2014年广东省汕尾市中考数学试题(真题)(Word版)

合集下载

广东省2014年中考数学试题及答案

广东省2014年中考数学试题及答案

2014年广东省初中毕业生学业考试数学试卷1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名.考场号.座位号.用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦擦干净后,再选涂其他答案标号;不能答在试卷上.4.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔.圆珠笔和涂改液.不按以上要求作答的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.一.选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 在1,0,2,-3这四个数中,最大的数是( )A.1B.0C.2D.-32. 在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 3. 计算3a -2a 的结果正确的是( )A.1B.aC.-aD.-5a 4. 把39x x -分解因式,结果正确的是( )A.()29x x -B.()23x x - C.()23x x + D.()()33x x x +-5. 一个多边形的内角和是900°,这个多边形的边数是( ) A.10 B.9 C.8 D.76. 一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A.47 B.37 C.34D.137. 如图7图,□ABCD 中,下列说法一定正确的是(A.AC=BDB.AC ⊥BDC.AB=CDD.AB=BC 题7图D8. 关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A.94m >B.94m <C.94m =D.9-4m <9. 一个等腰三角形的两边长分别是3和7,则它的周长为( ) A.17 B.15 C.13 D.13或1710. 二次函数()20y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( )A.函数有最小值B.对称轴是直线x =21C.当x <21,y 随x 的增大而减小 D.当 -1 < x < 2时,y >0二. 填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11. 计算32x x ÷= ;12. 据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13. 如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;题13图 题14图14. 如题14图,在⊙O 中,已知半径为5,弦AB 的长为8, 那么圆心O 到AB 的距离为 ;15. 不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16. 如题16图,△ABC 绕点A 顺时针旋转45°得到△C B A ''若∠BAC=90°,AB=AC=2, 题16图 则图中阴影部分的面积等于 .BB三.解答题(一)(本大题3小题,每小题6分,共18分)17.()11412-⎛⎫-+-- ⎪⎝⎭18. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x =19. 如题19图,点D 在△ABC 的AB 边上,且∠ACD=∠A. (1)作∠BDC 的平分线DE ,交BC 于点E(2)在(1)的条件下,判断直线DE 与直线 AC 的位置关系(不要求证明).题19图四.解答题(二)(本大题3小题,每小题7分,共21分)20. 如题20图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60°(A.B.D 三点在同一直线上)。

2014年广东省中考数学试题

2014年广东省中考数学试题

2014年广东省中考数学试题2014年广东数学中考试卷一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是()A、1B、0C、2D、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、3、计算3a-2a的结果正确的是()A、1B、aC、-aD、-5a4、把分解因式,结果正确的是()A、B、C、D、5、一个多边形的内角和是900°,这个多边形的边数是()A、10B、9C、8D、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A、B、C、D、7、如图7图,□ABCD中,下列说法一定正确的是()A、AC=BDB、AC⊥BDC、AB=CDD、AB=BC题7图8、关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围为()A、B、C、D、9、一个等腰三角形的两边长分别是3和7,则它的周长为()A、17B、15C、13D、13或1710、二次函数的大致图象如题10图所示,关于该二次函数,下列说法错误的是()A、函数有最小值B、对称轴是直线x=C、当x0二、填空题(本大题6小题,每小题4分,共24分)11、计算=;12、据报道,截止2013年12月我国网民规模达618000000人.将618000000用科学计数法表示为;13、如题13图,在△ABC中,点D,E分别是AB,AC的中点,若BC=6,则DE=;14、如题14图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为;15、不等式组的解集是;16、如题16图,△ABC绕点A顺时针旋转45°得到△,若∠BAC=90°,AB=AC=,题16图则图中阴影部分的面积等于。

三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:18、先化简,再求值:,其中19、如题19图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).四、解答题(二)(本大题3小题,每小题8分,共24分)20、如题20图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上)。

