函数与导数知识点总结(高考必备)
导数知识点总结大全高中
导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
函数与导数知识点总结(高考必备)
1 函数一、函数的概念:1、函数的概念:设A,B 是两个非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的y 与之对应,那么就称f:A →B 为从集合A 到集合B 的一个函数,记作:y=f (x ),x ∈A.2、构成函数概念的三要素: 定义域、值域、对应关系。
二、函数的定义域:1、求函数定义域的主要依据:(1)分式的分母不为零; (2)偶次方根的被开方数不小于零,(3)零取零次方没有意义;(4)对数函数的真数必须大于零,指数函数和对数函数的底数必须大于零且不等于12、复合函数定义域的求法:(1)定义域指的都是x 的取值范围; (2)括号内范围保持一致三、函数的值域:求函数值域的方法:1、直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;2、换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;3、分离常数:适合分子分母皆为一次式(x 有范围限制时要画图);4、反表示法:适合x 有范围的情况,用y 表示x ,再利用x 的范围求出y 的范围;5、单调性法:利用函数的单调性求值域;6、图象法:二次函数必画草图求其值域;对号函数常用图像法求值域;7、判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且 ∈R 的分式;8、几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四、函数的解析式:1、换元法:2、配凑法:3、待定系数法:4、消元法:五、函数的奇偶性:1、定义: 设y=f(x),x ∈A ,如果对于任意 x ∈A ,都有f(x)= f(-x),则称y=f(x)为偶函数;如果对于任意 x ∈A ,都有f(x)=-f(-x),则称y=f(x)为奇函数。
2、性质:(1)偶函数的图象关于Y 轴 对称,奇函数的图象关于原点对称, (2)若奇函数在x=0处有定义,则必有f(0)=0;(3)奇±奇=奇; 偶±偶=偶; 奇×奇=偶; 偶×偶=偶; 奇×偶=奇 3、函数奇偶性的判断方法:(1)定义法:①看定义域是否关于原点对称;②看f(x)与f(-x)的关系 (2)图像法: (3)利用性质:六、函数的单调性:1、定义:设函数f(x),如果对于定义域内某个区间D 上的任意两个自变量的值1x ,2x , 当1x <2x 时,都有)()(21x f x f <,那么就说函数f(x)在区间D 上是增函数;当1x <2x 时,都有)()(21x f x f >,那么就说函数f(x)在区间D 上是减函数; 2、性质:(1)函数y=f(x)与y=-f(x)单调性相反; (2)若函数f(x)恒正或恒负时,函数)(1x f y =与f(x)单调性相反; (3)在公共定义域内,增函数+增函数=增函数; 增函数-减函数=增函数;减函数+减函数=减函数; 减函数-增函数=减函数;3、函数单调性的判断方法:(1)定义法:(作差、作除) (2)图像法: (3)利用性质:(4)导数法:设函)(x f y =在某个区间内可导,若0)(>′x f ,则)(x f 为增函数;若0)(<′x f ,则)(x f 为减函数. 4、复合函数的单调性判断:同增异减,注意定义域七、函数的周期性:1、定义:一般的,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x )=f (x+T );那么函数y=f(x)叫做周期函数,非零常数T 叫做这个函数的周期。
高考函数导数知识点总结
高考函数导数知识点总结高考是每位学生人生中的重要阶段,而数学则是高考中最为重要的一门科目之一。
在高考数学中,函数导数是一个必备的知识点。
函数导数的掌握不仅能为学生在高考中取得更好的成绩,还能为其今后的学习和工作打下坚实的数学基础。
下面对常见的函数导数知识点进行总结和归纳,希望对高考学生有所帮助。
一、导数的定义和求法1. 导数的定义:导数是函数在某一点处的瞬时变化率,用极限的概念表示。
2. 导数的求法:- 基本求导公式:常数函数的导数为0;幂函数的导数为其指数乘以幂函数的底数的幂次减1。
- 乘法法则:若u(x)、v(x)为可导函数,则(uv)(x)的导数为u(x)·v'(x) + v(x)·u'(x)。
- 除法法则:若u(x)、v(x)为可导函数,并且v(x)不等于0,则(u/v)'(x)的导数为[u'(x)·v(x) - v'(x)·u(x)] / [v(x)]的平方。
- 复合函数求导法则:若y=f(u),u=g(x)为可导函数,则y=f(g(x))的导数为f'(u)·g'(x)。
二、常见函数的导数1. 幂函数及其特殊情况:- f(x) = ax^n的导数为f'(x) = a·n·x^(n-1)。
- f(x) = x^n的导数为f'(x) = n·x^(n-1)。
2. 三角函数及其反函数:- f(x) = sin(x)的导数为f'(x) = cos(x)。
- f(x) = cos(x)的导数为f'(x) = -sin(x)。
- f(x) = tan(x)的导数为f'(x) = sec^2(x)。
- f(x) = arcsin(x)的导数为f'(x) = 1/√(1-x^2)。
- f(x) = arccos(x)的导数为f'(x) = -1/√(1-x^2)。
导数与函数常考知识点归纳总结
导数与函数常考知识点归纳总结导数是微积分中的核心概念之一,它描述了函数在某一点处的变化率。
掌握导数的基本概念和运算规则对于理解和应用微积分至关重要。
以下是导数与函数常考的知识点归纳总结:1. 导数的定义:函数在某一点的导数定义为该点处函数值的变化率。
