y 1+y 2,而由题意可得,x 1+x 2=2×1=2,y 1+y 2=2×1=2, 所以直线AB 的斜率k =y 1−y 2x 1−x 2=2×22=2,所以直线AB 的方程为:y ﹣1=2(x ﹣1),即y =2x ﹣1,代入双曲线的方程可得:2x 2﹣4x +1+2λ=0,因为直线与双曲线由两个交点,所以△>0,且λ≠0,即△=16﹣4×2×(1+2λ)>0,解得:λ<12, 所以实数λ的取值范围是(﹣∞,0)∪(0,12),故答案为:(﹣∞,0)∪(0,12).12.(6分)一个几何体的三视图如图所示,则该几何体的体积为 9 .【解答】解:根据几何体的三视图转换为几何体为: 下底面为直角梯形,高为3的四棱锥体, 如图所示:所以:V =13×12(2+4)×3×3=9, 故答案为:913.(6分)已知(1﹣x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则a 2= 15 ,a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6= 64 .【解答】解:由(1﹣x )6的通项为T r+1=C 6r (−x)r 可得,令r =2,即x 2项的系数a 2为C 62=15,即a 2=15,由(1﹣x )6=a 0+a 1x +a 2x 2+…+a 6x 6,取x =﹣1,得a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6=[1﹣(﹣1)]6=64,故答案为:15,64. 14.(6分)在△ABC 中,a =1,cos C =34,△ABC 的面积为√74,则c = √2 . 【解答】解:∵a =1,cos C =34,△ABC 的面积为√74, ∴sin C =√1−cos 2C =√74,可得√74=12ab sin C =√78ab ,解得ab =2,∴b =2,∴由余弦定理可得c =2+b 2−2abcosC =√12+22−2×1×2×34=√2. 故答案为:√2.15.(4分)在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的上、下顶点分别为B 2,B 1,若一个半径为√2b ,过点B 1,B 2的圆M 与椭圆的一个交点为P (异于顶点B 1,B 2),且|k PB 1−kPB 2|=89,则椭圆的离心率为2√23. 【解答】解:设P (x 0,y 0),B 1(0,﹣b ),B 2(0,+b ),由|kPB 1−kPB 2|=89,|y 0−b x 0−y 0+b x 0|=89,∴|x 0|=94b ,由题意得圆M 的圆心在x 轴上,设圆心(t ,0),由题意知:t 2+b 2=2b 2∴t 2=b 2, ∴MP 2=2b 2=(x 0﹣t )2+y 02,∴y 02=716b 2,P 在椭圆上,所以81b 216a +716=1, ∴a 2=9b 2=9(a 2﹣c 2),∴e 2=89,所以离心率为2√23,故答案为:2√23. 16.(4分)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BCD =60°,CB =CD =2√3.若点M 为边BC 上的动点,则AM →•DM →的最小值为214.【解答】解:如图所示:以B 为原点,以BA 所在的直线为x 轴,以BC 所在的直线为y 轴,过点D 做DP ⊥x 轴,过点D 做DQ ⊥y 轴,∵AB ⊥BC ,AD ⊥CD ,∠BAD =120°,CB =CD =2√3, ∴B (0,0),A (2,0),C (0,2√3),D (3,√3),设M (0,a ),则AM →=(﹣2,a ),DM →=(﹣3,a −√3),故AM →•DM →=6+a (a −√3)=(a −√32)2+214≥214, 故答案为:214.17.(4分)设f (x )是定义在(0,+∞)上的可导函数,且满足f (x )+xf '(x )>0,则不等式f (x +1)>(x ﹣1)f (x 2﹣1)的解集为 (1,2)【解答】解:令g (x )=xf (x ),x ∈(0,+∞).g ′(x )=f (x )+xf '(x )>0, ∴函数g (x )在x ∈(0,+∞)上单调递增.不等式f (x +1)>(x ﹣1)f (x 2﹣1)即不等式(x +1)f (x +1)>(x 2﹣1)f (x 2﹣1),x +1>0. ∴x +1>x 2﹣1>0,解得:1<x <2.∴不等式f (x +1)>(x ﹣1)f (x 2﹣1)的解集为(1,2).故答案为:(1,2).三.解答题(共5小题,满分74分)18.(14分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且b ﹣c =1,cos A =13,△ABC 的面积为2√2.(Ⅰ)求a 及sin C 的值; (Ⅱ)求cos (2A −π6)的值.【解答】解:(Ⅰ)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且b ﹣c =1,cos A =13, ∴sin A =√1−cos 2A =2√23, ∵△ABC 的面积为12bc •sin A =bc 2•2√23=√23bc =2√2,∴bc =6,∴b =3,c =2, ∴a =√b 2+c 2−2bc ⋅cosA =√9+4−2⋅3⋅2⋅13=3. 再根据正弦定理可得a sinA=c sinC,即2√23=2sinC,∴sin C =4√29. (Ⅱ)∴sin2A =2sin A cos A =4√29,cos2A =2cos 2A ﹣1=−79, 故 cos (2A −π6)=cos2A cos π6+sin2A sinπ6=−79•√32+4√29•12=4√2−7√318. 19.(15分)如图,三棱锥D ﹣ABC 中,AD =CD ,AB =BC =4√2,AB ⊥BC . (1)求证:AC ⊥BD ;(2)若二面角D ﹣AC ﹣B 的大小为150°且BD =4√7时,求直线BM 与面ABC 所成角的正弦值.【解答】解:(1)证明:取AC 中点O ,连结BO ,DO , ∵AD =CD ,AB =BC ,∴AC ⊥BO ,AC ⊥DO , ∵BO ∩DO =O ,∴AC ⊥平面BOD , 又BD ⊂平面BOD ,∴AC ⊥BD .(2)解:由(1)知∠BOD 是二面角D ﹣AC ﹣B 的平面角,∴∠BOD =150°, ∵AC ⊥平面BOD ,∴平面BOD ⊥平面ABC , 在平面BOD 内作Oz ⊥OB ,则Oz ⊥平面ABC ,以O 为原点,OB 为x 轴,OC 为y 轴,OD 为z 轴,建立空间直角坐标系, 由题意得OB =4,在△BOD 中由余弦定理得OD =4√3,∴A (0,﹣4,0),B (4,0,0),C (0,4,0),D (﹣6,0,2√3),∴M (﹣3,2,√3),BM →=(﹣7,2,√3),平面ABC 的法向量n →=(0,0,1),设直线BM 与面ABC 所成角为θ,则直线BM 与面ABC 所成角的正弦值为:sin θ=|n →⋅BM →||n →|⋅|BM →|=√356=√4228.20.(15分)在等差数列{a n }和正项等比数列{b n }中,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,数列{b n }的前n 项和为Sn ,且S 3=14.(1)求数列{a n },{b n }的通项公式;(2)令c n =a b n ,(﹣1)n d n =n c n +n ,求数列{d n }的前项和为T n .【解答】解:(1)等差数列{a n }的公差设为d ,正项等比数列{b n }的公比设为q ,q >0,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,可得2a 2=b 1+b 2,即2(1+d )=2+2q ,即d =q ,数列{b n }的前n 项和为S n ,且S 3=14,可得2+2q +2q 2=14,解得q =2,d =2,则a n =2n ﹣1,b n =2n ;(2)c n =a b n =2n +1﹣1,(﹣1)n d n =n c n +n =n •2n +1,则d n =2n •(﹣2)n ,前项和为T n =2•(﹣2)+4•4+6•(﹣8)+…+2n •(﹣2)n ,﹣2T n =2•4+4•(﹣8)+6•16+…+2n •(﹣2)n +1,相减可得3T n =﹣4+2(4+(﹣8)+…+(﹣2)n )﹣2n •(﹣2)n +1=﹣4+2•4(1−(−2)n−1)1−(−2)−2n •(﹣2)n +1,化简可得T n =−49−6n+29•(﹣2)n +1. 