2014年广东省中考数学试卷

2014年广东省中考数学试卷

2014 年广东省中考数学试卷一、选择题(本大题 10 小题,每小题 3 分,共 30 分)1.(3 分)在 1,0,2,﹣3 这四个数中,最大的数是( ) A .1 B .0 C .2 D .﹣32.(3 分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()3.(3 分)计算 3a ﹣2a 的结果正确的是( ) A .1 B .a C .﹣a D .﹣5a4.(3 分)把 x ﹣9x 分解因式,结果正确的是( )A .x (x ﹣9)B .x (x ﹣3)C .x (x +3)D .x (x +3)(x ﹣3) 5.(3 分)一个多边形的内角和是 900°,这个多边形的边数是( ) A .10 B .9 C .8 D .76.(3 分)一个不透明的布袋里装有 7 个只有颜色不同的球,其中 3 个红球,4 个白球,从 布袋中随机摸出一个球,摸出的球是红球的概率是( )A .B .C .D .7.(3 分)如图, ABCD 中,下列说法一定正确的是()A .AC=BDB .AC ⊥BD C .AB=CD D .AB=BC8.(3 分)关于 x 的一元二次方程 x ﹣3x +m=0 有两个不相等的实数根,则实数 m 的取值范 围为( )A .B .C .D .9.(3 分)一个等腰三角形的两边长分别是 3 和 7,则它的周长为( ) A .17 B .15 C .13 D .13 或 1710.(3 分)二次函数 y=ax +bx +c (a ≠0)的大致图象如图,关于该二次函数,下列说法错 误的是( )32 2 22 2A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0二、填空题(本大题6小题,每小题4分,共24分)11.(4分)计算:2x÷x=.12.(4分)据报道,截止2013年12月我国网民规模达618000000人.将618000000用科学记数法表示为.13.(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= .14.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.(4分)不等式组的解集是.16.(4分)如图△,ABC绕点A顺时针旋转45°得到△AB△′C′,若∠BAC=90°,AB=AC= 则图中阴影部分的面积等于.,3三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)17.(6 分)计算: +|﹣4|+(﹣1) ﹣( ) .18.(6 分)先化简,再求值:(+ )•(x ﹣1),其中 x=.19.(6 分)如图,点 D 在△ABC 的 AB 边上,且∠ACD=∠A .(1)作∠BDC 的平分线 DE ,交 BC 于点 E (用尺规作图法,保留作图痕迹,不要求写作 法);(2)在(1)的条件下,判断直线 DE 与直线 AC 的位置关系(不要求证明).四、解答题(二)(本大题 3 小题,每小题 7 分,共 21 分)20.(7 分)如图,某数学兴趣小组想测量一棵树 CD 的高度,他们先在点 A 处测得树顶 C 的仰角为 30°,然后沿 AD 方向前行 10m ,到达 B 点,在 B 处测得树顶 C 的仰角高度为 60° (A 、B 、D 三点在同一直线上).请你根据他们测量数据计算这棵树 CD 的高度(结果精确 到 0.1m ).(参考数据: ≈1.414, ≈1.732)21.(7 分)某商场销售的一款空调机每台的标价是 1635 元,在一次促销活动中,按标价的 八折销售,仍可盈利 9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机 100 台,问盈利多少元?22.(7 分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡 导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天 午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不 完整的统计图.0 ﹣1 2(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.24.(9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.2014 年广东省中考数学试卷参考答案与试题解析一、选择题(本大题 10 小题,每小题 3 分,共 30 分)1.(3 分)(2014•汕头)在 1,0,2,﹣3 这四个数中,最大的数是( )A .1B .0C .2D .﹣3 【考点】有理数大小比较.【分析】根据正数大于 0,0 大于负数,可得答案. 【解答】解:﹣3<0<1<2, 故选:C .【点评】本题考查了有理数比较大小,正数大于 0,0 大于负数是解题关键.2.(3 分)(2014•汕头)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形,不是中心对称图形.故错误; B 、不是轴对称图形,也不是中心对称图形.故错误; C 、是轴对称图形,也是中心对称图形.故正确;D 、不是轴对称图形,也不是中心对称图形.故错误. 故选 C .【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴, 图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转 180 度后与原图 重合.3.(3 分)(2014•汕头)计算 3a ﹣2a 的结果正确的是( )A .1B .aC .﹣aD .﹣5a 【考点】合并同类项.【分析】根据合并同类项的法则,可得答案.【解答】解:原式=(3﹣2)a=a , 故选:B .【点评】本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3 分)(2014•汕头)把 x ﹣9x 分解因式,结果正确的是( )A .x (x ﹣9)B .x (x ﹣3)C .x (x +3)D .x (x +3)(x ﹣3) 【考点】提公因式法与公式法的综合运用.32 2 2【专题】因式分解.【分析】先提取公因式 x ,再对余下的多项式利用平方差公式继续分解.【解答】解:x ﹣9x ,=x (x ﹣9),=x (x +3)(x ﹣3). 故选:D .【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公 因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3 分)(2014•汕头)一个多边形的内角和是 900°,这个多边形的边数是( )A .10B .9C .8D .7 【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n ﹣2)•180°,列式求解即可. 【解答】解:设这个多边形是 n 边形,根据题意得,(n ﹣2)•180°=900°, 解得 n=7. 故选:D .【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3 分)(2014•汕头)一个不透明的布袋里装有 7 个只有颜色不同的球,其中 3 个红球, 4 个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .B .C .D .【考点】概率公式.【分析】直接根据概率公式求解即可.【解答】解:∵装有 7 个只有颜色不同的球,其中 3 个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率= .故选:B .【点评】本题考查的是概率公式,熟知随机事件 A 的概率 P (A )=事件 A 可能出现的结果 数与所有可能出现的结果数的商是解答此题的关键.7.(3 分)(2014•汕头)如图, ABCD 中,下列说法一定正确的是( )A .AC=BDB .AC ⊥BD C .AB=CD D .AB=BC 【考点】平行四边形的性质.【分析】根据平行四边形的性质分别判断各选项即可. 【解答】解:A 、AC ≠BD ,故 A 选项错误;B 、AC 不垂直于 BD ,故 B 选项错误;C 、AB=CD ,利用平行四边形的对边相等,故 C 选项正确;32D 、AB ≠BC ,故 D 选项错误; 故选:C .【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3 分)(2014•汕头)关于 x 的一元二次方程 x ﹣3x +m=0 有两个不相等的实数根,则实 数 m 的取值范围为( )A .B .C .D .【考点】根的判别式. 【专题】判别式法.【分析】先根据判别式的意义得 △到=(﹣3) ﹣4m >0,然后解不等式即可.【解答】解:根据题意 △得=(﹣3) ﹣4m >0,解得 m < .故选:B .【点评】本题考查了一元二次方程 ax +bx +c=0(a ≠0)的根的判别 △式=b ﹣4ac : △当>0,方程有两个不相等的实数根;当△=0△ ,方程有两个相等的实数根;当△<△ 0,方程没有实数 根.9.(3 分)(2014•汕头)一个等腰三角形的两边长分别是 3 和 7,则它的周长为( ) A .17 B .15 C .13 D .13 或 17【考点】等腰三角形的性质;三角形三边关系. 【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为 3;(2)当 等腰三角形的腰为 7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为 3,底为 7 时,3+3<7 不能构成三角形; ②当等腰三角形的腰为 7,底为 3 时,周长为 3+7+7=17. 故这个等腰三角形的周长是 17. 故选:A .【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3 分)(2014•汕头)二次函数 y=ax +bx +c (a ≠0)的大致图象如图,关于该二次函数, 下列说法错误的是( )A .函数有最小值B .对称轴是直线 x=2222 2 2C .当 x < ,y 随 x 的增大而减小D .当﹣1<x <2 时,y >0【考点】二次函数的性质. 【专题】压轴题;数形结合.【分析】根据抛物线的开口方向,利用二次函数的性质判断 A ; 根据图形直接判断 B ;根据对称轴结合开口方向得出函数的增减性,进而判断 C ;根据图象,当﹣1<x <2 时,抛物线落在 x 轴的下方,则 y <0,从而判断 D .【解答】解:A 、由抛物线的开口向上,可知 a >0,函数有最小值,正确,故 A 选项不符 合题意;B 、由图象可知,对称轴为 x= ,正确,故 B 选项不符合题意;C 、因为 a >0,所以,当 x < 时,y 随 x 的增大而减小,正确,故 C 选项不符合题意;D 、由图象可知,当﹣1<x <2 时,y <0,错误,故 D 选项符合题意. 故选:D .【点评】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题. 二、填空题(本大题 6 小题,每小题 4 分,共 24 分)11.(4 分)(2014•汕头)计算:2x ÷x= 2x . 【考点】整式的除法. 【专题】计算题.【分析】直接利用整式的除法运算法则求出即可.【解答】解:2x ÷x=2x .故答案为:2x .【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4 分)(2014•汕头)据报道,截止 2013 年 12 月我国网民规模达 618 000 000 人.将 618 000 000 用科学记数法表示为 6.18×10 .【考点】科学记数法—表示较大的数. 【专题】常规题型.【分析】科学记数法的表示形式为 a ×10 的形式,其中 1≤|a |<10,n 为整数.确定 n 的 值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当 原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:将 618 000 000 用科学记数法表示为:6.18×10 .故答案为:6.18×10 .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a ×10 的形式,其中 1 ≤|a |<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.13.(4 分)(2014•汕头)如图,在△ABC 中,D ,E 分别是边 AB ,AC 的中点,若 BC=6, 则 DE= 3 .32 3 228 n 8 8n【考点】三角形中位线定理.【分析】由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.【解答】解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为:3.【点评】本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)(2014汕头)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.【考点】垂径定理;勾股定理.【分析】作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=4,然后在△R t AOC中利用勾股定理计算OC即可.【解答】解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在△R t AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)(2014•汕头)不等式组的解集是1<x<4.【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)(2014•汕头)如图△,ABC绕点A顺时针旋转45°得△到AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.【考点】旋转的性质;等腰直角三角形.【专题】压轴题.【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出A D= BC=1,AF=FC′=sin45°AC′=AC′=1,进而求出阴影部分的面积.【解答】解:∵△ABC绕点A顺时针旋转45°得到△AB△′C′,∠BAC=90°,AB=AC=∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=sin45°AC′=AC′=1,,∴图中阴影部分的面积等于:S﹣S=×1×1﹣×(△△故答案为:﹣1.﹣1)=﹣1.AFC′DEC′2【点评】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出 A D ,AF , DC ′的长是解题关键.三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)17.(6 分)(2014•汕头)计算: +|﹣4|+(﹣1) ﹣( ) .【考点】实数的运算;零指数幂;负整数指数幂. 【专题】计算题.【分析】本题涉及零指数幂、负指数幂、二次根式化简3 个考点.在计算时,需要针对每个 考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+4+1﹣2 =6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类 题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6 分)(2014•汕头)先化简,再求值:(+)•(x ﹣1),其中 x=【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把 x 的值代入进行计算即可..【解答】解:原式= =2x +2+x ﹣1 =3x +1,当 x=时,原式=.•(x ﹣1)【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 19.(6 分)(2014•汕头)如图,点 D 在△ABC 的 AB 边上,且∠ACD=∠A .(1)作∠BDC 的平分线 DE ,交 BC 于点 E (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线 DE 与直线 AC 的位置关系(不要求证明).0 ﹣1 22【考点】作图—基本作图;平行线的判定.【专题】作图题.【分析】(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.【解答】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A= ∠BDC,∴∠A=∠BDE,∴DE∥AC.【点评】此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014•汕头)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)(2014•汕头)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【考点】分式方程的应用.【专题】销售问题.【分析】(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.【点评】本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)(2014•汕头)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】反比例函数与一次函数的交点问题.【专题】代数几何综合题.【分析】(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y= 图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).【点评】本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)(2014•汕头)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.【考点】切线的判定;弧长的计算.【专题】几何综合题;压轴题.【分析】(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利△用CEP∽△CAP找出角的关系求解.【解答】(1)解:∵AC=12,∴CO=6,∴==2π;答:劣弧PC的长为:2π.(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:法一:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(2)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.法二:设⊙O的半径为r.∵OD⊥AB,∠ABC=90°,∴OD∥BF,∴△ODE≌△CFC又∵OD=OE,∴FC=EC=r﹣OE=r﹣OD=r﹣BC∴BF=BC+FC=r+BC∵PD=r+OD=r+BC∴PD=BF又∵PD∥BF,且∠DBF=90°,∴四边形DBFP是矩形∴∠OPF=90°OP⊥PF,∴PF是⊙O的切线.【点评】本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)(2014汕头)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD 的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P 到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.【考点】相似形综合题. 涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第 (2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾 股定理、解一元二次方程等知识点,重点考查了分类讨论的数学思想. 【专题】几何综合题;压轴题;动点型.【分析】(1)如答图 1 所示,利用菱形的定义证明;(2)如答图 2 所示,首先求出△PEF 的面积的表达式,然后利用二次函数的性质求解; (3)如答图 3 所示,分三种情形,需要分类讨论,分别求解.【解答】(1)证明:当 t=2 时,DH=AH=4,则 H 为 AD 的中点,如答图 1 所示. 又∵EF ⊥AD ,∴EF 为 AD 的垂直平分线, ∴AE=DE ,AF=DF .∵AB=AC ,AD ⊥BC 于点 D , ∴AD ⊥BC ,∠B=∠C . ∴EF ∥BC ,∴∠AEF=∠B ,∠AFE=∠C , ∴∠AEF=∠AFE , ∴AE=AF ,∴AE=AF=DE=DF ,即四边形 AEDF 为菱形.(2)解:如答图 2 所示,由(1)知 EF ∥BC , ∴△AEF ∽△ABC ,∴,即 ,解得:EF=10﹣ t .S= EF •DH= (10﹣ t )•2t=﹣ t +10t=﹣ (t ﹣2) +10(0<t < △∴当 t=2 秒时,S 存在最大值,最大值为 10cm ,此时 BP=3t=6cm . △(3)解:存在.理由如下:①若点 E 为直角顶点,如答图 3①所示, 此时 PE ∥AD ,PE=DH=2t ,BP=3t .),∵PE ∥AD ,∴,即,此比例式不成立,故此种情形不存在;②若点 F 为直角顶点,如答图 3②所示, 此时 PF ∥AD ,PF=DH=2t ,BP=3t ,CP=10﹣3t .∵PF ∥AD ,∴,即 ,解得 t=;2 2 PEF 2PEF③若点 P 为直角顶点,如答图 3③所示.过点 E 作 EM ⊥BC 于点 M ,过点 F 作 FN ⊥BC 于点 N ,则 EM=FN=DH=2t ,EM ∥FN ∥AD . ∵EM ∥AD ,∴,即 ,解得 BM= t ,∴PM=BP ﹣BM=3t ﹣ t= t .在 △R t EMP 中,由勾股定理得:PE =EM +PM =(2t ) +( t ) = ∵FN ∥AD ,∴,即 ,解得 CN= t ,∴PN=BC ﹣BP ﹣CN=10﹣3t ﹣ t=10﹣t .在 △R t FNP 中,由勾股定理得:PF =FN +PN =(2t ) +(10﹣ t ) =在 △R t PEF 中,由勾股定理得:EF =PE +PF ,t .t ﹣85t +100.即:(10﹣ t ) =(t )+(t ﹣85t +100)化简得:解得:t=t ﹣35t=0,或 t=0(舍去).∴t=综上所述,当 t=秒或 t=秒时,△PEF 为直角三角形.【点评】本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角 形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.2 2 2 2 222 2 22 222 2 2 2 222参与本试卷答题和审题的老师有:2300680618;caicl;星期八;sjzx;CJX;gbl210;gsls;HJJ;王岑;lanchong;nhx600;sks;ZJX;sd2011;zhjh;lantin;wkd;未来(排名不分先后)菁优网2016年12月20日考点卡片1.有理数大小比较(1)有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示 的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及 0 的大小, 利用绝对值比较两个负数的大小. (2)有理数大小比较的法则:①正数都大于 0; ②负数都小于 0;③正数大于一切负数;④两个负数,绝对值大的其值反而小. 【规律方法】有理数大小比较的三种方法1.法则比较:正数都大于0,负数都小于 0,正数大于一切负数.两个负数比较大小,绝对 值大的反而小.2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数. 3.作差比较:若 a ﹣b >0,则 a >b ; 若 a ﹣b <0,则 a <b ; 若 a ﹣b=0,则 a=b .2.科学记数法—表示较大的数(1)科学记数法:把一个大于 10 的数记成 a ×10 的形式,其中 a 是整数数位只有一位的 数,n 是正整数,这种记数法叫做科学记数法.【科学记数法形式:a ×10 ,其中1≤a <10, n 为正整数.】(2)规律方法总结:①科学记数法中 a 的要求和 10 的指数 n 的表示规律为关键,由于 10 的指数比原来的整数 位数少 1;按此规律,先数一下原数的整数位数,即可求出 10 的指数 n .②记数法要求是大于 10 的数可用科学记数法表示,实质上绝对值大于 10 的负数同样可用 此法表示,只是前面多一个负号.3.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、 乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算 乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行. 另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0 指数)运算、根 式运算、特殊三角函数值的计算以及绝对值的化简等.n n2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从 左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.4.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不 变. (3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同 系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数 会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母 和字母的指数不变.5.整式的除法 整式的除法:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式 里含有的字母,则连同他的指数一起作为商的一个因式.关注:从法则可以看出,单项式除以单项式分为三个步骤:①系数相除;②同底数幂相除; ③对被除式里含有的字母直接作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加. 说明:多项式除以单项式实质就是转化为单项式除以单项式.多项式除以单项式的结果仍是 一个多项式.6.提公因式法与公式法的综合运用 提公因式法与公式法的综合运用.7.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注 意运算的结果要化成最简分式或整式.【规律方法】分式化简求值时需注意的问题1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺 少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选 择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式 都有意义,且除数不能为 0.8.零指数幂零指数幂:a =1(a ≠0)由 a ÷a =1,a ÷a =a =a 可推出 a =1(a ≠0)注意:0 ≠1.第 24 页(共 31 页)m m m m m ﹣m 0 0 0。