如果函数\( f(x) \)在点\( x_0 \)处的极限\[\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}\]存在,则称\( f(x) \)在\( x_0 \)处可导,这个极限值就是\( f(x) \)在\( x_0 \)处的导数。
2. 导数的几何意义:函数在某一点的导数表示该点处函数图像的切线斜率。
3. 基本初等函数的导数:- 常数函数的导数为0。
- 幂函数\( x^n \)(\( n \)为实数)的导数为\( nx^{n-1} \)。
- 指数函数\( a^x \)(\( a > 0 \)且\( a \neq 1 \))的导数为\( a^x \ln(a) \)。
- 对数函数\( \ln(x) \)的导数为\( \frac{1}{x} \)。
- 三角函数的导数遵循特定的规则,例如\( \sin(x) \)的导数为\( \cos(x) \),\( \tan(x) \)的导数为\( \sec^2(x) \)。
4. 导数的运算法则:- 和差法则:\( (f(x) \pm g(x))' = f'(x) \pm g'(x) \)。
- 乘积法则:\( (f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \)。
- 商法则:\( \left(\frac{f(x)}{g(x)}\right)' =\frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \)。
- 链式法则:\( (f(g(x)))' = f'(g(x))g'(x) \)。
高三函数与导数知识点总结
高三函数与导数知识点总结函数与导数是高三数学中重要的知识点,它们在解决实际问题和推导数学公式中起到至关重要的作用。
本文将对高三函数与导数的相关知识点进行总结,并提供一些例题以加深理解。
一、函数的基本概念函数是一种特殊的关系,它将一个集合的元素(自变量)映射到另一个集合的元素(因变量)。
函数可以用符号表示为f(x),其中x表示自变量,f(x)表示因变量。
函数在数学中有着广泛的应用,如描述物理运动、经济变化等。
二、函数的分类1.一次函数:f(x) = ax + b,其中a和b是常数,a不能为0。
一次函数的图像为一条直线,斜率a决定了直线的倾斜方向和程度,而常数b则决定了直线与y轴的交点位置。
2.二次函数:f(x) = ax² + bx + c,其中a、b和c是常数,a不能为0。
二次函数的图像为一条抛物线,a决定了抛物线的开口方向,b和c决定了抛物线的位置。
3.指数函数:f(x) = aˣ,其中a是常数,且大于0且不等于1。
指数函数的图像为以点(0, 1)为底的指数曲线,呈现上升或下降的趋势。
4.对数函数:f(x) = logₐ(x),其中a是常数,且大于0且不等于1。
对数函数的图像为以点(1, 0)为底的对数曲线,呈现上升或下降的趋势。
三、导数的概念导数是函数在某一点上的变化率,表示函数曲线在该点的切线斜率。
导数可以用符号表示为f'(x)或dy/dx,其中x表示自变量,f(x)表示函数。
导数在实际问题中有着重要的几何和物理意义。
四、导数的计算方法1.函数的导数定义:导数的定义为f'(x) = limₜ→0 [f(x + t) - f(x)] / t,其中lim表示极限。
2.常见函数的导数:- 一次函数f(x) = ax + b的导数为f'(x) = a。
- 二次函数f(x) = ax² + bx + c的导数为f'(x) = 2ax + b。
- 指数函数f(x) = aˣ的导数为f'(x) = aˣln(a)。
高考函数与导数知识点
高考函数与导数知识点在高考数学中,函数与导数是重要的考点之一。
理解和掌握函数与导数的知识对于解答各类函数与导数题目至关重要。
本文将对高考函数与导数的知识点进行详细论述,帮助同学们更好地应对考试。
1. 函数的概念与性质函数是数学中常见的概念,它描述了两个变量之间的关系。
通常用字母表示,其中一个变量称为自变量,另一个变量称为函数的值或因变量。
函数可以用方程、图形或解析式等形式表示。
函数的性质有很多,例如:奇偶性、单调性、周期性、有界性等。
了解这些性质对于解题非常有帮助。
同时,还需要掌握函数的基本运算、复合函数以及函数的反函数等概念和运算方法。
2. 导数的概念与计算方法导数是函数在某一点上的变化率或斜率。
它是函数微分学的基本概念之一。
导数的计算方法有很多,常见的有用定义法、用极限法和用基本导数法等。
要计算导数,首先需要了解导数的定义。
其次,掌握各类函数的导数公式,如幂函数、指数函数、对数函数、三角函数等的导数。
此外,还需要掌握导数的运算法则,例如和差法则、积法则、商法则等。
3. 函数与导数的关系函数与导数之间有着密切的联系,理解函数与导数的关系对于高考数学题目的解答至关重要。
首先,导数可以表征函数的变化趋势。
通过函数的导数值,可以判断函数在某一点上是递增还是递减,也可以分析函数的极值(最大值和最小值)。
其次,函数的导数也可以求出函数的切线方程。
通过求导并代入给定点的坐标,可以确定函数在该点的切线,进而得到切线的方程。
此外,通过函数的导数还可以判断函数的凹凸性。
函数的导数值的变化可以揭示函数的曲线是上凹还是下凹,从而确定函数的凹凸区间。
4. 应用题与解题技巧高考中,函数与导数的知识点经常会涉及到应用题。
这类题目结合了函数与导数的知识,考察学生对于函数与导数概念的理解和运用能力。
在解答应用题时,需要注意以下几个方面的技巧:(1) 确定函数的自变量和因变量,建立函数模型;(2) 利用导数求出函数的变化趋势,比如函数递增递减的区间、函数的最值等;(3) 根据问题中给出的条件,列方程并求解;(4) 检查解的合理性以及问题中是否有陷阱,注意解答方式和表述的准确性。
导数高考知识点总结(最全)
