粉尘测定实验
粉尘粒径分布测定实验报告
粉尘粒径分布测定实验报告
实验报告:粉尘粒径分布测定
一、实验目的
本实验旨在通过粉尘粒径分布测定,了解粉尘颗粒的大小分布情况,为工业生产中的粉尘控制提供参考。
二、实验原理
粉尘粒径分布测定是通过粒径分析仪对粉尘样品进行测试,得出粉尘颗粒的大小分布情况。
粒径分析仪是一种基于激光散射原理的仪器,通过激光束照射样品,测量样品中散射光的强度和角度,从而得出粒径分布曲线。
三、实验步骤
1.准备样品:将待测粉尘样品放入样品瓶中,并加入适量的稀释液。
2.打开粒径分析仪,进行预热和校准。
3.将样品瓶放入粒径分析仪中,启动测试程序。
4.测试完成后,得到粉尘颗粒的大小分布曲线。
四、实验结果与分析
通过粒径分析仪测试,得到了粉尘颗粒的大小分布曲线。
从曲线可以看出,粉尘颗粒的大小分布范围较广,主要集中在0.1-10微米之间。
其中,0.5-5微米的颗粒占总颗粒数的比例最高,达到了70%以上。
五、实验结论
通过粉尘粒径分布测定实验,我们了解了粉尘颗粒的大小分布情况。
在工业生产中,应根据粉尘颗粒的大小分布情况,采取相应的粉尘控制措施,以保障工人的健康和生产环境的安全。
六、实验注意事项
1.操作时应佩戴防护眼镜和口罩,避免吸入粉尘。
2.样品瓶和稀释液应保持清洁,避免杂质的干扰。
3.粒径分析仪应定期校准和维护,以保证测试结果的准确性。
4.实验结束后,应及时清洗仪器和样品瓶,避免残留物的影响。
实验二 粉尘粒径分级测定实验
粉尘粒径测定试验
一、实验目的
掌握筛分法测定粉尘粒径分布的方法,作出粒径分布曲线。
二、实验原理
筛分法是用一套不同孔径的筛子进行筛分,称量每个筛子上面筛余粉尘的质量,进一步确定筛下质量累积频率。
三、实验设备和仪器
(1) 圆孔筛1套,直径0.15--0.90mm(20目--100目)。
(2) 百分之一天平,感量0.01g。
(3)药匙,称量纸。
(4 ) 烘箱。
(5) 带拍摇筛机,如无,则人工手摇。
(6) 浅盘和刷(软、硬)。
四、实验步骤
(1)称取冷却后的砂样约l00g,选用一组筛子过筛。
筛子按筛孔大小顺序排列,砂样放在最上面的一只筛中, 用手晃动摇筛或置于振荡器上振荡5-10分钟。
(2)称量在各个筛上的筛余粉尘试样的重量(精确至0.01g)。
所有各筛余重量与底盘中剩余试样重量之和与筛分前的试样总重相比,其差值不应超过1%。
五、实验数据记录和处理
(1)分别计算留在各号筛上的筛余百分率,即各号筛上的筛余量除以试样总总量的百分率(精确至0.1%)。
(2)计算通过各号筛的粉尘的筛下累积频率。
(3)根据表1值,以通过筛孔的砂量百分率为纵坐标,以筛孔孔径为横坐标,绘制粉尘筛分级配曲线。
表1筛分记录表。
粉尘粒径分布测定实验
粉尘粒径分布测定实验一、原理:除尘系统所处理的粉尘均具有一定的粒度分布。
粉尘的分散度不同,对人体健康危害的影响程度和适用的除尘机理就不同。
对粉尘的粒径分布进行测定可以为除尘器的设计、选用及除尘机理的研究提供基本的数据。
粉尘粒径分布的测定方法包括有巴柯离心分级测定法,液体重力沉降法(移液管法)和惯性冲击法等。
本装置系统为液体重力沉降法(移液管法)。
液体重力沉降法(移液管法)是根据不同大小的粒子在重力作用下,在液体中的沉降速度各不相同这一原理进行的。
粒子在液体介质中作等速自然沉降时所具有的速度称为沉降速度,而沉降速度是沉降高度与沉降时间的比值。
通过对混合均匀的颗粒物悬浮液在不同沉降时间、不同沉降高度上取出一定量的液体,称量出其所含有的粉体质量,便可通过斯托克斯公式及沉降速度、时间和高度的关系求出。
二、系统构成:系统主要包括液体重力沉降瓶、称量瓶、采用透明有机玻璃制作恒温水浴等。
(图)三、技术参数:1、环境温度:5℃~40℃、2、可在0~100μm自由选择分为3段(≤40μm、≤30μm、≤20μm)。
3、装置尺寸:1000×500×1200四、实验装置的组成和规:1、沉降瓶3只;2、移液管1只;3、带三通活塞的10mL容器3只;4、称量瓶5只;5、注射器大小各1只;6、乳胶皮管3根。
7、透明有机玻璃制作恒温水浴1套、8、控制温度系统1套、9、防水面板及不锈钢实验台架1套五、辅助设备(由用户自备):烘箱、分析天平、干燥器等。
移液管法测定粉尘粒径分布一、实验目的:掌握液体重力沉降法(移液管法)测定粉尘粒径分布的方法。
二、实验原理:液体重力沉降法是根据不同大小的粒子在重力作用下,在液体中的沉降速度各不相同这一原理而得到的。
粒子在液体(或气体)介质中作等速自然沉降时所具有的速度,称为沉降速度,其大小可以用斯托克斯公式表示:υt=(ρp-ρL)gd2p18μ(2-10-1)式中:υt——粒子的沉降速度,cm/s;μ——液体的动力黏度,g/(cm·s)ρp——粒子的真密度,g/m3;ρL——液体的真密度,g/m3;g——重力加速度,cm/s2;d p——粒子的直径,cm。
粉尘浓度测试实验报告
粉尘浓度测试实验报告粉尘浓度测试实验报告概述:粉尘浓度是指单位体积空气中悬浮颗粒物的质量或数量。
在工业生产、建筑施工以及环境监测等领域中,粉尘浓度的测试是非常重要的。
本实验旨在通过实际测量,探究不同环境中的粉尘浓度变化,并对实验结果进行分析和讨论。
实验设备:1. 粉尘浓度测试仪:用于测量空气中颗粒物的浓度。
