2019年深圳市中考数学科考试说明

合集下载

2019年广东省中考数学试题(含答案,解析版)

2019年广东省中考数学试题(含答案,解析版)

2019年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105 C.221×103 D.0.221×106【答案】B【解析】a×10n形式,其中0≤|a|<10.【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2B.b3·b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念 7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a| < |b|C .a+b>0D .ba <0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简24的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式aa2 .【考点】二次根式9.已知x1、x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2 【答案】D【解析】因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法. 【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K.则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN: S△ADM =1 : 4.其中正确的结论有A.1个B.2个C.3个D.4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF,∠AHN=∠GFN,△ANH≌△GNF(AAS),①正确;由①得AN=GN=1,∵NG⊥FG,NA不垂直于AF,∴FN不是∠AFG的角平分线,∴∠AFN≠∠HFG,②错误;由△AKH∽△MKF,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN,∴K为NH的中点,即FN=2NK,③正确;S△AFN =21AN·FG=1,S△ADM =21DM·AD=4,∴S△AFN : S△ADM =1 :4,④正确.【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 【答案】4【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质 13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【解析】由已知条件得x-2y=3,原式=4(x-2y)+9=12+9=21.【考点】代数式的整体思想15米,在实验楼的15.如图,某校教学楼AC与实验楼BD的水平间距CD=3顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是_________________米(结果保留根号).【答案】15+153【解析】AC=CD·tan30°+CD·tan45°=15+153.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a、b代数式表示).【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 【答案】解:原式=2-x 1-x 4-x x -x 22÷ =2-x 1-x ×()()()1-x x 2-x 2x + =x 2x +当x=2,原式=222+=2222+=1+2. 【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD=2,求EC AE的值.【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC ∴EC AE =DB AD∵DB AD =2 ∴ECAE =2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种∴P (甲乙)=62=31 答:同时抽到甲、乙两名学生的概率为31. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB=2262+=102,AC=2262+=102, BC=2284+=54(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=21BC=52 (或用等面积法AB ·AC=BC ·AD 求出AD 长度) ∵S 阴影=S △ABC -S 扇形EAFS △ABC =21×102×102=20 S 扇形EAF =()25241π =5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP : S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=xk 2图象过点A (﹣1,4) ∴4=1-k 2,解得k 2=﹣4 ∴反比例函数表达式为x4-y = ∵反比例函数x4-y =图象过点B (4,n ) ∴n=44-=﹣1,∴B (4,﹣1) ∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1)∴⎩⎨⎧+=+=bk 41-b -k 411,解得⎩⎨⎧==3b 1-k 1 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP : S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC ∴BNMN BP AP = ∵MN=a+1,BN=4-a ∴21a -41a =+,解得a=32 ∴-a+3=37 ∴点P 坐标为(32,37) (或用两点之间的距离公式AP=()()224-3a -1a +++,BP=()()223-a 1-a -4++,由21BP AP =解得a 1=32,a 2=-6舍去)【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF是⊙O的切线;(3)如题24-2图,若点G是△ACD的内心,BC·BE=25,求BG的长.【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D ∴ED=EC (2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA ∴BCAB AB BE ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832+与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y=837 -x 433x 832+=()32-3x 83+得点D 坐标为(﹣3,32) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:过点D 作DG ⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC ∽△FOC ∴COCG FO DG = 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF ,OA=1,DG=3,CG=m+32 ∵CO ⊥FA∴FO=OA=1 ∴m 32m 13+=,解得m=3 (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=3x+3,再求出点C 的坐标)∴点C 坐标为(0,3)∴CD=CE=()223233++=6 ∵tan ∠CFO=FO CO =3∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC ∥BA∵BF=BO -FO=6∴CE=BF∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,837-m 433m 832+),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=32(A )当P 在点A 右侧时,m >1 (a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在(b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-(舍去),m 2=1(舍去),这种不存在(B )当P 在线段AB 之间时,﹣7<m <1 (a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在第 21 页 (共 21 页) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时11AD DD AM PM = ∴﹣3241-m 837-m 433m 832=+432,解得m 1=﹣11,m 2=1(舍去) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴﹣3241-m 837-m 433m 832=+,解得m 1=337-,m 2=1(舍去) 综上所述,点P 的横坐标为35-,﹣11,337-,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想。

2019年广东省深圳市中考数学试卷以及解析答案

2019年广东省深圳市中考数学试卷以及解析答案

2019年广东省深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分)1.(3分)﹣的绝对值是()A.﹣5B.C.5D.﹣2.(3分)下列图形中是轴对称图形的是()A.B.C.D.3.(3分)预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×109 4.(3分)下列哪个图形是正方体的展开图()A.B.C.D.5.(3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23B.21,23C.21,22D.22,236.(3分)下列运算正确的是()A.a2+a2=a4B.a3•a4=a12C.(a3)4=a12D.(ab)2=ab2 7.(3分)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠38.(3分)如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.139.(3分)已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.10.(3分)下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等11.(3分)定义一种新运算n•x n﹣1dx=a n﹣b n,例如2xdx=k2﹣n2,若﹣x﹣2dx =﹣2,则m=()A.﹣2B.﹣C.2D.12.(3分)已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个()①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则=.A.1B.2C.3D.4二、填空题(每小题3分,共4小题,满分12分)13.(3分)分解因式:ab2﹣a=.14.(3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是.15.(3分)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k=.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,满分52分)17.(5分)计算:﹣2cos60°+()﹣1+(π﹣3.14)018.(6分)先化简(1﹣)÷,再将x=﹣1代入求值.19.(7分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取名学生进行调查,扇形统计图中的x=;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.20.(8分)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈,cos53°≈,tan53°≈).21.(8分)有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A 焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量的最大值.22.(9分)如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE 的周长的最小值.(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.23.(9分)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标(直接写出);②求的最大值.2019年广东省深圳市中考数学试卷答案与解析一、选择题(每小题3分,共12小题,满分36分)1.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣|=,故选:B.【点评】本题考查了绝对值的定义,解题的关键是掌握绝对值的性质.2.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】科学记数法的表示形式为a×10n的形式,其.中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【解答】解:将460000000用科学记数法表示为4.6×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图..故选:B.【点评】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.5.【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.【解答】解:这组数据排序后为20,21,22,23,23,∴中位数和众数分别是22,23,故选:D.【点评】本题主要考查了中位数以及众数,中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现.6.【分析】分别根据合并同类项的法则、同底数幂的乘法、幂的乘方以及积的乘方化简即可判断.【解答】解:A.a2+a2=2a2,故选项A不合题意;B.a3•a4=a7,故选项B不合题意;C.(a3)4=a12,故选项C符合题意;D.(ab)2=a2b2,故选项D不合题意.故选:C.【点评】本题主要考查了幂的运算法则,熟练掌握法则是解答本题的关键.7.【分析】利用平行线的性质得到∠2=∠4,∠3=∠2,∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2=∠4=∠3,∠5=2∠1,从而可对各选项进行判断.【解答】解:∵l1∥AB,∴∠2=∠4,∠3=∠2,∠5=∠1+∠2,∵AC为角平分线,∴∠1=∠2=∠4=∠3,∠5=2∠1.故选:B.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8.【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.9.【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线y=在二、四象限.【解答】解:根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线y=在二、四象限,∴C是正确的.故选:C.【点评】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.10.【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6﹣2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【解答】解:A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选:D.【点评】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.11.【分析】根据新运算列等式为m﹣1﹣(5m)﹣1=﹣2,解出即可.【解答】解:由题意得:m﹣1﹣(5m)﹣1=﹣2,﹣=﹣2,5﹣1=﹣10m,m=﹣,故选:B.【点评】本题考查了负整数指数幂和新定义,理解新定义,并根据新定义进行计算是本题的关键.12.【分析】①△REC≌△AFC(SAS),正确;②由△BEC≌△AFC,得CE=CF,∠BCE =∠ACF,由∠BCE+∠ECA=∠BCA=60°,得∠ACF+∠ECA=60,所以△CEF是等边三角形,正确;③因为∠AGE=∠CAF+∠AFG=60°+∠AFG,∠AFC=∠CFG+∠AFG =60°+∠AFG,所以∠AGE=∠AFC,故③正确;④过点E作EM∥BC交AC下点M 点,易证△AEM是等边三角形,则EM=AE=3,由AF∥EM,则==.故④正确,【解答】解:①△REC≌△AFC(SAS),正确;②∵△BEC≌△AFC,∴CE=CF,∠BCE=∠ACF,∵∠BCE+∠ECA=∠BCA=60°,∴∠ACF+∠ECA=60,∴△CEF是等边三角形,故②正确;③∵∠AGE=∠CAF+∠AFG=60°+∠AFG;∠AFC=∠CFG+∠AFG=60°+∠AFG,∴∠AGE=∠AFC,故③正确正确;④过点E作EM∥BC交AC下点M点,易证△AEM是等边三角形,则EM=AE=3,∵AF∥EM,∴则==.故④正确,故①②③④都正确.故选:D.【点评】本题考查了菱形的性质,熟练运用菱形的性质、等边三角形性质以及全等三角形的判定与性质是解题的关键.二、填空题(每小题3分,共4小题,满分12分)13.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【分析】直接利用概率公式计算进而得出答案.【解答】解:∵现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,∴将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是:.故答案为:.【点评】此题主要考查了概率公式,正确掌握计算公式是解题关键.15.【分析】作FM⊥AB于点M.根据折叠的性质与等腰直角三角形的性质得出EX=EB=AX=1,∠EXC=∠B=90°,AM=DF=YF=1,由勾股定理得到AE==.那么正方形的边长AB=FM=+1,EM=﹣1,然后利用勾股定理即可求出EF.【解答】解:如图,作FM⊥AB于点M.∵四边形ABCD是正方形,∴∠BAC=∠CAD=45°.∵将BC沿CE翻折,B点对应点刚好落在对角线AC上的点X,∴EX=EB=AX=1,∠EXC=∠B=90°,∴AE==.∵将AD沿AF翻折,使D点对应点刚好落在对角线AC上的点Y,∴AM=DF=YF=1,∴正方形的边长AB=FM=+1,EM=﹣1,∴EF===.故答案为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了正方形的性质以及勾股定理.求出EM与FM是解题的关键.16.【分析】要求k得值,通常可求A的坐标,可作x轴的垂线,构造相似三角形,利用CD =3AD和C(0,﹣3)可以求出A的纵坐标,再利用三角形相似,设未知数,由相似三角形对应边成比例,列出方程,求出待定未知数,从而确定点A的坐标,进而确定k的值.【解答】解:过A作AE⊥x轴,垂足为E,∵C(0,﹣3),∴OC=3,可证△ADE∽△CDO∴,∴AE=1;又∵y轴平分∠ACB,CO⊥BD∴BO=OD∵∠ABC=90°∴△ABE~COD∴设DE=n,则BO=OD=3n,BE=7n,∴,∴n=∴OE=4n=∴A(,1)∴k=.故答案为:.【点评】本题考查反比例函数图象上点的坐标特征,综合利用相似三角形的性质,全等三角形的性质求A的坐标,依据A在反比例函数的图象上的点,根据坐标求出k的值.综合性较强,注意转化思想方法的应用.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,满分52分)17.【分析】直接利用二次根式的性质以及零指数幂的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2×+8+1=3﹣1+8+1=11.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】直接利用分式的混合运算法则进而化简得出答案.【解答】解:原式=×=x+2,将x=﹣1代入得:原式=x+2=1.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.19.【分析】(1)依据喜爱古筝的人数数据,即可得到调查的学生人数,根据喜欢竹笛的学生数占总人数的百分比即可得到结论;(2)求二胡的学生数,即可将条形统计图补充完整;(3)依据“扬琴”的百分比,即可得到“扬琴”所占圆心角的度数;(4)依据喜爱“二胡”的学生所占的百分比,即可得到该校最喜爱“二胡”的学生数量.【解答】解:(1)80÷40%=200,x=×100%=15%,故答案为:200;15%;(2)喜欢二胡的学生数为200﹣80﹣30﹣20﹣10=60,补全统计图如图所示,(3)扇形统计图中“扬琴”所对扇形的圆心角是:360°×=36°,故答案为:36;(4)3000×=900,答:该校喜爱“二胡”的学生约有有900名.故答案为:900.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.20.【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM﹣DE=500,∴BM=100,在Rt△CEM中,tan53°===,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.21.【分析】(1)设焚烧1吨垃圾,A发电厂发电x度,B发电厂发电y度,根据“每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电”列方程组解答即可;(2)设A发电厂焚烧x吨垃圾,则B发电厂焚烧(90﹣x)吨垃圾,总发电量为y度,得出y与x之间的函数关系式以及x的取值范围,再根据一次函数的性质解答即可.【解答】解:(1)设焚烧1吨垃圾,A发电厂发电a度,B发电厂发电b度,根据题意得:,解得,答:焚烧1吨垃圾,A发电厂发电300度,B发电厂发电260度;(2)设A发电厂焚烧x吨垃圾,则B发电厂焚烧(90﹣x)吨垃圾,总发电量为y度,则y=300x+260(90﹣x)=40x+23400,∵x≤2(90﹣x),∴x≤60,∵y随x的增大而增大,∴当x=60时,y有最大值为:40×60+23400=25800(元).答:A厂和B厂总发电量的最大是25800度.【点评】本题主要考查了二元一次方程组的应用以及一次函数的应用,理清数量关系列出方程组是解答本题的关键.22.【分析】(1)OB=OC,则点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a (x2﹣2x﹣3)=ax2﹣2ax﹣3a,即可求解;(2)CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;(3)S△PCB:S△PCA=EB×(y C﹣y P):AE×(y C﹣y P)=BE:AE,即可求解.【解答】解:(1)∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3)=ax2﹣2ax﹣3a,故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点C(2,3),则CD=C′D,取点A′(﹣1,1),则A′D=AE,故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=+A′D+DC′=+A′C′=+;(3)如图,设直线CP交x轴于点E,直线CP把四边形CBP A的面积分为3:5两部分,又∵S△PCB:S△PCA=EB×(y C﹣y P):AE×(y C﹣y P)=BE:AE,则BE:AE,=3:5或5:3,则AE=或,即:点E的坐标为(,0)或(,0),将点E、C的坐标代入一次函数表达式:y=kx+3,解得:k=﹣6或﹣2,故直线CP的表达式为:y=﹣2x+3或y=﹣6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P的坐标为(4,﹣5)或(8,﹣45).【点评】本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.23.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②方法1:如图4,过G作GH⊥BC于H,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG•CF∴===≤∴当H为BC中点,即GH=BC时,的最大值=.方法2:设∠BCG=α,则sinα=,cosα=,∴sinαcosα=∵(sinα﹣cosα)2≥0,即:sin2α+cos2α≥2sinαcosα∵sin2α+cos2α=1,∴sinαcosα≤,即≤∴的最大值=.【点评】本题是一道难度较大,综合性很强的有关圆的代数几何综合题,主要考查了圆的性质,切线的性质和判定定理,直角三角形性质,相似三角形性质和判定,动点问题,二次函数最值问题等,构造相似三角形和应用求二次函数最值方法是解题关键.。