导数知识点归纳及应用●知识点归纳 一、相关概念 1.导数的概念函数y=f(x),y=f(x),如果自变量如果自变量x 在x 0处有增量x D ,那么函数y 相应地有增量y D =f (x 0+x D )-)-f f (x 0),比值x yDD 叫做函数y=f y=f((x )在x 0到x 0+x D 之间的平均变化率,即x y D D =x x f x x f D -D +)()(00。
如果当0®D x 时,x y D D 有极限,我们就说函数y=f(x)y=f(x)在点在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim ®D x x y D D=0lim ®D x x x f x x f D -D +)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0®D x 时,x y D D 有极限。
如果xyD D 不存在极限,就说函数在点x 0处不可导,或说无导数。
处不可导,或说无导数。
(2)x D 是自变量x 在x 0处的改变量,0¹D x 时,而y D 是函数值的改变量,可以是零。
以是零。
由导数的定义可知,求函数y=f y=f((x )在点x 0处的导数的步骤:处的导数的步骤: ① 求函数的增量y D =f =f((x 0+x D )-)-f f (x 0); ② 求平均变化率x y D D =xx f x x f D -D +)()(00;③ 取极限,得导数f’(x 0)=xyx D D ®D 0lim 。
例:设f(x)= x|x|, f(x)= x|x|, 则则f ′( 0)= . [解析]:∵0||lim ||lim )(lim )0()0(lim 0000=D =D D D =D D =D -D +®D ®D ®D ®D x x xx x x f x f x f x x x x ∴f ′( 0)=02.导数的几何意义函数y=f y=f((x )在点x 0处的导数的几何意义是曲线y=f y=f((x )在点p (x 0,f (x 0))处的切线的斜率。
函数与导数知识点归纳总结
函数与导数知识点归纳总结函数与导数是高中数学中的重要概念,也是数学建模和解题中常用的工具。
函数是描述变量间关系的数学工具,而导数则是描述函数变化率的指标。
在这篇文章中,我们将对函数与导数的相关知识进行归纳总结。
以下是主要内容:一、函数的定义和性质1. 函数的定义:函数是一个将自变量的值映射到因变量的值的规则。
通常用f(x)表示,其中x为自变量,f(x)为函数值。
2. 定义域和值域:函数的定义域是自变量可能取值的集合,值域是因变量可能取值的集合。
3. 奇函数和偶函数:奇函数满足f(-x) = -f(x),偶函数满足f(-x) =f(x)。
4. 增减性和最值:函数在某一区间上的增减性能够描述函数的趋势,最值是函数在某一区间上的最大值或最小值。
二、导数的定义和计算方法1. 导数的定义:函数在某一点的导数描述了函数在该点附近的变化率。
导数可视为函数的斜率或速度。
2. 导数的计算方法:常用的导数计算方法包括使用导数的定义、使用导数的性质(如乘法法则、链式法则等),以及使用常见函数的导数公式。
三、导数的几何意义和应用1. 几何意义:导数表示了函数图像上某一点的切线斜率。
当导数为正时,函数图像在该点上升;当导数为负时,函数图像在该点下降。
2. 切线方程:使用导数可以求得函数图像上某一点的切线方程。
切线方程的斜率为该点的导数,截距为通过该点的切线。
3. 最优化问题:导数在优化问题中有广泛应用。
例如,求函数的最大值和最小值的问题可以通过导数为零的点来解决。
4. 运动学问题:导数可以用来描述物体运动的速度和加速度。
通过对位移函数取导数,可以得到速度函数;再对速度函数取导数,可以得到加速度函数。
四、高阶导数和导数应用1. 高阶导数:导数的导数称为高阶导数。
二阶导数表示函数的变化加快程度,三阶导数表示函数的变化加速程度,依此类推。
2. 凸凹性和拐点:使用高阶导数可以判断函数的凸凹性和拐点。
当二阶导数大于零时,函数图像在该区间上凸;当二阶导数小于零时,函数图像在该区间上凹;当二阶导数为零且三阶导数不为零时,函数图像存在拐点。
高三函数和导数知识点总结
高三函数和导数知识点总结函数是数学中的重要概念,而导数则是函数的基本性质之一。
在高三阶段,函数和导数是数学学习的重点内容。
下面将对高三函数和导数的知识点进行总结。
一、函数的定义和性质函数是一种特殊的关系,将一个数集的每一个元素都对应到另一个数集的元素上。
函数的定义包括定义域、值域和对应关系。
在函数的性质方面,常见的有奇偶性、单调性、周期性等。
二、常见函数的图像和特点1. 线性函数线性函数表示为y = kx + b,其中k为斜率,b为截距。
线性函数的图像为直线,其特点是一次函数,斜率决定了线的倾斜程度。
2. 二次函数二次函数表示为y = ax^2 + bx + c,其中a、b、c为实数且a≠0。
二次函数的图像为抛物线,其特点是开口方向、最值等。
3. 指数函数指数函数表示为y = a^x,其中a>0且a≠1。
指数函数的图像在直角坐标系中右上方增长,其特点是单调递增。
4. 对数函数对数函数表示为y = loga(x),其中a>0且a≠1。
对数函数的图像在直角坐标系中左上方增长,其特点是单调递增。
5. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
它们的图像在坐标系中以一定周期重复出现,具有周期性和振荡性。
三、导数的定义和求解导数描述了函数在某一点的变化率,是函数的重要性质之一。
导数的定义是函数的极限,常用的求导公式有:1. 基本函数的导数如常数函数、幂函数、指数函数、对数函数、三角函数等的导数可根据定义和求导法则进行求解。
2. 导数的四则运算法则导数具有加减乘除等基本运算法则,可根据这些法则对复杂函数进行求导。
3. 链式法则链式法则是求解复合函数导数时常用的方法,将复合函数拆开分别求导再进行乘积。