21.(15分)已知抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.(1)若点M 纵坐标为√2,求M 与焦点的距离;(2)若t =﹣1,P (1,1),Q (1,﹣1),求证:y A •y B 为常数;(3)是否存在t ,使得y A •y B =1且y P •y Q 为常数?若存在,求出t 的所有可能值,若不存在,请说明理由.【解答】解:(1)解:∵抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.点M 纵坐标为√2, ∴点M 的横坐标x M =(√2)2=2,∵y 2=x ,∴p =12,∴M 与焦点的距离为MF =x M +p 2=2+14=94.(2)证明:设M (y 02,y 0),直线PM :y ﹣1=y 0−1y 02−1(x ﹣1),当x =﹣1时,y A =y 0−1y 0+1,直线QM :y +1=y 0+1y 02−1(x ﹣1),x =﹣1时,y B =−y 0−1y 0−1,∴y A y B =﹣1, ∴y A •y B 为常数﹣1.(3)解:设M (y 02,y 0),A (t ,y A ),直线MA :y ﹣y 0=y 0−y A y 02−t (x ﹣y 02), 联立y 2=x ,得y 2−y 02−t y 0−y A y +y 02−t y 0−y A y 0−y 02=0,∴y 0+y p =y 02−t y 0−y A ,即y P =y 0y A −t y 0−y A, 同理得y Q =y 0y B −1y 0−y B,∵y A •y B =1,∴y P y Q =y 02−ty 0(y A +y B )+t 2y 02−y 0(y A +y B )+1, 要使y P y Q 为常数,即t =1,此时y P y Q 为常数1,∴存在t =1,使得y A •y B =1且y P •y Q 为常数1.22.(15分)设函数f (x )=e x cos x ,g (x )=e 2x ﹣2ax .(1)当x ∈[0,π3]时,求f (x )的值域;(2)当x ∈[0,+∞)时,不等式g(x)≥f′(x)e 2x 恒成立(f '(x )是f (x )的导函数),求实数a 的取值范围. 【解答】解:(1)由题可得f '(x )=e x cos x ﹣e x sin x =e x (cos x ﹣sin x ).令f '(x )=e x (cos x ﹣sin x )=0,得x =π4∈[0,π3]. 当x ∈(0,π4)时,f '(x )>0,当x ∈(π4,π3)时,f '(x )<0,所以f(x)max =f(π4)=√22e π4,f(x)min =min{f(0),f(π3)}.因为f(π3)=e π32>e 332=e 2>1=f(0),所以f (x )min =1, 所以f (x )的值域为[1,√22e π4]. (2)由g(x)≥f′(x)e 2x 得e 2x −2ax ≥cosx−sinx e x , 即sinx−cosxe +e 2x −2ax ≥0.设ℎ(x)=sinx−cosx e x +e 2x −2ax ,则ℎ′(x)=2cosx e x +2e 2x −2a . 设φ(x )=h '(x ),则φ′(x)=4e 3x −2√2sin(x+π4)e x. 当x ∈[0,+∞)时,4e 3x ≥4,2√2sin(x +π4≤2√2),所以φ'(x )>0. 所以φ(x )即h '(x )在[0,+∞)上单调递增,则h '(x )≥h '(0)=4﹣2a .若a ≤2,则h '(x )≥h '(0)=4﹣2a ≥0,所以h (x )在[0,+∞)上单调递增.所以h (xa >2)≥h (0)=0恒成立,符合题意.若,则h '(0)=4﹣2a <0,必存在正实数x 0,满足:当x ∈(0,x 0)时,h '(x )<0,h (x )单调递减,此时h (x )<h (0)=0,不符合题意综上所述,a 的取值范围是(﹣∞,2].。
2020年浙江省高考数学选考模拟试卷及答案解析(6月份)
第 1 页 共 23 页
2020年浙江省高考数学选考模拟试卷(6月份)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A ={x ||x |<2},B ={x |x 2﹣3x <0},则A ∩B =( )
A .(0,2)
B .(0,3)
C .(2,3)
D .(﹣2,3) 2.双曲线x 2−y 24=1的渐近线方程是( )
A .y =±√55x
B .y =±√5x
C .y =±12x
D .y =±2x
3.若实数x ,y 满足约束条件{y ≥0
x +2y −2≤0x −y ≥0
,则z =|x ﹣2y |的最大值是( )
A .23
B .2√55
C .2
D .√5
4.某几何体的三视图如图所示,则该几何体的体积为( )
A .2
B .4
C .4√2
D .12
5.已知{a n }是等差数列,a 1=11,S n 为数列{a n }的前n 项和,且S 5=S 7,则S n 的最大值为
( )
A .66
B .56
C .46
D .36 6.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则“
a sinB =b+c sinC+sinA ”是“△ABC 为等腰三角形”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
7.已知随机变量ξ满足P (ξ=0)=1﹣p ,P (ξ=1)=p ,且0<p <1,令随机变量η=|ξ
﹣E (ξ)|,则( )。
2020届浙江省宁波市高考数学二模试卷(含解析)
2020届浙江省宁波市高考数学二模试卷一、单选题(本大题共10小题,共40.0分)1. 已知集合A ={x|x 2<1},B ={x|2x −1<0},则A ∩B =( )A. {x|x <12} B. {x|−1<x <1} C. {x|0<x <12}D. {x|−1<x <12}2. 圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线的渐近线截得的弦长为,则圆C 的方程为( )A. x 2+(y −1)2=1B. x 2+(y −)2=3C. x 2+(y −)2=D. x 2+(y −2)2=43. 已知z 为纯虚数,且(2+i)z =1+ai 3(i 为虚数单位),则复数a +z 在复平面内对应的点所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知m ,n 是直线,α,β是平面,以下命题正确的是( )A. 若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α或n ⊥βB. 若α//β,m ⊄α,n//m ,则n//βC. 若m 上有两个点到α的距离相等,则m//αD. 若α∩β=m ,n//m ;且n ⊄α,n ⊄β,则n//α且n//β5. 已知函数f(x)={13x 3−x 2−3x +2,x ≤5−log 3(x +4),x >5,则函数y =f(f(x))的零点个数为( )A. 6B. 7C. 9D. 106. 1+C 271+C 272+C 2727除以3所得余数为( ) A. 0 B. 1 C. 2 D. 37. 若一个几何体的三视图都是三角形,则这个几何体可能是( )A. 圆锥B. 四棱锥C. 三棱锥D. 三棱台8. 如图,已知AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC⃗⃗⃗⃗⃗ =b ⃗ ,DC ⃗⃗⃗⃗⃗ =3BD ⃗⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ ,则DE ⃗⃗⃗⃗⃗⃗ =( ) A. −13a⃗ +34b ⃗B. 512a⃗−34b⃗C. 34a⃗−13b⃗D. −34a⃗+512b⃗9.已知数列{a n},满足a n+1=a n+a4(n∈N∗),且a5=4,则a1=()A. −2B. −4C. −6D. −910.以下函数中满足f(x+1)>f(x)+1的是()A. f(x)=lnxB. f(x)=e xC. f(x)=e x−xD. f(x)=e x+x二、单空题(本大题共3小题,共12.0分)11.现有五种不同的颜色要对如图形中的四个部分进行着色,要有有公共边的两块不能用同一种颜色,共有______ 种不同的着色方案.(用数字作答).12.