pkpm七个重要参数

合集下载

PKPM参数定义

PKPM参数定义

PKPM参数定义PKPM,即Peking University People Model,是一种建筑结构性能计算软件,于20世纪90年代由北京大学土木工程系研发,目前已成为国内建筑工程设计领域中使用频率最高的软件之一、PKPM主要用于建筑结构设计、分析和验算,并对建筑结构的强度、刚度和稳定性等进行评估。

PKPM的参数定义是软件中所涉及到的各个计算参数的具体定义和取值范围。

以下将详细介绍PKPM中的几个主要参数。

1.材料参数:PKPM中的材料参数主要包括钢筋的抗拉强度、混凝土的抗压强度和连接件的强度等。

这些参数可以根据设计需要进行定义,并按照相应的规范进行取值。

-钢筋的抗拉强度:钢筋的抗拉强度是指钢筋材料在拉伸状态下能够承受的最大拉力。

根据不同钢筋等级的规范要求,这个数值可以在PKPM 中进行设置。

-混凝土的抗压强度:混凝土的抗压强度是指混凝土材料在受到压力时能够承受的最大压力。

根据混凝土强度等级的不同,这个数值也可以在PKPM中进行设置。

-连接件的强度:连接件的强度是指连接结构中使用的连接件(如螺栓、焊接接头等)能够承受的最大荷载。

不同类型和规格的连接件在PKPM中需要经过专门的计算和定义。

2.结构参数:PKPM中的结构参数主要包括截面尺寸、梁柱间距、楼层高度等。

这些参数是建筑结构中的重要设计参数,可以根据建筑设计的要求进行调整和定义。

-截面尺寸:截面尺寸指的是建筑结构中各个构件(如梁、柱、板等)的横断面尺寸。

可以通过PKPM中的图形界面进行设置和调整。

-梁柱间距:梁柱间距是指建筑结构中梁和柱之间的距离。

根据设计规范和结构布置要求,可以在PKPM中进行设置。

-楼层高度:楼层高度是指建筑结构中相邻楼层之间的距离。

这个参数主要用于计算结构在地震等荷载下的稳定性。

在PKPM中可以设置不同楼层的高度。

3.荷载参数:荷载参数是指建筑结构所受到的外部荷载,包括重力荷载、风荷载和地震荷载等。

PKPM可以根据不同的设计要求进行荷载计算,并对结构的安全性进行评估。

(完整word版)PKPM参数(超详细)解析

(完整word版)PKPM参数(超详细)解析

一、总信息1、水平力与整体坐标夹角:该参数为地震力、风荷载作用方向与结构整体坐标的夹角。

抗规》5.1.1 条和《高规》4.3.2 条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算”.如果地震沿着不同方向作用,结构地震反应的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向就称为“最不利地震作用方向”。

这个角度与结构的刚度与质量及其位置有关,对结构可能会造成最不利的影响,在这个方向地震作用下,结构的变形及部分结构构件内力可能会达到最大. SATWE 可以自动计算出这个最不利方向角,并在WZQ。

OUT 文件中输出。

如果该角度绝对值大于15 度,建议用户按此方向角重新计算地震力,以体现最不利地震作用方向的影响。

一般并不建议用户修改该参数,原因有三:①考虑该角度后,输出结果的整个图形会旋转一个角度,会给识图带来不便;②构件的配筋应按“考虑该角度"和“不考虑该角度”两次的计算结果做包络设计;③旋转后的方向并不一定是用户所希望的风荷载作用方向.综上所述,建议用户将“最不利地震作用方向角"填到“斜交抗侧力构件夹角”栏,这样程序可以自动按最不利工况进行包络设计。

水平力与整体坐标夹角与地震信息栏中斜交抗侧力构件附加地震角度的区别是:水平力不仅改变地震力而且同时改变风荷载的作用方向;而斜交抗侧力仅改变地震力方向(增加一组或多组地震组合),是按《抗规》5.1.1 条2 款执行的。