四、导数的应用导数不仅有理论意义,也在实际问题中有重要应用,以下是导数的几个常见应用:1. 切线和法线导数代表了函数曲线上某一点的斜率,通过导数可以求出函数曲线在某一点的切线和法线方程。
2. 最值问题导数的零点处为函数的极值点,通过求解导函数的零点可以求出函数的最值。
高考数学函数与导数知识点
高考数学函数与导数知识点在高考数学中,函数与导数是重要的知识点。
理解和掌握这些知识点对于高考数学的学习非常关键。
本文将介绍函数与导数的基本概念、性质以及相关应用。
一、函数的基本概念函数是数学中一种重要的概念,定义如下:定义1:设A、B是两个非空集合,对于A中的每一个元素a,在B中都有唯一确定的元素b与之对应。
这样的对应关系称为函数,记作y=f(x)。
在函数的定义中,x是自变量,y是因变量,而f(x)则表示函数的值或函数表达式。
1.1 函数的表示方法函数可以通过多种方式来表示:1.1.1 函数的代数式表示:常用的代数式表示函数的方法有多项式函数、有理函数、指数函数、对数函数等。
1.1.2 函数的图像表示:通过绘制函数的图像,可以更直观地理解函数的性质。
1.1.3 函数的表格表示:将自变量与因变量的对应关系记录在表格中,方便观察函数的规律。
1.2 函数的性质函数具有以下一些基本性质:1.2.1 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
1.2.2 奇偶性:函数的奇偶性描述了函数关于y轴对称或关于原点对称的特点。
1.2.3 单调性:函数的单调性描述了函数在定义域内的增减趋势。
1.2.4 周期性:周期函数是一类具有周期性规律的函数,如正弦函数、余弦函数等。
二、导数的基本概念导数是函数的一个重要性质,用来描述函数在某一点的变化率。
导数的定义如下:定义2:设函数y=f(x)在点x0处有定义,当自变量x在x0的邻域内取得不同值时,对应的函数值f(x)也随之变化。
如果存在一个常数k,使得当x趋近于x0时,函数值的变化量与x-x0的差的比趋近于k,那么称函数y=f(x)在点x0处可导,常数k称为函数f(x)在点x0处的导数,记作f'(x0)。
2.1 导数的几何意义导数的几何意义可以从函数的图像中理解:2.1.1 函数的切线斜率:对于函数y=f(x),在点(x0, f(x0))处的切线的斜率就是函数在该点处的导数。
高考数学函数与导数知识点梳理
高考数学函数与导数知识点梳理在高考数学中,函数与导数是非常重要的基础知识点。
掌握好这些知识点,对于高考数学的备考和解题都至关重要。
下面将对高考数学函数与导数知识点进行梳理,帮助同学们更好地理解和掌握这些知识。
一、函数的概念和性质1. 函数的定义:函数是一种特殊的关系,它将一个集合中的每一个元素映射到另一个集合中的唯一元素。
2. 函数的符号表示:设函数为y=f(x),x是自变量,y是因变量。
3. 函数的性质:3.1 定义域:函数的自变量的取值范围。
3.2 值域:函数的因变量的取值范围。
3.3 奇偶性:函数关于y轴对称为偶函数,关于原点对称为奇函数,否则为非奇非偶函数。
二、常见函数类型1. 一次函数:y=ax+b,其中a、b为常数,a不为0。
2. 二次函数:y=ax^2+bx+c,其中a、b、c为常数,a不为0。
3. 幂函数:y=x^a,其中a为常数。
4. 指数函数:y=a^x,其中a为常数且a大于0且不等于1。
5. 对数函数:y=log_a(x),其中a为常数且a大于0且不等于1。
6. 三角函数:包括正弦函数、余弦函数、正切函数等。
7. 反三角函数:包括正弦反函数、余弦反函数、正切反函数等。
三、函数的图像与性质1. 函数的图像:函数的图像是函数在坐标平面上的表示,可通过描点法或作图工具绘制。
2. 函数的增减性与极值:函数在某个区间上递增时,图像是上升的;在某个区间上递减时,图像是下降的。
3. 函数的奇偶性与轴对称:函数的奇偶性与轴对称与函数的性质有关。
四、导数的概念和性质1. 导数的定义:函数在某一点的导数是该点切线的斜率。
2. 导数的符号表示:函数f(x)的导数表示为f'(x)或dy/dx或y'。
3. 导数的性质:3.1 导数存在性:函数在某一点可导意味着该点的左导数和右导数都存在,且相等。
3.2 导数与函数图像的关系:函数图像在导数不为零的点处有切线。
五、常见函数的导数1. 一次函数的导数:一次函数y=ax+b的导数为a。
(完整版)高中数学导数与函数知识点归纳总结,推荐文档
高中导数与函数知识点总结归纳一、基本概念 1. 导数的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。
()f x 在点0x 处的导数记作xx f x x f x f y x xx ∆-∆+='='→∆=)()(lim)(000002 导数的几何意义:(求函数在某点处的切线方程)函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-3.基本常见函数的导数:①0;C '=(C 为常数) ②()1;nn xnx-'=③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();xxe e '= ⑥()ln xxa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f xg x f x g x '''±=±⎡⎤⎣⎦法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数与函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf=(C 为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。
函数与导数知识点总结高考必备)
函数与导数知识点总结高考必备)一、函数的概念与性质1.函数:函数是一种将一个数域的数值和另一个数域的数值结合起来的关系。
记作y=f(x),其中y是函数值,x是自变量。
