2018-2019学年福建省莆田市九年级(上)期末数学试卷

合集下载

莆田市2018-2019学年(上)九年级期末质量监测试卷数学

莆田市2018-2019学年(上)九年级期末质量监测试卷数学

姓名:班级:座号:………………密…………………封………………线………………内………………不………………准………………答………………题……………绝密★启用前莆田市2018-2019学年(上)九年级期末质量监测试卷 数学试题 (全卷共三个大题,满分150分,考试时间120分钟) 一、选择题(每小题4分,共40分) 1.若一元二次方程x 2﹣x ﹣6=0的两根为x 1,x 2,则x 1+x 2的值为( ) A .1 B .﹣1 C .0 D .﹣6 2.用配方法解一元二次方程x 2+4x ﹣5=0,此方程可变形为( ) A .(x+2)2=9 B .(x ﹣2)2=9 C .(x+2)2=1 D .(x ﹣2)2=1 3.对于函数y=,下列说法错误的是( ) A .这个函数的图象位于第一、第三象限 B .这个函数的图象既是轴对称图形又是中心对称图形 C .当x >0时,y 随x 的增大而增大 D .当x <0时,y 随x 的增大而减小 4.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是( ) A . B . C . D . 5.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、AC 的中点.若四边形ADEF 是菱形,则△ABC 必须满足的条件是( ) A .AB ⊥AC B .AB=AC C .AB=BC D .AC=BC 6.如果平行四边形的四个内角的平分线能够围成一个四边形,那么这个四边形一定是( ) A .平行四边形 B .矩形 C .菱形 D .正方形 7.如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为1,若∠OBA=30°,则OB长为( )A.1 B.2 C.D.28.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则y<3D.在每一个象限内,y随x值的增大而减小9.抛物线图象如图所示,根据图象,抛物线的解析式可能是()A.y=x2﹣2x+3 B.y=﹣x2﹣2x+3 C.y=﹣x2+2x+3 D.y=﹣x2+2x﹣310.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长二、填空题:本大题共6小题,每小题4分,共24分.11.如图,已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是.12.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是,则袋中红球约为个.13.已知反比例函数y=,x>0时,y0,这部分图象在第象限,y 随着x值的增大而.14.若式子有意义,则x的取值范围是.15.如图,已知直线a∥b,∠1=70°,则∠2=.16.(4分)如图,矩形ABCD的对角线AC和BD相交于点D,∠ADB=30°,AB=4,则OC=.三、解答题(共9小题,共86分)17.(8分)如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C 作AB的平行线交AE的延长线于点F,连接BF.(1)求证:CF=AD;(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.18.(8分)满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?19.(8分)如图,已知△ABC,∠BAC=90°(1)尺规作图:作BC边的高AD(保留作图痕迹,写作法);(2)求证:∠C=∠BAD20.(8分)(1)在图①中画出△ABC绕点O顺时针旋转90°后的图形;(2)在图②中画出四边形ABCD关于点O对称的图形.21.(8分)某校举办篮球比赛,进入决赛的队伍有A、B、C、D四队,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率;(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.22.(10分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.23.(10分)如图,AB表示路灯,CD、C′D′表示小明所在两个不同位置:(1)分别画出这两个不同位置小明的影子;(2)小明发现在这两个不同的位置上,他的影子长分别是自己身高的1倍和2倍,他又量得自己的身高为1.5米,DD′长为3米,你能帮他算出路灯的高度吗?(B、D、D′在一条直线上)24.(12分)如图,在平面直角坐标系中,函数y=的图象经过点P(4,3)和点B(m,n)(其中0<m<4),作BA⊥x轴于点A,连接PA,PB,OB,已知S△AOB=S△PAB.(1)求k的值和点B的坐标.(2)求直线BP的解析式.(3)直接写出在第一象限内,使反比例函数大于一次函数的x的取值范围是.25.(14分)如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:(1)求点N的坐标(用含x的代数式表示);(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.。

最新福建省莆田市初中初三市质检数学试卷及答案

最新福建省莆田市初中初三市质检数学试卷及答案

(A) 平均数
(B) 中位数
(C) 众数
(D) 方差
(8) 已知一次函数 y=kx+1 的图象经过点 A ,且函数值 y 随 x 的增大而减小,则点 A 的坐标可能是 ( )
(A)(2 , 4)
(B)(-1 , 2)
(C )(-1 , -4)
(D)(5 , 1)
(9) 如图,在四边形 ABCD 中,∠ A=120 °,∠ C=80°将△ BMN 沿养 MN 翻折,得到△ FMN .若
(17) 先化筒,再求值:
a a 2 2a 1
1 1 ,其中 a=3. a1
A
(18)( 8 分 )如图,等边△ ABቤተ መጻሕፍቲ ባይዱ .
(1) 求作一点 D,连接 AD 、 CD ,使得四边形 ABCD 为菱形;
(要求:尺规作图,保留作图痕迹,不写作法 )
B
C
(2) 连接 BD 交 AC 于点 O,若 OA=1 ,求菱形 ABCD 的面积.
(B)0
(C) 1
(D)2
(6) 如图, AB 是⊙ O 的切线, A 为切点,连接 OB 交⊙ O 于点 C.若 OA=3 ,
tan∠AOB= 4 ,则 BC 的长为 ( ) 3
(A)2
(B) 3
(C) 4
(D) 5
O
C B
A
(7) 一组数据: 2,3, 3, 4,若添加一个数据 3,则发生变化的统计量是 ( )
(1) 判断△ ADE 的形状,并加以证明; (2) 过图中两点画一条直线,使其垂直平分图中的某条线段,并说明理由.
B
A
C
D
E
(21)( 8 分 )水果店在销售某种水果,该种水果的进价为

福建省莆田市城厢区2022~2023学年九年级上学期数学期末质量检测(解析版)

福建省莆田市城厢区2022~2023学年九年级上学期数学期末质量检测(解析版)