2. 实验室:提供稳定的实验环境,避免外界因素对实验结果的影响。
3. 校准气体:用于校准粉尘浓度测试仪的准确性。
实验步骤:1. 校准测试仪:将校准气体引入粉尘浓度测试仪中,根据测试仪的说明书进行校准,确保测试仪的准确性。
2. 测试环境准备:在实验室内选择不同的测试点,例如办公室、车间、室外等,确保每个测试点的环境状况不同。
3. 测试过程:将粉尘浓度测试仪放置在测试点的中心位置,记录测试仪显示的浓度数值。
每个测试点的测试时间为5分钟,以确保结果的准确性。
4. 数据记录:将每个测试点的浓度数值记录下来,并标注测试点的环境条件,如温度、湿度等。
5. 数据分析:根据实验结果,比较不同测试点的粉尘浓度差异,并分析可能的原因。
实验结果:经过一系列的测试,我们得到了以下实验结果:1. 在办公室环境中,粉尘浓度较低,平均浓度为X mg/m³。
这可能是由于办公室内部的空气循环系统能够有效过滤空气中的颗粒物。
2. 在车间环境中,粉尘浓度较高,平均浓度为Y mg/m³。
这可能是由于车间内的工业生产过程中产生了大量的颗粒物,导致浓度升高。
3. 在室外环境中,粉尘浓度较为稳定,平均浓度为Z mg/m³。
这可能是由于室外环境中的颗粒物来源较为多样化,包括空气中的尘埃、车辆尾气等。
数据分析与讨论:通过对实验结果的分析,我们可以得出以下结论:1. 不同环境中的粉尘浓度存在明显差异,这与环境内部的颗粒物来源和处理方式有关。
2. 办公室环境中的粉尘浓度较低,说明室内空气质量较好,但仍需注意定期清洁和通风。
粉尘测定实验
粉尘浓度测定实验粉尘浓度是指单位体积空气中所含粉尘的质量或数量,我国卫生标准中,粉尘最高容许浓度采用质量浓度,以mg/m3表示。
以此作为检查工作场所是否符合卫生标准以及作为鉴定生产工艺及通风防尘措施效果的依据。
一、实验目的1.了解测量工作场所粉尘浓度的意义。
2.了解工作场所空气中粉尘的容许浓度。
3.掌握室外大气及劳动环境中用滤膜法测定粉尘浓度的方法。
二、实验原理在抽气机的作用下,使一定体积的含尘空气通过滤膜,其中的粉尘被阻留在滤膜上,根据采样前后滤膜的增重(即扑尘量)和通过滤膜的空气量(用流量计测定),计算空气中的粉尘浓度。
三、实验器材1.DS-21BI型双气路粉尘采样器2.直径40mm 的过氯乙烯纤维滤膜、滤膜夹、样品盒、镊子;3.分析天平;干燥箱。
四、实验方法1.滤膜的准备用镊子取下滤膜两面的衬纸,充分干燥后,置于天平上称量,记录初始质量,然后将滤膜装入滤膜夹中,确认滤膜无褶皱或裂隙后,放入带编号的样品盒中备用。
2. 采样(1) 采样器架设于人员经常活动的范围内,粉尘分布较均匀的呼吸带。
有风流影响时,一般应选择在作业地点下风侧或回风侧;在移动的扬尘点,应位于作业人员活动中有代表性的地点,或架设于移动设备上。
(2) 先用一个装有未称量过的滤膜的滤膜夹装入采样头拧紧,开动采样器调节至2L/ min, 然后将已称量滤膜换入采样头,使采样头入口迎向含尘气流,若生产中遇有飞溅的泥浆、砂粒对样品产生污染时,采样头的入口可侧向含尘气流。
(3) 采样开始的时间:连续性产尘作业点,应在作业开始30min 后采样,非连续性产尘作业点,应在工人工作时开始采样。
(4) 采样流量:在整个采样过程中,必须保持在 20L/min, 流量应稳定。
(5) 采样的持续时间应根据测尘点粉尘浓度的估计值及滤膜上所需粉尘增量而定 ( 不应少于 0.5mg, 不得多于 10mg), 但采样时间不应少于 20min 。
采样结束后,记录滤膜编号、采样时间和采样点生产工作情况。
作业场所空气中粉尘浓度的测定
劳动卫生工程学实验二作业场所空气中粉尘浓度的测定一.实验目的熟练掌握生产车间空气中总粉尘、呼吸性粉尘浓度的测定方法,掌握测定仪器的正确操作方法;基本掌握测定数据的分析与处理。
二.实验内容空气中总粉尘、呼吸性粉尘的测定。
三.实验仪器与试剂采样滤膜;采样器;分析天平;干燥器;镊子等。
四.实验准备要求0232091班81人,分4组,20人一组,其中第四组21人。
每次实验安排一组学生。
实验前做好预习报告,主要看教材有关实验内容和实验指导书,写出预习报告。
实验时间与实验室地点详见实验教学进度计划安排。
五.实验方法与步骤依据《工作场所空气中粉尘测定》第一部分:总粉尘浓度 GBZ/T 192.1-2007 的测定方法测定总粉尘浓度,依据《工作场所空气中粉尘测定》第二部分:呼吸性粉尘浓度 GBZ/T 192.1-2007 的测定方法测定呼吸性粉尘浓度。
(一)总粉尘测定1.测定原理空气中的总粉尘用已知质量的滤膜采集,由滤膜的增量和采气量,计算出空气中总粉尘的浓度。
2.仪器①滤膜:过氯乙烯滤膜或其他测尘滤膜。
空气中粉尘浓度≤50 mg/m3 时,用直径37mm 或40mm的滤膜;粉尘浓度>50mg/m3 时,用直径75mm的滤膜。
②粉尘采样器:包括采样夹和采样器两部分。
采样夹:应满足总粉尘采样效率的要求。
采样器:井下采样需要防爆的工作场所应使用防爆型粉尘采样器。
用于个体采样时,流量范围为1~5L/min;用于定点采样时,流量范围为5~80L/min。
用于长时间采样时,连续运转时间应≥8h。
③分析天平,感量 0.1mg 或 0.01mg;④秒表或其他计时器;⑤干燥器,内装变色硅胶⑥镊子;⑦除静电器。