对于计算结果,水平力需用户根据输入的角度不同分两个计算工程目录,人为比较两次计算结果,取不利情况进行配筋包络设计等;而{斜交抗侧力}程序可自动考虑每一方向地震作用下构件内力的组合,可直接用于配筋设计,不需要人为判断。

只有在风荷载起控制作用时,现有的坐标下风荷载不能起到控制结构的最大受力状态,此时填写一个角度(逆时针为正,顺时针为负),让坐标系发生变化,使风荷载在新的坐标系下(如何计算出风荷载产生的内力最大值的角度值?),能起控制作用(控制结构的最大受力状态),改变参数后,地震作用和风荷载的方向(说明两者方向是一致)将同时改变,但地震作用方向已经不是最不利的方向了,故需要在附加地震作用方向上输入一个相反的角度,使地震作用方向应按原坐标系计算,使地震力最大;如不需要改变风荷载的方向,只需考虑其它角度的地震作用时,则无需改变“水平力与整体坐标的夹角”,只增加附加地震作用方向即可。

PKPM设计参数

PKPM设计参数

PKPM设计参数PKPM(建筑结构模型分析与设计软件)是一款常用于建筑结构分析与设计的计算机辅助软件。

其设计参数包括以下几个方面:1.材料参数:PKPM中的材料参数主要包括混凝土、钢筋和钢结构的材料特性。

混凝土的参数包括弹性模量、泊松比、抗压强度和抗拉强度等;钢材的参数包括弹性模量、泊松比、屈服强度和强度等。

2.结构参数:PKPM中的结构参数包括梁、柱、板、墙等构件的几何尺寸和截面形状。

例如,梁的宽度、高度、长度和截面形状(矩形、T形、L形等);柱的截面尺寸和类型(矩形、圆形等)等。

3.荷载参数:PKPM中的荷载参数包括静荷载和动荷载。

静荷载包括自重荷载、活荷载和附加荷载等;动荷载一般包括地震荷载、风荷载和温差荷载等。

荷载参数的大小和施加位置对结构的分析和设计具有重要影响。

4.设计参数:PKPM中的设计参数主要包括结构的设计要求和设计目标。

例如,设计要求可包括结构的强度、刚度、稳定性和耐久性等;设计目标可以设置为满足国家相关建筑规范和标准。

5.分析方法:PKPM支持多种结构分析方法,包括弹性分析、非线性分析和动力分析等。

根据具体的设计要求和材料特性,选择合适的分析方法进行分析和设计。

6.输出参数:PKPM的输出参数主要包括结构的应力、应变、位移和内力等。

这些参数可以用于评估结构的安全性和性能。

7.备注参数:PKPM中还可以添加备注参数,用于记录和说明一些特殊情况或设计决策。

综上所述,PKPM的设计参数涵盖了材料、结构、荷载、设计要求、分析方法、输出参数和备注参数等方面,通过合理设置这些参数,可以进行有效的建筑结构分析与设计。

PKPM计算参数

PKPM计算参数

PKPM计算参数PKPM是建筑工程设计和施工的一种常用计算软件,全称为“工程结构分析和设计程序”。

PKPM主要用于进行建筑结构的力学分析和设计计算,是国内较早开发的结构计算软件之一在进行PKPM计算时,需要输入一些计算参数,以确保计算的准确性和可靠性。

下面是一些常见的PKPM计算参数:1.材料参数:包括混凝土的抗压强度、抗拉强度、弹性模量等;钢筋的屈服强度、弹性模量等。

这些参数是根据实验室试验结果或国家标准来确定的。

2.结构参数:包括构件的尺寸参数、支座的刚度参数等。

这些参数根据实际的工程结构设计来确定,包括梁、柱、板等构件的尺寸,以及支座的刚度参数。

3.荷载参数:包括静荷载和动荷载。

静荷载是指直接作用于建筑结构上的恒定荷载,如自重、楼层荷载等;动荷载是指作用于结构上的变化荷载,如风荷载、地震荷载等。

这些荷载参数需要根据实际工程情况和设计规范来确定。

4.边界条件:包括结构的支座条件、约束条件等。

这些条件是结构计算中的边界条件,用于确定结构的受力和变形情况。

例如,支座条件可以是固定支座、弹性支座或浮动支座等。