2019广东深圳中考数学解析

2019广东深圳中考数学解析

2019年广东省深圳市初中学生学业水平考试数学试题(满分100分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019广东深圳,1,3分)-15的绝对值是()A.-5 B.15C.5 D.-15【答案】B【解析】15-=-(-15)=15.故选B.【知识点】绝对值2.(2019广东深圳,2,3分)下列图形中是轴对称图形的是()【答案】A【解析】A中图形沿着过上下两边中点的直线进行折叠,直线两旁的部分能完全重合,是轴对称图形;其他图形不符合轴对称图形的定义,不是轴对称图形.故选A.【知识点】轴对称图形3.(2019广东深圳,3,3分)预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×109【答案】C【解析】460 000 000整数位数有9位,所以将460 000 000用科学记数法表示为4.6×108.故选C.【知识点】科学记数法4.(2019广东深圳,4,3分)下列哪个图形是正方体的展开图()A.B.C.D.【答案】B【解析】B中图形符合“一四一”模型,是正方体的展开图.故选B.【知识点】立体图形的展开图5.(2019广东深圳,5,3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【答案】D【解析】数据是从小到大排列的,排在最中间的数据为22,则中位数是22;出现最多的数据是23,即众数是23.故选D.【知识点】中位数;众数6.(2019广东深圳,6,3分)下列运算正确的是()A.a2+a2=a4B.a3·a4=a12C.(a3)4=a12D.(ab)2=ab2【答案】C【解析】∵a2+a2=2a2,故A错误;∵a3·a4=a7,故B错误;(a3)4=a3×4=a12,故C正确;(ab)2=a2b2,故D错误.故选C.【知识点】合并同类项;同底数幂的乘法;幂的乘方;积的乘方7.(2019广东深圳,7,3分)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3 D.∠1=∠3【解析】∵AC为角平分线,∴∠1=∠2.∵l1∥AB,∴∠4=∠2,∠3=∠2,∴∠1=∠4,∠1=∠3.故A、C、D正确.∵l1∥AB,∴∠5=∠1+∠2,故B错误.故选B.【知识点】平行线的性质;角平分线的定义8.(2019广东深圳,8,3分)如图,已知AB=AC,AB=5,BC=3.以AB两点为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,过M,N作直线与AC相交于点D,则△BDC的周长为()A.8 B.10 C.11 D.13【答案】A【解析】由作图方法知,MN是线段AB的垂直平分线,∴AD=BD,∴△BDC的周长=BD+DC+BC=AD+DC+BC=5+3=8.故选A.【知识点】尺规作图;线段的垂直平分线;等腰三角形9.(2019广东深圳,9,3分)已知函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b与y=cx的图象为()A.B.C.D.【思路分析】先根据二次函数y=ax 2+bx+c (a ≠0)的图象确定a ,b ,c 的正负,则判断一次函数与反比例函数的图象所在的象限.【解题过程】由二次函数的图象可知,a<0,b>0,c<0.当a<0,b>0,c<0时,一次函数y=ax+b 经过第一、二、四象限;反比例函数y=cx位于第二、四象限,选项C 符合.故选C . 【知识点】二次函数的图象与系数的关系;一次函数的图象与系数的关系;反比例函数的图象与系数的关系;符号判断10.(2019广东深圳,10,3分)下列命题正确的是( ) A .矩形对角线互相垂直 B .方程x 2=14x 的解为x=14C .六边形的内角和为540°D .斜边和一条直角边分别相等的两个直角三角形全等【答案】D【思路分析】对各个选项逐项判断.【解题过程】A 中,矩形的对角线相等,而不具备对角线互相垂直,故A 错误;B 中,方程x 2=14x 的解为x=14或x=0,故B 错误;C 中,六边形的内角和为(6-2)×180°=720°,故C 错误;选项D 正确.故选D . 【知识点】矩形的性质;一元二次方程的解法;正多边形的内角和;全等三角形 11.(2019广东深圳,11,3分)定义一种新运算:abn ò=nna b -,例如:132ò=2213-=1-9=-8,若51mm-ò=-2,则m=( ) A .-2 B .52- C .2 D .52【答案】B 【思路分析】如图【解题过程】由题意得1m --()15m -=1m -15m =-2,则m=52-,故选B .【知识点】定义新运算12.(2019广东深圳,12,3分)已知菱形ABCD 的边长为4,∠BAD=120°,E 、F 分别为AB ,AD 上的点,且BE=AF ,则下列结论正确的有( )个.①△BEC ≌△AFC ;②△ECF 为等边三角形;③∠AGE=∠AFC;④若AF=1,则GF EG =13.A .1B .2C .3D .4【答案】D【思路分析】【解题过程】在四边形ABCD是菱形,∵∠BAD=120°,∴∠B=∠BAC=60°,∴AC=BC,且BE=AF,∴△BEC≌△AFC,故①正确;∵△BEC≌△AFC,∴FC=EC,∠FCA=∠ECB,∴∠ECF=∠ACB=60°,∴△ECF为等边三角形,故②正确;∵∠AGE=180°-∠BAC-∠AEG;∠AFC=180°-∠FAC-∠ACF,∴∠AGE=∠AFC,故③正确;∵AF=1,则AE=3,易得△CFG∽△CBE,∴GF CFBE BC=,△CEG∽△CAE,∴EG CEAE AC=,∵CE=CF,AC=BC,∴GFBE =EGAE,∴13GF BEEG AE==,故④正确.故选D.【知识点】四边形多结论题;菱形的性质;全等三角形的判定;等边三角形的判定;二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上.13.(2019广东深圳,13,3分)分解因式:ab2-a=____________.【答案】a(b+1)(b-1)【解析】原式=a(b2-1)=a(b+1)(b-1).【知识点】因式分解;平方差公式14.(2019广东深圳,14,3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是____________.【答案】3 8【解析】从中随机抽取一张,共8种等可能的结果,其中抽到标有2的卡片的结果数为3,故抽到标有数字2的卡片的概率为3 8.【知识点】概率15.(2019广东深圳,15,3分)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,点B的对应点刚好落在对角线AC 上;将AD 沿AF 翻折,点D 的对应点刚好落在对角线AC 上,连接EF ,则EF=____________.【答案】6【解析】设点B 的对应点是点G ,点D 的对应点是点H ,作FM ⊥AB 于点M ,由折叠可知,EG=EB=AG=1,∴AE=2;AM=DF=FH=1,∴AB=FM=2+1,EM=2-1,∴EF=22EM FM +=()()222121-++=6.【知识点】正方形折叠;正方形的性质;勾股定理16.(2019广东深圳,16,3分)如图,在Rt △ABC 中,∠ABC=90°,C (0,3),CD=3AD ,点A 在反比例函数y=k x的图象上,且y 轴平分∠ACB ,则k=_______.【答案】47 7【解析】如图,作AE⊥x轴于点E,易得△COD∽△AED.又∵CD=3AD,C(0,-3),∴AE=1,OD=3DE.令DE=x,则OD=3x.∵y轴平分∠ACB,∴BO=OD=3x.∵∠ABC=90°,AE⊥x轴,∴△CBO∽△BAE,∴BOAE=COBE,即31x=37x,解得x=77(已舍负值),∴A(477,1),∴k=477.【知识点】反比例函数综合;相似三角形的判定与性质三、解答题(本大题共7小题,第17题5分,第18题6分,第19题7分,第20,21各题8分,第22,23各9分,满分52分,解答应写出文字说明、证明过程或演算步骤)17.(2019广东深圳,17,5分)92cos60°+(18)-1+(π➖3.14)0.【思路分析】将特殊角的锐角三角函数值,负整数指数幂,零指数幂等分别代入,然后按照实数混合运算的顺序计算.【解题过程】解:原式=3-1+8+1=11.【知识点】正六边形的性质;勾股定理;锐角三角函数18.(2019广东深圳,18,6分)先化简:(1-32x +)÷244x x x -1++,再将x=-1代入求值.【思路分析】先把括号内的分式进行通分相减,再把除法化为乘法进行约分化简,最后代入求值.【解题过程】解:原式=2x x -1+×()22x x -1+=x+2.当x=-1时,原式=-1+2=1. 【知识点】分式化简求值19.(2019广东深圳,19,7分)某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = ; (2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名.【思路分析】(1)由条形统计图可知喜欢“古筝”的有80人,由扇形统计图可知喜欢“古筝”的占40%,80÷40%=200,即共抽取了200人;由条形统计图可知,喜欢“竹笛”有30人,x=30÷200=15%;(2)用总数减去各组人数可得喜欢“二胡”有60人,在相应的位置补全条形统计图;(3)“扬琴”占的百分比为20200=10%,360°×10%=36°;(4)用样本估计总体可得全校喜爱“二胡”的人数为3000×30%=900(人). 【解题过程】(1)200,15%; (2)统计图如图所示:(3)36;(4)900.【知识点】数据统计;概率;条形统计图和扇形统计图.20.(2019广东深圳,20,8分)如图所示,某施工队要测量隧道长度BC ,AD=600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角45°,再由D 走到E 处测量,DE ∥AC ,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【思路分析】作EM ⊥AC 于点M ,构建直角三角形,解直角三角形解决问题. 【解题过程】如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M ,则AM=DE=500,∴BM=100.在Rt △CEM 中,tan53°=CM EM ,即600CM =43,∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.【知识点】解直角三角形21.(2019广东深圳,21,8分)有A 、B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电. (1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A 、B 两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【思路分析】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,列方程组求解;(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,列出一次函数,再利用一次函数的性质求解. 【解题过程】解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则=403020=1800a b b a -,-,ìïïíïïî解得=300=260a b ,.ìïïíïïî答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,则 y=300x+260(90-x )=40x+23400, ∵x ≤2(90-x ), ∴x ≤60.∵y 随x 的增大而增大,∴当x=60时,y 取最大值为25800. 答:A 、B 发电厂发电总量最大是25800度. 【知识点】二元一次方程组的应用;一次函数的应用22.(2019广东深圳,22,9分)如图所示,抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC . (1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值, (3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【思路分析】(1)先求出点B 的坐标,然后把A 、B 、C 三点坐标代入解析式得出方程组,解方程组即可得出a ,b ,c 的值,得解析式,再用配方法或对称轴公式或中点公式可得对称轴方程;(2)利用轴对称原理作出点C 的对称点,求出四边形CDEA 的周长的最小值;(3)方法1:设CP 与x 轴交于点E ,先根据面积关系得出BE :AE=3:5或5:3,求出点E 的坐标,进而求出直线CE 的解析式,解直线CE 与抛物线的解析式联立所得的方程组求出点P 的坐标;方法2:设P (x ,-x 2+2x+3),用含x 的式子表示四边形CBPA 的面积,然后求出CB 的解析式,再用含x 的式子表示出△CBP 的面积,利用面积比建立方程,解方程求出x 的值,得出P 的坐标.【解题过程】解:(1)∵点C (0,3),OB=OC ,∴点B (3,0).把A (-1,0),C (0,3),B (3,0)代入c bx ax y ++=2,得 09303a b c a b c c +=⎧⎪+=⎨⎪=⎩-,+,,解得123a b c =⎧⎪=⎨⎪=⎩-,,.∴抛物线的解析式为y=-x 2+2x+3.∵y=-x 2+2x+3=-(x -1)2+4,∴抛物线的对称轴为x=1.(2)如图,作点C 关于x=1的对称点C′(2,3),则CD=C′D.取A ′(-1,1),又∵DE=1,可证A ′D=AE.在Rt△AOC 中,AC=22OA OC +=2213+=10.四边形ACDE 的周长=AC+DE+CD+AE =10+1+CD+AE .要求四边形ACDE 的周长的最小值,就是求CD+AE 的最小值.∵CD+AE=C′D+A′D,∴当A ′D,C′三点共线时,C′D+A′D 有最小值为13, ∴四边形ACDE 的周长的最小值=10+1+13.(3)方法1:由题意知点P 在x 轴下方,连接CP ,设PC 与x 轴交于点E ,∵直线CP 把四边形CBPA 的面积分为3:5两部分,又∵S △CBE :S △CAE =S △PBE :S △PAE =BE :AE ,∴BE :AE=3:5或5:3,∴点E 1(32,0),E 2(12,0).设直线CE的解析式为y=kx+b,(32,0)和(0,3)代入,得3=02=3k bb,,ìïï+ïíïïïî解得=2=3kb-,.ìïïíïïî∴直线CE的解析式为y=-2x+3.同理可得,当E2(12,0)时,直线CE的解析式为y=-6x+3.由直线CE的解析式和抛物线的解析式联立解得P1(4,-5),P2(8,-45). 方法2:由题意得S△CBP=38S四边形CBPA或S△CBP=58S四边形CBPA.令P(x,-x2+2x+3),S四边形CBPA=S△CAB+S△PAB=6+12×4·(x2-2x-3)=2x2-4x.直线CB的解析式为y=-x+3,作PH∥y轴交直线CB于点H,则H(x,-x+3),S△CBP=12OB·PH=12×3·(-x+3+x2-2x-3)=32x2-92x.当S△CBP=38S四边形CBPA时,32x2-92x=38(2x2-4x),解得x1=0(舍),x2=4,∴P1(4,-5).当S△CBP=58S四边形CBPA时,32x2-92x=58(2x2-4x),解得x3=0(舍),x4=8,∴P 2(8,-45).【知识点】一次函数、二次函数的综合;线段和最值;动点问题23.(2019广东深圳,23,9分)已知在平面直角坐标系中,点A (3,0),B (-3,0),C (-3,8),以线段BC 为直径作圆,圆心为E ,直线AC 交⊙E 于点D ,连接OD.(1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG :①当tan ∠ACF=71时,求所有F 点的坐标 (直接写出); ②求CFBG 的最大值. 【思路分析】(1)连接DE ,证明∠EDO=90°,依据“经过半径的外端且垂直于半径的直线是圆的切线”得证;(2)①分两种情况:一是当F 位于AB 上时,构造相似,用含x 的式子分别表示未知线段,再根据tan ∠ACF=71列出方程求出F 1的坐标;二是当F 位于BA 的延长线上时,同样方法求出F 2的坐标;②方法1:利用相似及勾股定理得出BG CF ()2264CG CG g -,再令y=CG 2·(64-CG 2),求出y 的最大值,进而得出BG CF的最大值;方法2:作GM ⊥BC 于点M ,先证明△CBF∽△CGB ,再由相似三角形对应高的比等于相似比,得出BG CF的最大值;方法3:利用锐角三角函数,得出BG CF =cos sin BC BC αα,进而得出BG CF的最大值. 【解题过程】(1)证明:连接DE ,∵BC 为直径,∴∠BDC=90°,∴∠BDA=90°.∵OA=OB ,∴OD=OA=OB ,∴∠OBD=∠ODB.∵EB=ED ,∴∠EBD=∠EDB,∴∠EBD+∠OBD=∠EDB+∠ODB,即∠EBO=∠EDO.∵CB⊥x 轴,∴∠EBO=90°,∴∠EDO=90°, ∴直线OD 为⊙E 的切线.(2)∵A (3,0),B (-3,0),C (-3,8),∴AB=6,BC=8,∴AC=10.如图1,当F 位于AB 上时,作F 1N ⊥CA 于N ,∵△ANF 1∽△ABC ,∴AN AB =1NF BC =1AF AC, ∴设AN=3x ,则NF 1=4x ,AF 1=5x ,∴CN=CA -AN=10-3x .∴tan ∠ACF=1NF CN =4103x x -=71, 解得x=1031, ∴AF 1=5x=5031, OF 1=3-5031=4331, 即F 1(4331,0).如图2,当F 位于BA 的延长线上时,作F 2M ⊥CA 于M , ∵△AMF 2∽△ABC ,∴设AM=3x ,则MF 2=4x ,AF 2=5x , ∴CM=AC+AM=10+3x ,∴tan∠ACF=2F M CM =4103x x +=71, 解得x=25, ∴AF 2=5x=2,OF 2=3+2=5,即F 2(5,0).(3)方法1:△CBG ∽△CFB ,∴BG BF =BC CF =CG BC, BC 2=CG·CF ,CF=2BC CG, ∵CG 2+BG 2=BC 2,BG 2=BC 2-CG 2,∴22BG CF =2242BC CG BC CG -=()2226464CG CG g -, ∴BG CF ()2264CG CG g -.令y=CG 2·(64-CG 2),∴y=-CG4+64CG2=-(CG2-32)2+322,当CG2=32时,y最大值=322,此时CG=42,∴BGCF的最大值为3264=12.方法2:如图,作GP⊥BC于点P,∵BC是直径,∴∠CGB=∠CBF=90°,∴△CBF∽△CGB,∴BGCF=PGBC=8PG.∵PG≤半径=4,∴BGCF=8PG≤48=12.∴BGCF的最大值为12.方法3:∵BC是直径,∴∠CGB=∠CBF=90°,∴∠CBG=∠CFB(记为α,其中0°<α<90°)则BGCF=cossinBCBCαα=sinαcosα=12sin2α≤12,∴BGCF的最大值为12.【知识点】切线的判定;相似三角形的判定与性质;锐角三角函数;二次函数的最值问题。

