第五届小学希望杯六年级第2试
第5届六年级2试试题及详解
2007年第五届小学“希望杯”全国数学邀请赛六年级 第2试一、填空题(每小题5分,共60分。
)1.小华拿一个矩形木框在阳光下玩,她看到矩形木框在地面上形成的影子不可能是图1中的________。
(填序号)2.气象台预报“本市明天降雨概率是80%”。
对此信息,下列说法中正确的是________。
①本市明天将有80%的地区降水。
②本市明天将有80%的时间降水。
③明天肯定下雨。
④明天降水的可能性比较大。
3.将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,再展开正方形纸片,得到下图中的________。
(填序号)4.图3是华联商厦3月份甲、乙、丙三种品牌彩电的销售量的统计图,预测4月份甲、乙、丙三种品牌彩电的销售量将分别增长5%,10%和20%。
根据预测,甲、丙两种品牌彩电4月份的销售量之和为________台。
5.对于非零自然数a 和b ,规定符号⊗的含义是:2m a b a b a b⨯+⊗=⨯⨯(m 是一个确定的整数)。
如果1⊗4=2⊗3,那么3⊗4=________。
6.111112005200620072008+++的整数部分是________。
7.在一次动物运动会的60米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小狗、小兔和小鸭四人的平均用时为5分钟。
请问:小鸭在这项比赛中用时________分钟。
8.2007年4月15日(星期日)是第5届小学“希望杯”全国数学邀请赛举行第2试的日子,那么这天以后的第2007+4×15天是星期________。
9.将16个相同的小正方体拼成一个体积为16立方厘米的长方体,表面涂上漆,然后分开,则3个面涂漆的小正方体最多有________个,最少有________个。
10.已知n个自然数之积是2007,这n个自然数之和也是2007,那么n的值最大是________。
11.如图4,三角形田地中有两条小路AE和CF,交叉处为D,张大伯常走这两条小路,他知道DF=DC,且AD=2DE。
小升初数学专题训练——希望杯六年级考前热身—历年真题精讲(二)-数论 (含答案,全国通用)
六年级考前热身—历年真题精讲(二)------数论(1)例题1:(08年·六年级1试第19题)有一群猴子正要分56个桃子,每只猴子可以分到同样个数的桃子。
这时,又窜来4只猴子。
只好重新分配,但要使每只猴子分到同样个数的桃子,必须扔掉一个桃子。
则最后每只猴子分到桃子___个。
例题2:(09年·六年级2试第5题)已知A、B两数的最小公倍数是180,最大公约数是30,若A=90,则B= ______。
例题3:(10年·六年级1试第12题)甲、乙、丙三人一起去钓鱼,他们将钓得的鱼放在一个鱼篓中,就在原地躺下休息,结果都睡着了。
甲先醒来,他将鱼篓中的鱼平均分成3份,发现还多一条,就将多的这条鱼扔回河中,拿着其中的一份鱼回家了。
乙随后醒来,他将鱼篓中现有的鱼平均分成3份,发现还多一条,也将多的这条鱼扔回河中,拿着其中的一份鱼回家了。
丙最后醒来,他也将鱼篓中的鱼平均分成3份,这时也多一条鱼。
这三个人至少钓到_____条鱼。
例题4:(11年·六年级1试第7题)自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是______。
例题5:(11年·六年级1试第8题)买72块巧克力共需□67.9□元,则每块巧克力______元。
(□内是一位数字)1、求各位数字都是7,并能被63整除的最小自然数。
2、在8264的左右各添一个数码,使新得到的六位数能被45整除。
3、两个数的最大公约数是6,最小公倍数是144,求这两个数。
4、两个数的最大公约数是18,最小公倍数是180,两个数的差是54,求这两个数的和。
5、小马虎买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:□11.4□元(□表示不明数字)。
你能帮助小马虎找出不明数字吗?1. 解:能被63整除,因为63=7×9,所以既能被9整除,又能被7整除。
各位数字都是7,显然能被7整除,所以只需要满足被9整除即可。
(完整版)小学希望杯全国数学邀请赛六年级第二试附答案
学习奥数的重要性1. 学习奥数是一种很好的思维训练。
奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。
通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。
2. 学习奥数能提高逻辑思维能力。
奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。
所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。
等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。
如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。
小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。
4. 学习奥数对孩子的意志品质是一种锻炼。
大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。
我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。
第八届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.330.24 5.41.35⨯⨯=。
2.已知111116A116B16CC-=+++++,其中A、B、C都是大于0但互不相同的自然数,则(A+B)÷C=。
3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是。
五年级应用题牛吃草学生版
五年级应用题牛吃草学生版单块地简单牛吃草1. 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?2. 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?3. 青青一牧场,牧草喂牛羊; 放牛二十七,六周全吃光.改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同.“廿”即二十之意.)题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完.若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)4. 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?5.牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周.那么它可供21头牛吃几周?6.由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?7.由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?8.