3样品的采集①滤膜的准备干燥:称量前,将滤膜置于干燥器内2h以上。
称量:用镊子取下滤膜的衬纸,将滤膜通过除静电器,除去滤膜的静电,在分析天平上准确称量。
在衬纸上和记录表上记录滤膜的质量和编号。
将滤膜和衬纸放入相应容器中备用,或将滤膜直接安装在采样头上。
粉尘分散度的测定实验报告
粉尘分散度的测定实验报告实验目的:本次实验旨在测定不同颗粒尺寸的粉尘在空气中的分散度,并探讨影响粉尘分散度的因素及其作用机理。
实验原理:粉尘分散度指的是粉尘在空气中的分布程度,可以通过测定粉尘在空气中的浓度来反映。
实验中使用的测定方法是悬浮颗粒法,即将待测粉尘样品悬浮在空气中,通过采样并测量样品中粉尘的质量浓度来确定分散度。
粉尘分散度的影响因素包括颗粒尺寸、颗粒密度、空气流速、湿度等。
其中,颗粒尺寸是最主要的影响因素,通常情况下,颗粒尺寸越小,分散度越高。
实验步骤:1. 准备不同粒径的粉尘样品,并称取相应的质量;2. 将待测粉尘样品加入到实验室制备的分散器中,开启分散器并调整空气流速和湿度;3. 在不同时间内,采取空气中的样品,并测定样品中粉尘的质量;4. 计算出各个时间点的粉尘浓度,并绘制浓度随时间变化的曲线;5. 对于不同颗粒尺寸的样品,重复上述步骤,得到不同尺寸下的分散度数据。
实验结果:通过实验,我们得到了不同粒径下的粉尘分散度数据,结果如下表所示:| 粒径(μm) | 10 | 20 | 30 | 40 | 50 || ---------- | ---- | ---- | ---- | ---- | ---- || 分散度 | 0.98 | 0.85 | 0.72 | 0.63 | 0.55 |从表中可以看出,随着颗粒尺寸的增大,粉尘分散度逐渐降低。
实验分析:通过对实验结果的分析,我们可以发现,颗粒尺寸是影响粉尘分散度的主要因素。
这是因为,颗粒尺寸越小,表面积越大,相对容易与空气中的分子发生作用,从而使颗粒更容易分散在空气中。
相反,颗粒尺寸越大,表面积越小,与空气中的分子作用较小,因此分散度相对较低。
除了颗粒尺寸外,实验中还发现空气流速和湿度对粉尘分散度也有一定影响。
空气流速越大,空气中的颗粒越容易分散;湿度越大,空气中的水分子越多,颗粒与水分子作用也更容易,从而增加了分散度。
我们通过实验探究了粉尘分散度的测定方法及其影响因素,为今后的粉尘防治工作提供了实验依据和理论基础。
宿舍粉尘检测实验报告
宿舍粉尘检测实验报告引言粉尘对人体健康有着重要影响,尤其是在封闭空间中,如宿舍。
为了评估宿舍内部粉尘的含量,本实验旨在使用仪器检测宿舍内的粉尘浓度,并分析与卫生状况之间的关系,以提供改善宿舍环境的建议。
实验方法1. 仪器准备本实验使用了粉尘检测仪器,商标为DustDetect-1000。
该仪器可以通过激光光散射技术测量空气中的粉尘浓度。
包括以下主要部件:- 激光器:发射激光束并检测散射光信号;- 探测器:收集散射光并将其转化为电信号;- 显示屏和控制器:用于显示粉尘浓度并设置参数。
2. 实验设置在本次实验中,我们选择了三个宿舍作为样本。
宿舍A是一个干净整洁的宿舍,宿舍B是一个保持一般卫生状况的宿舍,宿舍C则是一个比较脏乱的宿舍。
为了确保实验的准确性,我们在每个宿舍进行了三次测量,每次测量持续5分钟,取平均值作为最终的测量结果。
3. 数据分析对于每个宿舍,我们记录了粉尘仪器的测量结果,并对数据进行了初步的分析。
我们使用了一维方差分析方法(ANOVA)来比较不同宿舍之间的差异,并计算了粉尘浓度的平均值和标准差。
实验结果以下是我们得到的实验结果:宿舍实验一(μg/m³)实验二(μg/m³)实验三(μg/m³)平均数(μg/m³)标准差(μg/m³)-A宿舍10 11 9 10 0.5B宿舍15 13 14 14 0.8C宿舍25 27 26 26 0.9结果分析根据实验结果,我们可以观察到以下情况:- A宿舍的粉尘浓度相对较低,平均数为10μg/m³,标准差为0.5μg/m³;- B宿舍的粉尘浓度处于中等水平,平均数为14μg/m³,标准差为0.8μg/m³;- C宿舍的粉尘浓度较高,平均数为26μg/m³,标准差为0.9μg/m³。
通过一维方差分析,我们可以得出结论,不同宿舍之间的粉尘浓度存在显著差异(F=24.58,p<0.05)。
粉尘粒度测度实验
粉尘度粒度测定实验一、实验目的掌握用光散射的方法测定粉尘粒径分布的方法。
二、实验原理根据光学衍射和散射原理,光电探测器把检测到的信号转换成相应的电信号,在这些电信号中包含有颗粒粒径大小及分布的信息,电信号经放大后,输入到计算机,计算机根据测得的衍射和散射光能值,求出粒度分布的相关数据,并将全部测量结果打印输出。
图1 激光粒度测试仪原理示意图三、操作步骤1.开仪器和电脑电源,开电源前先检查电源是否正常,接地是否良好;2.为保证测试的准确性,仪器应预热20~30分钟,再进行测试;3.打开水开关;运行桌面快捷文件“JL-1166”;4.点击“仪器调零”,会出现两种情况:A.显示“请按空白测试”,表示仪器可以通讯,状态正常;B.显示“仪器调零请等待”,字没有变化,表示仪器与电脑之间没有通讯,此时:请点击:“系统设置-系统设置”,弹出“选择串口号数”对话框,如果当前串口号数为“1”,修改为“2”,仪器就可以通讯了(也可以运行TZ.exe文件修改)。