广东省深圳市2019年中考数学试题及答案【word版】

广东省深圳市2019年中考数学试题及答案【word版】

2019年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2019年广东深圳)9的相反数是()A.﹣9 B.9 C.±9D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2019年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2019年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2019年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2019年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2019年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2019年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2019年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2019年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B. C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2019年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D. 500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2019年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2019年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2018•怀化)分解因式:2x2﹣8= 2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2019年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3 .考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.(3分)(2019年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,15.求k= 8 .考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2019年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485 .考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2019年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2019年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2019年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a= 200 ,b= 0.4 ,c= 60 .(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2019年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2019年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2019年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据 B,D 两点求出 BD 表达式为 y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为 y=x 又在直线 DO 上的点P的横坐标为2,所以 p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且 MC=,故 C(2,﹣1)过 D 作DH⊥x 轴于 H,设 MC 与 x 轴交于 K,则△ACK∽△ADH,又∵DC=4AC,故 DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为 y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为 y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2019年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E 为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。

2019年深圳中考数学试题(解析版)

2019年深圳中考数学试题(解析版)

{来源}2019年深圳中考数学 {适用范围:3. 九年级}{标题}2019年深圳市中考数学试卷考试时间:90分钟 满分:100分{题型:1-选择题}一、选择题:本大题共 12 小题,每小题 3 分,合计36分.{题目}1.(2019年深圳第1题)51-的绝对值是 A.-5 B. 51 C.5 D. 51-{答案}B{解析}本题考查了绝对值的性质,根据绝对值的性质,−15的绝对值是15,因此本题选B . {分值}3{章节:[1-1-2-4]绝对值 } {考点:绝对值的性质} {类别:常考题} {难度:1-最简单}{题目}2.(2019年深圳第2题)下列图形中,是轴对称图形的是{答案}A{解析}本题考查了轴对称图形,根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,判断即可得出答案.因此本题选A . {分值}3{章节:[1-13-1-1]轴对称} {考点:轴对称图形} {类别:常考题} {难度:1-最简单}{题目}3.(2019年深圳第3题)预计2025年,中国5G 用户将超过460 000 000户。

将数据460 000 000用科学计数法表示为: A .94.610⨯B .74610⨯C .84.610⨯D . 90.4610⨯{答案}C{解析}本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.因此本题选C . {分值}3A B C D{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}4.(2019年深圳第4题)下列哪个图形是正方体的展开图{答案}B{解析}本题考查正方体的展开图。

选项B 属于正方体的展开图中1-4-1型,A ,C ,D 选项在折的过程中均有正方形重叠。

因此本题选B{分值}3{章节:[1-4-1-2]点、线、面、体} {考点:几何体的展开图} {类别:常考题} {难度:2-简单}{题目}5.(2019年深圳第5题)一组数:20,21,22,23,23,这组数的中位数和众数分别是 A .20,23B .21,23C .21,22D . 22,23{答案}D{解析}本题考查了中位数和众数,根据一组数据按照由小到大(或由大而小)的顺序排列,中间位置的数或者中间两个数据的平均数为这组数据的中位数;一组数据中出现次数最多的数据成为这组数据的众数,对各选项分析判断后即可得出答案.因此本题选D . {分值}3{章节:[1-20-1-2]中位数和众数} {考点:中位数}{考点:众数} {类别:常考题} {难度:2-简单}{题目}6.(2019年深圳第6题)下列运算正确的是A .224a a a += B .3412a a a = C .()4312aa = D . ()22ab ab ={答案}C{解析}本题考查整式的运算,根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变,指数相乘;积的乘方,等于每一个因式的乘方的积,对各选项分析判断后利用排除法求解.本题选CA B C D{分值}3{章节:[1-15-2-3]整数指数幂}{考点: 合并同类项}{考点:同底数幂的乘法}{考点: 幂的乘方}{考点:积的乘方 } {类别:常考题} {难度:2-简单}{题目}7.(2019年深圳第7题)如图1,已知直线1l ∥2l ,直线3l 交直线1l 、2l 于A 、B 两点,AC 为角平分线,则下列说法错误的是 A .∠1= ∠4 B .∠1= ∠5 C .∠2= ∠3 D . ∠1= ∠3{答案}B{解析}本题考查了平行线的性质和角平分线的性质,根据角平分线的性质,易得∠1= ∠2,根据平行线的性质,可得∠2= ∠3,∠2= ∠4,根据等量代换,可得∠1= ∠4,选项A ,C ,D 正确。

完整word版,广东省深圳市2019年中考数学试题及答案【word版】,推荐文档

完整word版,广东省深圳市2019年中考数学试题及答案【word版】,推荐文档

2019年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2019年广东深圳)9的相反数是()A.﹣9 B.9 C.±9D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2019年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2019年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2019年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2019年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2019年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2019年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2019年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2019年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B. C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2019年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D. 500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2019年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2019年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2018•怀化)分解因式:2x2﹣8= 2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2019年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3 .考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.(3分)(2019年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,15.求k= 8 .考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2019年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485 .考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2019年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2019年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2019年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a= 200 ,b= 0.4 ,c= 60 .(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2019年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2019年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2019年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据 B,D 两点求出 BD 表达式为 y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为 y=x 又在直线 DO 上的点P的横坐标为2,所以 p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且 MC=,故 C(2,﹣1)过 D 作DH⊥x 轴于 H,设 MC 与 x 轴交于 K,则△ACK∽△ADH,又∵DC=4AC,故 DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为 y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为 y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2019年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E 为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。

19年深圳中考数学真题试卷(含答案解析)

19年深圳中考数学真题试卷(含答案解析)

1
大于 AB 的长为半径画弧,两弧交于点 M、N,连接 MN,与 AC 相
2
交于点 D,则 tt 的周长为
A.
B. C. D.
第 1 页 共 14 页
9. 已知二次函数

‷ 的图象为
t‷
的图象如图 3 所示,则一次函数
t 和反比例函
图3
A
B
10. 下列命题正确的是 A. 矩形对角线互相垂直
B. 方程
17. 计算:
cos͸
π

18. 先化简
,再将
代入求值.
19. 某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学
生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.
(1)这次共抽取
名学生进行调查,扇形统计图中的

(2)请补全统计图;
(3)在扇形统计图中“扬琴”所对扇形的圆心角是
作t
于点 t ,则 t t

tt


t 中, tan
即t
͸
t
, ,
t,
t
t
t tt
(米),
隧道 t 的长度为
米.
答:隧道 t 的长度为
米.
21. (1) 设焚烧 吨垃圾,A 发电厂发电 度,B 发电厂发电 t 度,

t t
解得:
答:焚烧 吨垃圾,A 发电厂发电
t͸ 度,B 发电厂发电 ͸ 度.
(2) 设 A 发电厂焚烧 吨垃圾,则 B 发电厂焚烧
则: t t cos sin cos
sin

t
t 的最大值为 .