约束条件可以是禁止一些位移或转角,以模拟实际工程中的约束情况。

5.分析方法:PKPM可以进行静力分析、动力分析以及非线性分析等。

静力分析是指在稳态荷载下进行的结构分析,动力分析是指在动态荷载下进行的结构响应分析,非线性分析是指考虑构件变形和材料非线性等因素的分析。

不同的分析方法需要输入不同的计算参数。

在进行PKPM计算时,需要根据具体的工程情况和设计要求来确定这些计算参数。

在输入参数时,需要保证参数的准确性和合理性,确保计算结果的可靠性。

另外,还需要根据计算结果来进行适当的修改和调整,以满足工程实际需求。

需要注意的是,PKPM计算参数的输入应当遵循相应的设计规范和国家标准,以确保结构的安全性和可靠性。

此外,在使用PKPM进行计算时,还需要结合具体的结构计算原理和方法进行分析,以获得准确的计算结果。

pkpm基础参数

pkpm基础参数

pkpm基础参数
PKPM是一个广泛使用的建筑结构设计和分析软件。

在PKPM中,基础参数是影响结构设计和分析的重要因素。

以下是一些常见的PKPM基础参数:
1. 地质条件:包括土壤类型、土壤承载力、地下水位等信息,这些参数用于确定基础的形式和尺寸。

2. 荷载参数:包括荷载类型、荷载值、荷载组合方式等,这些参数用于确定结构在各种荷载作用下的响应。

3. 结构类型:包括梁、板、柱、墙等,这些参数用于确定结构分析和设计的方法。

4. 材料参数:包括混凝土强度等级、钢材种类和强度等级等,这些参数用于确定结构材料的性能。

5. 抗震参数:包括地震烈度、地震加速度、地震分组等,这些参数用于确定结构抗震分析和设计的方法。

在PKPM中,基础参数的设置和调整需要基于实际情况和规范要求。

正确的参数设置能够确保结构分析和设计的准确性,为后续的结构设计提供可靠的基础。

pkpm七个重要参数

pkpm七个重要参数

一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。

轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。

轴压比不满足时的调整方法:1、程序调整:SATWE程序不能实现。

2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规5.2.5,高规3.3.13及相应的条文说明。

这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。

剪重比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。

2、人工调整:如果还需人工干预,可按下列三种情况进行调整:1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。

2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。

3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。

三、刚度比:主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规5.1.14予以加强。

刚度比不满足时的调整方法:1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。

PKPM结构设计参数介绍

PKPM结构设计参数介绍

PKPM结构设计参数介绍PKPM(Peking University Performance Management)是由北京大学结构工程与结构减振研究所开发的一套钢结构分析与设计软件,广泛应用于国内外的工程项目中。