林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)多块地简单牛吃草1.东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?2.有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?3.有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?4.17头牛吃28公亩的草,84天可以吃完;22头牛吃同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)5.(2008第九届“中环杯”小学生思维能力训练活动五年级决赛)11头牛10天可吃完5公顷的草地上的草,12头牛14天可以吃完6公顷的草地上的草.假设每公顷草地上的草量相等,每天新长出来的草量相等,每头牛每天的吃草量也相等,那么8公顷草地可供19头牛吃多少天?6.有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?7.一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?8.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光(在这2天内其他草地的草正常生长).之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?混合、变化型牛吃草1.一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?2.(第六届希望杯六年级二试)有一片草场,草每天的生长速度相同.若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么,17头牛和20只羊多少天可将草吃完?3.一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于1头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天?4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?5.有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?6.一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?牛吃草典型变例Ⅰ检票付款1.早晨6点,某火车进口处已有945名旅客等候检票进站,此时,每分钟还有若干人前来进口处准备进站.这样,如果设立4个检票口,15分钟可以放完旅客,如果设立8个检票口,7分钟可以放完旅客.现要求5分钟放完,需设立几个检票口?2.火车站的检票处检票前已有一些人等待检票进站,假如每分钟前来检票处排队检票的人数一定,那么当开一个检票口时,27分钟后就无人排队;当开两个检票口时,12分钟就无人排队.如果要在6分钟后就无人排队,那么至少需要开个检票口.3.(第七届中环杯五年级决赛)某火车站检票口在检票前已经有一些人在排队,检票开始后每分钟有10人前来排队检票,一个检票口每分钟能检票25人.如果只有一个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票开始后()分钟就没有人排队.4.画展8:30开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点就不再有人排队;如果开5个入场口,8点45分就没有人排队.求第一个观众到达的时间.5.某超市平均每小时有60人排队付款,每一个收银台每小时能应付80人,某天某时段内,该超市只有一个收银台工作,付款开始4小时就没有顾客排队了,如果当时有两个收银台工作,那么付款开始__ ________小时就没有人排队了.Ⅱ进、排水6.(第五届希望杯六年级二试)2006年夏天,我国某地区遭遇了严重干旱,政府为了解决村名饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中.第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完.后来由于旱情严重,开动13台抽水机同时供水,请问几小时可以把这池水抽完?7.一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?8.一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水,8小时淘完.如果要求2小时淘完,要安排多少人淘水?9.北京密云水库建有10个泄洪洞,现在水库的水位已经超过安全线,并且水量还在以一个不变的速度增加,为了防洪,需要调节泄洪的速度,假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30个小时以后水位降至安全线;若同时打开两个泄洪闸,10个小时后水位降至安全线.根据抗洪形势,需要用2个小时使水位降至安全线以下,则至少需要同时打开泄洪闸的数目为多少个?10.(2008年五年级希望杯二试)有一个蓄水池装了9根相同的水管,其中一根是进水管,其余8根是出水管.开始时,进水管以均匀的速度不停地向蓄水池注水.后来,想打开出水管,使池内的水全部排光.如果同时打开8根出水管,则3小时可排尽池内的水;如果仅打开5根出水管,则需6小时才能排尽池内的水.若要在4.5小时内排尽池内的水,那么应当同时打开多少根出水管?11.一个蓄水池有1个进水口和15个出水口,水从进水口匀速流入.当池中有一半的水时,如果打开9个出水口,9小时可以把水排空.如果打开7个出水口,18小时可以把水排空.如果是一满池水,打开全部出水口放水,那么经过时分水池刚好被排空.12.一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?13. 一个装满了水的水池有一个进水阀及三个口径相同的排水阀,如果同时打开进水阀及一个排水阀,则30分钟能把水池的水排完,如果同时打开进水阀及两个排水阀,则10分钟把水池的水排完.问:关闭进水阀并且同时打开三个排水阀,需要多少分钟才能排完水池的水?14. 由于环境恶化、气候变暖,官厅水库的水在匀速减少,为了保证水库的水量,政府决定从上游的壶流河水库以及册田水库分别向官厅水库进行调水,已知这两个水库的每个闸门放水量是相同的,如果同时打开壶流河水库的5个闸门30小时可以使官厅水库水量达到原来的标准,如果同时打开册田水库的4个闸门40小时可以使官厅水库水量达到原来的标准,如果24小时使官厅水库水量达到原来的标准,问需同时打开两个水库的几个闸门?15. 小方用一个有洞的杯子从水缸里往三个同样的容积的空桶中舀水.第一个桶距水缸有1米,小方用3次恰好把桶装满;第二个桶距水缸有2米,小方用4次恰好把桶装满.第三个桶距水缸有3米,那么小方要多少次才能把它装满(假设小方走路的速度不变,水从杯中流出的速度也不变)16. (2008年五年级陈省身杯)有一个水池,池底存了一些水,并且还有泉水不断涌出.为了将水池里的水抽干,原计划调来8台抽水机同时工作.但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时.