小学六年级奥数题:举一反三
小学奥数举一反三(六年级)
第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
六年级奥数全(举一反三)
第一章 数与计算第一单元 同余问题1. 知识前提。
(1) 整除:如果整数a 除以自然数b ,所得的商恰好是整数而没有余数(余数是0),我们就称a 能被b 整除或b 能整除a 。
(2) 乘方的意义:求n 个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幂。
n 个相同因数a 相乘,即n aa aa ∙个,记做n a 。
其中a 叫做底,n 叫做指数,na 读做a 的n 次方。
(3) 幂的运算法则:① 同底数的幂相乘,底数不变,指数相加。
即m n m na a a +∙=。
② 幂的乘方,底数不变,指数相乘。
即 ()mn nm aa =。
③ 积的乘方,等于把积的每一个因数分别乘方,再把所得的幂相乘。
即()nn nab a b =∙。
2. 同余如果两个整数的a 、b 除以同一个自然数m 所得的余数相同,那么就说a 、b 对于m 是同余的,记为a h (mod m )。
我们把m 称为模。
如果a 、b 对于m 是同余的,那么a 与b 的差能被m 整除;反之,如果a 与b 的差能被M 整除,那么a 、b 对于m 是同余的。
3. 规律、方法应用。
(1) 反身性规律:a 和a 对于m 同余。
(2) 对称性规律:a 和b 对于m 同余,那么b 和a 对于m 同余。
(3) 传递性规律:如果a 和b 对于m 同余,b 和c 对于m 同余,那么a 和c 对于m 同余。
(4) 同余的加减法、乘法规律:如果a 和b 对于m 同余,c 和d 对于m 同余,那么a +c ,和b +d ,a -c 和b -d ,a c 和bd 对于m 同余。
(5) 同余的乘方规律:如果a 和b 对于m 同余,那么na 和nb 也对于m 同余。
(6) 同余的连加规律:1a 和1b 对于m 同余,2a 和2b 对于m 同余,3a 和3b 对于m 同余……n a 和n b 对于m 同余,那么123n a a a a +++和123n b b b b +++也对于m 同余。
(word完整版)小学奥数举一反三(六年级)
第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
举一反三奥数六年级题目
举一反三奥数六年级题目奥数指的是OlympiadMathematics,即奥林匹克数学竞赛,是针对中小学生而举办的竞赛。
它鼓励学生通过理性思考和推理,开发其数学智慧,研究非家数学中的有趣问题,以及学习和解决紧密相关的问题。
本文将介绍一些奥数六年级题目,并以“举一反三”的方法来分析和解决这些题目,以帮助学生更好地理解和掌握奥数思路。
首先,让我们来举一个奥数六年级题目。
假设有三个数A、B、C,满足A + B + C = 24,且A、B、C均是质数,求A、B、C的值。
解决这道题目的方法,就是“举一反三”。
首先,我们可以先确定一个质数。
假设A=5,那么我们就可以推出B=13,C=6,这时A+B+C=24,满足题目要求。
现在,让我们以A=5为例,来反推出其他组合可能的质数构成。
如果A=5,B=13,由于A + B + C = 24,那么C=24-5-13=6,满足题目要求;如果A=5,B=7,由于A + B + C = 24,那么C=24-5-7=12,但是12不是质数,所以不满足题目要求。
如果A=5,B=11,由于A + B + C = 24,那么C=24-5-11=8,但是8不是质数,所以不满足题目要求。
如果A=5,B=17,由于A + B + C = 24,那么C=24-5-17=2,满足题目要求,因此可证明A=5,B=17,C=2也是一种有可能的解。
因此,通过“举一反三”方法,此题的答案可有以下两种:A=5,B=13,C=6;A=5,B=17,C=2。
以上就是一道奥数六年级题目的解决方案,也是“举一反三”的运用。
下面我们将运用“举一反三”的方法,来解决其他类型的奥数六年级题目。
假设有一个正四棱锥,要求计算它的表面积、体积。
解:我们先计算正四棱锥的底面积S,假设正四棱锥的底面是菱形,那么S=ab2,其中a、b为菱形的两条边长之和,那么正四棱锥的表面积A=2S+4S1,其中S1为正四棱锥的侧面积,其计算方法是:以某一个垂足为起点,画出菱形的三边,再将该点连接到菱形边长a 所在的顶点,则此四边形的面积就是正四棱锥的侧面积S1,根据“举一反三”,此侧面积S1与菱形面积S一样大,即S1=S;接下来,根据正四棱锥的体积公式V=1/3Sh,此时就可以求得正四棱锥的体积了。
小学奥数举一反三六年级(全)
小学奥数举一反三六年级(全)第一周 定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -12×b ,求(25*12)*(10*5)。
例题2。
设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2. 设p 、q 是两个数,规定p △q =p 2+(p -q )×2。
求30△(5△3)。
3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
小学奥数举一反三(六年级)A版
小学奥数举一反三(六年级)A版小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4 与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4 ”、“乙数的1/5 ”与“和为42”同时扩大4倍,贝U变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42X 4)-( 1- 1/5 X 4)= 85答:甲数是100,乙数是85。