2014年广东省中考数学试卷及解析

2014年广东省中考数学试卷及解析

2014年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣32.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a4.(3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)5.(3分)一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9C.8D.76.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.7.(3分)如图,▱ABCD中,下列说法一定正确的是()A.A C=BD B.A C⊥BD C.A B=CD D.A B=BC8.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.9.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1710.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=D.当﹣1<x<2时,y>0C.当x<,y随x的增大而减小二、填空题(本大题6小题,每小题4分,共24分)11.(4分)计算:2x3÷x=.12.(4分)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为.13.(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=.14.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.(4分)不等式组的解集是.16.(4分)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:+|﹣4|+(﹣1)0﹣()﹣1.18.(6分)先化简,再求值:(+)•(x2﹣1),其中x=.19.(6分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C 的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.(7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22.(7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.24.(9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.2014年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,不是中心对称图形.故A选项错误;B、不是轴对称图形,也不是中心对称图形.故B选项错误;C、是轴对称图形,也是中心对称图形.故C选项正确;D、是轴对称图形,不是中心对称图形.故D选项错误.故选:C.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3分)考点:提公因式法与公式法的综合运用.专题:因式分解.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选:D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故A选项错误;B、AC不垂直于BD,故B选项错误;C、AB=CD,利用平行四边形的对边相等,故C选项正确;D、AB≠BC,故D选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)考点:根的判别式.专题:判别式法.分析:先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)考点:二次函数的性质.专题:压轴题;数形结合.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)考点:整式的除法.专题:计算题.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为:3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)考点:垂径定理;勾股定理.分析:作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=4,然后在Rt△AOC 中利用勾股定理计算OC即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答:解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)考点:作图—基本作图;平行线的判定.专题:作图题.分析:(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)考点:分式方程的应用.专题:销售问题.分析:(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.解答:解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)考点:反比例函数与一次函数的交点问题.专题:代数几何综合题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)考点:切线的判定;弧长的计算.专题:几何综合题;压轴题.分析:(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.解答:(1)解:∵AC=12,∴CO=6,∴==2π;答:劣弧PC的长为:2π.(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(2)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)考点:相似形综合题.专题:几何综合题;压轴题;动点型.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=4,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥BC于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10(0<t<),∴当t=2秒时,S△PEF存在最大值,最大值为10cm2,此时BP=3t=6cm.(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PF∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。

2014年广东省中考数学真题(word版,含答案)

2014年广东省中考数学真题(word版,含答案)

2014年广东数学中考试卷一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是( )A 、1B 、0C 、2D 、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A 、B 、C 、D 、 3、计算3a -2a 的结果正确的是( )A 、1B 、aC 、-aD 、-5a 4、把39x x -分解因式,结果正确的是( )A 、()29x x -B 、()23x x - C 、()23x x + D 、()()33x x x +-5、一个多边形的内角和是900°,这个多边形的边数是( ) A 、10 B 、9 C 、8 D 、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A 、47 B 、37 C 、34 D 、137、如图7图,□ABCD 中,下列说法一定正确的是(A 、AC=BDB 、AC ⊥BDC 、AB=CD D 、AB=BC题7图 8、关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A 、94m >B 、94m <C 、94m =D 、9-4m <9、一个等腰三角形的两边长分别是3和7,则它的周长为( ) A 、17 B 、15 C 、13 D 、13或17 10、二次函数()20y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( )A 、函数有最小值B 、对称轴是直线x =21DC 、当x <21,y 随x 的增大而减小 D 、当 -1 < x < 2时,y >0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ; 13、如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16、如题16图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图 则图中阴影部分的面积等于 。