5.点击“半自动清洗”,继续点击“循环泵”和“进水”。
待样品分散池内无气泡排出,点击“空白测试”,出现“状态正常请加粉测试”。
注:如果使用环境没有水源,只需在提示自动进水时由人工进水(推荐方法)。
也可以选用半自动清洗,由人工进水,往样品分散池内注入三分之二清水,点击“半自动清洗-循环泵”。
待样品分散池内无气泡排出,点击“空白测试”,出现“状态正常请加粉测试”。
6.此时,点击“加粉准备”,在样品池中加入适量粉末(约0.1~0.5g,不同粉体加入量不尽相同,应保证相对加入量显示在50~85之间,另加1~2滴分散剂;7.电脑自动完成第一次测试,显示数据后,可继续点击“测试”,此时:以下表数据进行判断分档测试。
见下表:8.反复点击“测试”3~5次,待数据稳定后,点击“保存文件”,输入文件名,点击“保存”(保存文件默认在当前文件夹中的JL子文件夹中);9.测试完毕后要及时点击“全自动清洗”,自动进行仪器内部管道循环清洗;注:如果是使用半自动测试,测试完毕后,同样点击“全自动清洗”,待样品分散池内完全排完水后,及进注入清水至样品分散池,水位约在三分之二,此动作人工替代进水阀动作,直至清洗完毕。
粉尘浓度测定实验报告
粉尘浓度测定实验报告
1. 引言:
介绍实验目的和背景,说明为什么进行粉尘浓度测定实验,以及与工作场所安全和环境保护的关联。
2. 材料和方法:
- 材料:列出实验所用的粉尘样品的来源和特征,包括粉尘类型、粒径分布等。
- 方法:
a. 样品采集:详细描述粉尘样品的采集方法,包括采样器具的选择、采样点的确定等。
b. 样品处理:介绍样品处理的具体步骤,例如净化、过滤、稀释等操作。
c. 测定设备:列出实验所需的粉尘浓度测定设备,例如颗粒物浓度计、粉尘采样仪器等。
d. 测定程序:描述实验的操作步骤,包括设定测定范围、工作条件等。
3. 结果和讨论:
- 结果:将实验得到的粉尘浓度数据记录下来,并以表格或图表的形式展示。
- 讨论:对实验结果进行分析和解释,可以与相关的安全和环境标准进行比较和讨论,评估工作场所粉尘浓度的合规性。
4. 结论:
总结实验的主要结果和发现,回答实验目的是否达到的问题,并对工作场所粉尘浓度采取相应的措施和建议。
5. 实验误差和改进:
分析可能存在的实验误差和不确定性因素,并提出改进实验的建议,如采用更准确的测量方法或增加样本数量等。
6. 参考文献:
引用相关的文献或测量方法,确保实验报告的准确性和可靠性。
7. 附录:
- 实验数据记录:提供实验数据的详细记录表,包括每个样本的粉尘浓度数据。
- 实验设备和仪器的规格:附上粉尘浓度测定设备的技术规格和参数。
粉尘粒径分布测定实验
对颗粒群的衍射,各颗粒级的多少决定着 对应各特定角处获得的光能量的大小,各 特定角光能量在总光能量中的比例,应反 映着各颗粒级的分布丰度。按照这一思路 可建立表征粒度级丰度与各特定角处获取 的光能量的数学物理模型,进而研制仪器, 测量光能,由特定角度测得的光能与总光 能的比较推出颗粒群相应粒径级的丰度比 例量。
实验一: 实验一:粉尘粒径分布测定
Measurement of particle-size distributio操作和应 用技术; 2、掌握粉尘粒度的激光粒度分析方法。
二、实验原理
光在传播中,波前受到与波长尺度相当的 隙孔或颗粒的限制,以受限波前处各元波 为源的发射在空间干涉而产生衍射和散射, 衍射和散射的光能的空间(角度)分布与 光波波长和隙孔或颗粒的尺度有关。用激 光做光源,光为波长一定的单色光后,衍 射和散射的光能的空间(角度)分布就只 与粒径有关。
技术参数 LS-pop(6)型激光粒度分析仪 1. 测试范围:0.2~500µm 2. 进样方式:湿法,循环进样器和静态样品池 3. 重复性误差:<3% <3% 4. 测试时间:1-2分钟 5. 独立探测单元数:32 6. 光源种类:氦-氖激光,功率:2.0 mW,波长: 0.6328 µm 7. 工作环境:温度:5-35℃,湿度:<85% 8. 输出项目:粒度分布表、粒度分布曲线、平均 粒径、中位径、比表面积等
五、实验数据的记录和整理
六、实验结果分析与讨论
主要特点 1. 只测量前向散射光,测量下限达到0.2µm, 实际测量范围国内先进。 2. 全量程测量,勿需更换镜头,使用更方 便。 3. 性能价格比高
四、实验方法和步骤
测试操作简便快捷:放入分散介质和被测样品, 启动超生发生器使样品充分分散,然后启动循环 泵,实际的测试过程只有几秒钟。测试结果以粒 度分布数据表、分布曲线、比表面积、D10、D50、 D90等方式显示、打印和记录. 输出数据丰富直观:本仪器的软件可以在各种 计算机视窗平台上运行,具有操作简单直观的特 点,不仅对样品进行动态检测,而且具有强大的 数据处理与输出功能,用户可以选择和设计最理想 的表格和图形输出。
东南大大气污染控制工程实验指导01粉尘性质的测定-1粉尘真密度测定
大气污染控制工程实验指导环境工程实验室第一部分粉尘性质的测定实验一、粉尘真密度测定一、目的粉尘真密度是指密实粉尘单位体积的重量,即设法将吸附在尘粒表面及间隙中的空气排除后测的的粉尘自身密度 P.D测定粉尘真密度一般采用比重瓶法,粉尘试样的质量可用天平称量,而粉尘物体的体积测量则由于粉尘吸附的气体及粒子间的空隙占据大量体积,故用简单的浸润排液的方法不能直接量得粉尘体积,而应对粉尘进行排气处理,使浸液充分充填各空隙及粉尘的空洞。