莆田市城厢区2022~2023学年上学期期末质量检测卷九年级数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中.只有一项是符合要求的.1. 下列方程中,是一元二次方程的是( ) A.2122x x+= B. 2220x −= C. 3x y +=D. 310x −= 【答案】B【分析】根据一元二次方程的定义:含有一个未知数,且未知数的最高次数为2次的整式方程,叫做一元二次方程,再逐一判断选项,即可. 【详解】解:A .2122x x+=,是分式方程,故不是一元二次方程,不符合题意, B . 2220x −=,符合定义,是一元二次方程,符合题意,C . 3x y +=,是二元一次方程,故不是一元二次方程,不符合题意, D . 310x −=,是一元一次方程,故不是一元二次方程,不符合题意,故选B .【点睛】本题主要考查一元二次方程的定义,熟练掌握“含有一个未知数,未知数的最高次数为2次的整式方程,叫做一元二次方程”,是解本题的关键. 2. 下列图形中,是中心对称图形的是( )A. B. C. D.【答案】C【分析】根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形. 【详解】解:A 、不是中心对称图形,不符合题意; B 、不中心对称图形,不符合题意; C 、是中心对称图形,符合题意;D 、不是中心对称图形,不符合题意;故选:C【点睛】本题考查中心对称图形的判断;解题的关键是掌握判断中心对称图形的方法. 3. 下列各点,在二次函数222y x x =+−的图象上的是( )是A. ()1,1B. ()2,3C. ()0,2D. ()1,5−−【答案】A【分析】将选项A ,B ,C ,D 中的点横坐标代入222y x x =+−,计算出纵坐标,从而可判断点是否在二次函数222y x x =+−的图象上. 【详解】解:∵222y x x =+−, 当1x =时,2121y =+−=, 当2x =时,24228y =×+−=, 当0x =时,=2y −,当=1x −时,2121y =−−=−,∴ B ,C ,D 不符合题意;A 符合题意;故选:A .【点睛】本题主要考查的是二次函数图象上点的坐标特点,掌握函数图象上点的坐标满足函数解析式是解本题的关键.4. 如图,将ABC �绕点C 顺时针旋转65°后得到FEC �,若30ACB ∠=°,则BCF ∠的度数是( ). A. 65° B. 30°C. 35°D. 25°【答案】C【分析】利用旋转的性质求得65ACF ∠=°,再结合30ACB ∠=°即可求得BCF ∠的度数.【详解】解:∵将ABC �绕点C 顺时针旋转65°后得到FEC �, ∴65ACF ∠=°, ∵30ACB ∠=°,∴653035BCF ACF ACB ∠=∠−∠=°−°=°,故选:C【点睛】本题考查了旋转的性质,理解掌握旋转前后的对应点的连线构成旋转角是解题的关键. 5. 已知MN 是半径为4的圆中的一条弦,则MN 的长不可能是( ) A. 8 B. 5C. 4D. 10【答案】D【分析】根据圆中最长的弦为直径求解.【详解】解:由题意知,该圆的直径为8, 因为圆中最长的弦为直径, ∴8MN ≤.观察选项,只有选项D 符合题意. 故选:D .【点睛】本题考查了圆的认识,基本概念,掌握“圆中最长的弦是直径”是解本题的关键.6. 若反比例函数2k y x−=的图象经过第二、四象限,则k 的值可能是( ) A. 7 B. 5C. 3D. 1【答案】D【分析】根据反比例函数2k y x −=的图象经过第二、四象限,可得20k −<,从而可得答案. 【详解】解:∵反比例函数2k y x−=的图象位于第二、四象限, ∴20k −<,解得:2k <.∴选项A ,B ,C 不符合题意,选项D 符合题意;故选D .【点睛】本题主要考查了反比例函数的图象与性质,解题的关键是掌握反比例函数()0ky k x=≠的图象和性质:当反比例函数图象在一、三象限时,则>0k ;当反比例函数图象在第二、四象限时,则0k <. 7. 已知两个非零实数m ,n 满足25m n =,则nm的值为( ) A52B. 1C. 25D. 5【答案】C【分析】由ad bc =,可得a cb d=,结合本题条件25m n =可得答案. 【详解】解:∵两个非零实数m ,n 满足25m n =,∴25n m =,故选C .8. 两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率, 绘制出统计图如图所示,则符合这一结果的试验可能是( ) A. 抛一枚硬币,正面朝上概率B. 掷一枚正六面体的骰子,出现点数是3的倍数的概率C. 将一副新的扑克牌(54张)洗匀后,随机抽一张,抽出牌上的数字为“3”的概率D. 从装有3个红球和1个蓝球(4个球除颜色外均相同)的不透明口袋中,任取一个球恰好是蓝球的概率 【答案】B【分析】由折线统计图可知,试验结果在0.3附近波动,最后稳定在0.33附近,再分别计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A 、掷一枚硬币,出现正面朝上的概率为12,故此选项不符合题意; B 、掷一枚正六面体的骰子,出现3的倍数的概率为2163=,故此选项符合题意; C 、将一副新扑克牌(54张)洗匀后,随机抽一张,抽出牌上的数字为“3”的概率为227,故此选项不符合题意; D 、从装有3个红球和1个蓝球(4个球除颜色外均相同)的不透明口袋中,任取一个球恰好是蓝球的概率为1,.的故此选项不符合题意.故选:B .【点睛】本题考查利用频率估计概率,属于基础题型,明确大量反复试验下频率稳定值即概率是解答本题的关键. 9. 如图所示的是某家用晾衣架的侧面示意图,已知AB PQ ∥,根据图中数据,P ,Q 两点间的距离是( ) A. 0.6m B. 0.8mC. 0.9mD. 1m【答案】A【分析】证明ABO QPO ��∽,再根据相似三角形的性质:相似三角形的对应高的比等于相似比即可得到结论. 【详解】解:∵AB PQ ∥,∴ABO QPO ��∽,结合相似三角形对应高的比等于相似比得,1.250.750.75AB PQ −=,而0.4AB =, ∴()0.40.750.6m 0.5PQ×== ,.选A . 【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质是解题的关键.10. 已知点()10,A y ,()21,B y ,()35,C y 在抛物线225y ax ax =−−(a 为常数且0a <)上,则下列结论正确的是( )A. 231y y y >>B. 132y y y >>C. 321y y y >>D. 213y y y >> 【答案】D【分析】先求解抛物线的对称轴方程,再结合开口方向,判断最大值,再根据与对称轴的远近判断函数值的大小,从而可得答案.【详解】解:∵()2250y ax ax a =−−<,∴抛物线的对称轴为直线212ax a−=−=,抛物线的开口向下, ∴当1x =时,函数取得最大值,即2y 最大,同时距离对称轴越远,函数值越小,而()10,A y ,()35,C y , ∴51>01−−, ∴13>y y ,综上:213y y y >>,故选:D .【点睛】本题考查的是二次函数的性质,熟练的利用抛物线的对称性及开口方向比较二次函数的函数值是大小是解本题的关键.二、填空题:本题共6小题,每小题4分,共24分.11. 若O �的半径为2,M 为平面内一点,3OM =,则点M 在O �_________.(填“上”、“内部”或“外部”) 【答案】外部【分析】根据点到圆心的距离和半径的关系即可判断点与圆的位置关系;距离大于半径点在圆的外部,距离等于半径点在圆上,距离小于半径点在圆内部. 【详解】解:O �的半径为2,3OM =,∴点M 到圆心的距离大于半径, ∴点M 在O �外部,故答案为:外部.【点睛】本题主要考查点与圆位置关系;掌握点到圆心的距离与半径的关系是解题的关键. 12. 若关于x 的一元二次方程230x x m ++=有一个根为14x =−,则另一根为2x =_________. 【答案】1【分析】由方程的另一个根为2x ,结合根与系数的关系可得出243x −+=−,从而可得答案. 【详解】解:∵14x =−,方程的另一个根为2x ,∴243x −+=−,解得:21x =.故答案为:1. 【点睛】本题考查了一元二次方程的根与系数的关系,熟记12b x x a+=−、12cx x a =是解本题的关键.13. 如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边35cm DE =,20cm EF =,测得边DF 离地面的高度 1.3m AC =,7m =CD ,则树高AB 为_________m 【答案】5.3【分析】先证明DEF DCB ∽△△,再利用相似三角形的性质求得BC 的长,再加上AC 即可求得树高AB . 【详解】解:90DEF BCD ∠=∠=° ,D D ∠=∠,DEF DCB ∴��∽,BC DCEF DE∴=, ∵35cm DE =,20cm EF =,7m =CD ,72035BC ∴=,()4m BC ∴=, ∵ 1.3m AC =()1.34 5.3m AB AC BC ∴++,故答案为:5.3.【点睛】本题考查了相似三角形的实际应用,解题的关键是从实际问题中抽象出相似三角形的模型,再利用相似三角形的性质.的14. 在一个不透明的口袋中有且仅有6个白球和14个红球,它们除颜色外其他完全相同,从口袋中随机摸出一个球,摸出红球的概率是_____________. 【答案】710【分析】用红球的个数除以球的总个数即可; 【详解】解:∵口袋中共有6个白球和14个红球, ∴一共有球61420+=(个), ∴()1472010P ==摸到红球. 答:从口袋中随机摸出一个球是白球的概率是710;故答案为:710. 【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.15. 下面是小明同学采用因式分解法求解一元二次方程()()313x x −−=解题过程, 等式左边去括号,得2433x x −+=,① 移项、合并同类项,得240x x −=,②等式左边分解因式,得()()140x x −−=,③ 解得11x =,24x =.④_____________. 【答案】③【分析】将原式去括号、移项合并、提公因式然后求解,对比发现错误步骤即可.【详解】解:()()313x x −−=等式左边去括号,得2433x x −+=, 移项、合并同类项,得240x x −=,提公因式,得()40x x −=, 解得10x =,24x =.③开始出现错误,故答案为:③【点睛】本题考查了解一元二次方程;掌握解方程的步骤正确计算是解题的关键. 16. 如图,1l ,2l 分别是反比例函数()2k yk x=<−和2y x =−在第四象限内的图像,点N 在1l 上,线段ON 交2l 于点A ,作NC x ⊥轴于点C ,交2l 于点B ,延长OB 交1l 于点M ,作MF x ⊥轴于点F ,下列结论:①1OFM S =△;②OBC △与OMF �是位似图形,面积比为2k−;③OA OBON OM =;④AB NM �. 其中正确的是____________. 【答案】②③④ 【解析】【分析】由2OFM k S =�可判断①;结合已知易证OFM OCB ∼��,根据面积比等于相似比的平方可判断②;过A 作AK x ⊥轴于点K,类比②,可求得OAOK ON OC ==OAB ONM ∼��,从而得到OAB ONM ∠=∠可判断④.【详解】解:①,2k <− ,2k ∴−>,122OFM kk S −∴==>�,①错误;②,2OFMk S −=�,212OCB S ==�,∴2OCB OFM S S k =−��,②正确; ③,过A 作AK x ⊥轴于点K ,NC x ⊥ ,MF x ⊥ OFM OCB ∴∼��, 22OCB OFMS OC OF S k∴==− ��,OCOF∴,∴OB OC OMOF ==同理OA OK ONOC==OA OBON OM∴=,③正确; ④,由③可知OA OBON OM= OAB ONM ∴∼��OAB ONM ∴∠=∠AB NM �④正确;故答案为:②③④.【点睛】本题考查了反比例函数的图形和性质,相似三角形的判定和性质;解题的关键是灵活运用性质进行计算.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17. 解方程: 2430x x +−=【答案】1222x x =−+=−【分析】根据公式法即可求解.【详解】解:其中143a b c ===−,,,224441328b ac −=+××=得2x =−即2x =−2x =−−所以原方程的根是1222x x =−+=−【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知公式法的运用.18. 如图,ABC �绕点A 逆时针旋转至ADE V ,点D 恰好在边BC 上,求证:CDF DAB ∠=∠.【答案】见解析.【分析】由旋转可知,EAD CAB ∠=∠可得EAF DAB ∠=∠,在EAF △与CDF �中结合旋转和对顶角可得EAF CDF ∠=∠,等量代换即可求证.【详解】证明:由旋转可知,E C ∠=∠,EAD CAB ∠=∠ EAD CAD CAB CAD ∴∠−∠=∠−∠EAF DAB ∴∠=∠在EAF △与CDF �中,E C ∠=∠ ,CFD EFA ∠=∠ EAF CDF ∴∠=∠ CDF DAB ∴∠=∠.【点睛】本题考查了旋转的性质;解题的关键是根据旋转的性质找到相关角进行等量代换.19. 如图,在平面直角坐标系中,直线y x =与双曲线ky x=相交于()2,A m ,B 两点,BC x ⊥轴,垂足为C .(1)求双曲线ky x=的解析式,并直接写出点B 的坐标. (2)求ABC �的面积. 【答案】(1)4y x=;()2,2B −−;(2)4 【分析】(1)将点()2,A m 代入直线y x =得A 坐标,再将点A 代入双曲线ky x=即可得到k 值,由A ,B 关于原点对称得到B 点坐标;(2)先求出BC 的长,再根据三角形面积公式即可求解. 【小问1详解】解:将点()2,A m 代入直线y x =得:2m =, ∴()2,2A ,将()2,2A 代入双曲线ky x=,得: 22k=,解得:4k =, ∴双曲线k y x=的解析式为4y x =,根据题意得:点A ,B 关于原点中心对称, ∴()2,2B −−, 【小问2详解】∵BC x ⊥轴,()2,2B −−, ∴点()2,0C −, ∴2BC =, ∴()()Δ11222422ABC A B S BC x x =⋅−=××+=. 【点睛】此题考查了一次函数与反比例函数的交点问题,熟练掌握反比例函数的图象和性质是解本题的关键.20. 如图,CD 是O �的直径,弦CB 平分ACD ∠,AC AB ⊥,过点D 作O �的切线交CB 的延长线于点E ,连接BD .(1)求证:直线AB 是O �的切线.(2)求证:ACB BDE ∽△△. 【答案】(1)证明见解析 ;(2)证明见解析【分析】(1)如图,连接OB ,证明ACB OBC ∠=∠,可得AC OB ∥,结合AC AB ⊥,可得OB AB ⊥,从而可得结论;(2)先证明90A DBE ∠=∠=°,90CDE DBE ∠=°=∠,可得90DCE E E BDE ∠+∠=°=∠+∠,可得DCE BDE ∠=∠,证明BDE ACB ∠=∠,从而可得ACB BDE ∽△△.【小问1详解】证明:如图,连接OB , ∵CB 平分ACD ∠, ∴ACB OCB ∠=∠, ∵OC OB =, ∴OCB OBC ∠=∠, ∴ACB OBC ∠=∠, ∴AC OB ∥, ∵AC AB ⊥, ∴OB AB ⊥, ∴AB 是O �的切线;【小问2详解】 ∵CD 为O �的直径, ∴90CBD ∠=°, ∴90DBE ∠=°, 而AB AC ⊥,∴90A DBE ∠=∠=°, ∵过点D 作O �的切线DE , ∴90CDE DBE ∠=°=∠,∴90DCE E E BDE ∠+∠=°=∠+∠, ∴DCE BDE ∠=∠, ∵DCE ACB ∠=∠, ∴BDE ACB ∠=∠, ∴ACB BDE ∽△△.【点睛】本题考查的是角平分线的含义,平行线的判定与性质,切线的判定与性质,相似三角形的判定,熟练的利用几何图形的性质解决问题是解本题的关键.21. 福建某公司经销一种红茶,每千克成本为40元.市场调查发现,在一段时间内,销售量p (千克)随销售单价x (元/千克)的变化而变化,其关系式为3300p x =−+.设这段时间内,销售这种红茶总利润为y (元). (1)求y 与x 的函数关系式.(2)求这段时间内,销售这种红茶可获得的最大总利润.【答案】(1)2342012000y x x =−+−;(2)当70x =时,销售利润y 的值最大,最大值为为3700元. 【分析】(1)由总利润等于每千克红茶的利润乘以销售量即可得到答案;(2)用配方法化简函数式求出y 的最大值即可.【小问1详解】解:()()()240403300342012000y x p x x x x =−=−−+=−+−, ∴y 与x 的关系式为:2342012000y x x =−+−.【小问2详解】∵2342012000y x x =−+−()2223140707012000x x =−−+−− ()23703700x =−−+∴当70x =时,销售利润y 的值最大,最大值为为3700元.【点睛】本题考查的是二次函数的实际应用.正确的理解题意列出二次函数关系式是解题的关键.22. 如图,在ABC �中,30B C ∠=∠=°.(1)求作O �,使圆心O 落在边上,且O �经过A ,B 两点.(尺规作图,保留作图痕迹,不必写作法). (2)已知6BC =,求O �的半径.【答案】(1)见解析 (2)2【分析】(1)分别以A ,B 为圆心,大于2AB 为半径在AB 两侧作圆弧,连接圆弧的交点,与BC 的交点为O ,以O 为圆心,OB 为半径画圆即可;(2)连接OA ,OA OB =得30BAO ∠=°,根据三角形外角与内角的关系求出60AOC ∠=°,结合已知可得90OAC ∠=°,运用30°角所对的直角边等于斜边的一半求出2OC OB =,最后由6BC =代入求解即可.【小问1详解】解:如图,小问2详解】由(1)可知,连接OAOA OB ∴=30B C ∠=∠=°30B BAO ∴∠=∠=°60AOC B BAO ∴∠=∠+∠=°【又30C ∠=°90OAC ∴∠=°22OC OA OB ∴6BC =236OB OC OB OB OB ∴+=+==2OB ∴=故O �的半径为:2【点睛】本题考查了尺规作图,圆的基本性质,与三角形有关的角的计算以及“30°角所对的直角边等于斜边的一半”;利用线段垂直平分线的性质得出圆心是解题关键.23. 为了解全校2000名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题:(1)参加问卷调查的同学共_________名,补全条形统计图.(2)在篮球社团活动中,由于甲、乙、丙、丁四人平时的表现优秀.现决定从这四人中任选两名参加篮球大赛,用树状图或列表法求恰好选中丙、丁两位同学的概率.【答案】(1)50,见解析; (2)16. 【分析】(1)根据条形图和扇形图中足球数据即可求出总人数,从而求出跑步的人数,补全条形统计图;(2【小问1详解】解:参加问卷调查的同学人数为:510%50÷=(名)参加跑步的人数为:5010155128−−−−=(名)故答案为:50,补全条形图如下,【小问2详解】解:画树状图如下,从这四人中任选两名参加篮球大赛,共有12种可能;恰好选中丙、丁两位同学的可能有2种, 则恰好选中丙、丁两位同学的概率为:21126P ==. 【点睛】本题考查了条形统计图和扇形统计图的综合应用,还考查了求随机抽样的概率;解题的关键是正确求出总人数及正确画树状图.24. 如图1,线段BC 上有一点()D CD BD >,分别以BD ,CD 为直角边作等腰Rt ABD �和等腰Rt DCE �,90ABD DCE ∠=∠=°.将DCE △绕点D 顺时针旋转45°(如图2),连接AE ,取AE 的中点M ,过点E 作EN AB ∥交射线BM 于点N ,BN 与AD 的交点为F .(1)求证:AB EN =.(2)求证:BC CN =.(3)求证:2CB CF CA =⋅.【答案】(1)证明见解析(2)证明见解析 (3)证明见解析【分析】(1)证明ABM ENM ∠=∠,BAM NEM ∠=∠,再证明ABM ENM ��≌即可得到结论; (2)AB BD =,CD CE =,可得BD EN =,证明135CDB CEN ∠=∠=°,可得CDB CEN ��≌,从而可得结论;(3)证明90BCD NCD BCN ∠+∠=∠=°,45CBN ∠=°,可得CBF CAB ∠=∠,结合BCF ACB =∠∠,证明CBF CAB ��∽,可得结论.【小问1详解】证明:∵EN AB ∥,∴ABM ENM ∠=∠,BAM NEM ∠=∠,∵AE 的中点为M ,∴AM EM =,∴ABM ENM ��≌,∴AB EN =.【小问2详解】∵等腰Rt ABD �和等腰Rt DCE �,∴AB BD =,CD CE =,90ABD DCE DCN NCE ∠=∠=°=∠+∠,45ADB DEC ∠=°=∠, ∴135CDB ∠=°,∵AB EN =,∴BD EN =,∵AB EN ∥,∴1809090BEN ∠=°−°=°,∴9045135CEN ∠=°+°=°,∴135CDB CEN ∠=∠=°,∴CDB CEN ��≌,∴CB CN =.【小问3详解】∵CDB CEN ��≌,∴DCB ECN ∠=∠,∵90DCE ECN NCD ∠=°=∠+∠,∴90BCD NCD BCN ∠+∠=∠=°,∵BC CN =,∴45CBN ∠=°,∵45BAC ∠=°,∴CBF CAB ∠=∠, ∵BCF ACB =∠∠,∴CBF CAB ��∽, ∴CB CF CA CB=, ∴2CB CA CF =�.【点睛】本题考查的是全等三角形的判定与性质,等腰直角三角形的判定与性质,相似三角形的判定与性质,掌握“等腰直角三角形的判定与性质”是解本题的关键.25. 如图,抛物线26y ax bx +−与y 轴交于点A ,与x 轴交于点()3,0B −,()1,0C ,P 是线段AB 下方抛物线上的一个动点,过点Р作x 轴的垂线,交x 轴于点H ,交AB 于点D .设点P 的横坐标为()30t t −<<. (1)求抛物线的解析式.(2)用含t 的式子表示线段PD 的长,并求线段PD 长度的最大值.(3)连接AP ,当DPA �与DHB △相似时,求点P 的坐标.【答案】(1)2246y x x =+−;(2)226PD t t =−−;线段PD 长度的最大值为92. (3)()2,6P −−或755,48P −−【分析】(1)把点()3,0B −,()1,0C 代入26y ax bx +−,再建立方程组求解即可;(2)先求解()0,6A −,再求解直线AB 为26y x =−−,设点P 的横坐标为()30t t −<<.可得()2,246P t t t +−,(),26D t t −−,则222624626PD t t t t t =−−−−+=−−,再利用二次函数的性质可得答案;(3)如图,连接AP ,BDH ADP ∠=∠,而DPA �与DHB △相似,分两种情况讨论:当DPA DHB ��∽时,如图,当DHB DAP ��∽时,过A 作AQ PH ⊥于Q ,再求解即可.【小问1详解】解:∵抛物线26y ax bx +−与x 轴交于点()3,0B −,()1,0C ,∴936060a b a b −−= +−= ,解得:24a b == , ∴抛物线为:2246y x x =+−;【小问2详解】解:∵2246y x x =+−,当0x =时,y =−6,∴()0,6A −,设直线AB 为y kx n =+,∴630n k n =− −+= ,解得:26k n =− =− ,∴直线AB 为26y x =−−,设点P 的横坐标为()30t t −<<.∴()2,246P t t t +−,(),26D t t −−,∴222624626PD t t t t t =−−−−+=−−,当()63222t −=−=−×−时, PD 的最大值为:233926222 −×−−×−= . 【小问3详解】解:如图,连接AP ,∵BDH ADP ∠=∠,而DPA �与DHB △相似,∴分两种情况讨论:当DPA DHB ��∽时, ∴DPAPDH BH =,90APD BHD ∠=∠=°,∴AP x ∥轴,OH AP =,∴A ,P 关于抛物线的对称轴对称,∵()3,0B −,()1,0C , ∴抛物线的对称轴为直线3112x −+==−,而()0,6A −, ∴()2,6P −−;如图,当DHB DAP ��∽时,过A 作AQ PH ⊥于Q , ∴AQ OH =,6AOQH ==,设AQOH n ==, ∵DHB DAP ��∽,∴90DHB DAP ∠=∠=°,∴90ADP APD APQ QAP ∠+∠=∠+∠=°,∴PAQ ADP ∠=∠, 由PH y ∥轴,可得ADP BAO ∠=∠,∴PAQ BAO ∠=∠, ∴3tan tan 6PAQ BAO ∠=∠== ∴12PQ AQ =,即12PQ n =, ∴1,62P n n −−−, ∴()()2124662n n n −+×−−=−−, 解得:74n =(0n =舍去), ∴755,48P −−. 综上:()2,6P −−或755,48P −−. 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,二次函数的性质,相似三角形的判定与性质,锐角三角函数的应用,清晰的分类讨论是解本题的关键.。