工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时.这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下 台抽水机.17. 如下图,有一个敞口的立方体水箱,在其侧面一条高线的三等分点出有两个排水孔A 和B ,它们排水的速度是恒定的.从上面给水箱注水,如果打开A 孔,关闭B 孔,那么经过20分钟可将水箱注满;如果关闭A 孔,打开B 孔,那么需要22分钟才能注满.若两个孔都打开,则注满水箱需要多长时间?18. 甲乙两个相同的长方体水箱,在它们的侧面上分别有排水孔A 和B .A 孔和B 孔与底面的距离分别是水箱高度的56和12,且排水速度相同.现在以相同的速度一起给两水箱注水,并通过管道使A 孔排出的水直接流入乙水箱,这样经过了70分钟后,甲乙水箱同时被注满.移掉甲水筒,乙箱的B 孔仍存在,那么按照上述的速度给乙箱注水,水箱从空到满需要多少分钟?Ⅲ 电梯19. 在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有 级台阶.20. 两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒.问:该扶梯共有多少级梯级?21. (第七届中环杯中小学生思维能力训练活动初预(六)年级复赛活动内容)某人从向下运动着的自动扶梯步行而下,每步一级,共走了30级到达底层.在到达底层后,他又返身奔上这一自动扶梯,也是每步一级,一共走了60级到达上层.设这人向上奔走的速度是他向下步行速度的3倍,并且上下来回都是匀速运动,那么自动扶梯停止后,一共能看到( )扶梯.Ⅳ行程22. 小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上;若开汽车,每小时行45千米, 分钟能追上.23. 有固定速度行驶的甲车和乙车,如果甲车以现在速度的2倍追赶乙车,5小时后甲车追上乙车;如果甲车以现在速度的3倍追赶乙车,3小时后甲车追上乙车,那么如果甲车以现在的速度去追赶乙车,问:几个小时后甲车追上乙车?甲乙24.快、中、慢三车同时从A地出发沿同一公路开往B地,途中有骑车人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑车人.已知快车每分钟行800米,慢车每分钟行600米,中速车的速度是多少?25.小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.Ⅴ工程以及变量工程26.仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多.用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完.仓库里原有的存货若用1辆汽车运则需要多少天运完?27.甲、乙、丙三个仓库,各存放着数量相同的面粉,甲仓库用一台皮带输送机和12个工人,5小时可将甲仓库内面粉搬完;乙仓库用一台皮带输送机和28个工人,3小时可将仓库内面粉搬完;丙仓库现有2台皮带输送机,如果要用2小时把丙仓库内面粉搬完,同时还要多少个工人?(每个工人每小时工效相同,每台皮带输送机每小时工效也相同,另外皮带输送机与工人一起往外搬运面粉)28.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派15个工人砌砖墙,14天可以把砖用完,如果派20个工人,9天可以把砖用完,现在派若干名工人砌了6天后,调走6名工人,其余工人又工作4天才砌完,问原来有多少工人来砌墙?29.食品厂开工前运进一批面粉,开工后每天运进相同数量的面粉,如果派5个工人加工食品30天可以把面粉用完,如果派4个工人,40天可以把面粉用完,现在派4名工人加工了30天后,又增加了2名工人一起干,还需要几天加工完?Ⅵ其他30.假设地球上新生成的资源增长速度是一定的,照此计算,地球上的资源可供110亿人生活90年;或供90亿人生活210年.为了使人类能够不断繁衍,地球上最多能养活多少人?31.两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每天爬20分米,另一只每天爬15分米.黑夜往下滑,两只蜗牛滑行的速度都是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.求井深.32.为了保护渔业资源,春夏季封海,9月份开始捕鱼,而且只准捕捞大鱼,如果用100只船在附近海域可捕捞2个月,由于天气不断转冷,鱼群均匀减少,60只船只能捕捞3个月,问几只船可捕捞2个半月?一课一练1.牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.2.一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?3.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少.如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?4.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少.如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?5.有一块1200平方米的牧场,每天都有一些草在匀速生长,这块牧场可供10头牛吃20天,或可供15头牛吃10天,另有一块3600平方米的牧场,每平方米的草量及生长量都与第一块牧场相同,问这片牧场可供75头牛吃多少天?6.三块牧场,场上的草长得一样密,而且长得一样快,它们的面积分别是3公顷、10公顷和24公顷.第一块牧场饲养12头牛,可以维持4周;第二块牧场饲养25头牛,可以维持8周.问第三块牧场上饲养多少头牛恰好可以维持18周?7.4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)8.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?9.一片牧草,每天生长的速度相同.现在这片牧草可供20头牛吃12天,或可供60只羊吃24天.如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃几天?10.一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?11.一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?12.有一牧场长满牧草,每天牧场匀速生长.这个牧场可供17头牛吃30天,可供19头牛吃24天.现有若干头牛吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,求原有牛的头数.13.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,若同时开5个检票口则需30分钟,若同时开6个检票口则需20分钟.如果要使队伍10分钟消失,那么需同时开几个检票口?14.画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.15.