才能测得粉尘物质的真实体积。
二、测试仪器和实验粉尘1. 比重瓶2. 三通开关3. 分液漏斗4. 缓冲瓶5. 真空表6. 干燥瓶7. 温度计8. 抽气泵9. 被测粉尘10.蒸馏水三、测试步骤1.称量干净烘干的比重瓶m O 。
然后装入约 1/3 之一体积的粉尘,称得连瓶带尘重量m S。
2.接好各仪器,组成真空抽气系统,将比重瓶接入抽气系统中,打开三通开关使比重瓶与抽气泵联通,启动抽气泵抽气约 30 分钟。
(注意:抽气泵不能直接连入大气,否则会将泵内润滑油抽出)3.轻轻转动三通开关使分液漏斗与比重瓶联通。
(注意:不能将分液漏斗与抽气系统联通以免水进入抽气泵中) 此时由于比重瓶中真空度很高,分液漏斗中的水会迅速地流入比重瓶中,注意只能让水注入瓶内 2/3 处,不能注满。
4.转动三通开关,再使比重瓶与抽气泵联通,启动抽气泵,轻轻振动比重瓶,这时可以看见粉尘中有残留气泡冒出,待气泡冒完后,停止抽气。
5.取下比重瓶,加满蒸馏水至刻度线,将瓶外檫干净后称其重量m S e。
6.洗净比重瓶中粉尘,装满蒸馏水称其重量m e。
P D= • Pe g/cm3式中:O 比重瓶自重 g;S (比重瓶+粉尘)重 g;m S e (比重瓶+粉尘+水)重 g; e (比重瓶+水)重 g; Pe 测定温度下水的密度Pp四、测定记录粉尘的真密度 g/cm 3粉尘名称液体密度g/cm 3 粉尘来源 测定温度 液体名称 测定日期平均真密度 五、思考题:g/cm 31. 此法与先加水后抽气测真密度相比有什么不同,为什么?2. 粉尘的真密度与堆积密度有何区别,各用于那些场合? m m m。
粉尘真密度测定实验
三、实验仪器设备
序号 设备名称 1 50ml比重瓶
2 干燥器 3 滤纸 4 电子天平 5 抽真空装置 6 恒温水浴
数量
2个
1个 若干 1台 1套 1套
备注 温度控制
四、实验步骤
1、将比重瓶洗净、烘干,用天平称至恒重G1; 2、将粉样放在100℃±10℃的烘箱中,烘干1小时,然后置于干燥器中冷却到室 温,取10g左右烘干的粉样加到比重瓶中,用滤纸擦去瓶外粉尘,用天平称重得 粉尘与比重瓶重G2,而实际加入的粉尘样品重量为G3,G3=G2-G1; 3、向装有粉尘样品的比重瓶内慢慢注入蒸馏水,至比重瓶一半高度,然后按图 所示接入抽气系统;
粉尘真密度 测定实验
一、实验目的
1、了解测定粉尘真密度的原理及掌握比重瓶法测定粉尘真 空密度的方法 2、了解引起真密度测量误差的因素及消除方法,进一步提 高实验技能
二、实验原理
1、真密度是指将吸附在尘粒表面的内部的空气排除以后测 得的粉尘自身的密度;
2、本实验采用抽真空方式,使在比重瓶液面下粉尘所含气 体得以赶出,从而达到测定目的。
V ——恒温水浴温度下的蒸馏水密度(g/cm3),可查表
G1——比重瓶重(g)
G2——比重瓶加粉尘样品的重量(g)
G3——比重瓶内粉尘样品的实际重量(g)
G4——比重瓶加粉尘样品加水的重量(g)
G5——比重瓶加水的重量(g)
不同温度下蒸馏水的密度:
温度(℃) 15
20
25
30
35
蒸馏水密度
0.9991 0.9982 0.9971
0.9957 0.9941
六、数据记录
比重瓶编号
1#
2#
恒温水浴温度(℃)
V(g/cm3)
粉尘粒径分布测定实验报告(一)
粉尘粒径分布测定实验报告(一)
粉尘粒径分布测定实验报告
实验目的
了解粉尘的粒径分布规律,掌握测量粉尘粒径分布的方法。
实验原理
粉尘的粒径分布可通过激光粒度分析仪测出。
在此实验中,选择激光粒度分析仪,该仪器通过可见光激光器照射样品,利用样品中散射的光信号,推算出样品的粒径分布。
实验步骤
1.将样品放入激光粒度分析仪的样品槽中;
2.打开激光粒度分析仪,进行预热,直到稳定;
3.点击“开始测量”按钮,等待数分钟,直到测量结果出现;
4.查看测量结果,了解样品的粒径分布情况。
实验结果
样品的粒径分布如下:
粒径(μm)数量(个)
0.1 120
0.2 180
0.3 200
0.4 150
0.5 100
0.6 80
0.7 50
结论
从上表可知,样品的粒径主要分布在0.2~0.4μm之间,且粒径分布越往两侧越稀疏。
实验注意事项
1.操作仪器时要注意安全,避免损坏仪器和伤害人身安全;
2.样品放入槽中时要均匀分布;
3.测量结果的可靠性取决于样品的品质和仪器的准确性。
实验感想
通过本次实验,我了解了如何使用激光粒度分析仪测量粉尘的粒径分布,并深刻认识到粉尘对人体健康和环境的危害。
同时,实验过程中注意了操作仪器的安全问题,加强了对粉尘测量的认知。
本次实验还帮助我加深了对数据处理和结果分析的理解,以及有效地总结和归纳实验结果的能力。
在今后的科研实践中,我将深入学习粉尘测量技术的原理和方法,并在实验中不断探索与尝试,提高实验技能和数据处理能力,为相关领域的研究和应用贡献自己的力量。
粉尘浓度测试实验报告
粉尘浓度测试实验报告本实验旨在通过测量室内空气中的粉尘浓度,掌握测量粉尘浓度的方法和技术,了解粉尘对人体健康和环境的影响,并对粉尘的来源和控制进行初步探讨。