练习1:1. 甲、乙两人共有钱150元,甲的1/2 与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2?甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3?海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨, 五月份完成总数的2/5少70吨,还有420 吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1- 1/9 )=8/9。
(250+5)-( 1+1- 1/9 )= 135 (台) 250-125= 115 (台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1. 姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105X 4/7 )= 60个,和实际相差(60-49)= 11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学六年级奥数举一反三单选题100道及答案解析
小学六年级奥数举一反三单选题100道及答案解析1. 甲、乙两车同时从A、B 两地相对开出,4 小时后相遇,甲车再开3 小时到达B 地。
已知甲车每小时比乙车快20 千米,则A、B 两地相距()千米。
A. 560B. 720C. 960D. 1120答案:C解析:相遇后甲3 小时行的路程等于相遇前乙4 小时行的路程,甲乙时间比是3:4,速度比是4:3。
甲比乙快一份,一份是20 千米/小时,甲速度是80 千米/小时,全程80×(4 + 3)= 560 千米。
2. 一个圆柱和一个圆锥的底面半径之比是2:3,体积之比是3:2,它们高的比是()A. 1:3B. 3:4C. 9:8D. 8:9答案:D解析:圆柱体积= 底面积×高,圆锥体积= 1/3×底面积×高。
设圆柱底面半径2r,圆锥底面半径3r,圆柱高h1,圆锥高h2,根据体积比列出方程:(π×(2r)²×h1) : (1/3×π×(3r)²×h2) = 3 : 2,解得h1 : h2 = 8 : 9。
3. 一件商品,先提价20%,再降价20%,现在的价格与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价20%后价格为100×(1 + 20%) = 120 元,再降价20%,价格为120×(1 - 20%) = 96 元,所以价格降低了。
4. 把一个棱长为6 厘米的正方体木块削成一个最大的圆锥,圆锥的体积是()立方厘米。
A. 56.52B. 169.56C. 226.08D. 无法确定答案:A解析:圆锥底面直径和高都是 6 厘米,体积= 1/3×π×(6÷2)²×6 ≈56.52 立方厘米。
5. 有含糖15%的糖水20 千克,要使糖水的浓度为20%,需加糖()千克。
六年级奥数举一反三 等式问题
六年级奥数举一反三等式问题六年级奥数举一反三 - 等式问题1. 引言奥数是指数学奥林匹克竞赛,是全球数学领域最高级别的竞赛之一。
在六年级,学生们开始接触奥数,其中涉及到的等式问题尤为重要。
等式问题要求学生用已知的数和运算符号构成等式,通过求解未知数的值来完成。
解决等式问题的关键在于理解等号的含义以及掌握运算规则。
通过举一反三的方法,我们能够帮助六年级学生更好地理解和解决等式问题。
2. 举例说明为了帮助学生更好地理解六年级的等式问题,我们使用举例的方法进行说明。
例子1:简单的等式问题问题:某数加上6的结果等于15,求这个数是多少?解法:首先,我们可以用未知数代表这个数,假设这个数为x。
根据题目的要求,可以得到以下等式:x + 6 = 15然后,我们通过减去6来消去等式中的常数项,得到:x = 15 - 6最后,我们可以得到x的值为9,即这个数是9。
例子2:复杂的等式问题问题:某数的一半加上4的结果等于10,求这个数是多少?解法:同样地,我们可以用未知数代表这个数,假设这个数为x。
根据题目的要求,可以得到以下等式:x / 2 + 4 = 10然后,我们通过减去4来消去等式中的常数项,并且乘以2来消去等式中的分数,得到:x = (10 - 4) * 2最后,我们可以得到x的值为12,即这个数是12。
3. 举一反三方法举一反三是一种常用的解决问题的方法。
在解决等式问题时,我们可以通过观察已解决的问题,尝试抽象出一般性的规律,从而应用到新的问题中。
例如,在例子1中,我们可以通过观察得出以下规律:- 将等式中的常数项移到等号的另一边时,要改变符号的方向。
这一规律同样适用于其他类似的等式问题。
通过举一反三的方法,我们可以更好地理解并解决各种类型的等式问题。
4. 结论六年级的奥数等式问题需要学生具备运算符号和等号的理解能力,以及使用代数表达式解决问题的能力。
通过举一反三的方法,学生可以更好地应用已学知识解决新的等式问题。
小学奥数举一反三(六年级)
小学奥数举一反三(六年级).精品第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:某、△、⊙等,这是与四则运算中的“+、-、某、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a某b=(a+b)+(a-b),求13某5和13某(5某4)。
【思路导航】这题的新运算被定义为:a某b等于a和b两数之和加上两数之差。