2014年汕尾市中考数学试卷

2014年汕尾市中考数学试卷

2014年汕尾市初中毕业生学业考试说明:I•全卷共4页•考试用时100分仲,構分为]50分.2答卷审」•為■生务必用愿色字遊的钢笔或签字笔住獰題卡上壞写自己的冷匕证号、姓名、试室号' 座位号.再用2B铅怎把对应汝号码的标号涂风•3. 选择題毎小题选出答案后•用2"協笔把爲翅匸上对应题冃选项的答案倍息点耐如需改动•用權皮・»干净品.再选涂其他?F案.侈案不能答在试JHLL •4. 非选样題必绒用眾色字迹钢笔或签字电作答.答案必須写林时豊體左区域内相应位政上;如需改动.先划悴原来的答案・然后冯®卜乔的介案;不准使用铅电和涂改液.不按以上姜求作答的答案无效・5. 考生务必保持衿題卡的整洁.考试结束时,桥试卷和答胚卡一并交冋;k b - b,整考公式:施物线y二心 5*的対称轴魁样线八・“茨点坐杯足(・加・和}一、选择fill本犬題10小題,每小越4分■共40分)在毎小题列出的四个选项中•只有-个是正砂的•谓把答题卡上对应麵目所选的透项涂與.L・2的倒数足A 2B冷 C. -y D. -!1下列电喪台的台标•是中心对称图形的見3.若X>Y.KT列式子中错误的是• •A. i-3 >/-3B.; > ]4. 在寶同南海某海域探明可燃冰储匾约有】殂亿立方米•数字19400 000 000用科学记数法表示正确的是A 1.94 x IO'* B. 0. 194 x 10,fr C. 19.4 x 10* D. 1.^4 x 10*5. 下列各式计算正呦的是A. (a + 6): a a2 * It a • a1 a1C.八dW D・ a—'汕尾・散学试桂第l罚(H4页)D・ - 3* > - 3〉A. B. D.A. zC ・"HEC. Z C ■ Z MiC7. Kt^AHC •|><Zf ••••1 、的C8. A. §"丫以 60 T */ 的速度勺i«u 龍 Z 时的虐曜在公UM 匀2M 】饋,"冋山皿加1 *吋 .mmtrtt 的關艸•( r r >的"曲"*的'恂wH. I). *10.已他血线》♦ &・f ;—厶=一".那久A.曲一猱采 II 城二做讯 C.竜-.»Wi uh吧|二■填空甌(事大■« 6小JM •何小H5^t A «)I 瞩徇卜列斜川曲篦■加厨齐賞钏卜恂11. 4的平方根11 _______ .12. C 知 “ — 4 •<! ■ A ・ 3 •则“"lx eto«.A.<-为甲而内:条不前1 丫纯I z |亿八irmw”14.小nil AIM.训纵中・h 次命中的坏散》制为>丁 6.6亿刖小啣命中H Vt^f/Vi h_______ ■平均数力 _______ e15.可出 个住三後图中I 儿何厲16如圈,把“yrcsiLftc 廉脚附I 人人‘〃屮片“‘ “”于点"■若乙"%;・9(r.lW/A ・_一二仙帰・tt-fKO 和贞(IM 0() (I u 4DBA--个止力体展"1乩把廉卵IflUiViAN 〃侔灯「你「血MMm 上的字島A. ft U 国 张”51= 本大18 J小毎小越7分•共n分) 17. HW:(^Z 4 K)°・2|1・ B.n30- I *(2)-I8・巳知反比例闇故[的IH彖经过点M(2」).(1) 求该审數的表达式;'(2) '12 < « < 4时•求:r的欧他也围•( HtT耳出结枭)19.如图•在妣ZUEC中上8 ■ 90・・分别以点A、C为[fl 心.大于;AC长为半泾Ai^L.两弧相交于点M、N. 连结MN•与AC.BC分别交于点6E准结*匕⑴求/Li4D£i(ttt^出结果》(2) U M/?«3,4C = 5 时.求AAH卜:的周长.四、解答翎(二)(本大H 3小矗.毎小題9分,共27分)20. 如图,庄平行四边f^ARCD中上总初边上的中点•连氓呎并ft长BE交CD的延长线于点F.(1) it明;(2) 当平行四边形ABCD的血枳为8时,求'FED的面积,21. —个口盘中有3个大小村何的小球,球廊上分别写有散字1.2,3.从袋中超机地模岀一个小璋•记录下数字后放冋,再第20聽图融机地損岀一卡小球•(1) 请用树形图或列衣法中的-•种,列举出两次換出的球t散字的所利可能结果:(2) 求两次換岀的球上的数字和为偶数的«+••22. 巳知关于*的方ffix1 *ox 4a -2 = 0.(I )若该方程的一个根为I,求□的俺及该方程的另一根;(2)求还:不论a取何实敦・復方程都材两个不相等的实数根.汕麗•数学试住W3K(共4頁)八鹏笛MH三)(本大H J小23,24小n各II分肩"小JBK)分,共32分)u VW为更化枚冈川划对面釈为IMW)卅的IAMI逍行纣化.安妙卩.乙网个I:昱訊完成匕册卩队M人艄完嵐如化的Ifil枳押乙队何氏能完攻处化的血枳的2侑•并A庄魏立完磴由机为400m1 IX城郎加化时冲快比乙认少川4天.(|)求屮■乙朗I:桎慎砒夭储完成隊化的面枳分别処多少卅?(2)冇学付如卩队的绿化费用为0・4万元,乙趴为0. 25万元上便込次的垛化总囱用不趨过8万元,至少屁妥排屮趴I:作多少天?0 r f24 (为方便衿喘,町衣希題卡卜圖出你认为必整的图形)如叭衣R山ARC中・90・・以AC为直程的©0 M朋边交于点D,过点°作的切线,交〃石干机(I)求证;点忙她边“e的中点;⑵)Ri£:BC a = W -(3)当以M)、DK、C为頂点的四边形尼匸方形时.求U::A^C是導腰0:处三角形・第1A题图(为力便廉题冋衣答題卡上睛出你认为必婆的图形)如图,已如抛物线y = 3 x1「L・3与%轴的交点为八。

广东省汕尾市中考数学试题试题WORD版,含答案.doc

广东省汕尾市中考数学试题试题WORD版,含答案.doc

2014年汕尾市市初中毕业生学业考试数学试题一、选择题1.2-的倒数是( )A .2B .21C .21- D .1- 2.下列电视台的台标,是中心对称图形的是( )A .B .C .D .3.若y x >,则下列式子中错误..的是( ) A .33->-y x B .33y x > C .33+>+y x D .y x 33->- 4.在我国南海某海域探明可燃冰储量约有194亿立方米.数字19 400 000 000用科学记数法表示正确的是( )A .101094.1⨯B .1010194.0⨯C .9104.19⨯D .91094.1⨯5.下列各式计算正确的是( )A .222)(b a b a +=+B .32a a a =⋅C .428a a a =÷D .532a a a =+6.如图,能判定AC EB //的条件是( )A .ABE C ∠=∠B .EBD A ∠=∠C .ABC C ∠=∠D .ABE A ∠=∠7.在Rt ABC ∆中,︒=∠90C ,若53sin =A ,则B cos 的值是( ) A .54 B .53 C .43 D .348.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )9.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( )A .我B .中C .国D .梦10.已知直线b kx y +=,若5-=+b k ,6=kb ,那么该直线不经过...( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.4的平方根是12.已知4=+b a ,3=-b a ,则=-22b a13.已知c b a ,,为平面内三条不同直线,若b a ⊥,b c ⊥,则a 与c 的位置关系是14.小明在射击训练中,五次命中的环数分别为5,7,6,6,6,则小明命中环数的众数为 ,平均数为15.写出一个在三视图中俯视图与主视图完全相同的几何体16.如图,把ABC ∆绕点C 按顺时针方向旋转︒35,得到C B A '''∆,B A ''交AC 于点D ,若︒='∠90DC A ,则=∠A °. 三、解答题 17.计算:1021|30sin 1|2)2(-⎪⎭⎫ ⎝⎛+︒--+π.18.已知反比例函数x k y =的图象经过点M (2,1). (1)求该函数的表达式;(2)当42<<x 时,求y 的取值范围.(直接写出结果)19.如图,在Rt ABC ∆中,︒=∠90B ,分别以点A 、C 为圆心,大于AC 21长为半径画弧,两弧相交于点M 、N ,连结MN ,与AC 、BC 分别交于点D 、E ,连结AE .(1)求ADE ∠;(直接写出结果)(2)当AB =3,AC =5时,求ABE ∆的周长.四、解答题20、如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.21.一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.22.已知关于x 的方程022=-++a ax x .(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.五、解答题23.某校为美化校园,计划对面积为1800m 2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m 2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不.超过..8万元,至少应安排甲队工作多少天?24.如图,在Rt ABC ∆中,︒=∠90ACB ,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于E .(1)求证:点E 是边BC 的中点;(2)求证:BA BD BC ⋅=2;(3)当以点O 、D 、E 、C 为顶点的四边形是正方形时,求证:△ABC 是等腰直角三角形.25.如图,已知抛物线343832--=x x y 与x 轴的交点为A 、D (A 在D 的右侧),与y 轴的交点为C .(1)直接写出A 、D 、C 三点的坐标;(2)若点M 在抛物线上,使得△MAD 的面积与△CAD 的面积相等,求点M 的坐标;(3)设点C 关于抛物线对称轴的对称点为B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.2014年广东省汕尾市中考数学试卷参考答案一、选择题(共10小题,每小题4分,共40分)1.C.2.A3.D4.A5.B6.D7.B8.C9.D10.A二、填空题(共6小题,每小题5分,共30分)11.±2.12.12.13.平行.14.6,6.15.球或正方体.16.55°.三、解答题(一)(共3小题,每小题7分,共21分)17.解:原式=1﹣2×+2=1﹣1+2=2.18.解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.19.解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.四、解答题(二)(共3小题,每小题9分,共27分)20.(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.21.解:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.22.解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.点评:本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.五、解答题(三)(共3小题,第23、24小题各11分,第25小题10分,共32分)23.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.24.证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°;∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC;∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.∴EB=EC,即点E为边BC的中点;(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B∴△ABC∽△CDB,∴,∴BC2=BD•BA;(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°∴Rt△ABC为等腰直角三角形.点评:本题是几何证明题,综合考查了切线性质、圆周角定理、相似三角形、正方形、等腰直角三角形等知识点.试题着重对基础知识的考查,难度不大.25.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P 的坐标为(﹣2,0)或(6,6).。