设变量x,y满足条件{x+y≤1x−y≤1x≥0,则z=2x−y的最小值为______.13.设向量a⃗=(−1,3),b⃗ =(1,−2),则|a⃗+2b⃗ |=______.三、多空题(本大题共4小题,共24.0分)14.函数y=(12)x2−2x−3的单调增区间为(1)函数y=(14)x−22−x+3的单调增区间为(2).15.已知多项式(x+1)6(3x2+1)2=a0+a1x+a2x2+⋯+a9x9+a10x10,则a0=(1);a2=(2).16.已知随机变量X的分布列如表,且E(X)≥4P(X=1),则a+b=,E(X)的取值范围为.X0123P 13a b1617.定义在R上的函数f(x)(x∈R)既是奇函数又是周期函数,若f(x)(x∈R)的最小正周期是π,且x∈[0,π2)时f(x)=sinx,则f(11π3)=(1),方程f(x)=0的解集为(2).四、解答题(本大题共5小题,共74.0分)18.在△ABC中,角A、B、C所对的边分别为a、b、c,a=2,cosB=−3.5(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b、c的值.19.已知:在四棱锥P−ABCD中,PD⊥平面ABCD,PD=CD=BC=2AD,AD//BC,∠BCD=90°(Ⅰ)求证:BC⊥PC;(Ⅱ)求直线PA与平面PBC所成的正弦值.20.设正项数列{a n}的前n项和为S n,a1=1,S n=λa n−λ,且a1+1,a2+5,a3是等差数列{b n}的前4三项。
2020年浙江省高考数学模拟试卷及答案
2020年浙江省高考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x|x 2﹣4x ≤0},则A ∩B =()A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.(4分)设i 为虚数单位,复数??=2+3??,则z 的共轭复数是()A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i3.(4分)设变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,则z =(x ﹣3)2+y 2的最小值为()A .2B .4√55C .4D .1654.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要5.(4分)函数f (x )=x 2+e |x|的图象只可能是()A .B .C .D .6.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点,则下列说法中错误的是()A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成角为4C .≥√2D .CD 1与PQ 不可能垂直7.(4分)已知0<??<23,随机变量ξ的分布列如图:则当a增大时,ξ的期望E(ξ)变化情况是()ξ﹣101P13a bA.E(ξ)增大B.E(ξ)减小C.E(ξ)先增后减D.E(ξ)先减后增8.(4分)已知函数??(??)={2+4??+2,??≤02??,??>0,且方程f(x)=a有三个不同的实数根x1,x2,x3,则x1+x2+x3的取值范围为()A.(-154,0]B.(-154,2]C.[﹣4,+∞)D.[﹣4,2)9.(4分)如图,在三棱台ABC﹣A1B1C1中,M是棱A1C1上的点,记直线AM与直线BC所成的角为α,直线AM与平面ABC所成的角为β,二面角M﹣AC﹣B的平面角为γ.则()A.α≥β,β≤γB.α≤β,β≤γC.α≥β,β≥γD.α≤β,β≥γ10.(4分)设数列{a n}满足a n+1=a n2+2a n﹣2(n∈N*),若存在常数λ,使得a n≤λ恒成立,则λ的最小值是()A.﹣3B.﹣2C.﹣1D.1二.填空题(共7小题,满分36分)11.(6分)过点P(1,1)作直线l与双曲线??2-22=??交于A,B两点,若点P恰为线段AB的中点,则实数λ的取值范围是.12.(6分)一个几何体的三视图如图所示,则该几何体的体积为.13.(6分)已知(1﹣x)6=a0+a1x+a2x2+…+a6x6,则a2=,a0﹣a1+a2﹣a3+a4﹣a5+a6=.14.(6分)在△ABC中,a=1,cosC=34,△ABC的面积为√74,则c=.15.(4分)在平面直角坐标系xOy中,已知椭圆22+??2??2=1(a>b>0)的上、下顶点分别为B2,B1,若一个半径为√2b,过点B1,B2的圆M与椭圆的一个交点为P(异于顶点B1,B2),且|k1-k2|=89,则椭圆的离心率为.16.(4分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BCD=60°,CB=CD=2√3.若点M为边BC上的动点,则→→的最小值为.17.(4分)设f(x)是定义在(0,+∞)上的可导函数,且满足f(x)+xf'(x)>0,则不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为三.解答题(共5小题,满分74分)18.(14分)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,△ABC的面积为2√2.(Ⅰ)求a及sinC的值;(Ⅱ)求cos(2A-6)的值.19.(15分)如图,三棱锥D﹣ABC中,AD=CD,AB=BC=4√2,AB⊥BC.(1)求证:AC⊥BD;(2)若二面角D﹣AC﹣B的大小为150°且BD=4√7时,求直线BM与面ABC所成角的正弦值.20.(15分)在等差数列{a n}和正项等比数列{b n}中,a1=1,b1=2,且b1,a2,b2成等差数列,数列{b n}的前n项和为Sn,且S3=14.(1)求数列{a n},{b n}的通项公式;(2)令??=????,(﹣1)n d n=nc n+n,求数列{d n}的前项和为T n.21.(15分)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A y B为常数;(3)是否存在t,使得y A y B=1且y P?y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.22.(15分)设函数f(x)=e x cosx,g(x)=e2x﹣2ax.(1)当??∈[0,]时,求f(x)的值域;3恒成立(f'(x)是f(x)的导函数),求实数a的取值范围.(2)当x∈[0,+∞)时,不等式??(??)≥′(??)2??2020年浙江省高考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x|x 2﹣4x ≤0},则A ∩B =()A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]【解答】解:由题意得:A ={x ∈N *|x ≤3}={1,2,3},B ={x|x 2﹣4x ≤0}={x|0≤x ≤4},∴所以A ∩B ={1,2,3},故选:A .2.(4分)设i 为虚数单位,复数??=2+3??,则z 的共轭复数是()A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i【解答】解:∵??=2+3??=(2+3??)(-??)-??2=3-2??,∴??=3+2??.故选:B .3.(4分)设变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,则z =(x ﹣3)2+y 2的最小值为()A .2B .4√55C .4D .165【解答】解:画出变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,的可行域,可发现z =(x ﹣3)2+y 2的最小值是(3,0)到2x ﹣y ﹣2=0距离的平方.取得最小值:(6-2√4+1)2=165.故选:D .4.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要【解答】解:若cos2α=13,则cos2α=1﹣2sin 2α,sin α=±√33,则cos2α=13”是“sin α=√33”的不充分条件;若sin α=√33,则cos2α=1﹣2sin 2α,cos2α=13,则cos2α=13”是“sin α=√33”的必要条件;综上所述:“cos2α=13”是“sin α=√33”的必要不充分条件.