2019年广东深圳中考数学真题--含解析

2019年广东深圳中考数学真题--含解析

2019年广东省深圳市初中学生学业水平考试数学试题(满分100分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019广东深圳,1,3分)-15的绝对值是()A.-5 B.15C.5 D.-15【答案】B【解析】15-=-(-15)=15.故选B.【知识点】绝对值2.(2019广东深圳,2,3分)下列图形中是轴对称图形的是()【答案】A【解析】A中图形沿着过上下两边中点的直线进行折叠,直线两旁的部分能完全重合,是轴对称图形;其他图形不符合轴对称图形的定义,不是轴对称图形.故选A.【知识点】轴对称图形3.(2019广东深圳,3,3分)预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学记数法表示为()A.4.6×109B.46×107 C.4.6×108D.0.46×109【答案】C【解析】460 000 000整数位数有9位,所以将460 000 000用科学记数法表示为4.6×108.故选C.【知识点】科学记数法4.(2019广东深圳,4,3分)下列哪个图形是正方体的展开图()A.B. C.D.【答案】B【解析】B中图形符合“一四一”模型,是正方体的展开图.故选B.【知识点】立体图形的展开图5.(2019广东深圳,5,3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【答案】D【解析】数据是从小到大排列的,排在最中间的数据为22,则中位数是22;出现最多的数据是23,即众数是23.故选D.【知识点】中位数;众数6.(2019广东深圳,6,3分)下列运算正确的是()A.a2+a2=a4B.a3·a4=a12 C.(a3)4=a12 D.(ab)2=ab2【答案】C【解析】∵a2+a2=2a2,故A错误;∵a3·a4=a7,故B错误;(a3)4=a3×4=a12,故C正确;(ab)2=a2b2,故D错误.故选C.【知识点】合并同类项;同底数幂的乘法;幂的乘方;积的乘方∥AB,AC为角平分线,下列说法错误的是()7.(2019广东深圳,7,3分)如图,已知l1A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】∵AC为角平分线,∴∠1=∠2.∵l1∥AB,∴∠4=∠2,∠3=∠2,∴∠1=∠4,∠1=∠3.故A、C、D正确.∵l1∥AB,∴∠5=∠1+∠2,故B错误.故选B.【知识点】平行线的性质;角平分线的定义8.(2019广东深圳,8,3分)如图,已知AB=AC,AB=5,BC=3.以AB两点为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,过M,N作直线与AC相交于点D,则△BDC的周长为()A.8 B.10 C.11 D.13【答案】A【解析】由作图方法知,MN是线段AB的垂直平分线,∴AD=BD,∴△BDC的周长=BD+DC+BC=AD+DC+BC=5+3=8.故选A.【知识点】尺规作图;线段的垂直平分线;等腰三角形9.(2019广东深圳,9,3分)已知函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b与y=cx的图象为()A.B. C.D.【答案】C【思路分析】先根据二次函数y=ax 2+bx+c (a ≠0)的图象确定a ,b ,c 的正负,则判断一次函数与反比例函数的图象所在的象限.【解题过程】由二次函数的图象可知,a<0,b>0,c<0.当a<0,b>0,c<0时,一次函数y=ax+b 经过第一、二、四象限;反比例函数y=cx位于第二、四象限,选项C 符合.故选C . 【知识点】二次函数的图象与系数的关系;一次函数的图象与系数的关系;反比例函数的图象与系数的关系;符号判断10.(2019广东深圳,10,3分)下列命题正确的是( ) A .矩形对角线互相垂直 B .方程x 2=14x 的解为x=14C .六边形的内角和为540°D .斜边和一条直角边分别相等的两个直角三角形全等【答案】D【思路分析】对各个选项逐项判断.【解题过程】A 中,矩形的对角线相等,而不具备对角线互相垂直,故A 错误;B 中,方程x 2=14x 的解为x=14或x=0,故B 错误;C 中,六边形的内角和为(6-2)×180°=720°,故C 错误;选项D 正确.故选D .【知识点】矩形的性质;一元二次方程的解法;正多边形的内角和;全等三角形 11.(2019广东深圳,11,3分)定义一种新运算:abn ò=nna b -,例如:132ò=2213-=1-9=-8,若51mm-ò=-2,则m=( )A .-2B .52-C .2D .52【答案】B 【思路分析】如图【解题过程】由题意得1m --()15m -=1m -15m =-2,则m=52-,故选B .【知识点】定义新运算12.(2019广东深圳,12,3分)已知菱形ABCD 的边长为4,∠BAD=120°,E 、F 分别为AB ,AD上的点,且BE=AF ,则下列结论正确的有( )个.①△BEC ≌△AFC ;②△ECF 为等边三角形;③∠AGE=∠AFC ;④若AF=1,则GF EG =13.A .1B .2C .3D .4【答案】D【思路分析】【解题过程】在四边形ABCD是菱形,∵∠BAD=120°,∴∠B=∠BAC=60°,∴AC=BC,且BE=AF,∴△BEC≌△AFC,故①正确;∵△BEC≌△AFC,∴FC=EC,∠FCA=∠ECB,∴∠ECF=∠ACB=60°,∴△ECF为等边三角形,故②正确;∵∠AGE=180°-∠BAC-∠AEG;∠AFC=180°-∠FAC-∠ACF,∴∠AGE=∠AFC,故③正确;∵AF=1,则AE=3,易得△CFG∽△CBE,∴GF CFBE BC=,△CEG∽△CAE,∴EG CEAE AC=,∵CE=CF,AC=BC,∴GFBE=EGAE,∴13GF BEEG AE==,故④正确.故选D.【知识点】四边形多结论题;菱形的性质;全等三角形的判定;等边三角形的判定;二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上.13.(2019广东深圳,13,3分)分解因式:ab2-a=____________.【答案】a(b+1)(b-1)【解析】原式=a(b2-1)=a(b+1)(b-1).【知识点】因式分解;平方差公式14.(2019广东深圳,14,3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是____________.【答案】3 8【解析】从中随机抽取一张,共8种等可能的结果,其中抽到标有2的卡片的结果数为3,故抽到标有数字2的卡片的概率为38.【知识点】概率15.(2019广东深圳,15,3分)如图,在正方形ABCD 中,BE=1,将BC 沿CE 翻折,点B 的对应点刚好落在对角线AC 上;将AD 沿AF 翻折,点D 的对应点刚好落在对角线AC 上,连接EF ,则EF=____________.【答案】6【解析】设点B 的对应点是点G ,点D 的对应点是点H ,作FM ⊥AB 于点M ,由折叠可知,EG=EB=AG=1,∴AE=2;AM=DF=FH=1,∴AB=FM=2+1,EM=2-1,∴EF=22EM FM +=()()222121-++=6.【知识点】正方形折叠;正方形的性质;勾股定理16.(2019广东深圳,16,3分)如图,在Rt △ABC 中,∠ABC=90°,C (0,3),CD=3AD ,点A 在反比例函数y=kx的图象上,且y 轴平分∠ACB ,则k=_______.【答案】47 7【解析】如图,作AE⊥x轴于点E,易得△COD∽△AED.又∵CD=3AD,C(0,-3),∴AE=1,OD=3DE.令DE=x,则OD=3x.∵y轴平分∠ACB,∴BO=OD=3x.∵∠ABC=90°,AE⊥x轴,∴△CBO∽△BAE,∴BO AE =COBE,即31x=37x,解得x=7(已舍负值),∴A(47,1),∴k=47.【知识点】反比例函数综合;相似三角形的判定与性质三、解答题(本大题共7小题,第17题5分,第18题6分,第19题7分,第20,21各题8分,第22,23各9分,满分52分,解答应写出文字说明、证明过程或演算步骤)17.(2019广东深圳,17,5分)92cos60°+(18)-1+(π➖3.14)0.【思路分析】将特殊角的锐角三角函数值,负整数指数幂,零指数幂等分别代入,然后按照实数混合运算的顺序计算.【解题过程】解:原式=3-1+8+1=11.【知识点】正六边形的性质;勾股定理;锐角三角函数18.(2019广东深圳,18,6分)先化简:(1-32x+)÷244xx x-1++,再将x=-1代入求值.【思路分析】先把括号内的分式进行通分相减,再把除法化为乘法进行约分化简,最后代入求值.【解题过程】解:原式=2x x -1+×()22x x -1+=x+2.当x=-1时,原式=-1+2=1. 【知识点】分式化简求值19.(2019广东深圳,19,7分)某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = ; (2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名.【思路分析】(1)由条形统计图可知喜欢“古筝”的有80人,由扇形统计图可知喜欢“古筝”的占40%,80÷40%=200,即共抽取了200人;由条形统计图可知,喜欢“竹笛”有30人,x=30÷200=15%;(2)用总数减去各组人数可得喜欢“二胡”有60人,在相应的位置补全条形统计图;(3)“扬琴”占的百分比为20200=10%,360°×10%=36°;(4)用样本估计总体可得全校喜爱“二胡”的人数为3000×30%=900(人). 【解题过程】(1)200,15%; (2)统计图如图所示:(3)36; (4)900.【知识点】数据统计;概率;条形统计图和扇形统计图.20.(2019广东深圳,20,8分)如图所示,某施工队要测量隧道长度BC ,AD=600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角45°,再由D 走到E 处测量,DE ∥AC ,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【思路分析】作EM ⊥AC 于点M ,构建直角三角形,解直角三角形解决问题. 【解题过程】如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M ,则AM=DE=500,∴BM=100. 在Rt △CEM 中,tan53°=CM EM ,即600CM =43, ∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.【知识点】解直角三角形21.(2019广东深圳,21,8分)有A 、B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电. (1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A 、B 两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【思路分析】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,列方程组求解;(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,列出一次函数,再利用一次函数的性质求解.【解题过程】解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则=403020=1800a b b a -,-,ìïïíïïî解得=300=260a b ,.ìïïíïïî 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,则 y=300x+260(90-x )=40x+23400, ∵x ≤2(90-x ), ∴x ≤60.∵y 随x 的增大而增大,∴当x=60时,y 取最大值为25800.答:A 、B 发电厂发电总量最大是25800度. 【知识点】二元一次方程组的应用;一次函数的应用22.(2019广东深圳,22,9分)如图所示,抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC .(1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值,(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【思路分析】(1)先求出点B 的坐标,然后把A 、B 、C 三点坐标代入解析式得出方程组,解方程组即可得出a ,b ,c 的值,得解析式,再用配方法或对称轴公式或中点公式可得对称轴方程;(2)利用轴对称原理作出点C 的对称点,求出四边形CDEA 的周长的最小值;(3)方法1:设CP 与x 轴交于点E ,先根据面积关系得出BE :AE=3:5或5:3,求出点E 的坐标,进而求出直线CE 的解析式,解直线CE 与抛物线的解析式联立所得的方程组求出点P 的坐标;方法2:设P (x ,-x 2+2x+3),用含x 的式子表示四边形CBPA 的面积,然后求出CB 的解析式,再用含x 的式子表示出△CBP 的面积,利用面积比建立方程,解方程求出x 的值,得出P 的坐标.【解题过程】解:(1)∵点C (0,3),OB=OC ,∴点B (3,0).把A (-1,0),C (0,3),B (3,0)代入c bx ax y ++=2,得09303a b c a b c c +=⎧⎪+=⎨⎪=⎩-,+,,解得123a b c =⎧⎪=⎨⎪=⎩-,,. ∴抛物线的解析式为y=-x 2+2x+3.∵y=-x 2+2x+3=-(x -1)2+4,∴抛物线的对称轴为x=1.(2)如图,作点C 关于x=1的对称点C ′(2,3),则CD=C ′D .取A ′(-1,1),又∵DE=1,可证A ′D=AE .在Rt △AOC 中,AC=22OA OC +=2213+=10.四边形ACDE 的周长=AC+DE+CD+AE =10+1+CD+AE .要求四边形ACDE 的周长的最小值,就是求CD+AE 的最小值.∵CD+AE=C ′D+A ′D ,∴当A ′D ,C ′三点共线时,C ′D+A ′D 有最小值为13,∴四边形ACDE 的周长的最小值=10+1+13.(3)方法1:由题意知点P 在x 轴下方,连接CP ,设PC 与x 轴交于点E ,∵直线CP 把四边形CBPA 的面积分为3:5两部分,又∵S △CBE :S △CAE =S △PBE :S △PAE =BE :AE ,∴BE :AE=3:5或5:3,∴点E 1(32,0),E 2(12,0). 设直线CE 的解析式为y=kx+b ,(32,0)和(0,3)代入,得3=02=3k b b ,,ìïï+ïíïïïî解得=2=3k b -,.ìïïíïïî ∴直线CE 的解析式为y=-2x+3.同理可得,当E 2(12,0)时,直线CE 的解析式为y=-6x+3. 由直线CE 的解析式和抛物线的解析式联立解得P 1(4,-5),P 2(8,-45).方法2:由题意得S △CBP =38S 四边形CBPA 或S △CBP =58S 四边形CBPA .令P (x ,-x 2+2x+3), S 四边形CBPA =S △CAB +S △PAB =6+12×4·(x 2-2x -3)=2x 2-4x . 直线CB 的解析式为y=-x+3,作PH ∥y 轴交直线CB 于点H ,则H (x ,-x+3),S △CBP=12OB ·PH=12×3·(-x+3+x 2-2x -3)=32x 2-92x . 当S △CBP =38S 四边形CBPA 时,32x 2-92x=38(2x 2-4x ), 解得x 1=0(舍),x 2=4,∴P 1(4,-5).当S △CBP =58S 四边形CBPA 时,32x 2-92x=58(2x 2-4x ), 解得x 3=0(舍),x 4=8,∴P 2(8,-45).【知识点】一次函数、二次函数的综合;线段和最值;动点问题23.(2019广东深圳,23,9分)已知在平面直角坐标系中,点A (3,0),B (-3,0),C (-3,8),以线段BC 为直径作圆,圆心为E ,直线AC 交⊙E 于点D ,连接OD.(1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG :①当tan ∠ACF=71时,求所有F 点的坐标 (直接写出); ②求CFBG 的最大值. 【思路分析】(1)连接DE ,证明∠EDO=90°,依据“经过半径的外端且垂直于半径的直线是圆的切线”得证;(2)①分两种情况:一是当F 位于AB 上时,构造相似,用含x 的式子分别表示未知线段,再根据tan ∠ACF=71列出方程求出F 1的坐标;二是当F 位于BA 的延长线上时,同样方法求出F 2的坐标;②方法1:利用相似及勾股定理得出BG CF ()2264CG CG g -,再令y=CG 2·(64-CG 2),求出y 的最大值,进而得出BG CF的最大值;方法2:作GM ⊥BC 于点M ,先证明△CBF ∽△CGB ,再由相似三角形对应高的比等于相似比,得出BG CF 的最大值;方法3:利用锐角三角函数,得出BG CF =cos sin BC BC αα,进而得出BG CF的最大值. 【解题过程】(1)证明:连接DE ,∵BC 为直径,∴∠BDC=90°,∴∠BDA=90°.∵OA=OB ,∴OD=OA=OB ,∴∠OBD=∠ODB .∵EB=ED ,∴∠EBD=∠EDB ,∴∠EBD+∠OBD=∠EDB+∠ODB ,即∠EBO=∠EDO .∵CB ⊥x 轴,∴∠EBO=90°,∴∠EDO=90°,∴直线OD 为⊙E 的切线.(2)∵A (3,0),B (-3,0),C (-3,8),∴AB=6,BC=8,∴AC=10.如图1,当F 位于AB 上时,作F 1N ⊥CA 于N ,∵△ANF 1∽△ABC , ∴AN AB =1NF BC =1AF AC, ∴设AN=3x ,则NF 1=4x ,AF 1=5x ,∴CN=CA -AN=10-3x .∴tan ∠ACF=1NF CN =4103x x -=71, 解得x=1031, ∴AF 1=5x=5031, OF 1=3-5031=4331, 即F 1(4331,0).如图2,当F 位于BA 的延长线上时,作F 2M ⊥CA 于M ,∵△AMF 2∽△ABC ,∴设AM=3x,则MF2=4x,AF2=5x,∴CM=AC+AM=10+3x,∴tan∠ACF=2FMCM =4103xx+=71,解得x=25,∴AF2=5x=2,OF2=3+2=5,即F2(5,0).(3)方法1:△CBG∽△CFB,∴BGBF=BCCF=CGBC,BC2=CG·CF,CF=2 BC CG,∵CG2+BG2=BC2,BG2=BC2-CG2,∴22BGCF=2242BC CGBCCG-=()2226464CG CGg-,∴BGCF=()2264CG CGg-.令y=CG2·(64-CG2),∴y=-CG4+64CG2=-(CG2-32)2+322,当CG2=32时,y最大值=322,此时2,∴BGCF的最大值为3264=12.方法2:如图,作GP⊥BC于点P,∵BC是直径,∴∠CGB=∠CBF=90°,∴△CBF∽△CGB,∴BGCF=PGBC=8PG.∵PG≤半径=4,∴BGCF=8PG≤48=12.∴BGCF的最大值为12.方法3:∵BC是直径,∴∠CGB=∠CBF=90°,∴∠CBG=∠CFB(记为α,其中0°<α<90°)则BGCF=cossinBCBCαα=sinαcosα=12sin2α≤12,∴BGCF的最大值为12.【知识点】切线的判定;相似三角形的判定与性质;锐角三角函数;二次函数的最值问题。