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?16.有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完.这桶酒每天漏掉的酒可供几人喝一天?17.一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?18.有一泉水池,泉水匀速涌出.如果用甲水管抽10小时,可把满池水抽干;如果用乙水管抽5小时,可把满池水抽干;如果用甲、乙两管合抽2小时,也可把满池水抽干.问泉水被抽干后又经过多少小时可涌满水池?19.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?20.一个水池,地下水从四壁渗入,每小时渗入该水池的水是固定的.当这个水池水满时,打开A管,8小时可将水池排空;打开B管,10小时可将水池排空;打开C管,12小时可将水池排空.如果打开、两管,将水池排空需要多少时间?、两管,4小时可将水池排空,那么打开B CA B21.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走1梯级,女孩每3秒钟走2梯级.结果男孩用50秒到达楼上,女孩用60秒到达楼上.该楼梯共有多少级?22.甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.23.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派250个工人砌砖墙,6天可以把砖用完,如果派160个工人,10天可以把砖用完,现在派120名工人砌了10天后,又增加5名工人一起砌,还需要再砌几天可以把砖用完?24.甲、乙、丙三个煤窑有同样多的煤,如果用一台皮带输送机和12个工人5小时可把甲煤窑的煤全部装车;如果用一台皮带输送机和28个工人3小时可把乙煤窑的煤全部装车.现在要用两台皮带输送机和若干个工人2小时把丙煤窑的煤全部装车,则需要用多少工人?25.某面粉厂,可储存全厂45日的用麦量.当仓库无货时,一辆大卡车去运,除了供应车间生产外,5日可将仓库装满;若用2辆小卡车去运,9日可运满.如用1辆大卡车和2辆小卡车同时去运,几日能仓库装满?题库补充1.由于打字员的辞职,一个公司积压下一批需要打印的材料,而且每天还要新增加固定数量需要打印的材料.假设材料以页计数,每个打字员的打字速度是相同的、固定的(单位是页/天).如果公司聘任5名打字员,24天就恰好打完所有材料;如果公司聘任9名打字员,12天就恰好打完所有材料.公司聘任了苦干名打字员,工作8天之后,由于业务减少,每天新增的需要打印的材料少了一半,结果这些打字员共用40天才恰好完成打字工作.问:公司聘任了多少名打字员?2.某玩具厂有四个车间,某周是质量检查周,现每个车间都原有a个产品,且每个车间每天都生产b个成品,质检科派出若干名检验员于星期一、星期二检验其中两个车间原有的与这两天生产的所有的成品.然后,星期三至星期五检验另两个车间原有的与本周生产的所有的成品.假定每个检验员每天检验的成品数相同.试问:(1)这若干名检验员1天检验多少个成品?(用含a、b的算式表示)(2)若1名质检验员1天能检验45b个成品,则质检科至少派出多少名检验员?3.某企业现有九个车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A、B两组检验员,其中A组有8名检验员,他们先用两天将第一、第二两个车间的所有成品(指原有的和后来生产的)检验完毕后,再去检验第三、第四两个车间的所有成品,又用去了三天时间;同时,用这五天时间,B组的检验员检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.(1)试用a、b表示B组检验员检验的成品总数;(2)求出B组检验员的人数.。
小学数学位值原理
位值原理知识框架位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答重难点(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10.【答案】10【巩固】 一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 设为ab ,10a+b+9a=19a+b=100,a=5,b=5.【答案】55【例 2】 学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【考点】简单的位值原理拆分 【难度】3星 【题型】填空【关键词】2010年,学而思杯,4年级,第5题【解析】 解设张老师年龄为ab ,则李老师的年龄为ba ,根据题意列式子为:18ba ab -=,整理这个式子得到:()918b a -=,所以2b a -=,符合条件的最小的值是1,3a b ==,但是13和31不符合题意,所以,答案为2a =与4b =符合条件的为:244266+=岁.【答案】66岁【巩固】 把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2009年,学而思杯,5年级,第3题【解析】 设为ab ,即101102b a a b +++=,整理得1981a b =+,3,7a b ==,两位数为37 【答案】37【例 3】 几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2010年,第8届,希望杯,4年级,初赛,10题【解析】 肯定是1×××年,16-1=15,百位,十位与个位和是15,十位加1后,数字和是15+1=16,此时十位和个位和是6的倍数,个位不是1,只能是2,十位原来是9,百位是4,所以是在1492年.【答案】1492【巩固】 小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】1995年,第5届,华杯赛,初赛,第11题【解析】 设小明出生那年是,则1+9+a +b =95-10a -b从而11a +2b =85在a ≥8时,11+2b >85;在a ≤6时,11a +2b ≤66+2×9=84,所以必有a =7,b =4.小明今年是1+9+7+4=21(岁).【答案】21岁【例 4】 一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的 倍.【考点】简单的位值原理拆 【难度】3星 【题型】填空【关键词】2009年,希望杯,第七届,五年级,复赛,第4题,5分【解析】 令这个三位数为0a b ,则由题意可知,10067()a b a b +=+,可得2a b =,而调换个位和百位之后变为:0100102b a b a b =+=,而3a b b +=,则得到的新三位数是它的各位数字之和的102334b b ÷=倍.【巩固】 一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2003年,希望杯,第一届,四年级,复赛,第18题,10分【解析】 abc cba -个位是7,明显a 大于c ,所以10+c -a =7,a -c =3,所以他们的差为297【答案】297【例 5】 三位数abc 比三位数cba 小99,若,,a b c 彼此不同,则abc 最大是________【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2008年,希望杯,第六届,五年级,初赛,第7题,6分【解析】 由题意,99abc cba +=,有9a c =+,要abc 最大,如果9a =,那么0c =,与cba 为三位数矛盾;如果8a =,那么9c =,剩下b 最大取7,所以abc 最大是879.