故选:B .5.(4分)函数f(x)=x2+e|x|的图象只可能是()A.B.C.D.【解答】解:因为对于任意的x∈R,f(x)=x2+e|x|>0恒成立,所以排除A,B,由于f(0)=02+e|0|=1,则排除D,故选:C.6.(4分)如图,在正方体ABCD﹣A1B1C1D1中,P为线段AD的中点,Q为线段B1C1的动点,则下列说法中错误的是()A.线段PQ与平面CDD1C1可能平行B.当Q为线段B1C1的中点时,线段PQ与DD1所成角为4C.≥√2D.CD1与PQ不可能垂直【解答】解:在正方体ABCD﹣A1B1C1D1中,P为线段AD的中点,Q为线段B1C1的动点,在A中,当Q为线段B1C1中点时,线段PQ与平面CDD1C1平行,故A正确;在C中,当Q为线段B1C1的中点时,PQ∥DC1,∴线段PQ与DD1所成角为∠C1DD1=4,故B正确;在C中,PQ≥√2AB,当且仅当Q为线段B1C1的中点时取等号,故C正确;在D中,当Q为线段B1C1的中点时,PQ∥DC1,CD1与PQ垂直,故D错误.故选:D.7.(4分)已知0<??<23,随机变量ξ的分布列如图:则当a增大时,ξ的期望E(ξ)变化情况是()ξ﹣101P13a b A.E(ξ)增大B.E(ξ)减小C.E(ξ)先增后减D.E(ξ)先减后增【解答】解:依题可知{()=-13+??+??=23,∴??(??)=-13+23-??,∴当a 增大时,ξ的期望E (ξ)减小.故选:B .8.(4分)已知函数??(??)={2+4??+2,??≤02??,??>0,且方程f (x )=a 有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围为()A .(-154,0]B .(-154,2]C .[﹣4,+∞)D .[﹣4,2)【解答】解:作出函数f (x )的图象,方程f (x )=a 有三个不同的实数根即等价于函数y =f (x )的图象与直线y =a 有三个交点A ,B ,C ,故有﹣2<a ≤2,不妨设x 1<x 2<x 3,因为点A ,B 关于直线x =﹣2对称,所以x 1+x 2=﹣4,﹣2<log 2x 3≤2,即14<x 3≤4,故-154<x 1+x 2+x 3≤0.故选:A .9.(4分)如图,在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.则()A .α≥β,β≤γB .α≤β,β≤γC .α≥β,β≥γD .α≤β,β≥γ【解答】解:∵在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.∴根据最小角定理得α≥β,根据最大角定理得β≤γ.故选:A .10.(4分)设数列{a n }满足a n+1=a n 2+2a n ﹣2(n ∈N *),若存在常数λ,使得a n ≤λ恒成立,则λ的最小值是()A .﹣3B .﹣2C .﹣1D .1【解答】解:??+1-????=????2+????-2=(????+2)(????-1),若a n <﹣2,则a n+1>a n ,则该数列单调递增,所以无限趋于﹣2.若a n =﹣2,则a n+1=a n ,则该数列为常数列,即a n =2.所以,综上所述,λ≥﹣2.∴λ的最小值是﹣2.故选:B.二.填空题(共7小题,满分36分)11.(6分)过点P(1,1)作直线l与双曲线??2-22=??交于A,B两点,若点P恰为线段AB的中点,则实数λ的取值范围是(﹣∞,0)∪(0,12).【解答】解:设A(x1,y1),B(x2,y2),代入双曲线可得:{12-122=??22-222=??,两式相减可得:1-??2??1-??2=2(??1+??2)??1+??2,而由题意可得,x1+x2=2×1=2,y1+y2=2×1=2,所以直线AB的斜率k=1-??21-??2=2×22=2,所以直线AB的方程为:y﹣1=2(x﹣1),即y=2x﹣1,代入双曲线的方程可得:2x2﹣4x+1+2λ=0,因为直线与双曲线由两个交点,所以△>0,且λ≠0,即△=16﹣4×2×(1+2λ)>0,解得:??<12,所以实数λ的取值范围是(﹣∞,0)∪(0,12),故答案为:(﹣∞,0)∪(0,12).12.(6分)一个几何体的三视图如图所示,则该几何体的体积为9.【解答】解:根据几何体的三视图转换为几何体为:下底面为直角梯形,高为3的四棱锥体,如图所示:所以:V=13×12(2+4)×3×3=9,故答案为:913.(6分)已知(1﹣x)6=a0+a1x+a2x2+…+a6x6,则a2=15,a0﹣a1+a2﹣a3+a4﹣a5+a6=64.【解答】解:由(1﹣x)6的通项为??+1=??6(-??)??可得,令r=2,即x2项的系数a2为??62=15,即a2=15,由(1﹣x)6=a0+a1x+a2x2+…+a6x6,取x=﹣1,得a0﹣a1+a2﹣a3+a4﹣a5+a6=[1﹣(﹣1)]6=64,故答案为:15,64.14.(6分)在△ABC中,a=1,cosC=34,△ABC的面积为√74,则c=√2.【解答】解:∵a=1,cosC=34,△ABC的面积为√74,∴sinC=√1-2??=√74,可得√74=12absinC=√78ab,解得ab=2,∴b=2,∴由余弦定理可得c=√??2+??2-2=√12+22-2×1×2×34=√2.故答案为:√2.15.(4分)在平面直角坐标系xOy中,已知椭圆22+??2??2=1(a>b>0)的上、下顶点分别为B2,B1,若一个半径为√2b,过点B1,B2的圆M与椭圆的一个交点为P(异于顶点B1,B2),且|k1-k2|=89,则椭圆的离心率为2√23.【解答】解:设P(x0,y0),B1(0,﹣b),B2(0,+b),由|k1-k2|=89,|0-??-??0+????0|=89,∴|x0|=94b,由题意得圆M的圆心在x轴上,设圆心(t,0),由题意知:t2+b2=2b2∴t2=b2,∴MP2=2b2=(x0﹣t)2+y02,∴y02=716??2,P在椭圆上,所以81??216??2+716=1,∴a2=9b2=9(a2﹣c2),∴e2=89,所以离心率为2√23,故答案为:2√23.16.(4分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BCD=60°,CB=CD=2√3.若点M为边BC上的动点,则→→的最小值为214.【解答】解:如图所示:以B为原点,以BA所在的直线为x轴,以BC所在的直线为y轴,过点D做DP⊥x轴,过点D做DQ⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,==2√3,∴B(0,0),A(2,0),C(0,2√3),D(3,√3),设M(0,a),则→=(﹣2,a),→=(﹣3,a-√3),故→→=6+a(a-√3)=(??-√32)2+214≥214,故答案为:214.17.(4分)设f(x)是定义在(0,+∞)上的可导函数,且满足f(x)+xf'(x)>0,则不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为(1,2)【解答】解:令g(x)=xf(x),x∈(0,+∞).g′(x)=f(x)+xf'(x)>0,∴函数g(x)在x∈(0,+∞)上单调递增.不等式f(x+1)>(x﹣1)f(x2﹣1)即不等式(x+1)f(x+1)>(x2﹣1)f(x2﹣1),x+1>0.∴x+1>x2﹣1>0,解得:1<x<2.∴不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为(1,2).故答案为:(1,2).三.解答题(共5小题,满分74分)18.(14分)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,△ABC的面积为2√2.(Ⅰ)求a及sinC的值;(Ⅱ)求cos(2A-6)的值.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,∴sinA=√1-2=2√23,∵△ABC的面积为12bc?sinA=22√23=√23bc=2√2,∴bc=6,∴b=3,c=2,∴a=√??2+??2-2=√9+4-2?3?2?13=3.再根据正弦定理可得=??,即32√23=2,∴sinC=4√29.(Ⅱ)∴sin2A=2sinAcosA=4√29,cos2A=2cos2A﹣1=-79,故cos(2A-6)=cos2Acos6+sin2Asin??6=-79√32+4√29?12=4√2-7√318.19.(15分)如图,三棱锥D﹣ABC中,AD=CD,AB=BC=4√2,AB⊥BC.