2019年广东省深圳市中考数学试卷(含解析版)

2019年广东省深圳市中考数学试卷(含解析版)

2019年广东省深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分)1.(3分)﹣的绝对值是()A.﹣5B.C.5D.﹣2.(3分)下列图形中是轴对称图形的是()A.B.C.D.3.(3分)预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×109 4.(3分)下列哪个图形是正方体的展开图()A.B.C.D.5.(3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23B.21,23C.21,22D.22,236.(3分)下列运算正确的是()A.a2+a2=a4B.a3•a4=a12C.(a3)4=a12D.(ab)2=ab2 7.(3分)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠38.(3分)如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.139.(3分)已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.10.(3分)下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等11.(3分)定义一种新运算n•x n﹣1dx=a n﹣b n,例如2xdx=k2﹣n2,若﹣x﹣2dx =﹣2,则m=()A.﹣2B.﹣C.2D.12.(3分)已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个()①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则=.A.1B.2C.3D.4二、填空题(每小题3分,共4小题,满分12分)13.(3分)分解因式:ab2﹣a=.14.(3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是.15.(3分)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k=.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,满分52分)17.(5分)计算:﹣2cos60°+()﹣1+(π﹣3.14)018.(6分)先化简(1﹣)÷,再将x=﹣1代入求值.19.(7分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取名学生进行调查,扇形统计图中的x=;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.20.(8分)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈,cos53°≈,tan53°≈).21.(8分)有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A 焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量的最大值.22.(9分)如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE 的周长的最小值.(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.23.(9分)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标(直接写出);②求的最大值.2019年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共12小题,满分36分)1.(3分)﹣的绝对值是()A.﹣5B.C.5D.﹣【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣|=,故选:B.【点评】本题考查了绝对值的定义,解题的关键是掌握绝对值的性质.2.(3分)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×109【分析】科学记数法的表示形式为a×10n的形式,其.中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【解答】解:将460000000用科学记数法表示为4.6×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列哪个图形是正方体的展开图()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图..故选:B.【点评】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.5.(3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23B.21,23C.21,22D.22,23【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.【解答】解:这组数据排序后为20,21,22,23,23,∴中位数和众数分别是22,23,故选:D.【点评】本题主要考查了中位数以及众数,中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现.6.(3分)下列运算正确的是()A.a2+a2=a4B.a3•a4=a12C.(a3)4=a12D.(ab)2=ab2【分析】分别根据合并同类项的法则、同底数幂的乘法、幂的乘方以及积的乘方化简即可判断.【解答】解:A.a2+a2=2a2,故选项A不合题意;B.a3•a4=a7,故选项B不合题意;C.(a3)4=a12,故选项C符合题意;D.(ab)2=a2b2,故选项D不合题意.故选:C.【点评】本题主要考查了幂的运算法则,熟练掌握法则是解答本题的关键.7.(3分)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠3【分析】利用平行线的性质得到∠2=∠4,∠3=∠2,∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2=∠4=∠3,∠5=2∠1,从而可对各选项进行判断.【解答】解:∵l1∥AB,∴∠2=∠4,∠3=∠2,∠5=∠1+∠2,∵AC为角平分线,∴∠1=∠2=∠4=∠3,∠5=2∠1.故选:B.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8.(3分)如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.13【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.9.(3分)已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线y=在二、四象限.【解答】解:根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线y=在二、四象限,∴C是正确的.故选:C.【点评】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.10.(3分)下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6﹣2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【解答】解:A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选:D.【点评】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.11.(3分)定义一种新运算n•x n﹣1dx=a n﹣b n,例如2xdx=k2﹣n2,若﹣x﹣2dx =﹣2,则m=()A.﹣2B.﹣C.2D.【分析】根据新运算列等式为m﹣1﹣(5m)﹣1=﹣2,解出即可.【解答】解:由题意得:m﹣1﹣(5m)﹣1=﹣2,﹣=﹣2,5﹣1=﹣10m,m=﹣,故选:B.【点评】本题考查了负整数指数幂和新定义,理解新定义,并根据新定义进行计算是本题的关键.12.(3分)已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个()①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则=.A.1B.2C.3D.4【分析】①△REC≌△AFC(SAS),正确;②由△BEC≌△AFC,得CE=CF,∠BCE =∠ACF,由∠BCE+∠ECA=∠BCA=60°,得∠ACF+∠ECA=60,所以△CEF是等边三角形,正确;③因为∠AGE=∠CAF+∠AFG=60°+∠AFG,∠AFC=∠CFG+∠AFG =60°+∠AFG,所以∠AGE=∠AFC,故③正确;④过点E作EM∥BC交AC下点M 点,易证△AEM是等边三角形,则EM=AE=3,由AF∥EM,则==.故④正确,【解答】解:①△REC≌△AFC(SAS),正确;②∵△BEC≌△AFC,∴CE=CF,∠BCE=∠ACF,∵∠BCE+∠ECA=∠BCA=60°,∴∠ACF+∠ECA=60,∴△CEF是等边三角形,故②正确;③∵∠AGE=∠CAF+∠AFG=60°+∠AFG;∠AFC=∠CFG+∠AFG=60°+∠AFG,∴∠AGE=∠AFC,故③正确正确;④过点E作EM∥BC交AC下点M点,易证△AEM是等边三角形,则EM=AE=3,∵AF∥EM,∴则==.故④正确,故①②③④都正确.故选:D.【点评】本题考查了菱形的性质,熟练运用菱形的性质、等边三角形性质以及全等三角形的判定与性质是解题的关键.二、填空题(每小题3分,共4小题,满分12分)13.(3分)分解因式:ab2﹣a=a(b+1)(b﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是.【分析】直接利用概率公式计算进而得出答案.【解答】解:∵现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,∴将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是:.故答案为:.【点评】此题主要考查了概率公式,正确掌握计算公式是解题关键.15.(3分)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=.【分析】作FM⊥AB于点M.根据折叠的性质与等腰直角三角形的性质得出EX=EB=AX=1,∠EXC=∠B=90°,AM=DF=YF=1,由勾股定理得到AE==.那么正方形的边长AB=FM=+1,EM=﹣1,然后利用勾股定理即可求出EF.【解答】解:如图,作FM⊥AB于点M.∵四边形ABCD是正方形,∴∠BAC=∠CAD=45°.∵将BC沿CE翻折,B点对应点刚好落在对角线AC上的点X,∴EX=EB=AX=1,∠EXC=∠B=90°,∴AE==.∵将AD沿AF翻折,使D点对应点刚好落在对角线AC上的点Y,∴AM=DF=YF=1,∴正方形的边长AB=FM=+1,EM=﹣1,∴EF===.故答案为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了正方形的性质以及勾股定理.求出EM与FM是解题的关键.16.(3分)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k=.【分析】要求k得值,通常可求A的坐标,可作x轴的垂线,构造相似三角形,利用CD =3AD和C(0,﹣3)可以求出A的纵坐标,再利用三角形相似,设未知数,由相似三角形对应边成比例,列出方程,求出待定未知数,从而确定点A的坐标,进而确定k的值.【解答】解:过A作AE⊥x轴,垂足为E,∵C(0,﹣3),∴OC=3,可证△ADE∽△CDO∴,∴AE=1;又∵y轴平分∠ACB,CO⊥BD∴BO=OD∵∠ABC=90°∴△ABE~COD∴设DE=n,则BO=OD=3n,BE=7n,∴,∴n=∴OE=4n=∴A(,1)∴k=.故答案为:.【点评】本题考查反比例函数图象上点的坐标特征,综合利用相似三角形的性质,全等三角形的性质求A的坐标,依据A在反比例函数的图象上的点,根据坐标求出k的值.综合性较强,注意转化思想方法的应用.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,满分52分)17.(5分)计算:﹣2cos60°+()﹣1+(π﹣3.14)0【分析】直接利用二次根式的性质以及零指数幂的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2×+8+1=3﹣1+8+1=11.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简(1﹣)÷,再将x=﹣1代入求值.【分析】直接利用分式的混合运算法则进而化简得出答案.【解答】解:原式=×=x+2,将x=﹣1代入得:原式=x+2=1.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.19.(7分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取200名学生进行调查,扇形统计图中的x=15%;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是36度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有900名.【分析】(1)依据喜爱古筝的人数数据,即可得到调查的学生人数,根据喜欢竹笛的学生数占总人数的百分比即可得到结论;(2)求二胡的学生数,即可将条形统计图补充完整;(3)依据“扬琴”的百分比,即可得到“扬琴”所占圆心角的度数;(4)依据喜爱“二胡”的学生所占的百分比,即可得到该校最喜爱“二胡”的学生数量.【解答】解:(1)80÷40%=200,x=×100%=15%,故答案为:200;15%;(2)喜欢二胡的学生数为200﹣80﹣30﹣20﹣10=60,补全统计图如图所示,(3)扇形统计图中“扬琴”所对扇形的圆心角是:360°×=36°,故答案为:36;(4)3000×=900,答:该校喜爱“二胡”的学生约有有900名.故答案为:900.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.20.(8分)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈,cos53°≈,tan53°≈).【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM﹣DE=500,∴BM=100,在Rt△CEM中,tan53°===,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.21.(8分)有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A 焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量的最大值.【分析】(1)设焚烧1吨垃圾,A发电厂发电x度,B发电厂发电y度,根据“每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电”列方程组解答即可;(2)设A发电厂焚烧x吨垃圾,则B发电厂焚烧(90﹣x)吨垃圾,总发电量为y度,得出y与x之间的函数关系式以及x的取值范围,再根据一次函数的性质解答即可.【解答】解:(1)设焚烧1吨垃圾,A发电厂发电a度,B发电厂发电b度,根据题意得:,解得,答:焚烧1吨垃圾,A发电厂发电300度,B发电厂发电260度;(2)设A发电厂焚烧x吨垃圾,则B发电厂焚烧(90﹣x)吨垃圾,总发电量为y度,则y=300x+260(90﹣x)=40x+23400,∵x≤2(90﹣x),∴x≤60,∵y随x的增大而增大,∴当x=60时,y有最大值为:40×60+23400=25800(元).答:A厂和B厂总发电量的最大是25800度.【点评】本题主要考查了二元一次方程组的应用以及一次函数的应用,理清数量关系列出方程组是解答本题的关键.22.(9分)如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE 的周长的最小值.(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【分析】(1)OB=OC,则点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a (x2﹣2x﹣3)=ax2﹣2ax﹣3a,即可求解;(2)CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;(3)S△PCB:S△PCA=EB×(y C﹣y P):AE×(y C﹣y P)=BE:AE,即可求解.【解答】解:(1)∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3)=ax2﹣2ax﹣3a,故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点C(2,3),则CD=C′D,取点A′(﹣1,1),则A′D=AE,故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=+A′D+DC′=+A′C′=+;(3)如图,设直线CP交x轴于点E,直线CP把四边形CBP A的面积分为3:5两部分,又∵S△PCB:S△PCA=EB×(y C﹣y P):AE×(y C﹣y P)=BE:AE,则BE:AE,=3:5或5:3,则AE=或,即:点E的坐标为(,0)或(,0),将点E、C的坐标代入一次函数表达式:y=kx+3,解得:k=﹣6或﹣2,故直线CP的表达式为:y=﹣2x+3或y=﹣6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P的坐标为(4,﹣5)或(8,﹣45).【点评】本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.23.(9分)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标,F2(5,0)(直接写出);②求的最大值.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②方法1:如图4,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG•CFCF=∵CG2+BG2=BC2,∴BG2=BC2﹣CG2∴==∴=令y=CG2(64﹣CG2)=﹣CG4+64CG2=﹣[(CG2﹣32)2﹣322]=﹣(CG2﹣32)2+322∴当CG2=32时,此时CG=4==.方法2:设∠BCG=α,则sinα=,cosα=,∴sinαcosα=∵(sinα﹣cosα)2≥0,即:sin2α+cos2α≥2sinαcosα∵sin2α+cos2α=1,∴sinαcosα≤,即≤∴的最大值=.【点评】本题是一道难度较大,综合性很强的有关圆的代数几何综合题,主要考查了圆的性质,切线的性质和判定定理,直角三角形性质,相似三角形性质和判定,动点问题,二次函数最值问题等,构造相似三角形和应用求二次函数最值方法是解题关键.。