PKPM结构设计参数是指在使用PKPM软件进行结构设计时所需要输入和设定的一些关键参数,下面将对一些常见的PKPM结构设计参数进行详细介绍。

1.结构模型参数:结构模型参数主要包括结构的几何形状和尺寸等信息,如墙板、梁、柱的截面尺寸,结构的高度、跨度、楼层平面布局等。

这些参数是根据设计要求和实际情况确定的,对结构的分析和设计起着基础性的作用。

2.几何刚度参数:几何刚度参数是指由结构的几何形状决定的刚度参数,包括梁、柱的刚度、节点的刚度等。

在PKPM软件中,可以通过输入各个构件的截面尺寸和材料特性来定义几何刚度参数,从而对结构的刚度进行准确的计算。

3.材料参数:材料参数是指结构构件所使用的材料的力学特性参数,包括钢材的弹性模量、屈服强度、抗拉强度、屈服应变等,混凝土的弹性模量、抗压强度、抗拉强度等。

这些参数是PKPM软件进行结构分析和设计时必须要输入的重要参数,用于计算结构的应力、应变和刚度等。

4.荷载参数:荷载参数是指作用于结构上的外部荷载参数,包括静载荷、动载荷和温度荷载等。

静载荷包括自重、活载和附加荷载等,动载荷则是指风荷载、地震荷载等。

温度荷载是由温度变化引起的结构变形和应力。

在PKPM软件中,可以根据各个构件的位置和功能要求,输入相应的荷载参数,并进行合理分析和计算。

5.设计规范参数:设计规范参数是指根据国家和地区的相关设计规范要求所确定的参数,如钢结构设计规范、混凝土结构设计规范等。

这些规范参数包括构件的安全系数、限制值等,对于结构的安全性和合规性具有重要的影响。

在PKPM软件中,可以根据设计规范的不同要求,设定相应的参数,以满足结构设计的要求。

6.连接参数:连接参数是指结构中各个构件之间的连接方式和参数,包括梁柱连接、柱基连接等。

PKPM七大控制指标及调整方法

PKPM七大控制指标及调整方法

PKPM七大控制指标及调整方法一、轴压比:含义:轴压比指柱组合的轴压力设计值与柱的截面面积和混凝土轴心压强强度设计值乘积之比值,u=N/(A*Fc)——抗规6.3.6作用:主要是为限制结构的轴压比,保证结构的延性要求,规范对墙址和柱均有相应限值要去,具体详见抗规6.3.7和6.4.6,高规6.4.2和7.2.14及相应的条文说明。

轴压比不满足要求,对结构的延性没有办法满足;若轴压比过小,说明结构的经济指数指标较差,宜适当减小相应墙柱、柱的截面面积。

轴压比不满足时的调整方法:1、程序调整:SATWE程序不能实现2、人工调整:从公式出发,可以增大墙柱截面面积或提高混凝土的强度。

规范规定:柱轴压比不宜超过下表的规定;建造于Ⅳ类场地且较高的高层建筑,柱轴压比限值应适当减小:注:1.轴压比指柱组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计值乘积之比值;对本规范规定不进行地震作用计算的结构,可取无地震作用组合的轴力设计值计算;2.表内限值适用于混凝土强度等级不高于C60的柱;当混凝土强度等级为C65-C70时,轴压比限值应降低0.05;当混凝土强度等级为C75-C80时,轴压比限值应降低0.10;3.表内限值适用于剪跨比大于2的柱;剪跨比不大于2但不小于1.5的柱,轴压比限值应降低0.05;剪跨比小于1.5的柱,轴压比限值应专门研究并采取特殊构造措施;4.沿柱全高采用井字复合箍且箍筋肢距不大于200mm、间距不大于100mm、直径不小于12mm,或沿柱全高采用复合螺旋箍、螺旋间距不大于100mm、箍筋肢距不大于200mm、直径不小于12mm,或沿柱全高采用连续复合矩形螺旋箍、螺旋净距不大于80mm、箍筋肢距不大于200mm、直径不小于10mm,轴压比限值均可增加0.10;5.在柱的截面中部附加芯柱,其中另加的纵向钢筋的总面积不少于柱截面面积的0.8%,轴压比限值可增加0.05;此项措施与注3的措施共同采用时,轴压比限值可增加0.15,但箍筋的体积配箍率仍可按轴压比增加0.10的要求确定;6.轴压比限值不应大于1.05。

2024版PKPM参数的介绍

2024版PKPM参数的介绍

2024版PKPM参数的介绍PKPM(Paragraph and Keypoints of Hand Calculation ofBuilding Structures,建筑结构手算段落和关键点)是一种常用的建筑结构设计计算方法,用于计算和分析建筑结构的各种参数和特性。