(1)求证:AC⊥BD;(2)若二面角D﹣AC﹣B的大小为150°且BD=4√7时,求直线BM与面ABC所成角的正弦值.【解答】解:(1)证明:取AC中点O,连结BO,DO,∵AD=CD,AB=BC,∴AC⊥BO,AC⊥DO,∵BO∩DO=O,∴AC⊥平面BOD,又BD?平面BOD,∴AC⊥BD.(2)解:由(1)知∠BOD是二面角D﹣AC﹣B的平面角,∴∠BOD=150°,∵AC⊥平面BOD,∴平面BOD⊥平面ABC,在平面BOD内作Oz⊥OB,则Oz⊥平面ABC,以O为原点,OB为x轴,OC为y轴,OD为z轴,建立空间直角坐标系,由题意得OB=4,在△BOD中由余弦定理得OD=4√3,∴A(0,﹣4,0),B(4,0,0),C(0,4,0),D(﹣6,0,2√3),∴M(﹣3,2,√3),→=(﹣7,2,√3),平面ABC 的法向量??→=(0,0,1),设直线BM 与面ABC 所成角为θ,则直线BM 与面ABC 所成角的正弦值为:sin θ=|??→→||??→|?|→|=√3√56=√4228.20.(15分)在等差数列{a n }和正项等比数列{b n }中,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,数列{b n }的前n 项和为Sn ,且S 3=14.(1)求数列{a n },{b n }的通项公式;(2)令??=????,(﹣1)nd n =nc n +n ,求数列{d n }的前项和为T n .【解答】解:(1)等差数列{a n }的公差设为d ,正项等比数列{b n }的公比设为q ,q >0,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,可得2a 2=b 1+b 2,即2(1+d )=2+2q ,即d =q ,数列{b n }的前n 项和为S n ,且S 3=14,可得2+2q+2q 2=14,解得q =2,d =2,则a n =2n ﹣1,b n =2n ;(2)??=?????=2n +1﹣1,(﹣1)n d n =nc n +n =n?2n+1,则d n =2n?(﹣2)n ,前项和为T n =2?(﹣2)+4?4+6?(﹣8)+…+2n?(﹣2)n ,﹣2T n =2?4+4?(﹣8)+6?16+…+2n?(﹣2)n+1,相减可得3T n =﹣4+2(4+(﹣8)+…+(﹣2)n )﹣2n?(﹣2)n+1=﹣4+2?4(1-(-2)-1)1-(-2)-2n?(﹣2)n+1,化简可得T n =-49-6??+29(﹣2)n+1.21.(15分)已知抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.(1)若点M 纵坐标为√2,求M 与焦点的距离;(2)若t =﹣1,P (1,1),Q (1,﹣1),求证:y A y B 为常数;(3)是否存在t ,使得y A y B =1且y P ?y Q 为常数?若存在,求出t 的所有可能值,若不存在,请说明理由.【解答】解:(1)解:∵抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.点M 纵坐标为√2,∴点M 的横坐标x M =(√2)2=2,∵y 2=x ,∴p=12,∴M 与焦点的距离为MF =??+2=2+14=94.(2)证明:设M (??02,??0),直线PM :y ﹣1=0-102-1(x ﹣1),当x =﹣1时,??=0-10+1,直线QM :y+1=??0+102-1(x ﹣1),x =﹣1时,y B =-??0-1??0-1,∴y A y B =﹣1,∴y A y B 为常数﹣1.(3)解:设M (??02,??0),A (t ,y A ),直线MA :y ﹣y 0=0-????02-??(x ﹣y 02),联立y 2=x ,得??2-02-??0-??????+??02-????0-??????0-??02=0,∴y 0+y p =??02-????0-????,即y P =??0????-????0-????,同理得y Q =0????-10-????,∵y A ?y B =1,∴y P y Q =??02-0(????+????)+??202-??0(????+????)+1,要使y P y Q 为常数,即t =1,此时y P y Q 为常数1,∴存在t =1,使得y A ?y B =1且y P ?y Q 为常数1.22.(15分)设函数f (x )=e x cosx ,g (x )=e 2x﹣2ax .(1)当??∈[0,3]时,求f (x )的值域;(2)当x ∈[0,+∞)时,不等式??(??)≥′(??)2??恒成立(f'(x )是f (x )的导函数),求实数a 的取值范围.【解答】解:(1)由题可得f '(x )=e x cosx ﹣e x sinx =e x (cosx ﹣sinx ).令f'(x )=e x (cosx ﹣sin x )=0,得??=4∈[0,??3].当??∈(0,4)时,f'(x )>0,当??∈(??4,??3)时,f'(x )<0,所以??(??)=??(4)=√22??4,??(??)={??(0),??(??3)}.因为??(3)=??32>??332=??2>1=??(0),所以f (x )min =1,所以f (x )的值域为[1,√224].(2)由??(??)≥′(??)2??得??2??-2≥-,即-+??2??-2≥0.设(??)=-+??2??-2,则?′(??)=2????+2??2??-2??.设φ(x )=h'(x ),则??′(??)=4??3??-2√2(??+4).当x ∈[0,+∞)时,4e 3x ≥4,2√2(??+4≤2√2),所以φ'(x )>0.所以φ(x )即h'(x )在[0,+∞)上单调递增,则h'(x )≥h'(0)=4﹣2a .若a ≤2,则h'(x )≥h'(0)=4﹣2a ≥0,所以h (x )在[0,+∞)上单调递增.所以h (xa >2)≥h (0)=0恒成立,符合题意.若,则h'(0)=4﹣2a <0,必存在正实数x 0,满足:当x ∈(0,x 0)时,h'(x )<0,h (x )单调递减,此时h (x )<h (0)=0,不符合题意综上所述,a 的取值范围是(﹣∞,2].。
【精品】2020届高考数学模拟试卷(浙江省)
2020届高考数学模拟试卷(浙江省)一、单选题1.已知双曲线的左顶点与抛物线的22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1)--,则双曲线的虚轴长为( ) A .1B .2C .4D.2.若43()5a =,33()5b =,335c log =,则a ,b ,c 的大小关系是( ) A .c >b >aB .c >a >bC .a >b >cD .b >a >c3.已知向量a ,b 满足()1,1a =,1b =,且22b a -=,则向量a 与b 的夹角的余弦值为( )A .2B .3C .4D .54.设n S 是等差数列{}n a 的前n 项和,若471027aa a ++=,则13(S = )A .52B .78C .117D .2085.在复平面内,复数z=(1-i)(i 是虚数单位)对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限6.函数()()23cos 2cos x xf x x x ππ⎛⎫++ ⎪⎝⎭=-++在[],ππ-的图象大致为( ) A . B .C .D .7.已知集合{}2|430,{|215}M x x x N x x =-+<=+<,则M N ⋃=( ) A .{}|3x x > B .{}|2x x > C .{}|3x x < D .{}|2x x <8.函数()()221f x x a x =-+- 与()11a g x x -=+这两个函数在区间[]12,上都是减函数的一个充分不必要条件是实数a 的范围是 ( )A .()()2,11,2--⋃B .()()1,00,2-⋃C .()1,2D .(]1,29.下列命题中错误的是( )A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 10.设数列{n a }的前n 项和n s =2n ,则8a 的值为 A .15 B .16C .49D .64二、双空题11.