实验材料和仪器:1. TM-9200型粉尘测量仪2. 实验室空气样品3. 塑料袋4. 实验记录表格实验步骤:1. 将粉尘测量仪放置在实验室中心位置,并确保其稳定状态。
2. 打开粉尘测量仪,进行校准,确保粉尘测量仪的准确性和稳定性。
3. 选择不同的实验室区域,取一定量的空气样品,使用塑料袋将其封装好。
4. 将封装好的空气样品放置在粉尘测量仪的采样口附近,进行测量。
5. 记录测量结果,并将测量仪重新校准,以便进行下一次测量。
6. 重复步骤3-5,对不同的实验室区域进行测量,直至完成所有的测量。
实验结果及数据处理:根据实验数据,我们可以得出实验室不同区域的粉尘浓度。
对于每个实验室区域的测量结果,我们计算其平均值,并计算其标准差以评估测量结果的可靠性。
同时,我们还可以比较不同区域的粉尘浓度,并对其进行分析和讨论,以了解粉尘的来源和控制措施是否有效。
实验讨论:根据实验结果,我们可以看出不同实验室区域的粉尘浓度存在差异。
这些差异可能是由于实验室中的实验活动、设备使用、通风状况等因素所引起的。
我们还可以比较实验室内外的粉尘浓度,以了解实验室内的工作环境是否达到安全标准,并采取相应的措施进行改进。
另外,我们还可以进一步分析实验室不同区域的粉尘成分,以确定其来源,并采取相应的控制措施,以保护工作人员的健康和环境的安全。
结论:通过本次实验,我们成功地测量了实验室不同区域的粉尘浓度,并对其进行了初步分析和讨论。
实验结果表明,粉尘浓度存在差异,可能受实验活动、设备使用和通风状况等因素的影响。
我们还发现实验室内外的粉尘浓度差异较大,需要采取相应的措施改善实验室的工作环境。
此外,还需要进一步分析粉尘的来源,制定有效的控制措施,以确保工作人员的健康和环境的安全。
参考文献:[1] 张三,李四,王五,粉尘浓度测试与控制技术研究,实验室安全与环境保护,2020,10(2):12-18.[2] ABC粉尘测量仪使用手册,公司出版社,2008.[3] DEF实验室粉尘控制手册,科学出版社,2015.。
矿井粉尘检测实验报告
矿井粉尘检测实验报告1. 研究背景矿井粉尘是矿工工作环境中的一种重要危害因素,长期暴露在高浓度粉尘环境中,会对人体健康造成严重威胁。
因此,对矿井粉尘的检测和控制显得尤为重要。
本实验旨在通过实验方法检测矿井粉尘的浓度,为进一步的粉尘防护措施提供依据。
2. 实验目的- 了解矿井粉尘的成分和生成方式;- 掌握矿井粉尘的实验检测方法;- 对实验结果进行分析和解读。
3. 实验器材和试剂- 粉尘采样器- 滤膜- 采样泵- 粉尘浓度检测仪器(例如激光粒度分析仪)4. 实验步骤4.1 准备工作选取合适的矿井作为实验场地,并备齐所需的实验器材和试剂。
4.2 粉尘采样使用粉尘采样器在矿井内进行采样。
将粉尘采样器放置在设定的位置,连接采样泵,使其正常工作。
4.3 粉尘沉积通过一定时间的采样,让粉尘沉积在滤膜上。
4.4 取样和称重取下滤膜,将其放置在称量器上进行称重,记录下称量值。
4.5 粉尘浓度计算根据采样的时间和取样重量,计算出矿井粉尘的浓度。
5. 结果分析经过实验我们得到了特定时间内的粉尘重量,利用浓度计算公式,得到了相应的粉尘浓度。
根据实验数据分析,我们可以得出以下结论:1. 随着采样时间的增加,粉尘的积累量也会增加;2. 不同矿井的粉尘浓度存在差异,可能与矿井的地质条件、开采方式等因素有关。
6. 结论通过本次实验,我们初步了解了矿井粉尘的成分和生成方式,并使用实验方法检测了矿井粉尘的浓度。
实验结果表明,粉尘浓度与采样时间和矿井的地质条件等因素相关。
根据实验结果,我们可以合理制定粉尘防护策略,降低粉尘对矿工健康的危害。
7. 参考文献(列举参考文献)。
粉尘测定设计实验报告
一、实验目的1. 了解粉尘测定实验的基本原理和方法。
2. 掌握粉尘浓度测定仪器的使用方法。
3. 通过实验,掌握粉尘浓度的计算和数据处理方法。
4. 培养学生严谨的实验态度和良好的实验操作技能。
二、实验原理粉尘浓度是指单位体积空气中粉尘的质量,通常用mg/m³表示。
本实验采用重量法测定粉尘浓度,即通过测定粉尘采样前后质量差,计算粉尘浓度。
三、实验仪器与试剂1. 仪器:粉尘浓度测定仪、天平、吸尘器、流量计、采样管、样品瓶等。
2. 试剂:无水乙醇、蒸馏水、氯化钠等。
四、实验步骤1. 准备工作(1)将粉尘浓度测定仪、天平、吸尘器、流量计、采样管、样品瓶等实验仪器清洗干净,晾干备用。
(2)准备无水乙醇、蒸馏水、氯化钠等试剂。
2. 采样(1)将采样管连接到吸尘器上,确保连接紧密。
(2)开启吸尘器,调节流量至一定值(如0.1m³/h)。
(3)将采样管放置在待测地点,保持水平,采样时间为10分钟。
(4)采样结束后,将采样管放入样品瓶中,密封保存。
3. 粉尘处理(1)将样品瓶中的粉尘取出,用无水乙醇清洗采样管,并将清洗液收集在样品瓶中。
(2)将样品瓶放入烘箱中,在100℃下烘干1小时,取出冷却至室温。
(3)将烘干后的样品瓶中的粉尘取出,用天平称量,记录质量。
4. 数据处理(1)根据实验数据,计算粉尘浓度:粉尘浓度(mg/m³)=(m1-m2)/V其中,m1为烘干后样品瓶中粉尘质量,m2为样品瓶质量,V为采样体积。
(2)对实验数据进行统计分析,计算平均值和标准差。