【答案】879【巩固】 一个三位数abc 与它的反序数cba 的和等于888,这样的三位数有_________个.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2008年,希望杯,第六届,六年级,二试,第4题,5分【解析】 显然a c +、b b +都没有发生进位,所以8a c +=、8b b +=,则4b =,a 、c 的情况有1+7、2+6、3+5、4+4、5+3、6+2、7+1这7种.所以这样的三位数有7种.【答案】7个【例 6】 将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.-□□□□□□□□【考点】简单的位值原理拆分 【难度】2星 【题型】填空【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取234,所以这两个四位数应该是5987和6234,差为247.【答案】247【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2007年,希望杯,第五届,四年级,复赛,第5题,5分【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.【答案】136【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,五年级,初赛,第5题,4分【解析】和的个位为9,不会发生进位,y+w=9,十位明显进位x+z=13,所以x+y+z+w=22【答案】22【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【考点】简单的位值原理拆分【难度】2星【题型】解答【关键词】美国,小学数学奥林匹克【解析】设原来的两位数为ab,交换后的新的两位数为ba,根据题意,-=+--=-=,5ab ba a b b a a b(10)(10)9()45-=,原两位数最大时,十位数字至多为9,即a bb=,原来的两位数中最大的是94.9a=,4【答案】94【例 8】 一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______.【考点】简单的位值原理拆分【难度】3星 【题型】填空【关键词】2007年,希望杯,第五届,六年级,初赛,第13题,6分【解析】 设这个两位数是ab ,则100a+b=8(10a+b)-1,化为20a+1=7b ,方程的数字解只有a=1,b=3,原来的两位数是13.【答案】13【巩固】 一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设第一个2位数为10a +b ;第二个为10b +a ;第三个为100a +b ;由题意:(100a +b )-(10b +a )=( 10b +a )-(10a +b ) ;化简可以推得b =6a ,0≤a ,b ≤9,得a =1,b =6;即每小时走61-16=45 ;(601-106)÷45=11;再行11小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【答案】11小时【例 9】 abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位数,且满足abcd —abc —ab —a =1787,则这四位数abcd = 或 .【考点】简单的位值原理拆分 【难度】3星 【题型】填空【关键词】2009年,第7届,希望杯,4年级,初赛,16题【解析】 原式可表示成:8898991787a b c d +++=,则知a 只能取:1或2,当1a =时,b 无法取,故此值舍去.当2a =时,0b =,0c =或1,d 相应的取9或0.所以这个四位数是:2009或2010.【答案】2009或2010【巩固】 已知1370,abcd abc ab a abcd +++=求.【考点】简单的位值原理拆分 【难度】3星 【题型】解答【解析】 原式:1111a +111b +11c +d =1370,所以a =1, 则111b +11c +d =1370-1111=259,111b +11c +d =259推知b =2;则222+11c +d =259,11c +d =37进而推知c =3,d =4所以abcd =1234.【答案】1234【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【关键词】第五届,希望杯,培训试题【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【答案】1,2,4【巩固】 有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++ 所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位 数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所 有这样的6个三位数中最小的三位数为139.【答案】139【例 11】 有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 方法三:设两位数为x ,则有(10x +1)-(100+x )=414,解得:x =57.【答案】57【巩固】 有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设三位数为x ,则有(6000+x )+(10x +6)=9999,解得:x =363.【答案】363课堂检测【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【考点】填横式数字谜之复杂的横式数字谜 【难度】3星 【题型】填空【关键词】2007年,第12届,华杯赛,五年级,决赛,第3题,10分【解析】 由题意知,a ≥d ,由差的个位为7可知,被减数个位上的d 要向十位上的c 借一位,则10+d -a =7,即a -d =3.又因为差的十位及百位均为9,由分析可知b =c ,故被减数的十位要向百位借一位,百位要向千位借一位,即()12a d --=,因此□内应填入2.【答案】2【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设这三个数字分别为a 、b 、c .由于每个数字都分别有两次作百位、十位、个位,所以六个不同的它们组成的三位数最小为159,最大为951.【答案】最小为159,最大为951【随练3】如果把数码5加写在某自然数的右端,则该数增加1111A,这里A表示一个看不清的数码,求这个数和A.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】设这个数为x,则10x+5-x=1111A,化简得9x=1106A,等号右边是9的倍数,试验可得A=1,x=1234.