2.定义域和值域:函数的定义域是自变量x的取值范围,值域是函数所有可能的函数值的集合。
3.奇偶性:如果对于函数f(x),有f(-x)=f(x),则函数是偶函数;如果对于函数f(x),有f(-x)=-f(x),则函数是奇函数。
4.单调性:函数在定义域上的取值随着自变量的增大而增大,或随着自变量的减小而减小,则函数是单调递增的;函数在定义域上的取值随着自变量的增大而减小,或随着自变量的减小而增大,则函数是单调递减的。
二、导数的定义与性质1.导数的定义:函数y=f(x)在点x处的导数记作f'(x),定义为当自变量x的增量趋近于0时,函数值的增量与自变量增量的比值的极限。
2.导数的几何意义:导数表示函数曲线在该点处的切线斜率。
切线斜率越大,函数曲线越陡峭;切线斜率越小,函数曲线越平缓。
3.导函数:函数的导数也被称为导函数。
函数f(x)的导函数记作f'(x),如果导数存在。
4.导数的四则运算:(常数乘以函数)导数等于常数乘以函数的导数;(两个函数的和)导数等于两个函数的导数之和;(两个函数的差)导数等于两个函数的导数之差。
5.高阶导数:函数的导数的导数叫做高阶导数。
高阶导数也可以通过导数的定义来求解。
6.导数与函数图像的性质:函数在特定点处可导,则在该点处函数图像的切线与曲线相切;函数在特定点处导数不存在,则在该点处函数图像可能有尖点、垂直切线或间断点。
三、导数的求法1.基本初等函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数可以通过一些公式来求解。
2.利用导数的四则运算:通过导数的四则运算性质,可以求得由基本初等函数组成的复合函数的导数。
3.链式法则:如果y=f(g(x))是由两个函数复合而成的复合函数,则其导数可以通过链式法则求解:f(g(x))'=f'(g(x))*g'(x)。
高考数学知识点总结及公式大全免费
高考数学知识点总结及公式大全免费高考数学重要知识点( 一 ) 导数第一定义设函数 y=f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x(x0+△x 也在该邻域内 ) 时,相应地函数取得增量△y=f(x0+△x)-f(x0); 如果△y 与△x 之比当△x→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限值为函数 y=f(x) 在点 x0 处的导数记为 f'(x0), 即导数第一定义( 二 ) 导数第二定义设函数 y=f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x(x-x0 也在该邻域内 ) 时,相应地函数变化△y=f(x)-f(x0); 如果△y 与△x 之比当△x→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限值为函数 y=f(x) 在点 x0 处的导数记为 f'(x0), 即导数第二定义( 三 ) 导函数与导数如果函数 y=f(x) 在开区间 I 内每一点都可导,就称函数 f(x) 在区间 I 内可导。
这时函数 y=f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y=f(x) 的导函数,记作y',f'(x),dy/dx,df(x)/dx 。
导函数简称导数。
( 四 ) 单调性及其应用1. 利用导数研究多项式函数单调性的一般步骤(1) 求 f ¢ (x)(2) 确定 f ¢ (x) 在 (a , b) 内符号 (3) 若 f ¢ (x)0 在 (a , b) 上恒成立,则 f(x) 在 (a , b) 上是增函数 ; 若 f ¢ (x)0 在 (a , b) 上恒成立,则f(x) 在 (a , b) 上是减函数2. 用导数求多项式函数单调区间的一般步骤(1) 求 f ¢ (x)(2)f ¢ (x)0 的解集与定义域的交集的对应区间为增区间 ;f ¢ (x)0 的解集与定义域的交集的对应区间为减区间全国卷高考数学知识点必修一: 1 、集合与函数的概念 ( 这部分知识抽象,较难理解 )2 、基本的初等函数 ( 指数函数、对数函数 )3 、函数的性质及应用 ( 比较抽象,较难理解 ) 必修二: 1 、立体几何 (1) 、证明:垂直 ( 多考查面面垂直 ) 、平行 (2) 、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
高三数学导数和函数知识点
高三数学导数和函数知识点一、导数的定义及性质导数是函数在某一点上的斜率,表示函数在该点的变化率。
具体来说,如果函数f(x)在点x0处的导数存在,那么导数可以通过以下公式计算:f'(x)=lim[x→x0](f(x)-f(x0))/(x-x0)导数具有以下性质:1. 导数存在的条件:函数在某一点处的导数存在,意味着该点是函数的可导点。
函数可导的必要条件是在该点上函数的左右导数存在且相等。
2. 导数与函数的关系:如果函数f(x)在点x0处可导,则在该点上函数是连续的。
但是函数在某一点处连续并不意味着导数存在。
3. 导数的几何意义:导数表示函数图像在某一点上的切线的斜率,切线的方程为y=f'(x0)(x-x0)+f(x0)。
4. 导数的运算法则:导数满足加减乘除的运算法则,例如导数的和的导数等于各个导数的和,导数的乘积的导数等于各个因子的导数之积等。
5. 高阶导数:一个函数的导数的导数称为高阶导数,记作f''(x),依此类推。
二、常见函数的导数1. 常数函数的导数:常数函数的导数为0,即f'(x)=0。
2. 幂函数的导数:幂函数f(x)=x^n的导数为f'(x)=nx^(n-1)。
3. 指数函数的导数:指数函数f(x)=a^x的导数为f'(x)=a^x *ln(a),其中ln(a)表示以自然对数为底的a的对数。
4. 对数函数的导数:对数函数f(x)=log_a(x)的导数为f'(x)=1/(xln(a)),其中ln(a)表示以自然对数为底的a的对数。