如图,高尔顿板是英国生物统计学家高尔顿设计的用来研究随机现象的模型,它是在一块竖起的木板上钉上一排排互相平行,水平间隔相等的圆柱形铁钉,并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央,从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两钉的间隙,又碰到下一排铁钉,如此继续下去,在最底层的5个出口处各放置一个容器接住小球,那么,小球落入1号容器的概率是______,若取4个小球进行试验,设其中落入4号容器的小球个数为x ,则x 的数学期望是______.12.计算cos 75=________;sin14cos16sin 76cos74+的值是_________. 13.已知6625601256(1)(2)x x a a x a x a x a x +-+=+++++,则6a =_____,01256a a a a a +++++=_______.14.设变量x 、y 满足约束条件202010x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥⎩,则目标函数24=y x z 的最大值为______,最小值为______.三、填空题15.设,,a b c 是正实数,满足b c a +≤,则()2bca b +的最大值为_______.16.已知点A 是抛物线214y x =的对称轴与其准线的交点,点F 为该抛物线的焦点,点P 在抛物线上且满足||||PF m PA =,当m 取最小值时,点P 恰好在以A ,F 为焦点的双曲线上,则该双曲线的离心率为__________.17.3476A C -=______.四、解答题18.设函数()1xaf x e x=+-,()0,x ∈+∞,e 为自然对数的底数. (1)讨论()f x 的极值点个数; (2)当12a ≥,()0,x ∈+∞时,证明:()()1a x f x x-<. 19.(本小题满分13分)已知椭圆:()的右焦点为,且过点(2√3,0). (Ⅰ)求椭圆的标准方程;(Ⅱ)设直线l:y =x +m(m ∈R)与椭圆交于不同两点、,且|AB|=3√2.若点P(x 0,2)满足|PA⃗⃗⃗⃗⃗ |=|PB ⃗⃗⃗⃗⃗ |,求x 0的值. 20.已知函数()2sin 3f x x π⎛⎫=-⎪⎝⎭.(1)若点(1,P 在角α的终边上,求sin α和6f πα⎛⎫- ⎪⎝⎭的值; (2)求使()1f x ≥成立的x 的取值集合; (3)若对任意实数,32x ππ⎡⎤∈-⎢⎥⎣⎦,不等式()2f x m -<恒成立,求实数m 的取值范围. 21.已知四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,平面PCD ⊥平面ABCD ,E 为PB 上任意一点,O 为菱形对角线的交点,如图所示. (1)求证:平面EAC ⊥平面PBD ;(2)若60BAD ∠=︒,当四棱锥的体积被平面EAC 分成3:1两部分时,若二面角B AE C --的大小为45︒,求:PD AD 的值.22.冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS )和严重急性呼吸综合征(SARS )等较严重疾病.而今年出现的新型冠状病毒(nCoV )是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有()*n n ∈N 份血液样本,有以下两种检验方式:方式一:逐份检验,则需要检验n 次.方式二:混合检验,将其中*(k k N ∈且k ≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为k +1.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p (0<p <1).现取其中*(k k N ∈且k ≥2)份血液样本,记采用逐份检验,方式,样本需要检验的总次数为1ξ,采用混合检验方式,样本需要检验的总次数为2ξ. (1)若12()()E E ξξ=,试求p 关于k 的函数关系式p =f (k ). (2)若p 与干扰素计量n x 相关,其中12,,,,(n x x x n ≥2)是不同的正实数,满足x 1=1且13122311()n nn n x x e ex x -++-=-. (i )求证:数列{}n x 为等比数列; (ii )当1p =次数的期望值更少,求k 的最大值.参考答案1.B根据交点坐标可确定准线,从而求得p ;利用双曲线左顶点与抛物线焦点的距离可求得a ;将交点坐标代入渐近线方程可求得b ,进而得到所求虚轴长. 由题意知:22p-=- 4p ∴= 设双曲线方程为:()222210,0x y a b a b -=>>,则其渐近线方程为:b y x a =±242pa a ∴+=+= 2a ∴= 将()2,1--代入渐近线方程b y x a=得:1b -=-,即1b = 将()2,1--代入渐近线方程b y x a=-得:1b =-,舍去∴双曲线的虚轴长为:22b =本题正确选项:B本题考查抛物线、双曲线性质的应用问题,属于基础题. 2.D已知43()5a =,33()5b =,底数相同,故可以构造函数3()5xy = ,这个函数是减函数,x 越大函数值越小,故0b a >> ,而335c log =,底数和真数异侧,故0c < ,故得到b >a >c. 故答案选D. 3.A先求出向量a 的模,然后对22b a -=两边平方,得到向量的数量积,最后根据夹角公式求解.解:因为()1,1a =,所以=2a , 因为22b a -=,所以22442b a b a -⋅+=,即22442b a b a -⋅+=,因为=2a ,1b =,所以4422a b -⋅+=,得1a b ⋅=,设向量a 与b 的夹角为θ,则cos 22a b a bθ⋅===, 故选:A此题考查平面向量的夹角的计算,属于基础题. 4.C由等差数列{}n a 的性质可得:471073aa a a ++=,解得7.a 再利用求和公式即可得出. 由等差数列{}n a 的性质可得:47107273aa a a ++==,解得79a =.则()11313713131172a a S a +===.故选C .本题考查了等差数列的通项公式性质及其求和公式,考查了推理能力与计算能力,属于中档题. 5.C由复数与复平面内的点一一对应,即可求出结果. 由1z i =-知其对应点为()1,1P -,而点P 在第三象限;故正确答案为C本题考查复数的几何意义,熟记几何意义即可,属于基础题型. 6.D化简函数的解析式,判断函数的奇偶性,排除选项,通过特殊值判断选项即可.函数()()223cos sin 2cos cos x xx x f x x x x x ππ⎛⎫++ ⎪+⎝⎭==-+++,函数是奇函数,排除选项A , 当2x π=时,()21204f x ππ+=>,排除选项C :当x π=时,()201f x ππ=>-,排除选项B .所以函数的图象只有D 满足 故选:D .本题考查函数的图象的判断与应用,诱导公式的应用,考查转化思想以及计算能力. 7.C利用一元二次不等式的解法化简集合M ,再由交集的意义,取M 、N 的公共部分,可得答案. 因为{}2|430{|13}M x x x x x =-+<=<<,215x +<的解为2x <,,则{}{}|215|2N x x x x =+<=<,由交集的意义,可得{}|3M N x x =<.故选C.本题考查交集的运算,这是集合内容的基本要求,注意计算必须准确,其次集合的形式表示必须正确. 8.C根据二次函数和反比例函数的性质得a-1且a-1>0,取交集即可. 函数()()221f x x a x =-+- 与()11a g x x -=+这两个函数在区间[]12,上都是减函数 则根据二次函数的性质得到a-11≤,根据反比例函数的性质得到a-1>0两者取交集得到12a <≤,充分不必要条件是实数a 的范围比12a <≤这一范围小就可以了. 故可以是:()1,2.故答案为:C这个题目考查了函数单调性的应用,考查了二次函数的性质,反比例函数的性质,难度中档;注意二次函数的单调性和对称轴有关,反比例和x 的系数有关. 9.D 由题意可知:A 、结合实物:教室的门面与地面垂直,门面的上棱对应的直线就与地面平行,故此命题成立;B 、假若平面α内存在直线垂直于平面β,根据面面垂直的判定定理可知两平面垂直.故此命题成立;C 、结合面面垂直的性质可以分别在α、β内作异于l 的直线垂直于交线,再由线面垂直的性质定理可知所作的垂线平行,进而得到线面平行再由线面平行的性质可知所作的直线与l 平行,又∵两条平行线中的一条垂直于平面那么另一条也垂直于平面,故命题成立;D 、举反例:教室内侧墙面与地面垂直,而侧墙面内有很多直线是不垂直与地面的.故此命题错误. 故选D . 