2014年广东省中考数学试卷

2014年广东省中考数学试卷

2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分).C D.36.(3分)(2014•广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随.C D.7.(3分)(2014•广东)如图,▱ABCD中,下列说法一定正确的是()2.C D.10.(3分)(2014•广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(),二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2014•广东)计算2x3÷x=_________.12.(4分)(2014•广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为_________.13.(4分)(2014•广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=_________.14.(4分)(2014•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为_________.15.(4分)(2014•广东)不等式组的解集是_________.16.(4分)(2014•广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于_________.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2014•广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.18.(6分)(2014•广东)先化简,再求值:(+)•(x2﹣1),其中x=.19.(6分)(2014•广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014•广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.(7分)(2014•广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22.(7分)(2014•广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有_________名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.24.(9分)(2014•广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)(2014•广东)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm 的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.2014年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分).C D.36.(3分)(2014•广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随.C D..7.(3分)(2014•广东)如图,▱ABCD中,下列说法一定正确的是()2.C D..10.(3分)(2014•广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(),,正确,故本选项不符合题意;二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2014•广东)计算2x3÷x=2x2.12.(4分)(2014•广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.13.(4分)(2014•广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.ED=14.(4分)(2014•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.AC=BC=AC=BC=AB=×OC==315.(4分)(2014•广东)不等式组的解集是1<x<4.,16.(4分)(2014•广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.BC=1ACAD=BC=1=×﹣﹣故答案为:三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2014•广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.18.(6分)(2014•广东)先化简,再求值:(+)•(x2﹣1),其中x=..19.(6分)(2014•广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).BDE=A=∠∠四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014•广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)×≈21.(7分)(2014•广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?=这一隐藏的等量关系列出方程即可;22.(7分)(2014•广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?×=3600五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.)x+,图象过点(﹣,x+=),x+=,)24.(9分)(2014•广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.l=进行计算即可;∴=225.(9分)(2014•广东)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm 的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.∴﹣EF(t t﹣,∴,此比例式不成立,故此种情形不存在;,∴t=;,∴BM=﹣t=tt=,∴,即CN=﹣﹣t=﹣((化简得:t=或t=.t=t=。

2014广东省中考数学卷(含标准答案)

2014广东省中考数学卷(含标准答案)

2014年广东数学中考试卷年级姓名一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是()A、1B、0C、2D、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、3、计算3a-2a的结果正确的是()A、1B、aC、-a D、-5a4、把39x x-分解因式,结果正确的是()A、()29x x-B、()23x x-C、()23x x+D、()()33x x x+-5、一个多边形的内角和是900°,这个多边形的边数是()A、10B、9C、8D、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A、47B、37C、34D、137、如图7图,□ABCD中,下列说法一定正确的是()A、AC=BD B、AC⊥BDC、AB=CDD、AB=BC题7图8、关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围为()A、94m>B、94m<C、94m=D、9-4m<9、一个等腰三角形的两边长分别是3和7,则它的周长为( )A、17 B、15 C、13D、13或1710、二次函数()20y ax bx c a=++≠的大致图象如题10图所示,关于该二次函数,下列说法错误的是()ABD题10图A 、函数有最小值 B、对称轴是直线x =21 C 、当x <21,y 随x 的增大而减小 D、当 -1 < x < 2时,y>0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13、如题13图,在△ABC 中,点D ,E 分别是AB,AC 的中点,若BC=6,则DE= ;题13图 题14图 14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ; 16、如题16图,△AB C绕点A 顺时针旋转45° 得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图则图中阴影部分的面积等于 。

(高清版)2014年广东省中考数学试卷

(高清版)2014年广东省中考数学试卷


A. x(x2 9)
B. x(x 3)2
C. x(x 3)2
5.一个多边形的内角和是 900 ,这个多边形的边数是
D. x(x 3)(x 3)
()
A.10
B.9
C.8
D.7

数学试卷 第 1页(共 20页)
6.一个不透明的布袋里装有 7 个只有颜色不同的球,其中 3 个红球,4 个白球,从布袋中随
姓名________________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
备用图 (1)当 t 2 时,连接 DE , DF .求证:四边形 AEDF 为菱形; (2)在整个运动过程中,所形成的 △PEF 的面积存在最大值.当 △PEF 的面积最大时, 求线段 BP 的长;
数学试卷 第 8页(共 20页)
如果您喜欢这篇文档,欢迎下载!祝成绩进步,学习愉快!
(3)是否存在某一时刻 t ,使 △PEF 为直角三角形?若存在,请求出此时刻 t 的值;若
一项是符合题目要求的)
1.在 1,0,2, 3 这四个数中,最大的数是
()

A.1
B.0
C.2
D. 3
2.在下列交通标志中,既是轴对称图形,又是中心对称图形的是
()

A
B
C
D
3.计算 3a 2a 的结果正确的是 题

2014年广东省中考数学试卷及答案

2014年广东省中考数学试卷及答案

2014年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)(2014•广东)若二次根式有意义,则x 的取值范围是( )2.(3分)(2014•广东)下列标志中,可以看作是中心对称图形的是( )A B C D 3.(根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.(3分)(2014•广东)下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.(3分)(2014•广东)圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是( ) A. 320° B. 40° C. 160° D. 80° 6.(3分)(2014•广东)下列四个几何体中,俯视图为四边形的是( )A B C D7.(3分)(2014•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为( )A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D.12.6×1011元 8.(3分)(2014•广东)已知实数a 、b ,若a >b ,则下列结论正确的是( )A. a ﹣5<b ﹣5B. 2+a <2+bC.D. 3a >3b9.(3分)(2014•广东)如图,AC ∥DF ,AB ∥EF ,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( )A.30°B.40° C .50° D.60°10.(3分)(2014•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A B C D二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上. 11.(4分)(2014•广东).计算:2()a a-÷=.12.(4分)(2014•广东)如图1,在O⊙中,20ACB∠=°,则AOB∠=_______度.13.(4分)(2014•广东)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.14.(4分)(2014•广东)小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是.15.(4分)(2014•广东)如图4,把一个长方形纸片沿EF折叠后,点D C、分别落在11D C、的位置.若65EFB∠=°,则1AED∠等于_______度.16.(4分)(2014•广东)如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.C图1……第1幅第2幅第3幅第n幅图5图3A E DCFBD1C1图4三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2014•广东)如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度; (2)当线段460AB ACB =∠=,°时,ACD ∠= ______度,ABC △的面积等于_________(面积单位). 18.(5分)(2014•广东):1012)4cos30|3-⎛⎫++- ⎪⎝⎭°19.(5分)(2014•广东)先化简,再求值:2224441x x xx x x x --+÷-+-,其中32x =.四、解答题(二)(本大题3小题,每小题8分,共24分) 20.(8分)(2014•广东)如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G .(1)求证:CDF BGF △∽△;(2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.CBDA 图6D C F EA G图821.(8分)(2014•广东)“五·一”假期,某公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往A地的车票有_____张,前往C地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?22.(8分)(2014•广东)如图10,已知抛物线233y x x=-+x轴的两个交点为A B、,与y轴交于点C.(1)求A B C,,三点的坐标;(2)求证:ABC△是直角三角形;(3)若坐标平面内的点M,使得以点M和三点A B C、、为顶点的四边形是平行四边形,求点M的坐标.(直接写出点的坐标,不必写求解过程)x四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.24.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sinC=时,求⊙O的半径.25.(9分)(2014•广东)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.部分答案:解:(1)30;20. ·················································································································· 2 分 (2)12. ·································································································································· 4 分 (3)可能出现的所有结果列表如下:或画树状图如下:共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平. 8 分22. (1)解:令0x =,得y =(0C . ··················································· 1分 令0y =,得20x =,解得1213x x =-=,, ∴(10)(30)A B -,,,. ······································································································ 3分(2)法一:证明:因为22214AC =+=, 222231216BC AB =+==,, ·························· 4分 ∴222AB AC BC =+, ················································· 5分 ∴ABC △是直角三角形. ············································ 6分 法二:因为13OC OA OB ===,,∴2OC OA OB =, ··················································································································· 4分1 2 3 4 1 1 2 3 4 2 1 2 3 4 3 1 2 3 44开始小张 小李 x21题图M 1 3∴OC OBOA OC=,又AOC COB ∠=∠, ∴Rt Rt AOC COB △∽△. ···································································································· 5分 ∴90ACO OBC OCB OBC ∠=∠∠+∠=,°, ∴90ACO OCB ∠+∠=°,∴90ACB ∠=°, 即ABC △是直角三角形. ······················································· 6 分(3)1(4M ,2(4M -,3(2M .(只写出一个给1分,写出2个,得1.5分) 8分sinC=求出sinA=sinC===,即可求出半径.sinC=sinA=sinC=,sinA==,r=,的半径是,OP=,)的坐标代入,得k,y=x×﹣,(,DE= AC===∴,,,3+)或(﹣。