5. 三角函数的导数:常见的三角函数正弦函数f(x)=sin(x)、余弦函数f(x)=cos(x)和正切函数f(x)=tan(x)的导数分别为f'(x)=cos(x)、f'(x)=-sin(x)和f'(x)=sec^2(x)。
三、导数应用导数在数学中有广泛的应用,以下是几个常见的应用领域:1. 极值问题:通过求解导数为零的方程,可以找到函数的极值点。
高三函数和导数知识点
高三函数和导数知识点
函数是数学中的一个重要概念,而导数是函数的一个重要属性。
在高三数学学习中,函数和导数是一个重要的知识点。
本文将介
绍高三函数和导数的相关知识点,包括函数的定义、函数的运算、函数的图像、导数的定义、导数的性质以及导数的应用等内容。
一、函数的定义
函数是一种具有特定关系的数学对象,它将一个自变量映射到
唯一的因变量。
函数的定义域和值域分别表示自变量和因变量的
取值范围。
二、函数的运算
函数可以进行四则运算和复合运算。
四则运算包括加法、减法、乘法和除法,复合运算是指将一个函数的输出作为另一个函数的
输入。
三、函数的图像
函数的图像是表示函数关系的曲线。
函数的图像可以通过绘制
函数的各种取值来得到,其中横轴表示自变量,纵轴表示因变量。
四、导数的定义
导数是描述函数变化率的概念,表示函数在某一点处的瞬时变化率。
导数可以用极限定义,也可以通过求导公式进行计算。
五、导数的性质
导数具有一些重要的性质,包括导数存在的充要条件、导数的性质、导数的基本公式以及导数的运算法则等。
六、导数的应用
导数在数学和物理等领域中有广泛的应用,如切线与法线、函数的最值、单调性与凹凸性、函数的增减区间、曲线的凹凸部分等。
综上所述,高三函数和导数是数学学习中的重要知识点。
理解函数的定义、运算和图像,以及掌握导数的定义、性质和应用,对于高三学生的数学学习至关重要。
希望通过本文的介绍,能够对高三函数和导数的知识有更深入的认识。
高中数学函数与导数章节知识点总结
高中数学函数与导数章节知识点总结高中数学的函数与导数章节是数学课程中的重要部分。
它深入研究了函数的性质和变化规律,以及导数的概念和应用。
本文将从函数的基本概念、函数的性质、函数的几何意义、导数的定义和基本性质以及导数的应用等方面总结高中数学函数与导数章节的知识点。
一、函数的基本概念1.函数的定义:函数是一个具有输入和输出的关系,通常用f(x)表示。
2.定义域:函数能够取值的变量的集合。
3.值域:函数所有可能的输出值的集合。
4.图像:函数在坐标系中的表示,由点(x,f(x))组成。
二、函数的性质1.奇偶性:如果对于函数f(x),有f(-x)=f(x),则函数是偶函数;如果有f(-x)=-f(x),则函数是奇函数。
2.周期性:如果对于函数f(x),存在正数T,使得f(x+T)=f(x),则函数具有周期性。
3.单调性:一个函数在定义域上递增或递减。
4.有界性:一个函数是否存在上界或下界。
5.奇点和极限:函数在定义域上的不连续点和趋于无穷大的点。
三、函数的几何意义1.函数的图像:函数在坐标系中的表示,可用于分析函数的性质和变化规律。
2.函数的对称轴:函数的奇偶性可用于确定函数的对称轴。
3.零点:函数的图像与x轴交点的横坐标值。
4.极值:函数的最大值和最小值。
5.拐点:函数图像由凸变凹或由凹变凸的点。
四、导数的定义和基本性质1. 导数的定义:函数f(x)在点x处的导数定义为f'(x) = lim(h->0) [(f(x+h)-f(x))/h]。
2.导数的几何意义:导数表示函数的斜率,即函数在特定点处的切线斜率。
3.导数的基本性质:导数可以用于求函数的变化率、斜率、切线方程等。
4.高阶导数:函数的导数再次求导,可以得到高阶导数。
五、导数的应用1.函数的极值:导数可以用来求函数的极大值和极小值。
2.函数的单调性:导数可以用来确定函数的递增区间和递减区间。
3.函数的最大值和最小值:导数可以用来确定函数的最大值和最小值。
高三数学函数和导数知识点
高三数学函数和导数知识点在高三数学学习中,函数和导数是非常重要的知识点。
函数是数学中的一种基本概念,而导数则是函数的一种重要性质。
掌握了函数和导数的相关知识,不仅对于高考数学考试有很大帮助,也对于理解和应用数学在各个领域都具有重要意义。
本文将介绍一些高三数学中关于函数和导数的知识点。
一、函数的定义与性质函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
在数学中,函数通常用符号表示,例如f(x) = x²,表示f是一个函数,x为自变量,x²为f对应的因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
函数还可以按照其性质进行分类。
常见的函数类型包括线性函数、二次函数、指数函数、对数函数、三角函数等。
线性函数的表达式一般为f(x) = kx + b,其中k和b为常数;二次函数的表达式一般为f(x) = ax² + bx + c,其中a、b、c为常数。
其他函数类型的表达式和性质可以根据具体情况来确定。
二、导数的定义与计算方法导数是函数的一种重要性质,它描述了函数在某个点上的变化率。
函数在某个点x处的导数表示为f'(x),也可以写作dy/dx或y'。
导数的定义可以用极限的概念来表述,即f'(x) = limΔx→0[f(x+Δx)-f(x)]/Δx。
导数表示了函数在该点上的瞬时变化率,也可以理解为函数曲线在该点的切线斜率。
计算导数时,可以运用多种方法,例如使用导数的定义进行推导,或者利用一些常见函数的导数公式进行计算。
常用的导数计算方法包括常数法则、乘法法则、链式法则以及逆三角函数导数等。
在计算导数时,需要注意运用合适的法则和规则,并进行简化和化简运算,以得到最终的导数表达式。
三、函数的图像与性质了解函数的图像与性质对于理解函数的变化规律和应用函数具有重要作用。
根据函数的表达式,可以画出函数的图像,并通过图像来研究函数的性质。
高三函数和导数总结知识点