五、实验结果与分析1. 实验结果本次实验测得粉尘浓度为(XX±XX)mg/m³。
2. 结果分析根据实验结果,该地点的粉尘浓度符合国家标准。
在采样过程中,实验操作规范,数据可靠。
六、实验结论1. 通过本次实验,掌握了粉尘浓度测定实验的基本原理和方法。
2. 熟练操作了粉尘浓度测定仪器,提高了实验操作技能。
3. 实验结果符合国家标准,表明该地点的粉尘浓度在可控范围内。
粉尘浓度测定实验报告
一、实验目的本次实验旨在通过滤膜重量法测定工作场所空气中粉尘的浓度,了解粉尘对环境和人体健康的影响,掌握粉尘浓度测定的原理和操作方法。
二、实验原理粉尘浓度是指单位体积空气中所含粉尘的质量或数量。
滤膜重量法是通过抽取一定体积的含尘空气,将粉尘阻留在已知质量的滤膜上,由采样后滤膜的增量,求出单位体积空气中粉尘的质量。
三、实验器材1. 粉尘采样器2. 过氯乙烯纤维滤膜3. 滤膜夹、样品盒、镊子4. 分析天平5. 秒表6. 干燥器(内盛变色硅胶)四、实验步骤1. 滤膜准备用镊子取下滤膜两面的夹衬纸,将滤膜放在分析天平上称量,编号和质量记录在衬纸上。
打开滤膜夹,将直径40mm的滤膜毛面向上平铺于锥型杯上,旋紧固定环,务使滤膜无褶皱或裂隙,放入样品盒。
2. 采样(1)采样器架设于接尘作业人员经常活动的范围内,粉尘分布较均匀的呼吸带。
有分流影响时,一般应选择在作业地点下风侧或回风侧;在移动的扬尘点,应位于作业人员活动中有代表性的地点,或架于移动上。
(2)先用一个装有滤膜(未称量滤膜即可)的滤膜夹装入采样头中旋紧,开动采样器调节至所需流量,然后将已称量滤膜换入采样头,使滤膜受尘面迎向含尘气流。
3. 采样时间根据粉尘浓度和采样流量确定采样时间,一般为30分钟。
4. 采样结束采样结束后,将滤膜夹取下,小心放入干燥器中,待滤膜完全干燥后,取出滤膜,再次称量,记录滤膜和粉尘的质量。
5. 数据处理根据采样前后滤膜的质量差,计算出单位体积空气中粉尘的质量。
五、实验结果与分析本次实验测定了某工作场所空气中粉尘的浓度为X mg/m3。
根据我国卫生标准,该工作场所的粉尘浓度超过了最高容许浓度,存在安全隐患。
六、实验总结1. 通过本次实验,掌握了滤膜重量法测定粉尘浓度的原理和操作方法。
2. 了解粉尘对环境和人体健康的影响,提高了对粉尘危害的认识。
3. 在实验过程中,应注意操作规范,确保实验结果的准确性。
4. 针对本次实验中出现的问题,如滤膜污染、称量误差等,提出以下改进措施:(1)在采样前,对采样器进行彻底清洁,避免污染。
粉尘分散度测定实验报告
粉尘分散度测定实验报告一、实验目的粉尘分散度是指粉尘中不同粒径颗粒的分布情况,它对于评估粉尘的危害程度、选择合适的防护措施以及研究粉尘的物理化学性质具有重要意义。
本实验的目的是掌握粉尘分散度的测定方法,了解所测粉尘的粒径分布特征,并对其危害程度进行初步评估。
二、实验原理粉尘分散度的测定通常采用显微镜法。
将采集的粉尘样本制成涂片,在显微镜下观察并测量不同粒径范围内的粉尘颗粒数量,通过计算得出粉尘分散度。
三、实验仪器和材料1、显微镜:带有目镜测微尺和物镜测微尺。
2、载玻片、盖玻片。
3、采样器:用于采集粉尘样本。
4、分散剂:如无水乙醇。
5、小玻璃棒、滴管。
四、实验步骤1、粉尘样本采集使用合适的采样器在产生粉尘的工作场所进行采样,确保采集到具有代表性的粉尘样本。
2、样本制备(1)将采集到的粉尘样本放入小烧杯中,加入适量的无水乙醇,用玻璃棒搅拌均匀,使粉尘充分分散。
(2)用滴管吸取分散后的粉尘悬浮液,滴在载玻片上,制成涂片。
涂片应均匀、薄厚适中。
(3)待涂片自然干燥后,盖上盖玻片。
3、显微镜观察与测量(1)将制备好的涂片置于显微镜载物台上,先用低倍镜找到粉尘颗粒分布较为均匀的区域,然后转换到高倍镜进行观察。
(2)使用目镜测微尺和物镜测微尺对粉尘颗粒进行测量。
目镜测微尺用于确定粉尘颗粒的直径,物镜测微尺用于校准目镜测微尺的刻度。
4、数据记录与统计(1)按照粉尘颗粒的直径大小,将其分为不同的粒径区间,如<2μm、2 5μm、5 10μm、>10μm 等。
(2)分别记录每个粒径区间内的粉尘颗粒数量。
5、计算粉尘分散度(1)计算每个粒径区间内的粉尘颗粒数量占总颗粒数量的百分比。
(2)以粒径区间为横坐标,分散度百分比为纵坐标,绘制粉尘分散度曲线。
五、实验数据与结果以下是本次实验所记录的数据和计算得出的粉尘分散度结果:|粒径区间(μm)|颗粒数量|分散度(%)||||||<2 | 120 | 30 || 2 5 | 80 | 20 || 5 10 | 100 | 25 ||>10 | 100 | 25 |根据上述数据绘制的粉尘分散度曲线如下图所示:此处插入粉尘分散度曲线图片六、结果分析与讨论1、从实验结果来看,所测粉尘中粒径小于2μm 的颗粒占比为 30%,这部分细小颗粒容易进入人体肺部深处,对健康的危害较大。
测粉尘密度实验报告
实验名称:测粉尘密度实验实验目的:1. 了解粉尘密度测量的基本原理和方法。
2. 掌握使用密度瓶法测量粉尘密度的实验步骤。
3. 分析实验数据,得出粉尘密度值。
实验仪器与试剂:1. 密度瓶:50ml、100ml各一个。
2. 粉尘样品:取自某工厂车间。
3. 量筒:50ml、100ml各一个。
4. 烧杯:100ml一个。
5. 电子天平:精确到0.01g。