2019年莆田市初中毕业班质量检查数学试卷

2019年莆田市初中毕业班质量检查数学试卷

2019 年莆田市初中毕业班质量检查数学试卷一、精心选一选:本大题共 8 小题,每小题 4 分,共 32 分,每小题给出的四个选项中有且只有一个选项是正确的,答对的得 4 分;答错、不答或答案超过一个的一律得0 分 .1、下列计算结果等于 1的式子是()A . ( 2) ( 2)B . ( 2) ( 2)C . ( 2) ( 2)D . ( 2) ( 2)2、下列运算中,正确的是()A . a 2a 3aB .2a2a aC .222(2a)aD . (a a2 )3 52 )353、如图,由五个大小相同的小正方体撘成的几何体的主视图是( )正面第 3 题图A B CDA4、如图, PA 、 PB 分别切⊙ O 于 A 、 B 两点,点 C在优弧 上,ACB0 P 80 ,则 C 的度数为( )COPA .50 B .60C .70D .80B第 4 题图5、为了解某小区居民的日用电量情况,居住在该小区的一位同学随机抽查了 15 户家庭的日用电量,结果如下表:5 6 7 8 10 日用电量(单位:度)户数25431则关于这 15 户家庭的日用电量,下列说法错误 ..的是()A .众数是 6B . 平均数是 6.8C . 极差是 5D . 中位数是 66、已知点 A 的坐标为( 2 ,-1), O 为直角坐标系原点,连结 OA ,将线段 OA 绕点 O 按逆时针方向旋转90 得到线段 OA 1 ,则点 A 1 的坐标为()A .(2 ,-1)B . (2 ,1)C . (1, 2 )D . (-1, 2 )数学试卷第 1 页(共 6 页)2与x 轴相交于 A 、 B 两点, 7、如图,抛物线y axbx cy 与 y 轴相交于 C 点,图中虚线为抛物线的对称轴,则下列正确 的是()A . a 0B . b 0C . c 0D . 2 4 0b ac ACO B x 第7 题图8、如图,直线y kx b 与直线y mx 相交于点A(-1,2 ),与x 轴相交于点B(-3,0 ),则关于x的不等式组0kx b mx 的解集为()yy=mx y=kx+bAA. x 3 B . 3 x 1C . 1 x 0D . 3 x 0BOx第8 题图二、细心填一填:本大题共8 小题,每小题 4 分,共32 分.9 、不等式x 2 0 的解集是.10、计算( 3 2)( 3 2) = .11、圆锥的底面周长为10cm,母线长为12cm,则侧面积为cm2 .12、从大小形状完全相同标有1、2、3数字的三张卡片中随机抽取两张,和为偶数的概率为.13、我市2011 年实现生产总值1050 亿元,用科学记数法表示1050 为.B 14、已知菱形的两条对角线的长分别为 6 、8,则此菱形的周长为.D 15、如图,在等边ABC 中,点D、E 分别在BC、AC 边上,且ADE 60 ,AB=3,BD=1,则EC= .16、正方形O ABC 、1 1 1 A A B C 、1 2 2 2A ABC ┅按如图2 3 3 3放置,其中点 A 、1 A 、2A ┅在x轴的正半轴上,点3B 、1B 、2Ay第15 题图E CB ┅在直线y x 2上,依次类推┅,则点3 A 的坐标为.nC1B1C2B2C3B3A1AO A2数学试卷第2 页(共 6 页)第16 题图三、耐心做一做:本大题共9 小题,共86 分,解答应写出必要的文字说明、证明过程或演算步骤17、(本小题满分8 分)计算:( 2012 ) 0 3 - 2 2 cos30018、(本小题满分8 分)先化简,再求值:1 1a 1 a 122a2a,其中a 2 .119、(本小题满分8 分)如图,在四边形ABCD 中,AD ∥BC ,BC DC ,DG ∥AB 交BC 于点G ,CF 平分BCD 交DG 于点F ,BF 的延长线交DC 于点E .(1)求证:B FC ≌DFC ;A D(2)在不添加辅助线的情况下,在图中找出一条与D E相等的线段,并加以证明.EFB CG第19 题图数学试卷第3 页(共6页)20、(本小题满分8 分)“初中生使用手机”的现象越来越受到社会的关注,某校利用“五一”假期,随机调查了本校若干名学生和部分家长对“初中生使用手机”现象的看法,整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为人;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.学生及家长对初中生使用手机的态度统计图家长对初中生使用手机的态度统计图人数? 10080 8070学生反对6040 20 401030家长%赞成10%无所谓% 赞成反对无所谓类别图1 图2第20 题图21、(本小题满分8 分)如图,ABC 中,0ACB 90 , AC BC 2, O是AB 的中点,经过O 、C 两点的圆分别与AC 、BC相交于 D 、E 两点.(1) 求证:OD OE ;(2) 求: 四边形ODCE 的面积. BOEAD C第21 题图数学试卷第4 页(共 6 页22. 、(本小题满分10 分)如图,在矩形OABC 中,OA 、OC 两边分别在x轴、y 轴的正半轴上,OA 3,OC 2 ,过OA 边上的D 点,沿着BD 翻折ABD ,点A 恰好落在BC 边上的点 E 处,反比例函数图象经过点 E 与BD 相交于点 F .(1)求证:四边形ABED 是正方形;(2)点F 是否为正方形ABED 的中心?请说明理由.yky (k 0) 在第一象限上的xE BCFO D xA第22 题图23、(本小题满分10 分)为了美化学习环境,加强校园绿化建设,某校计划用不多于5200 元的资金购买 A 、B 两种树苗共60 棵(可以是同一种树苗),用于校园周边植树. 若购买A种树苗x 棵,所需总资金为y 元,A、B 两种树苗的相关信息如下表:项目单价(元/ 棵)成活率品种A100 98%B60 90%(1)求y 与x 之间的函数关系式;(2)若要使得所购买树苗的成活率不低于95%,有几种选购方案?所用的资金分别是多少?。