2014年广东省中考数学试卷

2014年广东省中考数学试卷

数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前广东省2014年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在1,0,2,3-这四个数中,最大的数是( )A .1B .0C .2D .3-2.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )AB C D 3.计算32a a -的结果正确的是( ) A .1B .aC .a -D .5a - 4.把39x x -分解因式,结果正确的是( )A .2(9)x x -B .2(3)x x -C .2(3)x x +D .(3)(3)x x x +- 5.一个多边形的内角和是900,这个多边形的边数是( )A .10B .9C .8D .76.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率为( )A .47B .37C .34D .137.如图,□ABCD 中,下列说法一定正确的是 ( )A .AC BD =B .AC BD ⊥ C .AB CD =D .AB BC =8.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是 ( )A .94m >B .94m <C .94m =D .94m <- 9.一个等腰三角形的两边长分别是3和7,则它的周长为( )A .17B .15C .13D .13或1710.二次函数2(0)y ax bx c a =++≠的大致图象如图所示,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线12x =C .当12x <时,y 随x 的增大而减小 D .当12x -<<时,0y >第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.计算32=x x ÷ .12.据报道,截至2013年12月我国网民规模达618000000人.将618000000用科学记数法表示为 .13.如图,在ABC △中,点D ,E 分别是AB ,AC 的中点,若6BC =,则DE =.14.如图,在O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)15.不等式组28,41+2x x x ⎧⎨-⎩<>的解集是 .16.如图,ABC △绕点A 顺时针旋转45得到''AB C △,若90BAC ∠=,AB AC ==则图中阴影部分的面积等于.三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)11|4|(1)()2--+--.18.(本小题满分6分) 先化简,再求值:221()(1)11x x x +--+,其中x19.(本小题满分6分)如图,点D 在ABC △的AB 边上,且ACD A ∠=∠.(1)作BDC ∠的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE 与直线AC 的位置关系(不要求证明).20.(本小题满分7分)如图,某数学兴趣小组想测量一棵树CD 的高度.他们先在点A 处测得树顶C 的仰角为30,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60(A ,B ,D 三点在同一直线上).请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m ).( 1.414 1.732≈)21.(本小题满分7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(==)利润售价-进价利润率进价进价(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?数学试卷 第5页(共8页) 数学试卷 第6页(共8页)22.(本小题满分7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食.为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图1和图2所示的不完整的统计图.图1图2(1)这次被调查的同学共有 名; (2)把条形统计图(图1)补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?23.(本小题满分9分)如图,已知1(4,)2A -,(1,2)B -是一次函数()y kx b k b =+≠与反比例函数m y x=(0,0)m x ≠<图象的两个交点,AC x ⊥轴于点C ,BD y ⊥轴于点D . (1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若PCA △和PDB △面积相等,求点P 的坐标.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共8页) 数学试卷 第8页(共8页)24.(本小题满分9分) 如图,O 是ABC △的外接圆,AC 是直径.过点O 作线段OD AB ⊥于点D ,延长DO 交O 于点P ,过点P 作PE AC ⊥于点E ,作射线DE 交BC 的延长线于点F ,连接PF .(1)若60POC ∠=,12AC =,求劣弧PC 的长(结果保留π); (2)求证:OD OE =; (3)求证:PF 是O 的切线.25.(本小题满分9分)如图,在ABC △中,AB AC =,AD BC ⊥点D ,10cm BC =,8cm AD =.点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB ,AC ,AD 于E ,F ,H .当点P 到达点C 时,点P 与直线m 同时停止运动.设运动时间为t秒(0)t >.备用图(1)当2t =时,连接DE ,DF .求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的PEF △的面积存在最大值.当PEF △的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使PEF △为直角三角形?若存在,请求出此时刻t 的值;若不存在,请说明理由.。

2014汕尾中考数学试题及答案

2014汕尾中考数学试题及答案

2014汕尾中考数学试题及答案以下2014年汕尾中考数学真题及答案解析由中考频道为您准备的2014年中考真题及答案最新资讯,收藏(CTRL+D即可)中考真题栏目及中考答案栏目,随时了解中考真题及中考答案最新动态。