【答案】A=1,x=1234复习总结(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答家庭作业【作业1】如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【考点】简单的位值原理拆分【难度】3星【题型】解答【解析】设这个巧数为ab,则有ab+a+b=10a+b,a(b+1)=10a,所以b+1=10,b=9.满足条件的巧数有:19、29、39、49、59、69、79、89、99.【答案】巧数有:19、29、39、49、59、69、79、89、99.【作业2】a,b,c分别是09中不同的数码,用a,b,c共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【考点】复杂的位值原理拆分【难度】3星【题型】解答【解析】由a,b,c组成的六个数的和是222()⨯++.因为223422210a b c++>.a b c>⨯,所以10若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.【答案】652【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 因为原两位数与得到的三位数之和是原两位数的10倍,所以原两位数的个位数只能是0或5.如果个位数是0,那么无论插入什么数,得到的三位数至少是原两位数的10倍,所以个位数是5.设原两位数是ab ,则b =5,变成的三位数为5ab ,由题意有100a +10b +5=(10a +5)×9,化简得a +b =4.变成的三位数只能是405,315,225,135.【答案】三位数只能是405,315,225,135【作业4】 如果70ab a b ⨯=,那么ab 等于几?【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 将70ab a b ⨯=,展开整理得:(10)71000a b a b ⨯+⨯=⨯++,707100a b a b +=+,306a b =,5a b =,由于位值的性质,每个数位上的数值在0 ~9之间,得出1a =,5b =.【答案】15【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数码为x ,则有:(10x +3)-x =123450+A ,解得,9x =123447+A ,右边是9的倍数,根据被9整除的数字的特点知道,A =6,故:x =13717.【答案】6。
希望杯第4-8届六年级数学试题及答案(前3届无六年级)[1]
第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×()=________。
2.900000-9=________×99999。
3.=________。
4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。
5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。
6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A的小数点向右移动两位,得到数B。
那么B+A是B-A的________倍。
(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。
则三个面涂漆的小正方体有________块。
13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。
14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。
B的一个顶点在A的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。
第五届小学“希望杯”全国数学邀请赛六年级
2007年第五届小学“希望杯”全国数学邀请赛六年级第1试以下每题6分,共120分。
1. 已知31::1.2,:0.75:22a b b c ==,那么:c a =(写成最简单的整数比) 2. 11111111(1)(1)(1)(1)(1)(1)(1)(1)23456789_____.0.10.20.30.40.50.60.70.80.9--------=++++++++3.在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______. 1□2□3□4□54. 在图1所示的和方格表中填入合适的数,使用权每行、每列以及每条对角线上的三个数的和相等。
那么标有“★”的方格内应填入的数是_______.5. 过年时,某商品打八折销售,过完年,此商品提价________%可恢复原来的价格。
6.如图2是2003年以来我国日石油需求量和石油供应量的统计图。
由图可知,我国日石油需求量和日石油需求量增长更______(填“大”或“小”),可见我国对进口石油的依赖程度不断定_______(填“增加”或“减小”)。
7.小红和小明帮刘老师修补一批破损图书。
根据图3中信息计算,小红和小时一共修补图书______本。
8.一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,古代合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工。
完成这项工程共用______天。
9.甲、乙两车分别从A 、B 两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A 、B 距离的13多50千米时,与乙车相遇.A 、B 两地相距______千米。
10.今年儿子的年龄是父亲年龄的14,15年后,儿子的年龄父亲年龄的511。
今年儿子______岁。
11.假设地球有两颗卫星A 、B 在各自固定的轨道上环绕地球运行,卫星A 环绕地球一周用145小时,每过144小时,卫星A 比卫星B 多环绕地球35周。
六年级希望杯培训试题100题
希望杯六年级培训题1、211⨯+321⨯+431⨯+…+200720061⨯= 。
2、〔1+20021+20041+20061〕×〔20021+20041+20061+20081〕-〔1+20021+20041+20061+20081〕×〔20021+20041+20061〕3、〔220071×3.6+353×720072006〕÷43÷534、从21+41+61+81+101+121 中去掉 和 ,余下的分数之和为1.5、99…9×55…5乘积的各位数字之和是 。
6、20031200412005120061 200711±±±±的整数局部是 。
〔分母中只有加号〕7、除法算式:÷它的计算结果的小数点后的前三位分别是 。
8、一个整数与它的倒数和等于20.05,这个数是 ,它的倒数是 。
2007个9 2007个59、在如图1的加法算式中,每个汉字分别代表1至9中的一个数字,且一样的汉字代表一样的数字,不同的汉字代表不同的数字,那么这个加法算式的和是 。
我 爱 希 望 杯 数 学 竞 赛+ 8 6 4 1 9 7 5 3 2赛 竞 学 数 杯 望 希 爱 我10、有一个分数,它的分子加2,可以约简为74;它的分母减2,可以约简为2514。
这个分数是 。