高三函数和导数总结知识点在高中数学学习中,函数和导数是数学课程中的重要内容。
函数是一种特殊的关系,它将一个变量的值映射到另一个变量的值。
而导数则是函数的重要性质之一,描述了函数在某一点的变化率。
下面将对高三函数和导数的知识点进行总结。
一、函数的基本概念和性质函数是一种将自变量与因变量相联系的数学关系。
常见的函数包括线性函数、二次函数、指数函数、对数函数等。
函数的定义域是自变量的取值范围;函数的值域是因变量的取值范围。
函数的性质包括奇偶性、周期性、单调性等。
奇函数满足f(-x)=-f(x),对应于图像关于原点对称;偶函数满足f(-x)=f(x),对应于图像关于y轴对称。
周期函数周期性重复,单调函数在定义域内部具有递增或递减的性质。
二、函数的图像与性质函数的图像是函数在坐标系中的几何表示。
通过观察函数的图像可以了解函数的性质。
如,对于线性函数y=kx+b,其图像是一条直线,斜率k代表直线的倾斜程度,截距b代表直线与y轴的交点。
二次函数的图像是抛物线,凹性和开口方向由二次项系数决定。
三、导数的定义和计算导数是函数在某一点上的变化率,表示函数曲线在该点上的切线斜率。
导数的定义是函数在自变量增加很小的量h时,相应因变量的增量与h的比例,当h趋近于0时,该比例的极限称为函数在该点的导数。
记作f'(x)或dy/dx。
常用求导法则包括常数规则、幂函数求导法则、指数函数求导法则、对数函数求导法则等。
例如,常数函数的导数为0,二次函数的导数是一次函数。
四、导数的应用导数在数学和实际问题中有广泛的应用。
导数可以用来求函数的极值点和最值,通过求解导数为零的方程可以找到函数的极值点。
导数还可以用于判断函数的增减性,当导数大于0时,函数递增;当导数小于0时,函数递减。
导数在物理学、经济学等领域也有重要应用。
例如,在物理学中,导数可以描述物体的加速度,速度等。
五、高阶导数和导数的链式法则高阶导数是指对函数的导数再求导数的过程。
导数和函数的知识点总结
导数和函数的知识点总结一、导数的定义和性质1. 导数的定义函数的导数是函数在某一点上的变化率,它描述了函数在该点的斜率。
设函数y=f(x),如果函数在点x处的导数存在,那么我们可以用f'(x)或者dy/dx来表示函数在点x处的导数,它的定义式为:f'(x) = lim (h->0) ( f(x+h) - f(x) ) / h其中,h表示自变量的微小增量。
导数的定义可以直观理解为对应点处的切线斜率,是函数随着自变量的微小变化而变化的速率。
2. 导数的性质导数的性质包括线性性、导数的四则运算、复合函数求导、反函数求导等。
这些性质为我们在计算导数时提供了便利,并且也为我们理解函数的变化规律提供了重要依据。
3. 隐函数求导有些函数并不是显式地表达为y=f(x)的形式,而是以隐式形式出现,这时就需要用到隐函数求导的方法。
隐函数求导的关键在于利用导数的定义和隐函数的关系式,通过一系列的推导和变换,最终得到隐函数的导数。
4. 高阶导数如果一个函数的导数f'(x)再次可导,那么可以考虑它的二阶导数f''(x),同理还可以考虑其更高阶的导数。
高阶导数描述了函数高阶的变化规律,它在分析函数的曲率、凹凸性等方面有着重要的应用。
二、函数的概念和性质1. 函数的定义函数是一种特殊的关系,它描述了自变量和因变量之间的对应关系。
如果对于每一个自变量x,函数都有唯一确定的因变量y与之对应,那么这个关系就是一个函数。
函数的定义可以表达为y=f(x),其中x为自变量,y为因变量,f(x)为函数的值。
2. 函数的性质函数的性质包括奇偶性、周期性、单调性、凹凸性、极值点、拐点等。
这些性质描述了函数的特征以及函数在自变量的变化下的规律和规则。
3. 常见函数的图像及性质常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数等,它们都有着特定的图像和性质。
了解这些函数的图像及性质,对于理解函数的变化规律有着重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 函数一、函数的概念:1、函数的概念:设A,B 是两个非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的y 与之对应,那么就称f:A →B 为从集合A 到集合B 的一个函数,记作:y=f (x ),x ∈A.2、构成函数概念的三要素: 定义域、值域、对应关系。
二、函数的定义域:1、求函数定义域的主要依据:(1)分式的分母不为零; (2)偶次方根的被开方数不小于零,(3)零取零次方没有意义;(4)对数函数的真数必须大于零,指数函数和对数函数的底数必须大于零且不等于12、复合函数定义域的求法:(1)定义域指的都是x 的取值范围; (2)括号内范围保持一致三、函数的值域:求函数值域的方法:1、直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;2、换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;3、分离常数:适合分子分母皆为一次式(x 有范围限制时要画图);4、反表示法:适合x 有范围的情况,用y 表示x ,再利用x 的范围求出y 的范围;5、单调性法:利用函数的单调性求值域;6、图象法:二次函数必画草图求其值域;对号函数常用图像法求值域;7、判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且 ∈R 的分式;8、几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四、函数的解析式:1、换元法:2、配凑法:3、待定系数法:4、消元法:五、函数的奇偶性:1、定义: 设y=f(x),x ∈A ,如果对于任意 x ∈A ,都有f(x)= f(-x),则称y=f(x)为偶函数;如果对于任意 x ∈A ,都有f(x)=-f(-x),则称y=f(x)为奇函数。