这里的“某”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13某(5某4)中,就要先算小括号里的(5某4)。
练习1:1.将新运算“某”定义为:a某b=(a+b)某(a-b).。
求27某9。
2.设a某b=a2+2b,那么求10某6和5某(2某8)。
3.设a某b=3a-b某1/2,求(25某12)某(10某5)。
【例题2】设p、q是两个数,规定:p△q=4某q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p、q是两个数,规定p△q=4某q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)某2。
求30△(5△3)。
3.设M、N是两个数,规定M某N=M/N+N/M,求10某20-1/4。
【例题3】如果1某5=1+11+111+1111+11111,2某4=2+22+222+2222,3某3=3+33+333,4某2=4+44,那么7某4=________;210某2=________。
.精品【思路导航】经过观察,可以发现本题的新运算“某”被定义为。
【word直接打印】小学奥数举一反三(六年级)全图文百度文库
【word直接打印】小学奥数举一反三(六年级)全图文百度文库一、拓展提优试题1.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.2.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.3.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.4.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.5.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.6.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.7.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.8.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.9.如图所示的“鱼”形图案中共有个三角形.10.已知自然数N的个位数字是0,且有8个约数,则N最小是.11.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.12.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.13.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.14.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)15.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.【参考答案】一、拓展提优试题1.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.2.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.3.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.4.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.5.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.6.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.7.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.8.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.9.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.10.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.11.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.12.解:丙花钱是甲的×=甲:乙:丙=1::=13:12:8(13+12+8)÷3=11每份:9÷(11﹣8)=3(元)甲:(13﹣11)×3=6(元)乙:(12﹣11)×3=3(元)答:分给甲6元,分给乙3元.故答案为:6,3.13.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.14.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.15.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.。
六年级数学奥数举一反三小升初数学设数法解题09
小学数学六年级奥数举一反三来自【练习2】1.某班一次考试,平均分为70分,其中3/4及格,及格 的同学平均分为80分,那么不及格的同学平均分是多少 分? 2.游泳池里参加游泳的学生中,小学生占30%,又来 了一批学生后,学生总数增加了20%,小学生占学生总 数的40%,小学生增加百分之几?