11、四个非零自然数的和为38,这四个自然数的乘积的最小值是 ,最大值是 。
12、a 是质数,b 是偶数,且a 2+b=2022,那么a+b+1= 。
13、当a =2007时,a-1,a,a+1,a+2中的合数有 个。
14、从1到30这30个自然数连乘各的末尾共 个连续的数码0.15、一个质数p ,使得p+2,p+4同时都是质数,那么p 1+21±p +41±p = .16、三个质数的倒数之和是20061155,那么这三个质数中最大的是17、彼此不等且大于0的偶数a,b,c,d 满足a+b+c+d=20,样的偶数组〔a,b,c,d 〕共有 组。
希望杯第届小学六年级全国数学竞赛题及解答
第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.∙2×1.∙2∙4+1927=________. 4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A 的小数点向右移动两位,得到数B 。
那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。
则三个面涂漆的小正方体有________块。
13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。
希望杯复赛数论题大合集(涵括历年数论题及详细解析)
奇数与偶数质数与合数约数与倍数1.(2006年希望杯第四届四年级二试第7题,4分)一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。
但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到个桃子。
解答:56的因数有1,2,4,7,8,14,28,56,其中只有4和8相差4,所以最后有猴子8只,每只猴子分到56÷8=7个桃子。
2.(2007年希望杯第五届四年级二试第4题,5分)在224⨯=,6636⨯=,……等这些算是⨯=,5525⨯=,339⨯=,4416中,4,9,16,25,36,……叫做完全平方数。
那么,不超过2007的最大的完全平方数是_________。
解:45×45=2025;44×44=1936,所以最大的是1936.整除3.(2008年希望杯第六届四年级二试第15题)连续写出从1开始的自然数,写到2008时停止,得到一个多位数:1234567891011……20072008,请说明:这个多位数除以3,得到的余数是几?为什么?【分析】因为连续3个自然数可以被3整除,而且最后一个自然数都是3的倍数,因为2007是3的倍数,所以12345678910112007是3的倍数,又因为12345678910112007200812345678910112007000020071=++,所以123456789101120072008除以3,得到的余数是1。
余数4. (2004年希望杯第二届四年级二试第15题,6分)小朋友们做游戏,若3人分成一组,则最后余下2人;若4人分成一组,则最后余下3人;若5人分成一组,则最后余下4人。
那么一起做游戏的小朋友至少有 人。
【答案】这个数除以3余2,除以4余3,除以5余4,那么加上一个人这些小朋友的数量能整除3、4、5,3×4×5=60,那么小朋友至少59人5. (2008年希望杯第六届四年级二试第3题)一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
六年级希望杯决赛08-11[1]
第六届小学“希望杯”全国数学邀请赛六年级第二试一、填空题(每小题5分,共60分)1.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=2.若甲数是乙数的23,乙数是丙数的45,那么甲、乙、丙三数的比是。
3.若一个长方形的宽减少20%,而面积不变,则长应当增加百分之。
4.已知三位数abc与它的反序数cba的和等于888,这样的三位数有个。
5.节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯如果两个红灯不相邻,则不同的排法有。
(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型的算作一种)6.某小学的六年级有一百多名学生。
若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人。
该年级的人数是。
7.如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是平方厘米。
8.甲、乙、丙三个生产一批玩具,甲生产的个数是乙、丙两个生产个数之和的12,乙生产的个数是甲、丙两人生产个数之和的13,丙生产了50个。
这批玩具共有个。
9.有一个不等于零的自然数,它的12是一个立方数,它的13是一个平方数,则这个数最小是。
10.在如图2所示的九宫图中,不同的汉字代表不同的数,每行,每列和两条对角线上各数的和相等。
已知中=21,学=9,欢=12,则希、望、杯的和是。
11.如图3,三角形ABC和三角形DEC都是等腰直角三角形,A和E是直角等点,阴影部分是正方形。
如果三角形DEC的面积是24平方米,那么三角形ABC的面积是平方米。
12.A、B两地相距950米。
甲、乙两人同时由A地出发往返锻炼半小时。
甲步行,每分钟走40米;乙跑步,每分钟行150米。
则甲、乙二人第次迎面相遇时距B地最近。
二、解答题(本大题共4小题,每小题15分,共60分)要求:写出过程13.有一片草场,草每天的生长速度相同。
小学四年级希望杯数学竞赛第一届至十一届全部试题与答案
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
第4-12届小学“希望杯”全国数学邀请赛六年级1试
第四届小学“希望杯”全国数学邀请赛六年级第1试1.1120062008()2006200720072008⨯⨯+=⨯⨯________。
2.900000-9=________×99999。
3.=________。
4.如果a=20052006,b=20062007,c=20072008,那么a,b,c中最大的是________,最小的是________。
5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。
6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A的小数点向右移动两位,得到数B。
那么B+A是B-A的________倍。
(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。
则三个面涂漆的小正方体有________块。
13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。
14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。
小学奥数 计算题库 技巧计算 定义新运算.题库版
定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.知识点拨教学目标定义新运算二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
小学六年级奥数 挑战奥数模拟测试