中考数学学科命题说明_0

中考数学学科命题说明_0

---------------------------------------------------------------最新资料推荐------------------------------------------------------中考数学学科命题说明中考数学学科命题说明我市 2019 年初中学业数学学科考试,在考前复习时,以本说明所规定的考试内容及要求为依据.一、命题指导思想 1.数学学业考试要体现《课程标准》的评价理念,有利于引导和促进数学教学全面落实《课程标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于高中学段学校综合、有效的评价学生的数学学习状况. 2.数学学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力特别是在具体情境中综合运用所学知识分析和解决问题的能力等方面发展状况的评价,还应重视对学生数学认识水平的评价. 3.数学学业考试命题面向全体学生,使具有不同的数学认知特点、不同的数学发展程度的学生都能表现自己的数学学习状况,力求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况.二、命题原则 1.考查内容依据《课程标准》,体现基础性. 2.试题素材、求解方式等体现公平性. 3.试题背景具有现实性. 4.试卷应具备科学性、有效性.三、考试内容及范围(一)考试范围命题将依据现行《义务教育课程标准实验教科书数学》七年级~九年级(共六册)教材中数与代数、图形与几何、统计与概率、课题学习四个领域的内容,体现课程标准的理念.主要考查方面包括:基础知识与基本技能、数学思考、解决问题的能力、情感与1 / 2态度等. 基础知识与基本技能主要考查:掌握数与代数、图形与几何、统计与概率的基础知识与基本技能,能将一些实际问题抽象成数与代数的问题,能探究物体与图形的形状、大小、位置关系和变化过程,能收集与处理数据、作出决策和预测,并能解决简单的问题. 数学思考主要考查:学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况. 解决问题的能力主要考查:能从数学角度提出问题、理解问题,并能综合运用所学知识与技能解决问题,具有解决问题的基本策略. 情感与态度主要考查:初步认识数学与人类生活的密切联系及对人类历史发展的作用,认识数学与其他学科知识之间的联系,形成实事求是的态度及独立思考的习惯. 其中,考试要求的知识技能目标分成四个不同的层次:了解(认识);理解;掌握;灵活运用.具体涵义如下:了解(认识):能从具体实例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象. 理解:能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系. 掌握:能在理解的...。

广东省深圳市2019年中考数学试题及答案(K12教育文档)

广东省深圳市2019年中考数学试题及答案(K12教育文档)

广东省深圳市2019年中考数学试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省深圳市2019年中考数学试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省深圳市2019年中考数学试题及答案(word版可编辑修改)的全部内容。

2019年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2019年广东深圳)9的相反数是()A.﹣9 B.9 C.±9D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评: 本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是() A.B.C.D.考点: 中心对称图形;轴对称图形.分析: 根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2019年广东深圳)支付宝与“快的打车"联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2019年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A.4。

2019年深圳中考数学试题(解析版)

2019年深圳中考数学试题(解析版)

{来源}2019年深圳中考数学{适用范围:3.九年级}{标题}2019年深圳市中考数学试卷考试时间:90分钟满分:100分:题型:1-选择题}一、选择题:本大题共12小题,每小题3分,合计36分.{题目}1.(2019年深圳第1题)-?的绝对值是A.-5B.—C.5D.---55{答案}B{解析}本题考查了绝对值的性质,根据绝对值的性质,一§的绝对值是W因此本题选B.{分值}3{章节:[1-1-2-4]绝对值}{考点:绝对值的性质}{类别:常考题}{鹿度:1-最简单}{题目}2.(2019年深圳第2题)下列图形中,是轴对称图形的是{答案}A{解析}本题考查了轴对称图形,根据轴对称图形的定义沿一条直线对折后,直线两旁部分完金重合的图形是轴对称图形,判断即可得出答案.因此本题选A.{分值}3{章节:[1-13-1-1]轴对称}{考点:轴对称图形}{类别:常考题}{难度:1-最简单}{题目}3.(2019年深圳第3题)预计2025年,中国5G用户将超过460000000户。

将数据460 000 000用科学计数法表示为:A. 4.6xlO9b.46x10,c> 4.6x10s D>0.46xlO9{答案}C{解析}本题考查科学记数法的表示方法.科学记数法的表示形式为aX10n的形式,其中lW|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.因此本题选C.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}4.(2019年深圳第4题)下列哪个图形是正方体的展开图{答案}B{解析}本题考查正方体的展开图。

选项B属于正方体的展开图中1-4-1型,A,C,D选项在折的过程中均有正方形重叠。

因此本题选B{分值}3{章节:[1-4-1-2]点、线、而、体}{考点:几何体的展开图}{类别:常考题}{难度:2-简单}{题目}5.(2019年深圳第5题)一组数:20.21,22,23,23,这组数的中位数和众数分别是A.20.23B.21,23C.21,22D.22,23{答案}D{解析}本题考查了中位数和众数,根据一组数据按照由小到大(或由大而小)的顺序排列,中间位 置的数或者中间两个数据的平均数为这组数据的中位数:一组数据中出现次数最多的数据成为这组数据的众数,对各选项分析判断后即可得出答案.因此本题选D.{分值}3{章节:[1-20-1-2]中位数和众数}{考点:中位数}{考点:众数}{类别:常考题}{难度:2-简单}{题目}6.(2019年深圳第6题)卜列运算正确的是A.a2+a2=a4B.a3*a4=a x2C.(a3J=a nD.(aZ>)2=ab2{答案}C{解析}本题考查整式的运算,根据合并同类项法则:同底数繇相乘,底数不变指数相加:幕的乘方,底数不变,指数相乘:积的乘方,等于每一个因式的乘方的积,对各选项分析判断后利用排除法求解.本题选C{分值}3{章节:[1-15-2-3]整数指数环}{考点:合并同类项}{考点:同底数拜的乘法}{考点:彩的乘方}{考点:积的乘方}{类别:常考题}{难度:2-简单}{题目}7.(2019年深圳第7题)如图1,已知直线1、〃0直线匕交直线七、4于刀、3两点,M 为角平分线,则下列说法错误的是A.Zl=Z4B.Zl=Z5C.Z2=Z3D.Zl=Z3{答案}B{解析}本题考查了平行线的性质和角平分线的性质,根据角平分线的性质,易得Z1=Z2,根据平行线的性质,可得Z2=Z3,Z2=Z4,根据等量代换.可得Z1=Z4,选项A,C,D正确。

2019年广东省深圳市中考数学试卷

2019年广东省深圳市中考数学试卷

深圳市2019年初中毕业生学业考试真题试卷数学试卷说明:1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。