10.A利用887a S S =-求解即可. 因为数列{}的前n 项和n s =2n ,所以878644915a S S =-=-=, 故选:A.本题主要考查本题主要考查数列的通项公式与前n 项和公式之间的关系,属于中档题. 已知数列前n 项和,求数列通项公式,常用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩.11.1161 要使小球落入1号容器,则每一层小球必须向左,而每一层小球向左、向右的概率均为12;小球落入4号容器,则四层中小球有三层向右,一层向左,故每个小球落入4号容器的概率为34411()24C =,写出随机变量所有可能的取值,再算出相应的概率,利用期望公式计算即可.要使小球落入1号容器,则每一层小球必须向左,故概率为411216⎛⎫= ⎪⎝⎭;小球落入4号容器,则四层中小球有三层向右,一层向左,故每个小球落入4号容器的概率为34411()24C =,由题意知,0,1,2,3,4x =. 4181(0)(1)4256P x ==-=,13411108(1)(1)44256P x C ==⨯⨯-=; 22241154(2)()(1)44256P x C ==-=,33141112(3)()(1)44256P x C ==-=;44411(4)()4256P x C ===. 10854121()12341256256256256E x =⨯+⨯+⨯+⨯=.故答案为: (1). 116; (2). 1 本题考查独立事件的概率以及离散型随机变量的期望,考查学生的运算求解能力,是一道中档题. 1212空1;根据两角和的余弦公式,结合特殊角的三角函数值进行求解即可;空2:根据诱导公式,逆用两角和的正弦公式,结合特殊角的三角函数值进行求解即可. 空1:231cos 75cos(4530)cos 45cos30sin 45sin 3022224=+=-=⨯-⨯= 空2:1sin14cos16sin 76cos74sin14cos16cos14sin16sin(1416)sin 30.2+=+=+==;12本题考查了余弦两角和公式的应用,考查了逆用两角和的正弦公式求值,考查了特殊角的三角函数值,考查了数学运算能力. 13.0 665根据其特点可知6a 为6x 的系数,把第二问所求去掉绝对值符号发现各项为负,令1x =即可求解. 因为6625601256(1)(2)x x a a x a x a x a x +-+=+++⋯++,令1x =可得:660125623665a a a a a +++⋯⋯++=-=-. 所以:666660a C C =-=;060066263a C C =-⋅=-; 1511662186a C C =-=-; 22422662225a x C C +=-=-;……5556626a C C =-⋅=-; 60666620a C C =-⋅=;故0125601256665a a a a a a a a a a +++++=------=.故答案为:0,665.本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,可以简便的求出答案,属于中档题. 14.8116作出不等式组所表示的可行域,平移直线2t y x =-,观察该直线在y 轴截距最大和最小时对应的最优解,代入目标函数计算即可得解.作出不等式组202010x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥⎩所表示的可行域如下图所示:联立120x x y =-⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩,即点()1,1C -;联立200x y y +-=⎧⎨=⎩,解得20x y =⎧⎨=⎩,即点()2,0A .令2t y x =-,则22224yy x t x z -===,平移直线2t y x =-,当直线2t y x =-经过可行域的顶点A 时,直线2t y x =-在y 轴上的截距最小,此时z 取最小值,即022min 1216z -⨯==; 当直线2t y x =-经过可行域的顶点C 时,直线2t y x =-在y 轴上的截距最大,此时z 取最大值,即()121max 28z -⨯-==.故答案为:8;116. 本题考查指数型线性目标函数最值的求解,一般利用平移直线的方法找出最优解,考查数形结合思想的应用,属于基础题. 15.18由题意可得2222()(2)4448a b b c b bc c bc bc +≥+=++≥=,当且仅当224b c =且+=b c a ,即2bc 且+=b c a 时等号成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{1U =-,0,l ,2,3},集合{0A =,1,2},{1B =-,0,1},则()U A B =( )A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3} 2.渐进线方程为0x y ±=的双曲线的离心率是( ) A .22B .1C .2D .2 3.若实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩,则32z x y =+的最大值是( )A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V sh =柱体,其中s 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .324 5.若0a >,0b >,则“4a b +”是“4ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6.在同一直角坐标系中,函数1xy a =,11()2ay og x =+,(0a >且1)a ≠的图象可能是( )7.设01a <<.随机变量X 的分布列是X 0 a 1 P131313A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大 8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .βγ<,αγ< B .βα<,βγ< C .βα<,γα< D .αβ<,γβ< 9.设a ,b R ∈,函数32,0,()11(1),032x x f x x a x ax x <⎧⎪=⎨-++⎪⎩若函数()y f x ax b =--恰有3个零点,则( ) A .1a <-,0b < B .1a <-,0b > C .1a >-,0b < D .1a >-,0b >10.设a ,b R ∈,数列{}n a 满足1a a =,21n na ab +=+,*n N ∈,则( ) A .当12b =时,1010a > B .当14b =时,1010a > C .当2b =-时,1010a > D .当4b =-时,1010a >二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11.已知复数11z i=+,其中i 是虚数单位,则||z = . 12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切与点(2,1)A --,则m = ,r = .13.在二项式9(2)x 的展开式中,常数项是 ,系数为有理数的项的个数是 .14.在ABC ∆中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD = ,cos ABD ∠= .15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是 .16.已知a R ∈,函数3()f x ax x =-.若存在t R ∈,使得2|(2)()|3f t f t +-,则实数a 的最大值是 .17.已知正方形ABCD 的边长为1.当每个(1i i λ=,2,3,4,5,6)取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是 ,最大值是 .三、解答题:本大题共5小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