反比例函数定稿(含答案)选择题和填空题(含答案)

反比例函数定稿(含答案)选择题和填空题(含答案)

2019福建近三年一检试题分类汇编—专题7—反比例函数 林国章-已将2016-2019福建九地市一检整理2019-3-1选择题微专题一:反比例函数定义1、(2017—2018学年上学期仙游期末)2、下列函数中,y 是x 的反比例函数的是( B )A.3x y =B.3y x= C.y =3x D.y =x 22、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)2.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( C )A .B .C .D .8.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .3、(2017—2018学年度莆田秀屿区上学期九年级期末考试)2.若一个反比例函数的图象经过点(-4,6),则它的图象一定也经过点( B ) A .(3,8) B .(3,-8) C .(-8,-3) D .(-4,-6)4、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)2.下列函数中y 是x 的反比例函数是( B )A.y=3xB.y =x3C.y=x 23D.y =3x+35、(2016-2017学年福州市鼓楼区延安中学九年级(上)期末)1.若反比例函数y=﹣的图象经过点A (3,m ),则m 的值是( C ) A .﹣3 B .3C .﹣D .4. 已知反比例函数8y x=-,则下列各点在此函数图象上的是( D )A .(2,4)B .(-1,-8)C .(-2,-4)D .(4,-2)7、(2016-2017学年福建省南平市九年级(上)期末)4.下列四个关系式中,y 是x 的反比例函数的是( B ) A .y=4xB .y=C .y=D .y=8、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)2.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( C )A .B .C .D .8.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .微专题二:反比例函数的性质1、(三明市2018-2019学年上学期期末)7.对于反比例函数y =x2-,下列说法不正确的是( D ) A .图象分布在第二、四象限B .当x >0时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 2..2、(南平市2018-2019学年第一学期九年级期末质量检测)8. 如果点A ),3(1y -,B ),2(2y -,C ),2(3y 都在反比例函数)0(>=k xky 的图象上,那么 1y ,2y ,3y 的大小关系正确的是( B )A. 3y <2y <1yB. 2y <1y <3yC. 1y <2y <3yD .1y <3y <2y3、(漳州市2018-2019学年上学期教学质量抽测)9. 若点A (2m ,1y ),B (22+m ,2y )在反比例函数xy 4=的图象上,则1y ,2y 的大小关系是( A )A .21y y >B .21y y =C .21y y <D .不能确定4、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)4.函数y=2x 与函数y=﹣在同一坐标系中的大致图象是( B )A .B .C .D .5.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数y=的图象上,当x 1>x 2>0时,下列结论正确的是( C ) A .y 2<y 1<0B .y 1<y 2<0C .0<y 2<y 1D .0<y 1<y 25、(福州市 2017-2018 学年第一学期九年级期末考试)7、已知反比例函数y =kx (k <0)的图象经过点A (-1,y 1),B (2,y 2),C (3,y 3), 则 y 1,y 2,y 3的大小关系是( A )(A )y 2<y 3<y 1 (B )y 3<y 2<y 1 (C )y 1<y 3<y 2 (D )y 1<y 2<y 36、(宁德市2017-2018学年九年级上学期期末考试)2.已知反比例函数xky =,当x >0时,y 随x 的增大而增大.则函数xk y =的图象在(C )A .第一、三象限B .第一、四象限C .第二、四象限D .第二、三象限7、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)10. 已知P (x 1,1),Q (x 2,2)是一个函数图象上的两个点,其中x 1<x 2<0,则这个函数图象可能是( A )A .B .C .D .8、(南平市2017-2018学年第一学期九年级期末质量检测)8.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是( B )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)1.若双曲线y=的图象经过第二、四象限,则k 的取值范围是( B ) A .k >0B .k <0C .k ≠0D .不存在4.函数y=2x 与函数y=﹣在同一坐标系中的大致图象是( B )A .B .C .D .5.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数y=的图象上,当x 1>x 2>0时,下列结论正确的是( C ) A .y 2<y 1<0B .y 1<y 2<0C .0<y 2<y 1D .0<y 1<y 210、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))6.在函数的图象上有三点A (﹣2,y 1)B (﹣1,y 2)C (2,y 3),则( B )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 3>y 2>y 111、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)6.已知A (2,y 1),B (﹣3,y 2),C (﹣5,y 3)三个点都在反比例函数y=﹣的图象上,比较y 1,y 2,y 3的大小,则下列各式正确的是( B )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 2<y 1微专题三:反比例函数的应用1、(2018-2019学年度福州市九年级第一学期质量调研)9.如图,矩形ABCD 的对角线BD 过原点O ,各边分别平行于坐标轴,点C 在反比例函数31k y x+=的图象上.若点A 的坐标是(2-,2-),则k 的值是( C ) A .-1 B .0C .1D .42、(漳州市2018-2019学年上学期教学质量抽测)6. 如图,过反比例函数xky =(x <0)图象上的一点A 作AB ⊥x 轴于点B , 连接AO ,若2=∆AOB S ,则k 的值是 ( D ) A .2 B .-2 C .4 D .-48.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .3、(2016-2017学年福州市鼓楼区延安中学九年级(上)期末)4.如图,直线y=kx 与双曲线y=﹣交于A (x 1,y 1),B (x 2,y 2)两点,D A OBC xyxyOB A则2x 1y 2﹣8x 2y 1的值为( B ) A .﹣6 B .﹣12C .6D .124、(宁德市2016-2017学年度第一学期期末九年级质量检测)10.如图,已知动点A ,B 分别在x 轴,y 轴正半轴上,动点P 在反比例函数6(0)y x x =>图象上,PA ⊥x 轴,△PAB 是以PA 为底边的等腰三角形.当点A 的横坐标逐渐增大时,△PAB 的面积将会( C ) A .越来越小 B .越来越大 C .不变D .先变大后变小5、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))9、如图,双曲线()0>x xky =经过Rt △OAB 斜边OB 的中点D ,与直角边AB 相交于点C .过作DE ⊥OA 交OA 于点E ,若△OBC 的面积为3,则k 的值是( B ). A.1 B.2 C.3 D.46、(2016-2017学年三明市梅列区九上期末考试)6.反比例函数y =(k >0)在第一象限内的图象如图,点M 是图象上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( B )A .1B .2C .4D .7、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)10.如图,反比例函数的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为( B ) A .1B .2C .3D .4解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =,S △OAD =,第10题图B Axxyy OOA P C B过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S □ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO=4S □ONMG =4|k |,由于函数图象在第一象限,k >0,则++6=4k ,k=2. 故选B .填空题微专题一:反比例函数的定义1、(宁德市2018-2019学年度第一学期期末)2、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)12.函数y=(m +2)x是反比例函数,则m 的值为 2 .3、(福州市 2017-2018 学年第一学期九年级期末考试)4、反比例函数的图像经过点(2,3)则该函数的解析式为 y =6x5、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)14.反比例函数y =1−k x的图像经过点(2,3)则k= -56、(上杭县2016-2017学年第一学期期末教学质量监测)12.请写出一个图象在第二、四象限的反比例函数解析式 答案不唯一,如y =−1X .14.反比例函数x k y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中120x x <<且21y y >,则k的范围是 1k <- .7、(2016-2017学年福建省南平市九年级(上)期末)11k y x=22k y x=AxyOBCDC A B Oyx(第11题图)11.若反比例函数y=的图象的两个分支在第二、四象限内,请写出一个满足条件的m 的值. 1(答案不唯一,小于2的任何一个数) .微专题二:反比例函数的性质1、(2017—2018学年度莆田秀屿区上学期九年级期末考试)12.已知函数xm y 32+=,当x <0 时,y 随x 的增大而增大,则m 的取值范围是 m =−32 .2、(上杭县2016-2017学年第一学期期末教学质量监测)14.反比例函数xk y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中120x x <<且21y y >,则k 的范围是 1k <- .3、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))12.若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是 m<14、(2016-2017学年三明市梅列区九上期末考试)13.已知P 1(x 1,y 1),P 2(x 2,y 2)两点都在反比例函数y =的图象上,且x 1<x 2<0,则y 1 > y 2(填“>”或“<”).微专题三:反比例函数应用1、(宁德市2018-2019学年度第一学期期末)16.如图,已知直线l :103y x b b =-+ (<)与x ,y 轴分别交于A ,B两点,以AB 为边在直线l 的上方作正方形ABCD ,反比例函数11k y x =和22ky x=的图象分别过点C 和点D .若13k =,则2k 的值为 -9 .2、(三明市2018-2019学年上学期期末)14.如图,在平面直角坐标系中,点A 是函数xky =(x <0)图象上的点, A B ⊥x 轴,垂足为B ,若△ABO 的面积为3,则k 的值为____-6___.3、(南平市2018-2019学年第一学期九年级期末质量检测)15.已知反比例函数xky =(0≠k ),当1≤x ≤2时,函数的 最大值与最小值之差是1,则k 的值为 2± .4、(漳州市2018-2019学年上学期教学质量抽测)16. 如图,Rt △ABC 的直角边BC 在x 轴负半轴上,斜边AC 上的中线BD 的反向延长线交y 轴负半轴于点E ,反比例函数xy 2-=(x <0)的图象过点A ,则△BEC 的面积是 1 .5、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)16.如图,过点O 作直线与双曲线y=(k ≠0)交于A ,B 两点,过点B 作BC ⊥x 轴于点C ,作BD ⊥y 轴于点D .在x 轴、y 轴上分别取点E ,F ,使点A ,E ,F 在同一条直线上,且AE=AF .设图中矩形ODBC 的面积为S 1,△EOF 的面积为S 2,则S 1,S 2的数学量关系是 2S 1=S 2. .(第14题)xyED CBO A解:过点A 作AM ⊥x 轴于点M ,如图所示. ∵AM ⊥x 轴,BC ⊥x 轴,BD ⊥y 轴, ∴S 矩形ODBC =﹣k ,S △AOM =﹣k . ∵AE=AF .OF ⊥x 轴,AM ⊥x 轴, ∴AM=OF ,ME=OM=OE , ∴S △EOF =OE•OF=4S △AOM =﹣2k , ∴2S 矩形ODBC =S △EOF , 即2S 1=S 2.故答案为:2S 1=S 2.6、(2017—2018学年度莆田秀屿区上学期九年级期末考试)16.如图,在平面直角坐标系中,点A 是函数y =kx (k<0,x<0) 图象上的点,过点A 与y 轴垂直的直线交y 轴于点B ,点C 、D 在x 轴上, 且BC ∥AD .若四边形ABCD 的面积为3,则k 值为 3 .7、(宁德市2017-2018学年九年级上学期期末考试)16.如图,点A ,B 在反比例函数xky =图象上,且直线AB 经过原点,点C 在y 轴正半轴上,直线CA 交x 轴于点E ,直线CB 交x 轴于点F ,若3=AE AC ,则=CFBF 14 .8、(南平市2017-2018学年第一学期九年级期末质量检测)第16题图B Axxyy OOA P CB FE11.如图,在平面直角坐标系xoy 中,矩形OABC ,OA =2, OC =1,写出一个函数()0≠=k xk y ,使它的图象与矩形OABC 的边有两个公共点,这个函数的表达式可以为 如:x y 1=(答案不唯一,0<k <2的任何一个数) (答案不唯一). 9、(2016-2017学年福州市九年级(上)期末)15.已知▱ABCD 的面积为4,对角线AC 在y 轴上,点D 在第一象限内,且AD ∥x 轴,当双曲线y=经过B 、D 两点时,则k= 2 .解:由题意可画出图形,设点D 的坐标为(x ,y ),∴AD=x ,OA=y ,∵▱ABCD 的面积为4,∴AD•AC=2AD•OA=4,∴2xy=4,∴xy=2,∴k=xy=2,故答案为:210、(2016—2017南平市建阳外国语学校科技班九上期末数学试卷)9.如图,一次函数y=x+1的图象交x 轴于点E 、交反比例函数x y 2=的图象于点F (点F 在第一象限),过线段EF 上异于E 、F 的动点A 作x 轴的平行线交xy 2=的图象于点B ,过点A 、B 作x 轴的垂线段,垂足分别是点D 、C ,则矩形ABCD 的面积最大值为 4911、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)yx FE CD BA O16.如图,过点O作直线与双曲线y=(k≠0)交于A,B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1,S2的数学量关系是2S1=S2.12、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A))15.如下图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1= S2.(填“>”或“<”或“=”)13、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)16.已知正比例函数y1=x,反比例函数y2=,由y1,y2构成一个新函数y=x+,其图象如图所示,(因其图象似双钩,我们称之为“双钩函数”)给出下列几个命题:①y的值不可能为1;②该函数的图象是中心对称图形;③当x>0时,该函数在x=1时取得最小值2;④在每个象限内,函数值y随自变量x的增大而增大.其中正确的命题是①②③(填所有正确命题的序号)。