2024版PKPM参数是指该方法在2024年进行了一次更新和改进后所使用的参数,本文将对其进行详细介绍。

2024版PKPM参数包括了结构设计中各种重要的力学参数、几何参数和材料参数等,下面将逐一进行介绍。

首先是力学参数。

力学参数包括结构中的荷载参数和结构反力参数。

荷载参数是指结构在使用过程中受到的各种荷载,如自重、活载、风载等。

结构设计需要合理估计这些荷载的大小和作用方式,以确保结构的安全可靠。

结构反力参数是指在荷载作用下,结构各个部分产生的反力大小和分布。

这些反力是计算和分析结构各个部分的强度和稳定性所必需的。

其次是几何参数。

几何参数指结构的尺寸和形状参数。

在进行结构计算和分析时,需要准确的尺寸和形状参数作为计算的基础。

这些参数包括结构的长度、宽度、高度以及各种截面的面积、惯性矩等。

通过合理估计和测量这些参数,可以更准确地分析结构的力学特性。

然后是材料参数。

材料参数包括结构所使用的各种材料的特性参数,如混凝土的强度、钢筋的强度、木材的强度等。

这些参数是根据相关的材料试验和经验确定的,可以用于计算和分析结构的强度和稳定性。

为了保证结构的安全可靠,设计中需要根据实际情况选择合适的材料参数。

除了上述的力学参数、几何参数和材料参数外,2024版PKPM还包括了其他一些重要的参数。

比如,计算参数是指进行计算和分析时所使用的一些细节参数,如计算方法、分析模型等。

这些参数对于计算和分析结果的准确性和可靠性有着重要的影响。

此外,界面参数还包括了与其他设计软件或分析软件的接口参数,用于实现不同软件之间的数据交换和共享。

总的来说,2024版PKPM参数是一种用于计算和分析建筑结构的方法,包含了力学参数、几何参数、材料参数、计算参数和界面参数。

PKPM七大控制指标及调整方法

PKPM七大控制指标及调整方法

PKPM七大控制指标及调整方法PKPM是工程结构设计软件,其七大控制指标是指结构设计中需要关注的七个主要要素,包括构件强度、位移控制、设计可靠性、现场施工、效果评估、结构体系合理性和经济效益。

下面将详细介绍这七大控制指标及其调整方法。

一、构件强度控制构件强度是指构件在设计荷载下所能承受的最大应力。

为确保结构的安全性,必须对构件的强度进行控制。

调整方法有:1.增加构件的截面尺寸,增加其抗弯和抗剪的承载力;2.合理设置加劲筋,增加构件的抗弯刚度和强度;3.采用高强度材料,提高构件的抗弯和抗压强度;4.增加钢筋配筋率,提高构件的承载力。

二、位移控制位移控制是指在设计荷载作用下,结构产生的变形应满足规定的要求。

位移过大会影响结构的使用性能和安全性。

调整方法有:1.增加构件的刚度,减小其变形;2.采用预应力或钢筋混凝土组合结构,提高结构整体的刚度;3.增加支撑系统,限制结构的变形;4.优化结构参数,减小结构的变形。

三、设计可靠性设计可靠性是指在规定的荷载和极限状态下,结构满足强度、刚度和稳定性的概率。

提高设计可靠性可以增强结构的安全性。

调整方法有:1.采用可靠性设计方法,考虑荷载和材料参数的不确定性;2.对结构进行全过程监测,及时发现并修复结构缺陷;3.加强施工质量控制,确保结构的设计要求得到满足;4.增加荷载组合中荷载的安全系数,提高结构的抗荷能力。

四、现场施工控制现场施工控制是指在施工过程中,要保证结构能够按照设计要求进行安装和施工。

调整方法有:1.正确设置支撑体系,保证结构的稳定性;2.控制混凝土浇筑的施工工艺和质量,确保结构的强度和耐久性;3.严格控制施工过程中的各项关键工序,如配筋、板模安装等;4.不断加强施工现场的管理与监督,提高施工质量和安全性。

五、效果评估控制效果评估是指对已建成的结构进行性能评估和验收,以确保结构的设计目标得到实现。

调整方法有:1.设置监测系统,定期对结构的健康状况进行评估;2.进行结构的静力和动力试验,获得结构的力学性能参数;3.针对结构存在的问题,进行相应的技术改进和修复;4.加强结构的维护和管理,延长结构的使用寿命。