3.五年级三个班的人数相等。一班的男生人数和二班 的女生人数相等,三班的男生是全部男生的2/5,全部女 生人数占全年级人数的几分之几?
小学数学六年级奥数举一反三
【例题4】 某幼儿园中班的小朋友平均身高115厘米,其中男 孩比女孩多1/5,女孩平均身高比男孩高10%,这个班男孩平 均身高是多少? 【思路导航】 题中没有男、女孩的人数,我们可以假设女孩有5人,则男 孩有6人。 (1) 总身高:115×【5+5×(1+1/5)】=1265(厘米) (2) 由于女孩平均身高是男孩的(1+10%),所以5个 女孩的身高相当于5×(1+10%)=5.5个男孩的身高,因此 男孩的平均身高为: 1265÷【(1+10%)×5+6】=110(厘米)
【练习1】
1.已知△=○○,△○=□□,☆=□□□,问△□☆= ( )个○
2.五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙 比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?
3.甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨 到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲 仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最 少的多多少吨?
小学数学六年级奥数举一反三
【例题2】 足球门票15元一张,降价后观众增加 一倍,收入增加1/5,问一张门票降价多少元? 【思路导航】
初看似乎缺少观众人数这个条件,实际上观众人数于答案无 关,我们可以随便假设一个观众数。为了方便,假设原来只 有一个观众,收入为15元,那么降价后有两个观众,收入为 15×(1+1/5)=18元,则降价后每张票价为18÷2=9元, 每张票降价15-9=6元。即: 15-15×(1+1/5)÷2=6(元)
【经典】小学奥数举一反三(六年级)全图文百度文库
【经典】小学奥数举一反三(六年级)全图文百度文库一、拓展提优试题1.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.2.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.3.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)4.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.5.图中的三角形的个数是.6.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.7.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.8.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).9.如图,一个长方形的长和宽的比是5:3.如果长方形的长减少5厘米,宽增加3厘米,那么这个长方形边长一个正方形.原长方形的面积是平方厘米.10.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.11.已知A是B的,B是C的,若A+C=55,则A=.12.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.13.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.14.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:分针每分钟走的度数是:360÷60=6(度),时针每分钟走的度数是:6×5÷60=0.5(度),第一成直角用的时间是:90÷(6﹣0.5),=90÷5.5,=16(分钟),第二次成直角用的时间是:270÷(6﹣0.5),=270÷5.5,=49(分钟).这时的时刻是:12时+49分=12时49分.故答案为:16,12时49分.2.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.3.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.4.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.5.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.6.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.7.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.8.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.9.解:先求出一份的长:(5+3)÷(5﹣3)=8÷2=4(厘米)长是:4×5=20(厘米)宽是:4×3=12(厘米)原来的面积是:20×12=240(平方厘米);答:原来长方形的面积是240平方厘米.故答案为:240.10.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.11.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.12.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.13.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.14.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100015.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。
20小学奥数举一反三(六年级)A版
小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学奥数举一反三(六年级)A版
(10-10×4/5)÷(4/5-710)=30(本)
30×4/5=24(本)
答:李卫原有图书30本,王芳原有图书24本。
练习4:
1.甲书架上的书是乙书架上的4/5,从这两个书架上各借出112本后,甲书架上的书是乙书架上的4/7,原来甲、乙两个书架上各有多少本书?
2.小明今年的年龄是爸爸的6/11,10年前小明的年龄是爸爸的4/9,小明和爸爸今年各多少岁?
26人,上学年马村中学和牛庄小学各有学生多少人?