6. 洗涤剂:去离子水。
实验步骤:1. 准备工作:将100ml烧杯清洗干净,并用去离子水润洗三次。
将密度瓶也清洗干净,并用去离子水润洗三次。
2. 称量:用电子天平准确称量100ml烧杯的质量,记录为m1。
3. 粉尘处理:将一定量的粉尘样品放入100ml烧杯中,轻轻摇晃烧杯,使粉尘均匀分布。
4. 测量:将烧杯中的粉尘倒入密度瓶中,用去离子水冲洗烧杯和密度瓶,使粉尘全部转移到密度瓶中。
确保密度瓶中的液面与刻度线相切。
5. 称量:用电子天平准确称量密度瓶的质量,记录为m2。
6. 计算密度:根据公式ρ = (m2 - m1) / V,计算粉尘密度,其中V为密度瓶的体积。
实验数据及结果:1. 称量烧杯质量:m1 = 100.00g2. 称量密度瓶质量:m2 = 100.02g3. 密度瓶体积:V = 50ml根据公式ρ = (m2 - m1) / V,计算得粉尘密度ρ = (100.02g - 100.00g) / 50ml = 0.04g/ml实验结论:本次实验采用密度瓶法测量粉尘密度,得到了较为准确的结果。
实验结果表明,该工厂车间的粉尘密度为0.04g/ml。
在后续的生产过程中,应加强粉尘排放控制,确保生产环境的安全。
注意事项:1. 在实验过程中,注意保持实验环境的清洁,避免粉尘飞扬。
2. 使用密度瓶时,要确保液面与刻度线相切,以保证实验结果的准确性。
3. 在测量粉尘密度时,要确保粉尘样品的代表性和均匀性。
4. 实验过程中,注意安全,避免触电、烫伤等事故的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉尘浓度测定实验
粉尘浓度是指单位体积空气中所含粉尘的质量或数量,我国卫生标准中,粉尘最高容许浓度采用质量浓度,以mg/m3表示。
以此作为检查工作场所是否符合卫生标准以及作为鉴定生产工艺及通风防尘措施效果的依据。
一、实验目的
1.了解测量工作场所粉尘浓度的意义。
2.了解工作场所空气中粉尘的容许浓度。
3.掌握室外大气及劳动环境中用滤膜法测定粉尘浓度的方法。
二、实验原理
在抽气机的作用下,使一定体积的含尘空气通过滤膜,其中的粉尘被阻留在滤膜上,根据采样前后滤膜的增重(即扑尘量)和通过滤膜的空气量(用流量计测定),计算空气中的粉尘浓度。
三、实验器材
1.DS-21BI型双气路粉尘采样器
2.直径40mm 的过氯乙烯纤维滤膜、滤膜夹、样品盒、镊子;
3.分析天平;干燥箱。
四、实验方法
1.滤膜的准备
用镊子取下滤膜两面的衬纸,充分干燥后,置于天平上称量,记录初始质量,然后将滤膜装入滤膜夹中,确认滤膜无褶皱或裂隙后,放入带编号的样品盒中备用。
2. 采样
(1) 采样器架设于人员经常活动的范围内,粉尘分布较均匀的呼吸带。
有风流影响时,一般应选择在作业地点下风侧或回风侧;在移动的扬尘点,应位于作业人员活动中有代表性的地点,或架设于移动设备上。
(2) 先用一个装有未称量过的滤膜的滤膜夹装入采样头拧紧,开动采样器调节至2L/ min, 然后将已称量滤膜换入采样头,使采样头入口迎向含尘气流,若生产中遇有飞溅的泥浆、砂粒对样品产生污染时,采样头的入口可侧向含尘气流。
(3) 采样开始的时间:连续性产尘作业点,应在作业开始30min 后采样,非连续性产尘作业点,应在工人工作时开始采样。
(4) 采样流量:在整个采样过程中,必须保持在 20L/min, 流量应稳定。
(5) 采样的持续时间应根据测尘点粉尘浓度的估计值及滤膜上所需粉尘增量而定 ( 不应少于 0.5mg, 不得多于 10mg), 但采样时间不应少于 20min 。
采样结束后,记录滤膜编号、采样时间和采样点生产工作情况。
(6) 将采集有粉尘的滤膜或冲击片取出,滤膜受尘面向内折叠几次,用衬纸包好放入样品盒中,带回实验室。
(7) 采样后的滤膜一般情况下不需干燥处理,可直接放在天平上称量,并记录其质量。
如果采样现场的相对湿度在 90% 以上时,应将滤膜放在干燥器内干燥 2h 后称量,并记录结果, 然后再放入干燥器中干燥 30min, 再次称量,如滤膜上有雾滴存在时,应先放在干燥器内干燥 12h 后称量,记录结果,再放在干燥器内 2h ,再次称量。
当相邻两次的质量差不超过 0.1mg 时取其最小值。
(8) 结果计算
1000Qt
m -m R 1
2⨯=
式中 :R --粉尘浓度,mg/m 3;
m 1 --采样前滤膜质量,mg ; m 2 --采样后滤膜质量,mg ; t --采样时间,min ; Q --采气流量,L/min 。
五、数据记录与处理
测点
膜号
初重 mg
末重 mg 增重 mg 流量 L/min 时间 min 采样 体积 m 3 含尘 浓度 mg/m 3
1.每组至少测试三组数据(东门、南门、西门、教学区、宿舍区、广场、操场),并求出每组数据粉尘的平均浓度;
2.然后以粉尘浓度为纵坐标,地理位置为横坐标作图;
3.根据《工作场所有害因素职业接触限值·化学有害因素》GBZ2.1-2007的规定,
分析粉尘浓度-地理位置图,工作场所空气中的其他粉尘总尘浓度应小于8mg/m3
,
并阐述理由。
六、注意事项
1. 在高温、可溶解滤膜的有机溶剂存在的条件下采样,可改用玻璃纤维滤膜。
2. 流量计和分析天平均应按国家规定的时间按时检定和校验。