PKPM参数大全

PKPM参数大全

PKPM参数大全1.建筑设计参数:-建筑结构类型:包括钢结构、框架结构、混凝土结构等不同类型。

-建筑材料:包括钢材、混凝土、木材等材料的物理和力学特性。

-建筑尺寸:包括建筑的高度、宽度、长度等尺寸参数。

-建筑用途:包括住宅、商业、工业等不同用途的建筑参数要求。

-建筑环境:包括建筑所处地理位置、气候特点、地质条件等参数。

2.结构设计参数:-荷载参数:包括风荷载、地震荷载、雪荷载等各种荷载的大小和方向。

-材料特性:包括材料的强度、刚度、韧性等参数。

-结构形式:包括框架结构、悬臂梁结构等不同结构形式的参数。

-断面形状:包括矩形、圆形、T形等不同断面形状的参数。

-结构细节:包括梁端部、柱节部等不同细节的几何参数。

3.机电设计参数:-电气参数:包括电力负荷、电压、电流等参数。

-照明参数:包括照明设备数量、照明强度等参数。

-通风参数:包括通风量、通风设备数等参数。

-暖通参数:包括供暖能力、供水温度等参数。

-管道参数:包括管道直径、管道材质等参数。

4.土木工程参数:-土壤参数:包括土壤类型、土壤含水量等参数。

-地基参数:包括地基承载力、地基沉降等参数。

-地质参数:包括地层岩性、地层稳定性等参数。

-施工参数:包括混凝土强度、施工工序等参数。

-施工设备参数:包括起重机、钻机等设备的数量和性能。

5.建筑节能参数:-建筑材料热导率:包括墙体、屋顶、地板等建筑材料的导热性能。

-窗户性能:包括窗户的传热系数、太阳能透过系数等指标。

-建筑隔热性:包括建筑外墙、楼板等部位的隔热性能。

-通风循环参数:包括通风系统的风量、效率等参数。

-建筑自然采光系数:指标反映建筑室内自然光照的效果。

这些参数对于PKPM的使用非常重要,工程师在使用PKPM进行建筑设计和结构分析时,需要准确地输入这些参数,以保证设计结果的准确性和可靠性。

当然,以上只是PKPM参数的一部分,PKPM还包括了很多其他的参数和功能,能够满足各种不同类型的工程需求。

PKPM计算参数详解

PKPM计算参数详解

PKPM计算参数详解PKPM是计算机软件中的一种结构计算分析方法,常用于建筑结构设计及分析。

其参数的计算涉及到很多概念和公式,下面详细介绍PKPM计算参数的相关内容。

1.全天候房屋屋面线拟合全天候房屋屋面线拟合是指通过地下室控制点样点数据,自动生成房屋主体外曲线的过程。

其计算过程中,需要考虑样点的坐标、高程等参数,并采用曲线拟合算法,如B样条曲线算法或多项式拟合算法。

2.框架结构内力计算框架结构内力计算是指在建筑结构设计中,根据荷载和结构几何参数,计算结构内力的过程。

在PKPM中,可以通过输入结构的节点坐标、梁柱参数、荷载参数等,使用刚度矩阵法或弹性法等方法计算结构的内力。

3.楼板受弯承载力计算楼板受弯承载力计算是指计算楼板在负弯矩作用下的承载能力。

在PKPM中,可以通过输入楼板的几何参数、材料参数、加载参数等,使用等效矩形法或混凝土应力-应变关系等方法计算楼板的受弯承载力。

4.柱承载力计算柱承载力计算是指计算柱子在纵向压力作用下的承载能力。

在PKPM 中,可以通过输入柱子的几何参数、材料参数、加载参数等,使用截面特性法或等效矩形法等方法计算柱子的承载力。

5.剪力墙水平抗力计算剪力墙水平抗力计算是指计算剪力墙在水平力作用下的抗力。

在PKPM中,可以通过输入剪力墙的几何参数、材料参数、加载参数等,使用理论模型计算剪力墙的水平抗力。