2014年汕尾中考数学试题及答案发布入口中考注意事项:超常考场发挥小技巧认真审题,每分必争审题是生命线。

审题是正确答题的前导。

从一个角度看,审题甚至比做题更重要。

题目审清了,解题就成功了一半。

认真审准题,才能正确定向,一举突破。

每次考试,总有一些考生因为审题失误而丢分。

尤其是那些似曾相识的题,那些看似很简单的题,考试要倍加细心,以防“上当受骗”。

我曾给学生一副对联:似曾相识“卷”归来,无可奈何“分”落去。

横批:掉以轻心。

越是简单、熟悉的试题,越要倍加慎重。

很多学生看题犹如“走马观花”,更不思考命题旨意,待到走出考场才恍然大悟,但为时已晚矣。

考试应努力做到简单题不因审题而丢分。

“两先两后”,合理安排中考不是选拔性考试,在新课改背景下,试卷的难度理应不会太大。

基础题和中等难度题的分值应占到80%。

考生拿到试卷,不妨整体浏览,此时大脑里的思维状态由启动阶段进入亢奋阶段。

只要听到铃声一响就可开始答题了。

解题应注意“两先两后”的安排:1.先易后难一般来说,一份成功的试卷,题目的排列应是遵循由易到难,但这是命题者的主观愿望,具体情况却因人而异。

同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。

”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。

2.先熟后生通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。

万一哪个题目偏难,也不要惊慌失措,而要冷静思考,变生为熟,想一想能不能把所谓的生题化解为若干个熟悉的小问题,或转化为熟悉的题型。

2014年广东省中考数学试卷及答案

2014年广东省中考数学试卷及答案

2014年广东省初中毕业生学业考试·数学第Ⅰ卷(选择题 共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的. 1. 在1,0,2,-3这四个数中,最大的数是 ( )A. 1B. 0C. 2D. -32. 在下列交通标志图中,既是轴对称图形,又是中心对称图形的是 ( )3. 计算3a -2a 的结果正确的是 ( ) A. 1 B. a C. -a D. -5a4.把x 3-9x 分解因式,结果正确的是 ( )A. x (x 2-9)B. x (x -3)2C. x (x +3)2D. x (x +3)(x -3) 5. 一个多边形的内角和是900°,这个多边形的边数是 ( ) A. 10 B. 9 C. 8 D. 76. 一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为 ( )A. 47B. 37C. 34D. 137. 如图,在▱ABCD 中,下列说法一定正确的是 ( ) A. AC =BD B. AC ⊥BD C. AB =CD D. AB =BC第7题图 第10题图8. 若关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( ) A. m >94 B. m <94 C. m =94 D. m <-949. 一个等腰三角形的两边长分别为3和7,则它的周长为 ( ) A. 17 B. 15 C. 13 D. 13或1710. 二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,关于该二次函数,下列说法错误..的是 ( ) A. 函数有最小值 B. 对称轴是直线x =12C. 当x <12时,y 随x 的增大而减小 D. 当-1<x <2时,y >0第Ⅱ卷(非选择题 共90分)二、填空题(本大题6小题,每小题4分,共24分) 11. 计算:2x 3÷x = .12. 据报道,截至2013年12月我国网民规模达618000000人,将618000000用科学记数法表示为 .13. 如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC =6,则DE = .第13题图 第14题图 第16题图14. 如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 .15. 不等式组⎩⎪⎨⎪⎧2x <84x -1>x +2的解集是 .16. 如图,△ABC 绕点A 按顺时针旋转45°得到△AB ′C ′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于 .三、解答题(一)(本大题3小题,每小题6分,共18分)17. 计算:9+|-4|+(-1)0-(12)-1.18. 先化简,再求值:(2x -1+1x +1)·(x 2-1),其中x =3-13.19. 如图,点D 在△ABC 的AB 边上,且∠ACD =∠A.(1)作∠BDC 的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE 与直线AC 的位置关系(不要求证明).第19题图四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,在B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m ).(参考数据:2≈1.414,3≈1.732)第20题图21. 某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调机每台的进价;(利润率=利润进价=售价-进价进价)(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22. 某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食.为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图①和图②所示的不完整的统计图.第22题图(1)这次被调查的同学共有 名; (2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有同学一餐浪费的食物可以供200人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,已知A (-4,12),B (-1,2)是一次函数y =kx +b (k ≠0)与反比例函数y =mx (m ≠0,x <0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值? (2)求一次函数的解析式及m 的值;(3)P 是线段AB 上一点,连接PC ,PD ,若△PCA 与△PDB 的面积相等,求点P 的坐标.第23题图24. 如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作线段OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于点F ,连接PF .(1)若∠POC =60°,AC =12,求劣弧PC ︵的长(结果保留π); (2)求证:OD =OE ;(3)求证:PF 是⊙O 的切线.第24题图25. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,BC =10 cm ,AD =8 cm .点P 从点B 出发,在线段BC上以每秒3 cm的速度向点C匀速运动.与此同时,垂直于AD的直线m从底边BC出发,以每秒2 cm 的速度沿DA方向匀速平移,分别交AB、AC、AD于点E、F、H.当点P到达点C时,点P与直线m同时停止运动.设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF.求证:四边形AEDF是菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值.当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF是直角三角形?若存在,请求出此刻t的值;若不存在,请说明理由.2014年广东省中考数学试卷参考答案与试题解析1. C2. C3. B4. D5. D6. B7. C8. B9. A 10. D 11. 2x 2 12. 6.18×108 13. 3 14. 3 15. 1<x <4 16. 2-1 17.解:原式=3+4+1-2(4分) =6.(6分) 18.解:原式=2(x +1)+(x -1)(x +1)(x -1)·(x +1)(x -1)=2x +2+x -1 =3x +1. (4分) 当x =3-13时,原式=3×3-13+1= 3. (6分) 19.解:(1)如解图,线段DE 即为所求作的∠BDC 的平分线;第19题解图(2)DE ∥A C.(6分)【解法提示】 ∵DE 平分∠BDC , ∴∠BDE =12∠BDC ,∵∠ACD =∠A ,∠ACD +∠A =∠BDC , ∴∠A =12∠BDC ,∴∠A =∠BDE , ∴DE ∥A C. 20.解:如解图,∵∠CBD =∠BAC +∠BCA , ∴∠BCA =∠CBD -∠BAC =60°-30°=30°=∠BAC , ∴BC =AB =10 m ,(3分)第20题解图在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin 60° =10×32=53≈5×1.732≈8.7(m ).(6分)答:这棵树的高度CD 大约是8.7米 m . (7分) 21.解:(1)设这款空调机每台的进价为x 元. (1分) 由题意得:1635×80%-x =9%x ,(2分) 解得x =1200. (3分)答:这款空调机每台的进价为1200元; (4分)(2)商场销售这款空调机100台的盈利为:1200×9%×100=10800(元).(6分) 答:这次促销活动中,商场销售这款空调机100台的盈利为10800元.(7分) 22.解:(1)1000;【解法提示】由题可得总人数=400÷40%=1000(人). (2)补充条形图如解图所示:(5分)第22题解图【解法提示】剩少量的人数为:1000-400-250-150=200(人).(3)由题意得:180001000×200=3600(人).答:18000名学生一餐浪费的粮食可供3600人食用一餐.(7分) 23.解:(1)当-4<x <-1时,一次函数的值大于反比例函数的值;(3分) (2)把点A 、B 代入一次函数解析式,得: ⎩⎪⎨⎪⎧-4k +b =12-k +b =2,解得⎩⎨⎧k =12b =52,∴一次函数的解析式是y =12x +52. (5分)把点B (-1,2)代入y =mx ,得m =-2;(6分)(3) 连接PC 、PD ,如解图, 设P 点的坐标为(x ,12x +52).第23题解图由△PCA 和△PDB 面积相等得 12×12×(x +4)=12×|-1|×(2-12x -52), ∴x =-52,y =12x +52=54,∴P 点的坐标是(-52,54).( 9分)24.(1)解:∵AC =12,圆心角∠POC =60°, ∴半径OC =6,∴劣弧PC ︵的长=n πr 180=60π×6180=2π;(3分)(2)证明:在△OAD 和△OPE 中, ⎩⎪⎨⎪⎧∠ADO =∠PEO ∠AOD =∠POE ,OA =OP∴△OAD ≌△OPE (AAS ),(5分) ∴OD =OE; (6分)(3)解法一:证明:如解图①,连接PC ,由AC 是直径知BC ⊥AB , 又OD ⊥AB , ∴PD ∥BF ,∴∠OPC =∠PCF ,∠ODE =∠CFE ,(7分) 由(2)知OD =OE ,则∠ODE =∠OED ,第24题解图①又∠OED =∠FEC , ∴∠FEC =∠CFE , ∴EC =F C.由OP =OC 知∠OPC =∠OCP ,∴∠PCE =∠PCF .在△PCE 和△PCF 中, ⎩⎪⎨⎪⎧EC =FC ∠PCE =∠PCF ,PC =PC∴△PCE ≌△PCF (SAS ), ∴∠PFC =∠PEC =90°. 又由∠PDB =∠B =90°可知四边形PDBF 为矩形, ∴∠OPF =90°,即OP ⊥PF , ∴PF 是⊙O 的切线. (9分)解法二:证明:如解图②,延长OD 交⊙O 于点M ,连接MC ,连接O 与BC 的中点N .(7分)第24题解图②∵OM =OC ,OD =OE , ∴OD OM =OE OC, ∴DE ∥MC ,∵BC ⊥AB ,OD ⊥AB , ∴BF ∥MD ,∴四边形DMCF 是平行四边形, ∴CF =M D.∵OD 是△ABC 的中位线, ∴OD =CN =BN =12B C.∵OP =OD +DM , ∴OP =CF +CN ,∴四边形ONFP 是平行四边形. ∵∠ONC =∠ABC =90°, ∴四边形ONFP 是矩形. ∵∠OPF =90°,OP 为⊙O 的半径, ∴PF 是⊙O 的切线. (9分)25.第25题解图①(1)证明:当t =2时,DH =AH =4,则H 为AD 的中点,如解图①所示. 又∵EF ⊥AD ,∴EF 为AD 的垂直平分线, ∴AE =DE ,AF =DF .∵AB =AC ,AD ⊥BC 于点D , ∴∠B =∠C , ∴EF ∥BC ,∴∠AEF =∠B ,∠AFE =∠C , ∴∠AEF =∠AFE , ∴AE =AF ,∴AE =AF =DE =DF ,即四边形AEDF 为菱形;( 3分)第25题解图②(2)解:如解图②所示,由(1)知EF ∥BC , ∴△AEF ∽△ABC , ∴EF BC =AH AD ,即EF 10=8-2t 8,解得EF =10-52t , ∴S △PEF =12EF ·DH =12(10-52t )·2t=-52t 2+10t =-52(t -2)2+10,∴当t =2秒时,S △PEF 存在最大值,最大值为10,此时BP =3t =6;( 6分) (3)解:存在.理由如下:①若点E 为直角顶点,如解图③所示, 此时PE ∥AD ,PE =DH =2t ,BP =3t . ∵PE ∥AD , ∴PE AD =BP BD ,即2t 8=3t5,此比例式不成立,故此种情形不存在;( 7分) ②若点F 为直角顶点,如解图④所示,此时PF ∥AD ,PF =DH =2t ,BP =3t ,CP =10-3t . ∵PF ∥AD , ∴PF AD =CP CD ,即2t 8=10-3t 5,解得t =4017;( 8分)第25题解图③若点P 为直角顶点,如解图⑤所示.— 11 —过点E 作EM ⊥BC 于点M ,过点F 作FN ⊥BC 于点N ,则EM =FN =DH =2t ,EM ∥FN ∥A D. ∵EM ∥AD ,∴EM AD =BM BD ,即2t 8=BM 5,解得BM =54t , ∴PM =BP -BM =3t -54t =74t . 在Rt △EMP 中,由勾股定理得:PE 2=EM 2+PM 2=(2t )2+(74t )2=11316t 2. ∵FN ∥AD ,∴FN AD =CN CD ,即2t 8=CN 5,解得CN =54t , ∴PN =BC -BP -CN =10-3t -54t =10-174t . 在Rt △FNP 中,由勾股定理得:PF 2=FN 2+PN 2=(2t )2+(10-174t )2=35316t 2-85t +100. 在Rt △PEF 中,由勾股定理得:EF 2=PE 2+PF 2,即(10-52t )2=11316t 2+(35316t 2-85t +100), 化简得:1838t 2-35t =0, 解得t =280183或t =0(舍去), ∴t =280183. 综上所述,当t =4017 秒或t =280183秒时,△PEF 为直角三角形.( 9分)。