挑战奥赛模拟测试一(一试)一、选择题1.一个圆的周长扩大3倍,它的面积就扩大( )倍。
A.3B.6C.9D.272.如右图,在长方形ABCD中,E是BC的中点,那么阴影部分的面积占长方形面积的( )。
A.16B.18C.19D.1123.(第五届“希望杯”邀请赛试题)一项工程甲单独完成需10天,乙单独完成需15天,丙单独完成需20天。
三人合作3天后,甲有其他任务而退出,剩下乙、丙继续工作至完工。
完成这项工程共用( )天。
A.8B.7C.6D.54.(第五届“希望杯”邀请赛试题)一个两位数的中间加上一个0,得到的三位数比原两位数的8倍小1。
原来的两位数是( )。
A.15B.13C.11D.145.当a=2007时,a-1,a,a+1,a+2中的合数有( )个。
A.1B.2C.3D.4二、填空题1.1×2×3×4×…×108乘积的末尾有个0。
2.两个分子是1、分母是两个不同的自然数的分数,如果这两个分数的和是112,那么这两个分数的差最小是。
3.一个正方体被切成三个相等的长方体,表面积增加了42平方厘米。
原来正方体的表面积是平方厘米。
4.在百米跑练习中,如果时间要缩短10%,那么速度要提高 %。
5.413用小数表示,从这个小数的小数点后第1位到第50位的数字和是。
6.如果30个连续自然数的和是1155,那么其中最大的一个偶数是。
7.用三个分数1427,2845,4954分别除以a,商都是整数,a最大是。
8.将分数5379的分子减去a,分母加上a,约分后等于47。
则自然数a=。
9.今年父亲36岁,儿子8岁。
年后儿子的年龄是父亲年龄的5 12。
10.有一满水池,池底有泉水不断涌出,每分钟涌出的水量相等。
若用10部抽水机20小时可以把水抽干;若用15部抽水机10小时可以把水抽干。
那么用25台抽水机小时可以把水抽干。
三、解答题1.右图是以直角三角形中的一条直角边为直径画一个半圆,阴影甲比阴影乙的面积大16平方厘米。
定义新运算
1、对于非零自然数 a 和 b ,规定符号 ⊗的含义是: ba b a m b a ⨯⨯+⨯=⊗2(m 是一个确定的整数),如果3241⊗=⊗, 那么43⊗= 。
【题说】2007 年第五届小学“希望杯”全国数学邀请赛六年级第2试第5题 【答案】1211 【解析】由条件4124141⨯⨯+⨯=⊗m ,3223232⨯⨯+⨯=⊗m ,得322324124⨯⨯+=⨯⨯+m m ,得6=m 。
则121143243643=⨯⨯+⨯=⊗。
2、规定:如果B A > ,则B A B A -=-;如果 B A =,则0=-B A ;如果B A <,则A B B A -=-。
根据上述规律计算:2.32.36.53.23.12.4-+-+-= 。
【题说】2009年第七届小学“希望杯”全国数学邀请赛六年级第1试第2题【答案】6.2【解析】原式2.63.26.53.12.4)2.32.3()3.26.5()3.12.4(=-+-=-+-+-=3、若用“*”表示一种运算,且满足如下关系:(1)11*1=;(2))1*(31*)1(n n ⨯=+。
则=-1*21*5 。
【题说】2010年第八届小学“希望杯”全国数学邀请赛六年级第1试第3题【答案】78【解析】11*1=,3)1*1(31*2=⨯=,9)1*2(31*3=⨯=,27)1*3(31*4=⨯=, 81)1*4(31*5=⨯=。
则783811*21*5=-=-。
4、对于任意两个数 x , y 定义新运算,运算规则如下:x ◆ y 2÷-⨯=x y x , x ⊕ y 2÷+=y x按此规则计算:3.6◆2= ,21.0 ◆(7.5⊕4.8)= 。
【题说】2011年第九届小学“希望杯”全国数学邀请赛六年级第1试第3题【答案】5.4;165188 【解析】3.6◆24.58.12.726.326.3=-=÷-⨯=;7.5⊕4.89.928.45.7=÷+=,21.0 ◆(7.5⊕4.8)=21.0 ◆9.91651883325623349.9334=-=÷-⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五届小学希望杯六年级第2试
一、填空题(每小题5分,共60分。
)
1.小华拿一个矩形木框在阳光下玩,她看到矩形木框在
地面上形成的影子不可能是图1中的______。
2.气象台预报“本市明天降水概率是80%”。
对此信息,
下列说法中正确的是______。
(填序号)
①本市明天将有80%的地区降水。
②本市明天将有
80%的时间降水。
③明天肯定下雨。
④明天降水的可能性比较大。
3.将一块正方形纸片沿对角线折叠一次,然后在得到的三
角形的三个角上各挖去一个圆洞,再展开正方形纸片,得
到下图中的______。
(填序号
)
4.下图是华联商厦3月份
甲、乙、丙三种品牌彩电的
销售量的统计图,预测4月
份甲、乙、丙三种品牌彩电
的销售量将分别增长5%,
10%和2O%。
根据预测,
甲、丙两种品牌彩电4月份
的销售量之和为______台。
5.对于非零自然数a和b
,规定符号的含义是:
a b
=(m是一个确定的整数)。
如果
1
4=23,
那么
34=______。
6.的整数部分是______。
7.在一次动物运动会的60米短跑项目结束后,小鸡发现:
小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小
狗、小兔和小鸭四人的平均用时为5分钟。
请问,小鸭在
这项比赛中用时______分钟。
8.2007年4月15日(星期日)是第5届小学“希望杯”全
国数学邀请赛举行第2试的日子,那么这天以后的第
2007+4×15天是星期______。
9.将16个相同的小正方体拼成一个体积为16立方厘米的
长方体,表面涂上漆,然后分开,则3个面涂漆的小正方
体最多有______个,最少有______个。
10.已知n个自然数之积是2007,这n个自然数之和也是
2007,那么n的值最大是______。
11.如图,三角形田地中有两条
小路A E和CF,交叉处为D,张
大伯常走这两条小路,他知道
DF=DC,且AD=2DE。
则两块
田地ACF和CFB的面积比是
______。
12.甲、乙两车同时从A、B两地相对开出,两车第一次
在距A地32千米处相遇,相遇后两车继续行驶,各自达
到B、A两地后,立即希原路返回,第二次在距A地64
千米姓相遇,则A、B两地间的距离是______千米。
二、解答题(本大题共4小题.每小题15分,共60分。
)
要求:写出推算过程。
13.将1至8这八个自然数分别
填入图中的正方体的八个顶点处
的○内,并使每个面上的四个○内
的数字之和都相等。
求与填入数字
1的○有线段相连的三个○内的数
的和的最大值。
14.2006年夏天,我国某地区遭遇了严重干旱,政府为了
解决村民饮水问题,在山下的一眼泉水旁修了一个蓄水池,
每小时有40立方米泉水注入池中。
第一周开动5台抽水机
2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5
小时就把一池水抽完。
后来由于旱情严重,开动13台抽水
机同时供水,请问几小时可以把这池水抽完?
15.根据图中的对话内容,分别求出饼干和牛奶的标价各
多少元
?
16.两条公路成十字交叉,甲从十字路口南1200米处向北
直行,乙从十字路口处向东直行。
甲、乙同时出发10分钟,
两人与十字路口的距离相等,出发后100分钟,两人与十
字路口的距离再次相等,此时他们距离十字路口多少米?。