九年级上册数学质量监测试卷

九年级上册数学质量监测试卷

第1页 (共10页) 九年级数学试卷 第2页 (共10页)A2018—2019学年第一学期期末 九年级数学质量监测试卷考生注意:1.考试时间90分钟一、选择题(每题3分,共30分)1.x 的取值范围是( )A. x ≥-1 B . x ≠0 C . x >-1且x ≠0 D . x ≥-1且x ≠0 2.方程(2)(2)2x x x -+=-的解是( )A .0x = B .1x =- C .2x =或1x =- D .2x =或0x = 3. 将一元二次方程2210x x --=配方后所得的方程是( )A .2(2)0x -= B .2(1)2x -= C .2(1)1x -= D .2(2)2x -=4. 六张形状、颜色、b a 2、是( )A . 16B .13C .23D .125.已知两圆的半径分别是4与5,圆心距为8,那么这两个圆的位置关系是( ) A. 外离 B. 外切 C. 相交 D.内切6. 如图1,点A,B,C 都在⊙O 上,∠A =∠B =20º,则∠AOB 等于( )A .40ºB. 60 ºC. 80 ºD.100 º7. 如图2,把边长为3的正三角形绕着它的中心旋转180°后, 则新图形与原图形重叠部分的面积为( )C.8.如图3,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A=100°,∠C=30°,则∠DFE 的度数是( )A.55°B.60°C.65°D.70° 9.如图4,AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为 的中点,P是直径AB 上一动点,则PC+PD 的最小值为( ) A.B C.1D.210三角形的两边长分别为3和6,第三边的长是方程2680x x-+=的一个根,则这个三角形的周长( ) A.9B.11C.13D 、14二、填空题(每题3分,共30分)11、过⊙O 内一点M 的最长弦长为10cm,最短弦长为8cm,那么OM 的长为 12. 方程(x -2)(2x +1)=x 2+2化为一般形式为______________________. 13. 已知点(a ,﹣1)与点(2,b )关于原点对称,则a+b= .14.本试卷中的选择题,每小题都有4个选项,其中只有一个是正确的,当你遇到不会做的题目时,如果你随便选一个答案,那么你答对的概率为 . 15.已知抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=1,且经过点P (3,0),则抛物线与x 轴的另一个交点坐标为 .16.如图5,点B ,C ,D 在同一条直线上,△ABC 和△ECD都是等边三角形,△EBC 可以看作是△ 绕点 逆时针旋转 º得到.17.如图6,小明作了一顶圆锥形纸帽,已知纸帽底面圆的半径OB 为10cm ,母线长BS 为20cm ,则圆锥形纸帽的侧面积为 cm 2(结果保留含π的式子).(图1) (图2) (图3)AB(图6)(图4)(图5)第3页 (共10页) 九年级数学试卷 第4页 (共10页)18.如图7是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10 cm ,母线OE (OF )长为10 cm .在母线OF 上的点A 处有一块爆米花残渣,且FA = 2 cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短距离为 cm 。

2018-2019福建省莆田第八中学九年级上学期期末考试数学试题

2018-2019福建省莆田第八中学九年级上学期期末考试数学试题

2018-2019莆田八中九年级数学上学期期末试卷一.选择题(共10小题,满分40分,每小题4分)1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.若P(x,﹣3)与点Q(4,y)关于原点对称,则xy的值是()A.12 B.﹣12 C.64 D.﹣643.如图,⊙O的直径CD为10,弦AB的长为8,且AB⊥CD,垂足为M,则CM的长为()A.1 B.2 C.3 D.44.若正多边形的一个中心角是30°,则该正多边形的边数是()A.6 B.12 C.16 D.185.下列说法错误的是()A.必然发生的事件发生的概率为1 B.不可能发生的事件发生的概率为0C.随机事件发生的概率大于0且小于1 D.概率很小的事件不可能发生6.若函数是反比例函数,且它的图象在第一、三象限,则m的值为()A.2 B.﹣2 C.D.7.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1 B.3:1 C.4:3 D.3:28.如图,已知△A1OB1与△A2OB2位似,且△A1OB1与△A2OB2的周长之比为1:2,点A1的坐标为(﹣1,2),则点A2的坐标为()A.(1,﹣4)B.(2,﹣4)C.(﹣4,2)D.(﹣)9.在Rt△ABC中,∠C=90°,cosB=,则tanA=()A.B.C.D.10.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y 轴于点C,且点B 为线段AC中点,过点A作AD⊥x轴子点D,点E 为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣6二.填空题(共6小题,满分24分,每小题4分)11.已知正方形ABCD中,点E在DC边上,DE=4,EC=2,如图,把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点间的距离为.12.如图,已知⊙O是△ABC的内切圆,且∠ABC=60°,∠ACB=80°,则∠BOC的度数为.13.有5个完全相同的卡片,正面分别写有1,2,3,4,5这5个数字,现把卡片背面朝上,从中随机抽取一个卡片,其数字是奇数的概率为.14.计算;sin30°•tan30°+cos60°•tan60°=.15.如图,平行四边形ABOC的顶点A、C分别在y轴和x轴上,顶点B在反比例函数的图象上,则平行四边形ABOC的面积是.16.如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.11题 12题 15题 16题三.解答题(共9小题,共86分)17.(8分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)将△A1B1C1绕原点O逆时针旋转90°得到△A2B2C2,请画出旋转后的△A2B2C2,并写出点C2的坐标.18.(8分)通过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率.(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.19.(8分)如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.20.(8分)计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C 的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)21.(8分)如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.22.(10分)如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E 在AB上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.23.(10分)如图,AB是圆O的直径.CD是圆O的一条弦.且CD⊥AB于点E.(1)若∠A=48°,求∠OCE的大小;(2)若CD=4.AE=2,求的长.24.(12分)如图,△ABC的内角平分线AP与外角平分线AQ分别交BC及BC的延长线于点P,Q (1)求∠PAQ的度数(2)若点M为PQ的中点,求证:PM2=CM•BM.25.(14分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象相交于A,B两点,点B的坐标为(12,m),线段OA=10,点E在x轴负半轴上,tan∠AOE=.(1)求反比例函数和一次函数解析式;(2)求△AOB的面积.2018-2019莆田八中九年级数学上学期期末试卷参考答案与试题解析一.选择题(共10小题)1.C 解析:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选C.2.B 解析:∵P(x,﹣3)与点Q(4,y)关于原点对称,∴x=﹣4,y=3,∴xy=﹣12.故选B.3.B 解析:连接OA.∵直径CD⊥AB,AB=8,∴AM=BM=AB=4,在Rt△AOM中,OA=5,AM=4,根据勾股定理得:OM==3,则CM=OC﹣OM=5﹣3=2.故选B.4.B 解析:360°÷30°=12.故这个正多边形的边数为12.故选B.5.D 解析:A、必然发生的事件发生的概率为1,正确;B、不可能发生的事件发生的概率为0,正确;C、随机事件发生的概率大于0且小于1,正确;D、概率很小的事件也有可能发生,故错误. 故选D.6.A 解析:∵函数y=mx是反比例函数,∴m2﹣5=﹣1,解得,m=±2,∵它的图象在第一、三象限,∴m>0,∴m=2.故选A.7.A 解析:∵以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,∴.故选A.8.B 解析:∵△A1OB1与△A2OB2的周长之比为1:2,∴△A1OB1与△A2OB2的位似之比为1:2,而点A1的坐标为(﹣1,2),∴点A2的坐标为(2,﹣4).故选B.9.C 解析:如图所示:∵∠C=90°,cosB=,∴设BC=3x,则AB=5x,故AC=4x,则tanA==.故选C.10.A 解析:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选A.二.填空题(共6小题)11.2或10 解析:①当线段AD顺时针旋转得到F1点,在△ADE和△ABF1中,,∴△ADE≌△ABF1,∴DE=BF1=4,∴EC=F1C=2;②逆时针旋转得到F2点,同理可得△ABF2≌△ADE,∴F2B=DE=4,F2C=F2B+BC=10.12.110°解析:∵⊙O是△ABC的内切圆,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=40°,∴∠BOC=180°﹣∠OBC﹣∠OCB=110°.13.解析:∵从写有数字1,2,3,4,5这5张卡片中抽取一张,其中正面数字是奇数的有1、3、5这3种结果,∴正面的数字是奇数的概率为.14.解析:sin30°•tan30°+cos60°•tan60°=×+×=.15.3 解析:作BD⊥x轴于D,∴四边形AODB是矩形,∵顶点B在反比例函数的图象上,∴四边形AODB的面积为3,∵平行四边形ABOC的面积=矩形AODB的面积,∴平行四边形ABOC的面积为3.16.16 解析:连接BE,中EC上截取EH=CD=6,作DM⊥EC于M.∵CB=CE,∠C=60°,∴△BCE是等边三角形,∴BE=EC,∠BEH=∠C=60°,∵EH=CD,∴△BEH≌△ECD,∴∠EHB=∠EDC,BH=ED,∴∠BHC=∠BDE,∵∠BHC=∠A+∠ABH,∠EDB=2∠A,∴∠A=∠ABH,∴AH=BH=8+6=14,∴DE=BH=14,在Rt△DCM中,∵CD=6,∠CDM=30°,∴CM=3,DM=3,在Rt△DEM中,EM==13,∴EC=3+13=16,∴BC=EC=16.三.解答题(共9小题)17.解:(1)如图,△A1B1C1即为所求,点C1的坐标为(﹣3,3);(2)如图,△A2B2C2即为所求,点C2的坐标为(﹣3,﹣3).18.解:画树状图得:由图可知,一共有27种等可能的情况;(1)∵三辆车全部继续直行的有1种情况,∴三辆车全部继续直行的概率为:;(2)两辆车向右转,一辆车向左转的有3种,∴两辆车向右转,一辆车向左转的概率为=;(3)至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为.19.解:如图:连接OC,∵DE切⊙O于点C,∴OC⊥DE,又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC,∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.20.解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.21.解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴,在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1,在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=,∴==.22.解:(1)由旋转性质知BD=BA、∠CBA=∠EBD,∵∠BDA=70°,∴∠BAD=70°,∴∠ABD=∠ABC=40°,∵∠C=90°,∴∠BAC=50°;(2)∵BC=8、AC=6,∠C=90°,∴AB=10,由旋转性质知△ABC≌△DBE,则BE=BC=8、DE=AC=6,∴AE=2,在Rt△ADE中,AD===2,作BF⊥AD于点F,∵BA=BD,∴AF=AD=,则BF===3.23.解:(1)∵CD⊥AB,∠A=48°,∴∠ADE=42°.∴∠AOC=2∠ADE=84°,∴∠OCE=90°﹣84°=6°;(2)解:因为AB是圆O的直径,且CD⊥AB于点E,所以DE=CE=CD=×4=2,在Rt△AED中,tan∠A==,∴∠A=60°,∴∠BOD=2∠A=120°,在Rt△OEC中,OC2=CE2+OE2,设圆O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,所以r2=(2)2+(r﹣2)2,解得:r=4.∴圆O的半径为4,连接OD,∴的长==π.24.(1)解:∵∠1=∠BAC,∠CAQ=∠CAD,∴∠PAQ=∠1+∠CAQ=(∠BAC+∠CAD)=90°.(2)证明:∵∠PAQ=90°,PM=MQ,∴AM=MP=MQ,∴∠MPA=∠MAP,∴∠B+∠BAP=∠1+∠2,∵∠BAP=∠1,∴∠2=∠B,∵∠AMC=∠BMA,∴△AMC∽△BMA,∴=,∴MA2=CM•BM,∵MA=MP,∴PM2=CM•BM.25.解:(1)作AH⊥x轴于H.∵tan∠AOE=,∴.∵OA=10,设AH=4x,OH=3x,则OA=5x,∴5x=10,x=2,∴OH=6,AH=8.∴A(﹣6,8),∴.∴n=﹣48.∴.把x=12代入,∴y=﹣4.∴B(12,﹣4),∴,解得,.∴y=﹣x+4;(2)把x=0代入y=﹣x+4中,∴y=4.∴OC=4,S△AOB=S△AOC+S△BOC=+=36.。