2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。

考试时间90分钟,满分100分。

3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。

答题卡必须保持清洁,不能折叠。

4、本卷选择题1—12,每小题选出答案后,用2B铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。

5、考试结束,请将本试卷和答题卡一并交回第一部分选择题一、(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.的绝对值是()A.﹣5B.C.5D.2.下列图形中是轴对称图形的是()A.B.C.D.3.预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×1094.下列哪个图形是正方体的展开图()A.B.C.D.5.这组数据20,21,22,23,23的中位数和众数分别是()A.20,23B.21,23C.21,22D.22,236.下列运算正确的是()A.a2+a2=a4B.a3•a4=a12C.(a3)4=a12D.(ab)2=ab2 7.如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠38.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.139.已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和的图象为()A.B.C.D.10.下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等11.定义一种新运算n•x n﹣1dx=a n﹣b n,例如2xdx=k2﹣n2,若x﹣2dx=﹣2,则m=()A.﹣2B.C.2D.12.已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个()①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则.A.1B.2C.3D.4第二部分非选择题二、填空题(本部分共4小题,每小题3分,共12分)13.分解因式:ab2﹣a=.14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是.15.如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=.16.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数图象上,且y轴平分∠ACB,求k=.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,满分52分)17.(5分)计算:2cos60°+()﹣1+(π﹣3.14)018.(6分)先化简,再将x=﹣1代入求值.19.(7分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取名学生进行调查,扇形统计图中的x=;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.20.(8分)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°,cos53°,tan53°).21.(8分)有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A 焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量的最大值.22.(9分)如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE 的周长的最小值.(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.23.(9分)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF时,求所有F点的坐标(直接写出);②求的最大值.。

2019年深圳中考数学试卷含详细答案

2019年深圳中考数学试卷含详细答案

2019年深圳中考数学试卷一、选择题(共12小题;共60分)1. −15的绝对值是( )A. −5B. 15C. 5 D. −152. 下列图形中,是轴对称图形的是( )A. B.C. D.3. 预计到2025年,中国5G用户将超过460000000,将460000000用科学计数法表示为( )A. 4.6×109B. 4.6×107C. 4.6×108D. 0.46×1094. 下列哪个图形是正方体的展开图( )A. B.C. D.5. 这组数据20,21,22,23,23的中位数和众位数分别是( )A. 20,23B. 21,23C. 21,22D. 22,236. 下列运算正确的是( )A. a2+a2=a4B. a3a4=a12C. (a3)4=a12D. (ab)2=ab27. 如图,已知l1∥AB,AC为角平分线,下列说法错误的是( )A. ∠1=∠4B. ∠1=∠5C. ∠2=∠3D. ∠1=∠38. 如图,已知 MN 与 AC 相交于点 D ,则 △BDC 的周长为 ( )A. 8B. 10C. 11D. 139. 已知 y =ax 2+bx +c (a ≠0) 的图象如图,则 y =ax +b 和 y =cx 的图象为 ( )A. B.C. D.10. 下列命题正确的是 ( )A. 矩形对角线互相垂直B. 方程 x 2=14x 的解为 x =14C. 六边形内角和为 540∘D. 一条斜边和一条直角边分别相等的两个直角三角形全等11. 定义一种新运算 ∫n ab ⋅x n−1dx =a n −b n ,例如 ∫2kℎxdx =k 2−ℎ2 ,若 ∫−m5m x −2dx =−2 ,则 m = ( ) A. −2B. −25C. 2D. 2512. 已知菱形 ABCD , E , F 是动点,边长为 4 , BE =AF , ∠BAD =120∘ ,则下列结论正确的有几个 ( ) ① △BEC ≌△AFC ; ② △ECF 为等边三角形; ③ ∠AGE =∠AFC ; ④若 AF =1 ,则 GFEG =13 .A. 1B. 2C. 3D. 4二、填空题(共4小题;共20分) 13. 分解因式:ab 2−a = .14. 现有 8 张同样的卡片,分别标有数字: 1 , 1 , 2 , 2 , 2 , 3 , 4 , 5 ,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字 2 的卡片的概率是 15. 如图,在正方形ABCD 中, BE =1 ,将 BC 沿 CE 翻折,使 B 点对应点刚好落在对角线 AC上,将 AD 沿 AF 翻折,使 D 点对应点刚好落在对角线 AC 上,求 EF = .16. 如图,在 Rt △ABC 中, ∠ABC =90∘ , C (0,3) , CD =3AD ,点 A 在 y =kx 上,且 y 轴平分 ∠ACB ,求 k = .三、解答题(共7小题;共91分) 17. 计算: √9−2cos60∘+(18)−1+(π−3.14)0 .18. 先化简 (1−3x+2)÷x−1x 2+4x+4 ,再将 x =−1 代入求值.19. 某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图. (1)这次共抽取 名学生进行调查,扇形统计图中的 x = ;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度; (4)若该校有 3000 名学生,请你估计该校喜爱“二胡”的学生约有 名.20. 如图所示,施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45∘,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53∘,求隧道BC长.(sin53∘≈45,cos53∘≈35,tan53∘≈43).21. 有A,B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A,B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量最大时A厂,B厂的发电量.22. 如图抛物线经y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.23. 已知在平面直角坐标系中,点A(3,0),B(−3,0),C(−3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;时,求所有F点的坐标(直接写出);①当tan∠ACF=17②求BG的最大值.CF参考答案第一部分1. B2. A3. C 【解析】用科学计数法:a×10n,其中1≤∣a∣<10,n是整数.4. B5. D6. C7. A8. A9. C10. D11. B12. D 【解析】①△BEC≌△AFC(SAS),正确;②∵△BEC≌△AFC,∴CE=CF,∠BCE=∠ACF,∵BCE+∠ECA−∠BCA=60∘,∴∠ACF+∠ECA=60∘=∠ECF,∴△CEF是等边三角形,正确;③∵∠AGE=∠CAF+∠AFG=60∘+∠AFG;∠AFC=∠CFG+∠AFG=60∘+∠CFG,∴∠AGE=∠AFC,正确;④选项:方法(1):在△EAF中,由角平分线定理得:GFEG =AFAE=13,故④正确;方法(2):作EM∥BC交AC于M点,则GFEG =AFEM,易证:△AEM是等边三角形,则EM=3,∴GFEG =AFEM=13,①②③④都正确.13. a(b+1)(b−1)14. 3815. √6【解析】作FM⊥AB于点M,由折叠可知:EX=EB=AX=1,AE=√2,AM=DF=YF=1,∴正方形边长AB=FM=√2+1,EM=√2−1,∴EF=√EM2+FM2=√(√2−1)2+(√2+1)2=√6.16. 4√77【解析】如图所示,作AE⊥x轴,由题意:可证△COD∽△AED,又∵CD=3AD,C(0,−3),∴AE=1,OD=3DE,令DE=x,则OD=3x,∵y轴平分∠ACB∴BO=OD=3x,∵∠ABC=90∘,AE⊥x轴,∴可证:△CBO∽△BAE,则:BOAE =COBE,即3x1=37x解得x=√77.∴A(4√77,1),故k=4√77.17. 原式 =3−1+8+1=11 . 18. 原式=x−1x+2⋅(x+2)2x−1=x +2.将 x =−1 代入得: x +2=1 19. (1) 200 ; 15% (2) 统计图如图所示:(3) 36 (4) 90020. 如图, △ABD 是等腰直角三角形, AB =AD =600 , 作 EM ⊥AC 于点 M ,则 AM =DE =500 ,∴BM =100 ,在 △CEM 中, tan53∘=CMEM , 即 CM600=43 , ∴CM =800 ,∴BC =CM −BM =800−100=700 (米), ∴ 隧道 BC 的长度为 700 米. 答:隧道 BC 的长度为 700 米.21. (1) 设焚烧 1 吨垃圾,A 发电厂发电 a 度,B 发电厂发电 b 度, 则{a −b =40,30b −20a =1800,解得:{a =300,b =260.答:焚烧1吨垃圾,A发电厂发电300度,B发电厂发电260度.(2)设A发电厂焚烧x吨垃圾,则B发电厂焚烧(90−x)吨,总发电量为y度,则y=300x+260(90−x)=40x+23400.∵x≤2(90−x),∴x≤60,∵y随x的增大而增大,A厂发电:300×60=18000度,B厂发电:260×30=7800度,∴当x=60时,y取最大值为25800,此时A厂发电18000度,B厂发电7800度.答:A,B发电厂发电总量最大时A厂发电18000度,B厂发电7800度.22. (1)抛物线的解析式:y=−x2+2x+3,对称轴为:直线x=1.(2)如图:作C关于对称轴的对称点Cʹ(2,3),则CD=CD.取Aʹ(−1,1),又DE=1,则可证AʹD=AE,C四边形ACDE=AC+DE+CD+AE=√10+1+CD+AE,要求四边形ACDE的周长最小值,只要求CD+AE的最小值即可.∵CD+AE=CʹD+AʹD,∴当Aʹ,D,Cʹ三点共线时,CD+AʹD有最小值为√13,∴四边形ABCD的周长最小值为√10+√13+1.(3)方法①:令PC与x轴交于E点,∵直线CP把四边形CBPA的面积分为3:5两部分,又∵S△CBP:S△CAP=S△CBE:S△CEA=BE:AE,∴BE:AE=3:5或5:3,∴E1(32,0),E2(12,0),∴直线CE的解析式:y=−2x+3或y=−6x+3,由CE解析式和抛物线解析式联立解得:P1(4,5),P2(8,−45).方法②:由题意得:S△CBP=38S四边形CBPA或S△CBP=58S四边形CBPA,令P(x,−x2+2x+3),S四边形CBPA =S△CAB+S△ABP=6+12×4⋅(x2−2x−3)=2x2−4x,直线AB的解析式:y=−x+3,作PH∥y轴交直线CB于H点,则H(x,−x+3),S△CBP=12⋅OB⋅PH=12×3⋅(−x+3+x2−2x−3)=32x2−92x,当S△CBP=38S四边形CBPA时,则:32x2−92x=38(2x2−4x),解得:x1=0(舍),x2=4,∴P1(4,−5).当S△CBP=58S四边形CBPA时,则:32x2−92x=58(2x2−4x),解得x3=0(舍),x4=8.∴P2(8,−45).23. (1)连接DE,则:∵BC为直径,∴∠BDC=90∘,∴∠BDA=90∘,∵OA=OB,∴OD=OB=OA,∴∠OBD=∠ODB,∵EB=ED,∴∠EBD=∠EBD,∴∠EBD+∠OBD=∠EDB+∠ODB,即:∠EBO=∠EDO,∵B(−3,0),C(−3,8),∴CB⊥x轴,∴∠EBO=90∘,∴∠EDO=90∘,∵D点在OE上,∴直线OD为⊙E的切线.(2)①F1(4331,0);F2(5,0).②方法1:△CBG∽△CFB,∴BGBF =BCCF=CGBC,BC2=CG⋅CF,CF=BC2CG,CG2+BG2=BC2,BG2=BC2−CG2,BG2 CF2=BC2−CG2BC2CG2=(64−CG2)⋅CG2642,BG GF =√CG2(64−CG2)64,令y=CG2(64−CG2),y=−CG4+64CG2,y=−(CG4−64CG2),y=−[(CG2−32)2−322],y=−(CG2−32)2+322,当CG2=32时,y max=322,此时CG=4√2,(BG CF )max=3264=12.【解析】①如图1,当F位于AB上时:∵△ANF1∽△ABC,∴ANAB =NF1BC=AF1AC∴设AN=3x,则NF1=4x,AF1=5x,∴CN=CA−AN=10−3x,∴tan∠ACF=F1NCN =4x10−3x=17,解得:x=1031,∴AF1=5x=5031,OF1=3−5051=4331,即F1(4331,0).如图2,当F位于BA的延长线上时:∵△AMF2∽△ABC,∴设AM=3x,则MF2=4x,AF2=5x,∴CM=CA+AM=10+3x,∴tan∠ACF=F2MCM =4x10+3x=17,解得:x=25,∴AF2=5x=2,OF2=3+2=5,即F2(5,0).②方法2:如图,作GM⊥BC于点M,∵BC是直径,∴∠CGB=∠CBF=90∘,∴△CBF∽△CGB,∴BGCF =MGBC=MG8,(相似三角形对应边上的高的比等于相似比).∵MG≤半径=4,∴BGCF =MG8≤48=12,∴BGCF 的最大值为12.方法3:∵BC是直径.∴∠CGB=∠CBF=90∘,∴∠CBG=∠CFB(记为α,其中0∘<α<90∘),则:BGCF =BCcosαBC=sinαcosα=12sin2α≤12,∴BGCF 的最大值为12.方法4:算数平均数≤几何平均数,即a+b2≥√ab,取CF中点M,连接BM,则BG≤BM,点M和点G重合,即△CBF为等腰Rt△时,取等号,则BGCF =BG2BM=12BGBM≤12BMBM=12,∴BGCF 的最大值为12.方法5:a+b2≥√ab,如图,在Rt△CBF中有摄影定理得:BG2=CG⋅FG,则BGCF =√aba+b≤a+b2a+b=12,等腰Rt△时,取等号,∴BGCF 的最大值为12.。