18.(14分)设函数()sin f x x =,x R ∈.(1)已知[0θ∈,2)π,函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域.19.(15分)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点. (Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.20.(15分)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)记2nn na cb =*n N ∈,证明:122nc c c n ++⋯+<*n N ∈.21.如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得ABC ∆的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记AFG ∆,CQG ∆的面积分别为1S ,2S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12S S 的最小值及此时点G 点坐标.22.(15分)已知实数0a ≠,设函数()1f x alnx x =++0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e ∈,)+∞均有()2x f x a ,求a 的取值范围. 注意: 2.71828e =⋯⋯为自然对数的底数.浙江省高考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.【分析】由全集U 以及A 求A 的补集,然后根据交集定义得结果. 【解答】解:{1UA =-,3},()U A B ∴{1=-,3}{1-⋂,0,}l {1}=-,故选A .【点评】本题主要考查集合的基本运算,比较基础. 2.【分析】由渐近线方程,转化求解双曲线的离心率即可.【解答】解:根据渐进线方程为0x y ±=的双曲线,可得a b =,所以2c a =, 则该双曲线的离心率为2ce a==,故选C . 【点评】本题主要考查双曲线的简单性质的应用,属于基础题.3.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩作出可行域如图,联立340340x y x y -+=⎧⎨--=⎩,解得(2,2)A ,化目标函数32z x y =+为3122y x z =--,由图可知,当直线3122y x z =--过(2,2)A 时,直线在y 轴上的截距最大,z 有最大值为10.故选C .【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.4.【分析】由三视图还原原几何体,可知该几何体为直五棱柱,由两个梯形面积求得底面积,代入体积公式得答案.【解答】解:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即()()114632632722ABCDE S =+⨯++⨯=五边形,高为6,则该柱体的体积是276162V =⨯=.故选B . 【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题. 5.【分析】充分条件和必要条件的定义结合均值不等式、特值法可得结果 【解答】解:0a >,0b >,42a b ab ∴+,2ab ∴,4ab ∴,即44a b ab +⇒,若4a =,14b =,则14ab =,但1444a b +=+>,即4ab 推不出4a b +,4a b ∴+是4ab 的充分不必要条件,故选A .【点评】本题主要考查充分条件和必要条件的判断,均值不等式,考查了推理能力与计算能力. 6.【分析】对a 进行讨论,结合指数,对数的性质即可判断; 【解答】解:由函数1xy a=,11()2a y og x =+, 当1a >时,可得1x y a=是递减函数,图象恒过(0,1)点, 函数11()2a y og x =+,是递增函数,图象恒过1(2,0);当10a >>时,可得1xy a =是递增函数,图象恒过(0,1)点, 函数11()2a y og x =+,是递减函数,图象恒过1(2,0);∴满足要求的图象为D .故选D .【点评】本题考查了指数函数,对数函数的图象和性质,属于基础题. 7.【分析】方差公式结合二次函数的单调性可得结果 【解答】解:1111()013333a E X a +=⨯+⨯+⨯=,222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<,()D X ∴先减小后增大,故选D .【点评】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,是中档题.8.【分析】本题以三棱锥为载体,综合考查异面直线所成角、直线和平面所成角和二倍角的概念和计算,解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小,充分运用图象,则可事半功倍,【解答】解:方法一、如图G 为AC 的中点,V 在底面的射影为O ,则P 在底面上的射影D 在线段AO 上,作DE AC ⊥于E ,易得//PE VG ,过P 作//PF AC 于F , 过D 作//DH AC ,交BG 于H , 则BPF α=∠,PBD β=∠,PED γ=∠, 则cos cos PF EG DH BDPB PB PB PBαβ===<=,可得βα<; tan tan PD PDED BDγβ=>=,可得βγ<, 方法二、由最小值定理可得βα<,记V AC B --的平面角为γ'(显然)γγ'=, 由最大角定理可得βγγ'<=;方法三、(特殊图形法)设三棱锥V ABC -为棱长为2的正四面体,P 为VA 的中点, 易得132cos 63α==,可得33sin 6α=,623sin 33β==,6223sin 332γ==,故选B .【点评】本题考查空间三种角的求法,常规解法下易出现的错误的有:不能正确作出各种角,未能想到利用“特殊位置法”,寻求简单解法.9.【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【解答】解:当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,2(1)y x a x '=-+,当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a <-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如右图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+.故选:C .【点评】本题考查了函数与方程的综合运用,属难题. 10.【分析】对于B ,令2104x λ-+=,得12λ=,取112a =,得到当14b =时,1010a <;对于C ,令220x λ--=,得2λ=或1λ=-,取12a =,得到当2b =-时,1010a <;对于D ,令240x λ--=,得117λ±=,取1117a +=,得到当4b =-时,1010a <;对于A ,221122a a =+,223113()224a a =++,4224319117()14216216a a a =++++=>,当4n 时,11132122n n n n a a a a +=+>+=,由此推导出61043()2a a >,从而107291064a >>. 【解答】解:对于B ,令2104x λ-+=,得12λ=, 取112a =,∴211,,1022n a a =⋯=<, ∴当14b =时,1010a <,故B 错误; 对于C ,令220x λ--=,得2λ=或1λ=-, 取12a =,22a ∴=,⋯,210n a =<,∴当2b =-时,1010a<,故C 错误;对于D ,令240x λ--=,得λ=取1a =∴2a =⋯,10n a =<, ∴当4b =-时,1010a <,故D 错误;对于A ,221122a a =+,223113()224a a =++, 4224319117()14216216a a a =++++=>,10n n a a +->,{}n a 递增,当4n 时,11132122n n n n a a a a +=+>+=,∴5445109323232a a a a a a ⎧>⎪⎪⎪>⎪⎨⎪⎪⎪>⎪⎩,∴61043()2a a >,107291064a ∴>>.故A 正确.故选A .【点评】本题考查命题真假的判断,考查数列的性质等基础知识,考查化归与转化思想,考查推理论证能力,是中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。