九年级数学期末考试试卷分析

九年级数学期末考试试卷分析

2018—2019学年上学期期末试卷分析姓名:学科:九年级数学单位:2018-2019学年上期教学质量调研测试九年级数学试卷分析本次考试考查内容为华东师大版九年级数学上册第二十一章《二次根式》、第二十二章《一元二次方程》、第二十三章《图形的相似》、第二十四章《解直角三角形》以及第二十五章《随机事件的概率》,本次测试不仅是九年级学生的一次测试,也是对九年级上册数学教学的一次终结性评价。

本份试卷,符合新课标要求,试题既注重基础,又突出能力;既重视对数学的重点知识与技能结合的考查,也重视对学生数学学习能力和解决问题能力等方面的考查;题型既丰富新颖,又根植于课本。

总体上来说考查内容较为全面、基础,知识点分布均匀,充分体现了义务教育的普及型、基础性和发展性。

一、试卷结构分析本次数学试卷满分100分,考试时间90分钟,共三大题,24小题,第一题为选择题,共6小题,满分18分,第二题为填空题,共12小题,满分36分,第三大题为解答题,共6小题,满分46分。

选择题(1-6题)、填空题(7-18题)所考查的知识点具体如下:解答题(19-24题)所考查的知识点具体如下:同近两年的期末测试试卷比较有以下不同:本试卷填空题中多了新定义类题型,解答题中考察了解直角三角形测量类应用题,但没有考查增长率以及销售类应用题。

二、试题的主要特点(一)全面考查“双基”突出对基础知识、基础技能及基本数学思想方法的考查,有很好的教学导向性。

(二)注重考查数学能力1.把握知识的内在联系,考查学生综合运用数学的能力。

2.注重考查学生的获取信息、分析问题、解决问题的能力。

(三)突出了对数学思想方法的考查本试卷填空题第14小题中涉及到换元思想,第15小题涉及到分类讨论思想,第23小题涉及到统计思想,第24小题涉及到转化与化归思想,整张试卷还涉及到方程思想、函数思想等,考察了分析法、综合法等思想方法。

通过这些数学思想和方法的考查,使学生领悟知识发生、发展和演变的全部过程,并逐渐学会运用贯穿全过程中的数学思想方法,从根本上提高学生掌握数学知识,应用数学知识的能力。

福建省厦门市2018-2019学年第一学期九年级(上)期末数学测试卷(含答案)

福建省厦门市2018-2019学年第一学期九年级(上)期末数学测试卷(含答案)

2018-2019学年九(上)厦门市期末教学质量检测数学卷(满分150分;考试时间120分钟)一、选择题(本大题有10小题,每小题4分,共40分) 1.计算-5+6,结果正确的是( ).A.1B.-1C.11D.-112.如图1,在△ABC 中,∠C =90°,则下列结论正确的是( ).A. AB=AC +BCB.AB=AC·BCC. AB 2=AC 2+ BC 2D. AC 2=AB 2+BC 2 3.抛物线y=2(x -1)2-6的对称轴是( ).A.x =-6B.x =-1C. x =21D. x =14.要使分式11x 有意义,x 的取值范围是( ).A.x ≠0B. x ≠1C. x >-1D. x >1 5.下列事件是随机事件的是( ). A.画一个三角形,其内角和是360°B.投掷一枚正六面体骰子,朝上一面的点数小于7C.射击运动员射击一次,命中靶心D.在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生产 零件数的统计图,与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是( ).A.平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离要s 与时间t 的函 数关系如图4中的部分抛物线所示(其中P 是该抛物线的顶点) 则下列说法正确的是( ). A.小球滑行6秒停止 B.小球滑行12秒停止 C.小球滑行6秒回到起点 D.小球滑行12秒回到起点(图1)(图2)(图4)m m 生产的零件数(图3)8.在平面直角坐标系xOy 中,已知A (2,0),B (1,-1),将线段OA 绕点O 逆时针旋转,旋转角为α(0°<α<135°).记点A 的对应点为A 1,若点A 1与点B 的距离为6,则α为( ). A. 30° B.45° C.60° D.90°9.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD >AD ,则下列结论正确的是( ).A. CD <AD - BDB. AB >2BDC. BD >ADD. BC >AD10.已知二次函数y=ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1、x 2 (0< x 1<x 2 <4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范国是( ).A. 0<m <1B.1<m ≤2C.2<m <4D.0<m <4 二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体酸子,投掷一次,朝上一面的点数为奇数的概率是______.12.已知x =2是方程x 2+ax -2=0的根,则a =______.13.如图5,已知AB 是⊙O 的直径,AB =2,C 、D 是圆周上的点,且 ∠CDB =30°,则BC 的长为______.14.我们把三边长的比为3:4:5的三角形称为完全三角形,记命题A : “完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :____________________;并写出一个例子(该例子能判断命题B 是错误的) 15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA 、OP ,将△OPA 绕点O 旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为______. 16.若抛物线y=x 2+bx (b >2)上存在关于直线y=x 成轴对称的两个点,则b 的取值范围 是______.三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=018.(本题满分8分) 化简并求值:(1-12+x )÷2212+-x x ,其中x =2-1(图5)已知二次函数y=(x -1)2+n ,当x =2时,y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20. (本题满分8分)如图,已知四边形ABCD 是矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB=EC . (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O ,交边AC于点D . AD 的长为34,求证:BC 是⊙O 的切线.已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD 、AB 的距离分别为m 、n .(1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图①所示,当点P 在对角线AC 上,且m =41时,求点P 的坐标;(2)如图②,当m 、n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运输过程中,有部分鱼未能存活,小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录.(1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的观律,①若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ②考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只卖活鱼),且售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.(图②)已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图10,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图11,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.(图①) (图②)在平面直角坐标系xO y中,点A(0,2),B(p,q)在直线上, 抛物线m经过点B、C(p+4,q),且它的顶点N在直线l上.(1)若B(-2,1),①请在图12的平面直角坐标系中画出直线l与抛物线m的示意图;②设抛物线m上的点Q的模坐标为e(-2≤e≤0)过点Q作x轴的垂线,与直线l交于点H . 若QH=d,当d随e的增大面增大时,求e的取值范围(2)抛物线m与y轴交于点F,当抛物线m与x轴有唯一交点时,判断△NOF的形状并说明理由. yx –4–3–2–11234–4–3–2–11234O。

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。

2018-2019学年九年级上学期期末数学试题(解析版)

2018-2019学年九年级上学期期末数学试题(解析版)