2019年广东深圳市中考数学科考试说明及样卷解析

2019年广东深圳市中考数学科考试说明及样卷解析

广东深圳市中考数学科考试说明深圳市初中数学学业考试,是义务教育阶段的终结性考试,目的是全面、准确地评估初中毕业生达到《义务教育数学课程标准(2011年版)》(以下简称《标准》)所规定的数学毕业水平的程度,是高中阶段学校招生的重要依据之一。

一、考试命题的指导思想1.数学学业考试体现《标准》的评价理念,引导和促进数学教学全面落实《标准》所设立的课程目标,改善学生的数学学习方式、丰富学生的数学学习体验、提高学生学习数学的效益和效率,有利于高中阶段学校综合、有效地评价学生的数学学习状况。

2.数学学业考试既重视对学生学习数学知识与技能的结果和过程的评价,也重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还重视对学生数学认识水平的评价。

3.数学学业考试命题面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,使具有不同的数学认知特点、不同的数学发展程度的学生都能表现自己的数学学习状况,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得相应发展。

二、考试命题原则数学学科毕业考试的命题遵循以下基本原则。

1.考查内容依据《标准》,体现基础性命题突出对学生基本数学素养的评价。

试题首先关注《标准》中最基础和最核心的内容,即所有学生在学习数学和应用数学解决问题过程中最为重要的、必须掌握的核心观念、思想方法,基本概念和常用的技能。

所有试题求解过程中所涉及的知识与技能以《标准》为依据,不扩展范围与提高要求。

2.试题素材、求解方式等体现公平性数学学业考试的内容、试题素材和试卷形式对每一位学生是公平的。

试题不需要特殊背景知识也能够理解。

对于具有特殊才能和需要特殊帮助的学生,试题允许学生用各自的数学认知特征、已有的数学活动经验,来表达自己的数学才能。

制定评分标准系统时以开放的态度对待合理的、但没有预见到的答案形式,尊重不同的解答方法和表述方式。

3.试题背景具有现实性试题背景来自于学生所能理解的生活现实,符合学生所具有的数学现实和其它学科现实。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年深圳市中考数学科考试说明深圳市初中数学学业考试,是义务教育阶段的终结性考试,目的是全面、准确地评估初中毕业生达到《义务教育数学课程标准(2011年版)》(以下简称《标准》)所规定的数学毕业水平的程度,是高中阶段学校招生的重要依据之一。

一、考试命题的指导思想1.数学学业考试体现《标准》的评价理念,引导和促进数学教学全面落实《标准》所设立的课程目标,改善学生的数学学习方式、丰富学生的数学学习体验、提高学生学习数学的效益和效率,有利于高中阶段学校综合、有效地评价学生的数学学习状况。

2.数学学业考试既重视对学生学习数学知识与技能的结果和过程的评价,也重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还重视对学生数学认识水平的评价。

3.数学学业考试命题面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,使具有不同的数学认知特点、不同的数学发展程度的学生都能表现自己的数学学习状況,力求公正、客观全面、准确地评价学生通过义务教育阶段的数学学习所获得相应发展。

二、考试命题原则数学学科毕业考试的命题遵循以下基本原则。

1.考査内容依据《标准》,体现基础性命题突出对学生基本数学素养的评价。

试题首先关注《标准》中最基础和最核心的内容,即所有学生在学习数学和应用数学解决问题过程中最为重要的、必须掌握的核心观念、思想方法,基本概念和常用的技能。

所有试题求解过程中所涉及的知识与技能以《标准》为依据,不扩展范围与提高要求。

2.试题素材、求解方式等体现公平性数学学业考试的内容、试题素材和试卷形式对每一位学生是公平的。

试题不需要特殊背景知识也能够理解。

对于具有特殊才能和需要特殊帮助的学生,试题允许学生用各自的数学认知特征、已有的数学活动经验,来表达自己的数学才能。

制定评分标准系统时以开放的态度对待合理的、但没有预见到的答案形式,尊重不同的解答方法和表述方式。

3.试题背景具有现实性试题背景来自于学生所能理解的生活现实,符合学生所具有的数学现实和其它学科现实。

应用性问题的题材具有鲜明的时代特征,能够在学生的生活中找到原型。

4.试卷具备有效性数学学业考试试卷应当有效地反映学生的数学学习状况,以下几点应当特别注意:(1)关注对学生数学学习各个方面的考查,既有对学生数学学习结果的考查,也包括对学生数学学习过程的考查:既有对学生数学思维水平的考查,也包括对学生数学思维特征的考查。

(2)试卷形式以选择题、填空题、计算(求解)题、证明題、应用性问题、阅读分析题、探索性问题和开放性问题为主要题型。

(3)试题的求解过程反映《标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等,而不仅仅是记忆、模仿与熟练。

三、考试内容数学学业考试的考査内容以《标准》中的“内容标准”为基本依据。

考试内容包括:基础知识与基本技能;数学活动过程;数学思考;解决问题能力:对数学的基本认识等。

具体如下:1.基础知识与基本技能考试的主要内容:了解数产生的意义,理解数与代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地使用代数运算、代数模型及相关概念解决问题能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性;正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果做合理的预测;了解概率的涵义,能够借助概率模型、或通过设计活动解释一些事件发生的概率。

2.“数学活动过程”考査的主要方面数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究与交流的意识、能力和信心等。

3.“数学思考”考查的主要方面:学生在数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识等方面的发展情况,其内容主要包括能用数来表达和交流信息:能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象地表达问题、借助直观进行思考与推理;能意识到做一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论做合理的质疑;面对现实问题时,能主动尝试从数学角度、用数学思维方法去寻求解决问题的策略能通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性等等。

4.“解决问题能力”考査的主要方面:能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基本策略。

5.“对数学的基本认识”考查的主要方面:对数学内部统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);对数学与现实、或其他学科知识之间联系的认识等等。

四、考试形式与试卷结构数学学业考试采用书面闭卷考试的形式。

试卷结构为:全卷满分为100分,考试时间为90分钟。

数与代数、空间与图形、统计与概率、实践与综合四个领域在试题中所占的比重与它们在教学中所占课时的百分比大致相同,数与代数约占45%,空间与图形约占35%,统计与概率约占15%,实践与综合约占5%。

试题题型将有如下形式:选择题、填空题、计算(求解)题、证明题、应用性问题、阅读分析题、探索性问题、开放性问题等。

试题按其难度分为容易题、中等题和难题,三种试题分值之比约为5:3:2。

五、试题类型与题型数学学业考试的命题以《标准》为基本依据,参照《标准》中“评价建议”的要求,充分发挥各种已有题型的功能,其基本原则为以下几个方面:(1)考査内容的重心是《标准》中最基础和最核心的内容。

即对所有学生来说,在他们学习数学和应用数学解决问题过程中是最重要的、必须掌握的核心观念,重要的思想方法、基本的概念,常用的技能。

不出现“繁、偏、旧”试题。

2)科学性与合理性,既包括它在数学方面是正确的,又包括它所描述的问题情境是合理的、而非臆造的。

(3)准确、简洁、可读性,确保试题不产生歧义。

具体表述时可以是抽象的数学语言,也可以是形象化的语言和符号;不造成文字量过多而提高题目的“难度”;试题的表达应符合初中毕业生的阅读习惯。

(4)试题的“难度”不反映在对某个具体技巧的掌握及熟练程度、或者问题本身的复杂程度上,而是反映在对学生数学思维水平(如抽象程度、多样化、逻辑性、形象化等)和对数学的理解与应用能力(如能否洞察较为深刻的数学关系、数学特征,用数学解决问题时的策略有效性等)等方面的考査。

具体题型的命题要求如下:1.选择题与填空题这两类试题只要求学生给出问题的最终答案,并只依据学生提出的最终答案评判学生解答这类题目正确与否。

这两类试题可以用于特定基本数学事实、数学技能的考査,试题可以用多种表达方式,包括文字图像与代数符号等陈述。

2.计算(求解)类问题这类试题的目标清晰,对解决问题过程中所需要的数学知识、方法有较明确的提示。

解题过程中学生需要做的主要活动是回忆、严格按照程序操作不出无意识错误等。

这类试题通常用于对一些数学公式、数学技能的熟悉与熟练情况的考査,这一类试题的运算种类、步骤、复杂程度均不超过《标准》的要求。

3.证明题这类试题所涉及的活动既有寻找这些数学逻辑关联的探索性活动,也有对相关数学证明方法、证明技巧的有效应用,甚至还蕴涵对问题不同角度的理解、不同方式的表达等等。

这类试题用于考査学生逻辑推理能力、逻辑关系的寻求和把握状况、对数学证明的过程与方法的理解和掌握情况。

证明试题首先在于由条件和结论所构成的命题具有价值;其次是求解策略的空间比较大——可以通过对试题采用不同的认识角度,而获得不同的证明思路;再就是基本的证明过程应当能够反映学生对相应数学知识或方法的理解水平。

试题在表达的清晰性、准确性等方面需要注意以外,还应注意试题的“难度”不宜落实在是否能够找到那个特定的证明模式上(如辅助线、代数表达式、特殊数值)或者知道某个特定的技巧上。

另外,对于每一步的理由说明也不做要求。

4.应用题此类问题有利于考査学生数学建模的能力、对相应知识与方法的理解水平、解决问题的意识与能力,这类试题的命制原则包括以下几点:(1)问题背景是现实的,如关于资源、环境、其他学科活动、经济生活、数学游戏或故事,而不是脱离生活实际的、人为编造的情境。

(2)内容以及叙述方式是可理解的,不需要学生已经拥有一些特定的背景知识或技能(除非事先给出解释)。

(3)内涵是丰富且有价值的,即问题本身或求解过程中涉及丰富而重要的数学概念、数学思想方法。

5.阅读分析题这类试题用于评价学生认识数学、理解数学以及数学学习的能力;考査学生寻求具体对象的数学性质、对象之间的数学关系、对数学知识的理解水平以及数学方法的应用水平等;还用于考查学生获収图表所含数学信息的能力,从已有信息中做出合理推断的能力,其基本原则如下:(1)问题背景隐含重要数学概念、性质或关系,素材来源于生活、来源于数学或其他学科。

(2)问题以新的数学为对象,包括概念、法则、公式、命题等为主要对象。

问题本身或求解关注对变化对象的研究、对变化关系的理解,不以求未知量为所有研究对象(3)问题的挑战性落实在研究数学意义上,而不是阅读方面的障碍导致学生解答困难。

(4)通过阅读图表获得的信息应当超越借助代数运算获得的结果,用于考査学生对相应数学对象的整体把握水平,包括估算能力,要求学生做一些合理的预测和推断。

6.探索题这类试题用于考査学生的数学实践能力、探索能力,考査学生“做数学”与从事“数学化”活动的能力;评价学生从事归纳、类比、概括、推理等思维活动的水平,以及对自我数学活动过程与结论的反思能力等,其基本要求如下:(1)试题背景具有实质性意义,而不仅仅将探索对象归结为对一列数字特征的归纳。

(2)试题的求解过程体现策略多样化的特点,允许借助直觉思维、或对问题的整体把握而直接获得合理的猜测。

(3)试题中的设问能引发学生对自我思考过程、而不仅仅是对结果的反思。

(4)试题的评分标准充分考虑到多种合理性答案及评分规定,没有科学性错误。

7.开放性问题这类试题能给每一位学生提供用自己掌握的知识、熟悉的方式去表达对问题的理解的机会,用于考査学生直觉思维和发散思维的活动水平,从而能够较全面地推断学生的数学学习状况。

这类试题的命题基本要求如下:(1)问题的“开放性”落实在问题所提供的条件具有不确定,解决问题的策略多样化、不同但合理的答案个数不确定(不是仅仅指答案个数多于1)、问题结构的可改变性等方面。

(2)能使所有的学生都能够给出自己对问题的理解、解答。

合理的解答包括在数学上程度不同、在思维水平上存在差异、在表述形式上多样的答案(3)问题本身或求解过程中涉及丰富且重要的数学概念、数学思想方法,有利于学生从事有价值的数学活动一观察、实验、猜测、验证、推理等。

相关文档
最新文档