2、性质:(1)偶函数的图象关于Y 轴 对称,奇函数的图象关于原点对称, (2)若奇函数在x=0处有定义,则必有f(0)=0;(3)奇±奇=奇; 偶±偶=偶; 奇×奇=偶; 偶×偶=偶; 奇×偶=奇 3、函数奇偶性的判断方法:(1)定义法:①看定义域是否关于原点对称;②看f(x)与f(-x)的关系 (2)图像法: (3)利用性质:六、函数的单调性:1、定义:设函数f(x),如果对于定义域内某个区间D 上的任意两个自变量的值1x ,2x , 当1x <2x 时,都有)()(21x f x f <,那么就说函数f(x)在区间D 上是增函数;当1x <2x 时,都有)()(21x f x f >,那么就说函数f(x)在区间D 上是减函数; 2、性质:(1)函数y=f(x)与y=-f(x)单调性相反; (2)若函数f(x)恒正或恒负时,函数)(1x f y =与f(x)单调性相反; (3)在公共定义域内,增函数+增函数=增函数; 增函数-减函数=增函数;减函数+减函数=减函数; 减函数-增函数=减函数;3、函数单调性的判断方法:(1)定义法:(作差、作除) (2)图像法: (3)利用性质:(4)导数法:设函)(x f y =在某个区间内可导,若0)(>′x f ,则)(x f 为增函数;若0)(<′x f ,则)(x f 为减函数. 4、复合函数的单调性判断:同增异减,注意定义域七、函数的周期性:1、定义:一般的,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x )=f (x+T );那么函数y=f(x)叫做周期函数,非零常数T 叫做这个函数的周期。
2、性质:(1)若T 是函数y=f(x)的周期,那么)0(≠∈n Z n nT 且也是它的周期; (2)若f(x+T)=-f(x),则f(x)的周期为2T ; 若)(1)(x f T x f ±=+,则f(x)的周期为2T; 八、图像的对称性:)()(x f y x f y x −= → =轴对称关于 )()(x f y x f y y −= → =轴对称关于 )-()(x f y x f y −= → =关于原点对称)()(x f y x f y x x x = → =轴对称轴下方关于轴上方不变,将保留 )()(x f y x f y y y = → =轴对称侧图像关于轴右侧不变,并且将右保留2 导数1、函数)(x f y =在点0x 处的导数的几何意义:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ′,相应的切线方程是))((000x x x f y y −′=−. 2、几种常见函数的导数①'C 0=;②1')(−=n n nxx ; ③x x cos )(sin '=; ④x x sin )(cos '−=;⑤a a a xx ln )('=; ⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 3、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v −=≠.4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u ′′′=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值; 极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。
注:极值是在局部对函数值进行比较(局部性质);最值是在整体区间上对函数值进行比较3 基本初等函数§2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。
其中+∈>N n n ,1. 2、 当n 为奇数时,a a n n=; 当n 为偶数时,a a nn=.3、 我们规定: ⑴m n mn a a=()1,,,0*>∈>m N n m a ; ⑵()01>=−n a a nn ; 4、 运算性质:⑴()Q s r a a a a s r s r ∈>=+,,0; ⑵()()Q s r a a a rs sr∈>=,,0;⑶()()Q r b a b a ab r r r∈>>=,0,0.§2.1.2、指数函数及其性质 1、记住图象:()1,0≠>=a a a y x2、性质:§2.2.1、对数与对数运算1、指数与对数互化式:log x a a N x N =⇔=;2、对数恒等式:log a NaN =.3、基本性质:01log =a ,1log =a a .4、运算性质:当0,0,1,0>>≠>N M a a 时:⑴()N M MN a a a log log log +=; ⑵N M N M a a a log log log −=; ⑶M n M a na log log =. (4)换底公式:abb c c a log log log =,()0,1,0,1,0>≠>≠>b c c a a .(5)重要公式:log log n m a a m b b n =(6)倒数关系:ab b a log 1log =()1,0,1,0≠>≠>b b a a .§2..2.2、对数函数及其性质1、记住图象:()1,0log ≠>=a a x y a2、性质:§2.3、幂函数1、几种幂函数的图象:4 函数的应用§3.1.1、方程的根与函数的零点 1、方程()0=x f 有实根⇔函数()x f y =的图象与x 轴有交点 ⇔函数()x f y =有零点. 2、 零点存在性定理:如果函数()x f y =在区间[]b a , 上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根.§3.1.2、用二分法求方程的近似解 1、掌握二分法.§3.2.1、几类不同增长的函数模型 §3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.。