2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。

福建省莆田市秀屿区2018届九年级数学上学期期末考试试题新人教版

福建省莆田市秀屿区2018届九年级数学上学期期末考试试题新人教版

福建省莆田市秀屿区2018届九年级数学上学期期末考试试题(分数:150分 时间120分钟)一.选择题(每题只有一个正确答案,每题4分,共10小题,共40分) 1.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个2.若一个反比例函数的图象经过点(-4,6),则它的图象一定也经过点( ) A .(3,8) B .(3,-8) C .(-8,-3) D .(-4,-6) 3.一元二次方程2104x x -+=的根是( ) A.1211,22x x ==- B.122,2x x ==- C.1212x x ==- D.1212x x ==4.一个正多边形的每个外角都等于36,那么它是( ) A.正六边形 B.正八边形 C.正十边形 D.正十二边形5.如图,A 、D 是⊙O 上的两个点,BC 是直径.若∠D =32,则∠OAC =( ) A .64° B .58° C .72° D .55°6.二次函数223y x x =+-的图象的顶点坐标是( ) A.()1,4-- B.()1,4- C.()1,2-- D.()1,2-7.在平面直角坐标系中,已知点A (﹣3,6),B (﹣9,﹣3),以原点O 为位似中心,相似比为,把△ABO 缩小为△''B A O ,则点A 的对应点A ′的坐标是( ) A .(﹣1,2) B .(﹣9,18)C .(﹣9,18)或(9,﹣18)D .(﹣1,2)或(1,﹣2)8.如图所示,ABC ∆中,DE ∥BC ,若12AD DB =,则下列结论中不正确...的是( )9.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )10.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A .B .C .D .2二.填空题(本大题共6小题,每小题4分,共24分)11.一个圆锥的底面圆半径为2cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是 cm .12.已知函数xm y 32+=,当x <0 时,y 随x 的增大而增大,则m 的取值范围是 . 13.如果将抛物线221y x x =--向上平移,使它经过点()0,3A ,那么所得新抛物线的表达式是 .14. 在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,x ky=其余均相同.若从中随机摸出一个球,它是白球的概率为52,则n =___________. 15.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB =3.5 cm ,则此光盘的直径是 __________cm. 16.如图,在平面直角坐标系中,点A 是函数 )0,0(<<x k图象上的点,过点A 与y 轴垂直的直线交y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD .若四边形ABCD 的面积为3,则k 值为 .三.解答题(本大题共9小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤.) 17. 用适当的方法解下列方程(本题满分8分,每小题4分) (1))3(6)3(+=+x x x (2) 0822=-+x x18.(本题满分8分)如图,正方形网格中,△ABC 的顶点及点O 在格点上. (1)画出与△ABC 关于点O对称的△111C B A ;(4分)(2)画出一个以点O 为位似中心的△222C B A ,使得△222C B A 与△111C B A 的相似比为2.(4分)19.(本题满分8分)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3个红球和2个黑球,两人先后从袋中取出一个球(不放回),若两人所取球的颜色相同,则小明胜;否则,小军胜;(1)请用树状图法求出摸笔游戏所有可能的结果;(4分)(2)计算小明获胜的概率是,小军获胜的概率是,并指出本游戏规则是否公平,若不公平,你认为对谁有利.(4分)20.(本题满分8分) 如图,在4×4的正方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC , BC= ;(4分)(2)判断△ABC 与△DEF 是否相似,并证明你的结论.(4分)21.(本题满分8分)如图,点O 是坐标原点,矩形OABC 的顶点A ,C 分别在坐标轴上,点B 的坐标为(4,2).直线132y x =-+分别交AB ,BC 于点M ,N ,反比例函数k y x =的图像经过点M .(1)求反比例函数的解析式;(4分) (2)判断点N 是否在反比例函数ky x=的图像上?试说明理由.(4分)22.(本题满分10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利30元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天赢利750元,每件衬衫应降价多少元?(5分)(2)每件衬衫降价多少元时,商场平均每天赢利最多?(5分)23.(本题满分10分)已知⊙O为△ABC的外接圆,直线l与⊙O相切于点P,且l∥BC.(1)连接PO,并延长交⊙O于点D,连接AD.证明: AD平分∠BAC;(5分)(2)在(1)的条件下,AD交BC于点E,连接CD.若DE=2,AE=6.试求CD的长. (5分)24.(本题满分12分)如图,已知抛物线212y x bx c x =++与轴交于点A (-4,0)和B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(3分)(2)设E 是线段AB 上的动点,作EF ∥AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF 面积的2倍时,求E 点的坐标;(3分)(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.(6分)25.(本题满分14分)如图1,两个等腰直角三角板ABC和DEF有一条边在同一条直线l上,DE=,1AB=.将射线EB绕点E逆时针旋转45︒,交直线AD于点M.将图1中的三角板2ABC沿直线l向右平移,设C、E两点间的距离为k.解答问题:(1)①当点C与点F重合时,如图2所示,可得AMDM的值为;②在平移过程中,AMDM的值为(用含k的代数式表示);(4分)(2)将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,计算AMDM的值;(5分)(3)将图1中的三角板ABC绕点C逆时针旋转α度,0α<≤90,原题中的其他条件保持不变.如图4所示,请补全图形,计算AMDM的值(用含k的代数式表示).(5分)参考答案及评分标准一、选择题(本大题共10小题,每小题4分,共40分.) CB D C B ADBC A二、填空题:(本大题共8小题,每小题3,共24分.) 11.6 12.23-=m 13.322+-=x x y 14.3 15.37 16.3 三.解答题(本大题共9小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤.) 17、 用适当的方法解下列方程(本题满分8分)(1)解:化简得,0)3)(6(=+-x x ,--------------------------2分解得,.3,6-==x x --------------------------4分(2)解:因式分解得,,0)2)(4(=-+x x --------------------------2分解得,.2,4=-=x x --------------------------4分18(本题满分8分)19.(本题满分8分)解:依题意,得设红球为;,,321A A A 黑球为21,B B ;则树状图如下, (1)所以共有20种可能。

2018-2019学年上 学期期末考试九年级数学试题(含答案)

2018-2019学年上 学期期末考试九年级数学试题(含答案)

2018—2019学年九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.(3分)下面左侧几何体的左视图是()A.B.C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)x2﹣8x+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B.C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(x+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=x2的图象向上平移2个单位,得到二次函数y=x2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=ax+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=ax2+x+c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是x=﹣.【解答】解:y=﹣(x﹣1)(x+2)=﹣(x2+x﹣2)=﹣(x+)2+,∴二次函数y=﹣(x﹣1)(x+2)的对称轴为x=﹣,故答案为:x=﹣.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=A D=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)x2﹣8x+12=0.【解答】解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书300﹣10x本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥x轴于G,交BC于F,∵CB∥x轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=x﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=x,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC=S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=x﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=x+2⑤,联立④⑤解得,或(舍),∴P'(﹣1,+1).即:点P的坐标为(﹣1,+1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。

2018-2019学年福建省莆田市秀屿区九年级(上)期末数学模拟试卷(WORD版含解答)

2018-2019学年福建省莆田市秀屿区九年级(上)期末数学模拟试卷(WORD版含解答)