3.箱子里有红、白两种玻璃球,红球比白球的3倍多2粒,每次从箱子里取出7粒白球和15粒红球,若干次后,箱子里剩下3粒白球和53粒红球,那么,箱子里白球原有多少粒?
【例题3】小红的彩笔枝数是小刚的
1/2,两人各买5枝后,小红的彩笔枝数是小刚的2/3,两人原来各有彩笔多少枝?
【思路导航】甲数的2/5与乙数的2/5的和就是甲、乙两数的2/5,是300×2/5=120,因为甲数的2/5比乙数的1/4多55,所以从120中减去55所得的差就可以看成是乙数的1/4与乙数的2/5的和。
乙:(300×2/5-55)÷(2/5+1/4)=100
甲:300-100=200
答:甲数是200,乙数是100。
3.两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。求第二堆煤原来是多少吨?
【例题2】王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?
【思路导航】假设仍然保持王明的钱比陈刚的3倍多6.40元,则王明要相应地花去4.40×3=13.20元,但王明只花去了4.40元,比13.20元少13.20-4.40=8.80元,那么王明买书后的钱比陈刚买书后的钱的3倍多6.40+8.80=15.20元,而题中已告诉:买书后王明的钱是陈刚的8倍,所以,15.20元就对应着陈刚花钱后剩下钱的8-3=5倍。
六年级小学生奥数举一反三练习题
六年级小学生奥数举一反三练习题L六年级小学生奥数举一反三练习题篇一股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10. 65元的价格买进一种科技股票3000股,6月26日以每月13. 86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?答案10. 65^1%=0. 1065 (元)10. 65⅛%=0. 213 (元)10. 1065+0. 213=0. 3195 (元)0. 3195+10. 65=10. 9695 (元)13. 86^1%=0. 1386 (元)13. 86⅛%=0o 2772 (元)0. 1386+0. 2772=0. 415813.86+0.4158=14. 2758 (元)14. 2758-10. 9695=3. 3063 (元)答:老王卖出这种股票一共赚了 3.3063元。
2.六年级小学生奥数举一反三练习题篇二一列火车通过360米长的铁路桥用了24秒钟,用同样的速度通过216米长的铁路桥用16秒钟,这列火车长米。
分析:这道题让我们求火车的长度。
我们知道:车长二车速X通过时间-桥长。
其中“通过时间”和“桥长”都是已知条件。
我们就要先求出这道题的解题关键: 车速。
通过审题我们知道这列火车通过不同长度的两个桥用了不同的时间。
所以我们可以利用这两个桥的长度差和通过时间差求出车速。
解答:解:车速:(360-216) ÷(24-16)=144÷8=18 (米),火车长度:18X24-360=72 (米),或18X16-216=72 (米)。
答:这列火车长72米。
故答案为:72o3.六年级小学生奥数举一反三练习题篇三甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8: 7: 5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果, 甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40) ÷20=5人甲村需要的人数:8X5=40人,多出劳力人数:60-40二20人乙村需要的人数:7X5=35人,多出劳力人数:40-35二5人丙村需要的人数:5X5=25人或20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54X20=1080元4.六年级小学生奥数举一反三练习题篇四有一户人家,共有三个人:爸爸、妈妈和他们的独生儿子。
小学奥数六年级举一反三
第十六周用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。
所以1÷【115-(730-115×3)÷(5-3)】=20(天)答:乙队单独完成全部工程需要20天。
练习11、师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的320。
如果这批零件由师傅单独做,多少天可以完成?2、某项工程,甲、乙合做1天完成全部工程的524。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的1324。
甲、乙两队单独完成这项工程各需多少天?3、甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的815。
甲、乙两队独做各需几天完成?例题2。
一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的12。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(12-112×3)÷2=18;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。