2014年广东省中考数学试卷及答案解析

2014年广东省中考数学试卷及答案解析

2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣32.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()3.(3分)计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a4.(3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)5.(3分)一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.76.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.7.(3分)如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC8.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.9.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1710.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值 B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0二、填空题(本大题6小题,每小题4分,共24分)11.(4分)计算:2x3÷x=.12.(4分)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为.13.(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=.14.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.(4分)不等式组的解集是.16.(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:+|﹣4|+(﹣1)0﹣()﹣1.18.(6分)先化简,再求值:(+)•(x2﹣1),其中x=.19.(6分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C 的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.(7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22.(7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.24.(9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.2014年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,也不是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a【考点】合并同类项.【分析】根据合并同类项的法则,可得答案.【解答】解:原式=(3﹣2)a=a,故选:B.【点评】本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选:D.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.7【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:D.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.【考点】概率公式.【分析】直接根据概率公式求解即可.【解答】解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC【考点】平行四边形的性质.【分析】根据平行四边形的性质分别判断各选项即可.【解答】解:A、AC≠BD,故A选项错误;B、AC不垂直于BD,故B选项错误;C、AB=CD,利用平行四边形的对边相等,故C选项正确;D、AB≠BC,故D选项错误;故选:C.【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.【考点】根的判别式.【专题】判别式法.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值 B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0【考点】二次函数的性质.【专题】压轴题;数形结合.【分析】根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.【解答】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.【点评】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)计算:2x3÷x=2x2.【考点】整式的除法.【专题】计算题.【分析】直接利用整式的除法运算法则求出即可.【解答】解:2x3÷x=2x2.故答案为:2x2.【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.【考点】三角形中位线定理.【分析】由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.【解答】解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为:3.【点评】本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.【考点】垂径定理;勾股定理.【分析】作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=4,然后在Rt△AOC中利用勾股定理计算OC即可.【解答】解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)不等式组的解集是1<x<4.【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.【考点】旋转的性质;等腰直角三角形.【专题】压轴题.【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=sin45°AC′=AC′=1,进而求出阴影部分的面积.【解答】解:∵△ABC绕点A顺时针旋转45°得到△AB′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=sin45°AC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.【点评】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:+|﹣4|+(﹣1)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+4+1﹣2=6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)先化简,再求值:(+)•(x2﹣1),其中x=.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).【考点】作图—基本作图;平行线的判定.【专题】作图题.【分析】(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.【解答】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.【点评】此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C 的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【考点】分式方程的应用.【专题】销售问题.【分析】(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.【点评】本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】反比例函数与一次函数的交点问题.【专题】代数几何综合题.【分析】(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).【点评】本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.【考点】切线的判定;弧长的计算.【专题】几何综合题;压轴题.【分析】(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.【解答】(1)解:∵AC=12,∴CO=6,∴==2π;答:劣弧PC的长为:2π.(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:法一:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(2)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.法二:设⊙O的半径为r.∵OD⊥AB,∠ABC=90°,∴OD∥BF,∴△ODE≌△CFC又∵OD=OE,∴FC=EC=r﹣OE=r﹣OD=r﹣BC ∴BF=BC+FC=r+BC∵PD=r+OD=r+BC∴PD=BF又∵PD∥BF,且∠DBF=90°,∴四边形DBFP是矩形∴∠OPF=90°OP⊥PF,∴PF是⊙O的切线.【点评】本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.【考点】相似形综合题.涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解一元二次方程等知识点,重点考查了分类讨论的数学思想.【专题】几何综合题;压轴题;动点型.【分析】(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.【解答】(1)证明:当t=2时,DH=AH=4,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥BC于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10(0<t<),∴当t=2秒时,S△PEF存在最大值,最大值为10cm2,此时BP=3t=6cm.(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PF∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.【点评】本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年汕尾市市初中毕业生学业考试
一、选择题
1.2-的倒数是( ) A .2 B .
21 C .2
1
- D .1- 2.下列电视台的台标,是中心对称图形的是( )
A .
B .
C .
D . 3.若y x >,则下列式子中错误..的是( ) A .33->-y x B .
3
3y
x > C .33+>+y x D .y x 33->- 4.在我国南海某海域探明可燃冰储量约有194亿立方米.数字19 400 000 000用科学记数法表示正确的是( )
A .10
1094.1⨯ B .10
10194.0⨯ C .9
104.19⨯ D .9
1094.1⨯ 5.下列各式计算正确的是( )
A .222)(b a b a +=+
B .3
2a a a =⋅ C .4
2
8
a a a =÷ D .5
3
2
a a a =+ 6.如图,能判定AC EB //的条件是( )
A .ABE C ∠=∠
B .EBD A ∠=∠
C .ABC C ∠=∠
D .AB
E A ∠=∠ 7.在Rt ABC ∆中,︒=∠90C ,若5
3
sin =
A ,则
B cos 的值是( ) A .54 B .53
C .43
D .3
4
8.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )
A
B C
D
E
第6题图
A .
B .
C .
D .
9.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面 相对面上的字是( )
A .我
B .中
C .国
D .梦
10.已知直线b kx y +=,若5-=+b k ,6=kb ,那么该直线不经过...( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 二、填空题
11.4的平方根是
12.已知4=+b a ,3=-b a ,则=-2
2b a
13.已知c b a ,,为平面内三条不同直线,若b a ⊥,b c ⊥,则a 与c 的位置关系是 14.小明在射击训练中,五次命中的环数分别为5,7,6,6,6,则小明命中环数的众数为 ,平均数为
15.写出一个在三视图中俯视图与主视图完全相同的几何体 16.如图,把ABC ∆绕点C 按顺时针方向旋转︒35,得到C B A '''∆,B A ''交
AC 于点D ,若︒='∠90DC A ,则=∠A °.
三、解答题
17.计算:1
021|30sin 1|2)2(-⎪⎭

⎝⎛+︒--+π.
A
C
B
A '
B '
D 35° 第16题图
18.已知反比例函数x
k
y =
的图象经过点M (2,1). (1)求该函数的表达式;
(2)当42<<x 时,求y 的取值范围.(直接写出结果)
19.如图,在Rt ABC ∆中,︒=∠90B ,分别以点A 、C 为圆心,大于
AC 2
1
长为半径画弧,两弧相交于点M 、N ,连结MN ,与AC 、BC 分别交于点D 、E ,连结AE . (1)求ADE ∠;(直接写出结果) (2)当AB =3,AC =5时,求ABE ∆的周长.
A
B
C
D
M
E
N 第19题图
四、解答题
20、如图,在平行四边形ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 的延长线于点F . (1)证明:FD =AB ;
(2)当平行四边形ABCD 的面积为8时,求△FED
21.一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果; (2)求两次摸出的球上的数字和为偶数的概率.
第20题图
F
22.已知关于x 的方程022
=-++a ax x .
(1)若该方程的一个根为1,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.
五、解答题
23.某校为美化校园,计划对面积为1800m 2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m 2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过...8万元,至少应安排甲队工作多少天?
24.如图,在Rt ABC ∆中,︒=∠90ACB ,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于E . (1)求证:点E 是边BC 的中点; (2)求证:BA BD BC ⋅=2

(3)当以点O 、D 、E 、C 为顶点的四边形是正方形时, 求证:△ABC 是等腰直角三角形.
A
B
C
D
E
O

第24题图
25.如图,已知抛物线34
3
832--=x x y 与x 轴的交点为A 、D (A 在D 的右侧),与y 轴的交点为C .
(1)直接写出A 、D 、C 三点的坐标;
(2)若点M 在抛物线上,使得△MAD 的面积与△CAD 的面积相等,求点M 的坐标; (3)设点C 关于抛物线对称轴的对称点为B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.
第25题图。

相关文档
最新文档