2018-2019 学年福建省莆田市秀屿区九年级(上)期末数学模拟试卷一.选择题(共10 小题,满分40 分,每小题 4 分)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n 3.用配方法解下列方程,其中应在方程左右两边同时加上4 的是()A.x2﹣2x=5 B.x2+4x=5 C.2x2﹣4x=5 D.4x2+4x=5 4.一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A.4 B.6 C.8 D.105.如图,⊙O 中,弦AB、CD 相交于点P,若∠A=30°,∠APD=70°,则∠B 等于()A.30°B.35°C.40°D.50°6.抛物线y=(x﹣2)2+3 的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB 以坐标原点O 为位似中心缩小为原图形的,得到△COD,则CD 的长度是()A.2 B.1 C.4 D.28.如图,在△ABC 中,点D、E 分别在AB、AC 上,DE∥BC,若AD=2,DB=1,△ADE、△ABC 的面积分别为S1、S2,则的值为()A.B.C.D.29.已知如图(1)、(2)中各有两个三角形,其边长和角的度数如图上标注,则对图(1)、(2)中的两个三角形,下列说法正确的是()A.都相似B.都不相似C.只有(1)相似D.只有(2)相似10.如图,在矩形ABCD 中,AB=3,BC=4,O 为矩形ABCD 的中心,以D 为圆心1 为半径作⊙D,P 为⊙D 上的一个动点,连接AP、OP,则△AOP 面积的最大值为()A.4 B.C.D.二.填空题(共6 小题,满分24 分,每小题4 分)11.如图,圆锥体的高h=cm,底面半径r=1cm,则圆锥体的侧面积为cm2.12.如图,△ABC的三个顶点分别为A(1,2),B(1,3),C(3,1),若反比例函数y=在第一象限内的图象与△ABC 有公共点,则k 的取值范围是.13.将抛物线y=x2+2x 向左平移2 个单位长度,再向下平移3 个单位长度,得到的抛物线的表达式为;14.有一枚质地均匀的骰子,骰子各面上的点数分别为1、2、3、4、5、6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,其结果恰为2 的概率是15.如图,已知ABCD 是一个半径为R 的圆内接四边形,AB=12,CD=6,分别延长AB和DC,它们相交于点P,且BP=8,∠APD=60°,则R=.16.如图,函数y=﹣x 与函数y=﹣的图象相交于A,B 两点,过A,B 两点分别作y 轴的垂线,垂足分别为点C,D.则四边形ACBD 的面积为.三.解答题(共9 小题,满分86 分)17.用适当的方法解下列方程.(1)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=0.18.如图,在由边长为1 个单位长度的小正方形组成的10×10 网格中,已知点O,A,B 均为网格线的交点.(1)在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2 倍,得到线段A1B1 (点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1 绕点B1 逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2 为顶点的四边形AA1B1A2 的面积是个平方单位.19.2018 年9 月,第24 届山东省运动会在青岛举行,有20 名志愿者参加某分会场的工作,其中男生8 人,女生12 人.(1)若从这20 人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工程只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5 的扑克牌洗匀后,数字朝下放于桌面,从中任取1 张,不放回,再取1 张,若牌面数字之和为偶数,则甲参加;否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.20.网格图中每个方格都是边长为1 的正方形.若A,B,C,D,E,F 都是格点,试说明△ABC∽△DEF.21.如图,在平面直角坐标系xOy 中,点A(a,﹣)在直线y=﹣上,AB∥y 轴,且点B 的纵坐标为1,双曲线y=经过点B.(1)求a 的值及双曲线y=的解析式;(2)经过点B 的直线与双曲线y=的另一个交点为点C,且△ABC 的面积为.①求直线BC 的解析式;②过点B 作BD∥x 轴交直线y=﹣于点D,点P 是直线BC 上的一个动点.若将△BDP 以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P 的坐标.22.某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为米(用含a的代数式表示).(2)若饲养场的面积为288m2,求a 的值.(3)当a 为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?23.如图,AB 是⊙O 的直径,PA 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C.(1)若AB=4,∠ABP=60°,求PB 的长;(2)若CD 是⊙O 的切线.求证:D 是AP 的中点.24.如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x 轴交于A、B 两点(点A 在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD 为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E 是y 轴负半轴上一点,连接BE,将△OBE 绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x 轴于点F,若线段MF:BF=1:2,求点M、N 的坐标;③点Q 在抛物线的对称轴上,以Q 为圆心的圆过A、B 两点,并且和直线CD 相切,如图3,求点Q 的坐标.25.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4 ,直角边CD 在y 轴上,且点C 与点A 重合.Rt△CDE 沿y 轴正方向平行移动,当点C 运动到点O 时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE 的运动过程中,设AC=h,△OAB 与△CDE 的重叠部分的面积为S,请写出S 与h 之间的函数关系式,并求出面积S 的最大值.参考答案一.选择题(共10 小题,满分40 分,每小题 4 分)1.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.2.【解答】解:的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D 正确;故选:D.3.【解答】解:用配方法解下列方程,其中应在方程左右两边同时加上4 的是x2+4x=5,故选:B.4.【解答】解:多边形的边数为:360÷45=8.故选:C.5.【解答】解:∵∠APD 是△APC 的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.6.【解答】解:y=(x﹣2)2+3 是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.【解答】解:∵点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,∴C(1,2),则CD的长度是:2.故选:A.8.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,故选:C.9.【解答】解:在图(1)中,∠C=180°﹣∠A﹣∠B=180°﹣75°﹣35°=70°,则∠A=∠D,∠C=∠E,∴△ABC∽△DFE;在图(2)中,=,==,∴=,又∠AOC=∠DOB,∴△AOC∽△DOB,故选:A.10【解答】解:当P 点移动到过点P 的直线平行于OA 且与⊙D 相切时,△AOP 面积的最大,如图,∵过P 的直线是⊙D 的切线,∴DP 垂直于切线,延长PD 交AC 于M,则DM⊥AC,∵在矩形ABCD 中,AB=3,BC=4,∴AC==5,∴OA=,∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴=,∵AD=4,CD=3,AC=5,∴DM=,∴PM=PD+DM=1+ =,∴△AOP 的最大面积=OA•PM=××=,故选:D.二.填空题(共6 小题,满分24 分,每小题 4 分)11【解答】解:圆锥的母线长是=2(cm),底面周长是2π,则圆锥体的侧面积是:×2×2π=2π(cm2).故答案是:2π.12【解答】解:当反比例函数过点A 时,k 值最小,此时k=1×2=2;∵1×3=3×1,∴反比例函数图象与直线BC 的切点在线段BC 上,设直线BC的解析式为y=ax+b,∴有,解得:,∴直线BC 的解析式为y=﹣x+4,将y=﹣x+4 代入y=中,得:﹣x+4=,即x2﹣4x+k=0,∵反比例函数图象与直线BC 只有一个交点,∴△=(﹣4)2﹣4k=0,解得:k=4.综上可知:2≤k≤4.故答案是:2≤k≤4.13.【解答】解:y=x2+2x=(x+1)2﹣1,此抛物线的顶点坐标为(﹣1,﹣1),把点(﹣1,﹣1)向左平移 2 个单位长度,再向下平移 3 个单位长度后所得对应点的坐标为(﹣3,﹣4),所以平移后得到的抛物线的解析式为y=(x+3)2﹣4.故答案为:y=(x+3)2﹣4.14.【解答】解:|x﹣4|=2,则x=2或x=6,所以朝上的面的点数记为x,计算|x﹣4|,其结果恰为2 的概率==.故答案为.15【解答】解:由切割线定理得PB•PA=PC•PD,则有8×20=PC(PC+6).解得PC=10.在△PAC 中,由PA=2PC,∠APC=60°,得∠PCA=90°.从而AD是圆的直径.由勾股定理,得AD2=AC2+CD2=(PA2﹣PC2)+CD2=202﹣102+62=336.∴AD==4∴R=AD=2 .故答案为2.16【解答】解:∵过函数y=﹣的图象上A,B 两点分别作y 轴的垂线,垂足分别为点C,D,∴S=S△ODB=|k|=2,又∵OC=△AOCOD,AC=BD,=S△ODA=S△ODB=S△OBC=2,∴S△AOC∴四边形ABCD 的面积为:S△AOC+S△ODA+S△ODB+S△OBC=4×2=8.故答案为:8.三.解答题(共9 小题,满分86 分)17.【解答】解:(1)∵3x(x+3)=2(x+3),∴(x+3)(3x﹣2)=0,∴x+3=0 或3x﹣2=0,∴x1=﹣3,x2=;(2)∵2x2﹣4x﹣3=0,∴a=2,b=﹣4,c=﹣3,∴b2﹣4ac=40>0,∴x==.18【解答】解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1 即为所求;(3)由图可得,四边形AA1B1A2 为正方形,∴四边形AA1B1A2 的面积是()2=()2=20.故答案为:20.19【解答】解:(1)∵共20名志愿者,女生12人,∴选到女生的概率是:=;(2)不公平,根据题意画图如下:∵共有12 种情况,和为偶数的情况有 4 种,∴牌面数字之和为偶数的概率是=,∴甲参加的概率是,乙参加的概率是,∴这个游戏不公平.20【解答】证明:∵AC=,BC==,AB=4,DF==2 ,EF ==2 ,ED=8,∴===,∴△ABC∽△DEF.21【解答】解:(1)∵点A(a,)在直线y=﹣上,∴﹣a﹣=,解得a=2,则A(2,﹣),∵AB∥y 轴,且点B 的纵坐标为1,∴点B的坐标为(2,1).∵双曲线y=经过点B(2,1),∴m=2×1=2,∴反比例函数的解析式为y=;(2)①设C(t,),∵A(2,﹣),B(2,1),∴×(2﹣t)×(1+ )=,解得t=﹣1,∴点C的坐标为(﹣1,﹣2),设直线BC 的解析式为y=kx+b,把B(2,1),C(﹣1,﹣2)代入得解得,∴直线BC 的解析式为y=x﹣1;②当y=1时,﹣=1,解得x=﹣1,则D(﹣1,1),∵直线BCy=x﹣1 为直线y=x 向下平移1 个单位得到,∴直线BC 与x 轴的夹角为45°,而BD∥x轴,∴∠DBC=45°,当△PBD 为等腰直角三角形时,以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,若∠BPD=90°,则点P 在BD 的垂直平分线上,P 点的横坐标为,当x=时,y=x﹣1 =﹣,此时P(,﹣),若∠BDP=90°,则PD∥y 轴,P 点的横坐标为﹣1,当x=﹣1 时,y=x﹣1=﹣2,此时P (﹣1,﹣2),综上所述,满足条件的P点坐标为(﹣1,﹣2)或(,).22.【解答】解:(1)由已知饲养场的长为57﹣2a﹣(a﹣1)+2=60﹣3a;故答案为:60﹣3a;(2)由(1)饲养场面积为a(60﹣3a)=288,解得a=12 或a=8;当a=8 时,60﹣3a=60﹣24=36>27,故a=8舍去,则a=12;(3)设饲养场面积为y,则y=a(60﹣3a)=﹣3a2+60a=﹣3(a﹣10)2+300,∵2<60﹣3a≤27,∴11≤a<,∴当a=11 时,y 最大=297.23.【解答】(1)解:如图1.∵PA 是⊙O 的切线,AB 是直径,∴PA⊥AB,∴∠BAP=90°,∴∠P+∠ABP=90°,∵∠ABP=60°,∴∠P=30°,又∵AB=4,∴PB=2AB=2×4=8.(2)证明:连接OC、AC,如图2,∵PA 是⊙O 的切线,CD 是⊙O 的切线,∴∠2+∠4=90°,∠1+∠3=90°,∵OA=OC,∴∠3=∠4,∴∠1=∠2,∴CD=AD.∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠1+∠5=90°,∠2+∠P=90°,∵∠1=∠2,∴∠5=∠P,∴CD=DP,∴CD=AD=DP,∴D 是AP 的中点.24.【解答】解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD 为直径的圆经过点C,∴△ACD 为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=(0﹣3)2+(﹣3a﹣0)2=9a2+9、CD2=(0﹣1)2+(﹣3a+4a)2=a2+1、AD2=(3﹣1)2+(0+4a)2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1即,抛物线的解析式:y=﹣x2+2x+3.②∵将△OBE 绕平面内某一点旋转180°得到△PMN,∴PM∥x 轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2(﹣x2+2x+3)=x+1,化简,得:2x2﹣3x﹣5=0 解得:x1=﹣1、x2=∴M(,)、N(,).③设⊙Q 与直线CD 的切点为G,连接QG,过C 作CH⊥QD 于H,如右图;设Q(1,b),则QD=4﹣b,QB2=QG2=(1+1)2+(b﹣0)2=b2+4;∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD 是等腰直角三角形,∴△QGD 也是等腰直角三角形,即:QD2=2QG2;代入数据,得:(4﹣b)2=2(b2+4),化简,得:b2+8b﹣8=0,解得:b=﹣4±2 ;即点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).25.【解答】解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4 ,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;(2)如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4 ;(3)①h<2 时,如图4,作MN⊥y 轴交y 轴于点N,作MF⊥DE 交DE 于点F,∵CD=4,DE=4 ,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴=,∴=,解得FM=4﹣,﹣S△EGM∴S=S△EDC=×4×4 ﹣(4 4﹣h)×(4﹣h)=﹣h2+4h+8,S 最大=15﹣.②当2≤h<6﹣2时,S=S△AOB﹣S△ACM=×6×6﹣h(h+ )=18﹣h2,S 最大=15﹣.③如图3,当6﹣2<h≤6 时,S=S△OBC=OB×OC=(6﹣h)2,S 最大=6 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年福建省莆田市九年级(上)期末数学试卷
一、选择题(每小题4分,共40分)
1.(4分)若一元二次方程x2﹣x﹣6=0的两根为x1,x2,则x1+x2的值为()A.1B.﹣1C.0D.﹣6
2.(4分)用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1 3.(4分)对于函数y=,下列说法错误的是()
A.这个函数的图象位于第一、第三象限
B.这个函数的图象既是轴对称图形又是中心对称图形
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小
4.(4分)一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()
A.B.C.D.
5.(4分)如图,D、E、F分别是△ABC的边AB、BC、AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是()
A.AB⊥AC B.AB=AC C.AB=BC D.AC=BC 6.(4分)如果平行四边形的四个内角的平分线能够围成一个四边形,那么这个四边形一定是()
A.平行四边形B.矩形C.菱形D.正方形
7.(4分)如图,直线AB与⊙O相切于点A,⊙O的半径为1,若∠OBA=30°,则OB长为()
A.1B.2C.D.2
8.(4分)已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)
B.图象位于第二、四象限
C.若x<﹣2,则0<y<3
D.在每一个象限内,y随x值的增大而减小
9.(4分)抛物线图象如图所示,根据图象,抛物线的解析式可能是()
A.y=x2﹣2x+3B.y=﹣x2﹣2x+3C.y=﹣x2+2x+3D.y=﹣x2+2x﹣3 10.(4分)如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()
A.逐渐变短B.先变短后变长
C.先变长后变短D.逐渐变长
二、填空题:本大题共6小题,每小题4分,共24分.
11.(4分)如图,已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是.
12.(4分)一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发
现,摸到白球的频率是,则袋中红球约为个.
13.(4分)已知反比例函数y=,x>0时,y0,这部分图象在第象限,y随着x值的增大而.
14.(4分)若式子有意义,则x的取值范围是.
15.(4分)如图,已知直线a∥b,∠1=70°,则∠2=.
16.(4分)如图,矩形ABCD的对角线AC和BD相交于点D,∠ADB=30°,AB=4,则OC=.
三、解答题(共9小题,共86分)
17.(8分)如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.
(1)求证:CF=AD;
(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.
18.(8分)满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
19.(8分)如图,已知△ABC,∠BAC=90°
(1)尺规作图:作BC边的高AD(保留作图痕迹,不写作法);
(2)求证:∠C=∠BAD
20.(8分)(1)在图①中画出△ABC绕点O顺时针旋转90°后的图形;(2)在图②中画出四边形ABCD关于点O对称的图形.
21.(8分)某校举办篮球比赛,进入决赛的队伍有A、B、C、D四队,要从中选出两队打一场比赛.
(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率;
(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.22.(10分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.
(1)求这两年该县投入教育经费的年平均增长率;
(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.
23.(10分)如图,AB表示路灯,CD、C′D′表示小明所在两个不同位置:(1)分别画出这两个不同位置小明的影子;
(2)小明发现在这两个不同的位置上,他的影子长分别是自己身高的1倍和2倍,他又量得自己的身高为1.5米,DD′长为3米,你能帮他算出路灯的高度吗?(B、D、D′在一条直线上)
24.(12分)如图,在平面直角坐标系中,函数y=的图象经过点P(4,3)和点B(m,n)(其中0<m<4),作BA⊥x轴于点A,连接P A,PB,OB,
已知S
△AOB =S
△P AB

(1)求k的值和点B的坐标.
(2)求直线BP的解析式.
(3)直接写出在第一象限内,使反比例函数大于一次函数的x的取值范围是.
25.(14分)如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O 移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点
B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:
(1)求点N的坐标(用含x的代数式表示);
(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?
(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.
2018-2019学年福建省莆田市九年级(上)期末数学试卷
参考答案
一、选择题(每小题4分,共40分)
1.A;2.A;3.C;4.C;5.B;6.B;7.B;8.D;9.C;10.B;
二、填空题:本大题共6小题,每小题4分,共24分.
11.4.5;12.25;13.>;一;减小;14.x≤5;15.110°;16.4;三、解答题(共9小题,共86分)
17.;18.;19.;20.;21.;22.;
23.;24.0<x<2或x>4;25.;。

相关文档
最新文档