六年级奥数原版举一反三综合版
2. 设 p 、q 是两个数,规定: p q=p 2+(P-q )× 2。
求 30 (5 3)王牌例题 1假设 a ﹡ b=( a+b )( a-b ),求 13﹡5和 13﹡( 5﹡4)3. 设 M 、 N 是两个数,规定: M ﹡ N=M N M N ,求10 20 14 。
疯狂操练 11. 将新运算“﹡”定义为: a ﹡b=( a+b )×( a-b )。
求 27﹡9。
疯狂操练 2第一讲 定义新运算2. 设 a ﹡ b=a+2b ,那么求 10﹡ 6 和 5﹡( 2﹡8)。
王牌例题 3如果 :1 ﹡ 5=1+11+111+1111+11111, 2﹡ 4=2+22+222+2222, 3﹡33+33+333,4﹡2=4+44,那么 7﹡ 4=; 210﹡ 2=。
疯狂操练 33. 设 a ﹡ b=3a-b × 12,求( 25﹡ 12)﹡( 10﹡ 5)。
1.如果 =1﹡ 5=1+11+111+1111+11111,2﹡ 4=2+22+222+2222,3﹡ 33+33+333,⋯⋯那么4﹡ 4=王牌例题 2设 p 、 q 是两个数,规定:p q=4×q- ( P+q )÷ 2, 3 (4 6)。
2.规定 a ﹡ b=a+aa+aaa+⋯⋯ +aaa ⋯⋯ a ,那么 8﹡5=(b-1) 个 a1.设p、q 是两个数,规定:p q=4×q- (P+q)÷ 2。
求 5 (6 4)。
3. 如果2*1= 21,3*2= 313,4*3= 4414,那么(6*3) ÷(2*6)= .1.设a⊙ b=4a-2b+ 12ab,求⊙(4⊙1)=34 中的未知数。
王牌例题5疯狂操练51.设a⊙ b=3a-2b ,已知⊙(4⊙ 1)=7,求。
王牌例题4规定: ②=1×2×3, ③=2×3×4, ④=3×4×5, ⑤ =4× 5× 6, ⋯⋯如果, 那么A=2.对两个整数a和b定义新运算“▽” :a▽b=(a 2b)a(b a b)求6▽4+9▽8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一周定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-12×b,求(25*12)*(10*5)。
例题2。
设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=MN+NM,求10*20-14。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
那么7*4=?,210*2=?7*4=7+77+777+7777=8638210*2=210+210210=210420练习31.如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,…..那么,4*4=?,18*3=?2.规定a*b=a+aa+aaa+aaa+aaaa ……..a,那么8*5=?(b-1)个a 3.如果2*1=12 ,3*2=133 ,4*3=1444 ,那么(6*3)÷(2*6)=?。
例题4。
规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1⑥-1⑦ =1⑦ ×A ,那么A 是几? A =(1⑥ -1⑦ )÷1⑦=(1⑥ -1⑦)×⑦ =⑦⑥-1 =6×7×85×6×7-1=35练习41. 规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……..如果1⑧ -1⑨ =1⑨×A ,那么A=?。
2. 规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥=5×6×7,…..如果1⑩+1(11) =1(11)×□,那么□=?。
3.如果1※2=1+2,2※3=2+3+4,….5※6=5+6+7+8+9+10,那么x※3=54中,x=?例题5设a⊙b=4a-2b+12ab,求x⊙(4⊙1)=34中的未知数x。
4⊙1=4×4-2×1+12×4×1=16X⊙16=4x-2×16+12×x×16=12x-32X =5.5练习51.设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。
2.对两个整数a和b定义新运算“▽”:a▽b=2a-b(a+b)×(a-b),求6▽4+9▽8。
3.对任意两个整数x和y定于新运算,“*”:x*y=4xymx+3y(其中m是一个确定的整数)。
如果1*2=1,那么3*12=?第二周简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。
1. 6.73-2817 +(3.27-1 917 ) 2.759 -(3.8+1 59 )-1153. 14.15-(778 -61720 )-2.125 4.13713 -(414 +3713 )-0.75例题2。
计算33338712 ×79+790×6666114原式=333387.5×79+790×66661.25=(33338.75+66661.25)×790 =100000×790 =79000000练习2计算下面各题:1. 3.5×114 +125%+112 ÷452. 975×0.25+934 ×76-9.753. 925 ×425+4.25÷160 4. 0.9999×0.7+0.1111×2.7例题3。
计算:36×1.09+1.2×67.3原式=1.2×30×1.09+1.2×67.3 =1.2×(32.7+67.3) =1.2×100 =120疯狂操练 3 计算:1. 45×2.08+1.5×37.6 2. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6例题4。
计算:335 ×2525 +37.9×625原式=335 ×2525+(25.4+12.5)×6.4=335×2525+25.4×6.4+12.5×6.4=(3.6+6.4)×25.4+12.5×8×0.8=254+80=334练习4计算下面各题:1. 6.8×16.8+19.3×3.22.139×137138+137×11383. 4.4×57.8+45.3×5.6例题5。
计算81.5×15.8+81.5×51.8+67.6×18.5原式=81.5×(15.8+51.8)+67.6×18.5=81.5×67.6+67.6×18.5=(81.5+18.5)×67.6=100×67.6=6760练习51.53.5×35.3+53.5×43.2+78.5×46.52.235×12.1+235×42.2-135×54.33.3.75×735-38×5730+16.2×62.5答案:练一: 1、=6 2、=1 3、=11 4、=5练二: 1、=7.5 2、=975 3、=4250 4、=0.9999 练三: 1、=150 2、=2600 3、=120 4、=18练四: 1、=176 2、=13868693、=508练五: 1、=7850 2、=5430 3、=1620第三周简便运算(二)专题简析:计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。
例题1。
计算:1234+2341+3412+4123简析注意到题中共有4个四位数,每个四位数中都包含有1、2、3、4这几个数字,而且它们都分别在千位、百位、十位、个位上出现了一次,根据位值计数的原则,可作如下解答:原式=1×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111=10×1111=11110练习11.23456+34562+45623+56234+623452.45678+56784+67845+78456+845673.124.68+324.68+524.68+724.68+924.68例题2。
计算:245×23.4+11.1×57.6+6.54×28原式=2.8×23.4+2.8×65.4+11.1×8×7.2=2.8×(23.4+65.4)+88.8× 7.2=2.8×88.8+88.8×7.2=88.8×(2.8+7.2)=88.8×10=888练习2计算下面各题:1.99999×77778+33333×666662.34.5×76.5-345×6.42-123×1.453.77×13+255×999+510例题3。
计算1993×1994-11993+1992×1994原式=(1992+1)×1994-11993+1992×1994=1992×1994+1994-11993+1992×1994=1练习3计算下面各题:1. 362+548×361362×548-186 2.1988+1989×19871988×1989-13. 204+584×19911992×584-380-1 143例题4。
有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少?20012-20002=2001×2000-20002+2001=2000×(2001-2000)+2001=2000+2001=4001练习4计算:1. 19912-199022. 99992+199993. 999×274+6274例题5。
计算:(927+729)÷(57+59)原式=(657+659)÷(57+59)=【65×(17+19)】÷【5×(17+19)】=65÷5=13练习5计算下面各题:1.(89+137+611)÷(311+57+49)2.(3711+11213)÷(1511+1013)3.(966373+362425)÷(322173+12825)答案:练一: 1、=222220 2、=333330 3、=2623.4 练二: 1、=9999900000 2、=246 3、=256256 练三: 1、=1 2、=1 3、=142143练四: 1、=3981 2、=100000000 3、=280000 练五: 1、=2 2、=2.5 3、=3第四周 简便运算(三) 专题简析:在进行分数运算时,除了牢记运算定律、性质外,还要仔细审题,仔细观察运算符号和数字特点,合理地把参加运算的数拆开或者合并进行重新组合,使其变成符合运算定律的模式,以便于口算,从而简化运算。