6.风荷载计算风荷载计算是指计算建筑结构在风力作用下的受力情况。

在PKPM中,可以通过输入建筑结构的几何参数、材料参数、风速参数等,使用规范中给出的风荷载计算方法计算建筑结构的受力情况。

7.地震荷载计算地震荷载计算是指计算建筑结构在地震作用下的受力情况。

在PKPM 中,可以通过输入建筑结构的几何参数、材料参数、地震参数等,使用规范中给出的地震荷载计算方法计算建筑结构的受力情况。

8.基础底座承载力计算基础底座承载力计算是指计算建筑基础底座在垂直力作用下的承载能力。

在PKPM中,可以通过输入基础的几何参数、材料参数、荷载参数等,使用规范中给出的基础底座承载力计算方法计算基础底座的承载能力。

PKPM结构设计参数精

PKPM结构设计参数精

PKPM结构设计参数精PKPM(破坏过程分析法)是一种结构设计方法,它基于结构的破坏过程进行分析,以确定结构的安全性和可靠性。

在进行PKPM结构设计时,需要考虑一些重要的参数,以确保结构的设计精确度和可靠性。

以下是一些PKPM结构设计参数的重要性及其影响因素的详细描述:1.结构材料的强度参数:结构材料的强度参数是PKPM结构设计中一个非常重要的考虑因素。

结构材料的强度参数包括抗拉强度、抗压强度、抗弯刚度等等。

这些参数的选择将直接影响到结构的承载能力和稳定性。

在选择结构材料的强度参数时,需要考虑到结构的使用环境和荷载条件,确保结构在正常使用条件下能够达到设计要求。

2.结构形状和尺寸参数:结构形状和尺寸参数是PKPM结构设计中另一个重要的考虑因素。

结构的形状和尺寸参数直接影响到结构的受力分布和破坏模式,因此在设计结构时需要合理选择结构的形状和尺寸参数。

通常情况下,结构的形状和尺寸参数应该与其受力状况配合,以确保结构能够承受外部荷载的作用。

3.荷载参数:荷载参数是PKPM结构设计中一个至关重要的考虑因素。

荷载参数包括静载荷、动载荷、地震荷等等。

这些荷载参数的大小和作用方式将直接影响到结构的稳定性和可靠性,因此需要仔细考虑和准确确定荷载参数。

在确定荷载参数的大小和作用方式时,需要综合考虑结构的使用环境、结构材料的性能以及结构的形状和尺寸等因素。

4.设计边界条件参数:设计边界条件参数是PKPM结构设计中一个重要的考虑因素。

设计边界条件参数包括结构的支撑方式、连接方式、约束条件等等。

这些设计边界条件参数将直接影响到结构的受力分布和破坏模式,因此需要合理选择和确定设计边界条件参数。

在确定设计边界条件参数时,需要考虑到结构的使用环境、荷载条件和结构的形状和尺寸等因素,确保结构能够达到设计要求。

5.安全系数参数:安全系数参数是PKPM结构设计中一个非常重要的考虑因素。

安全系数参数是结构设计中用来考虑不确定性和偏差的参数,它通常包括承载能力安全系数、荷载系数等等。

PKPM七大指标

PKPM七大指标

PKPM七大指标PKPM(简称:Prime Keat Pro Meter)是一种适用于建筑工程的设计软件,主要用于计算和评估建筑物的结构性能和安全性。

PKPM的设计指标可以帮助工程师在设计和施工过程中进行结构计算和分析。

下面将详细介绍PKPM的七大指标。

一、承载力指标承载力指标是PKPM中最基本的指标之一,它用于评估结构材料和构件的承载能力。

承载力指标主要包括强度和刚度两个方面。

在PKPM中,承载力指标可以通过计算结构材料的抗压、抗拉、抗弯等强度参数来确定。

二、稳定性指标稳定性指标用于评估结构体系在承受外部荷载或者其他外界因素作用下的稳定性能。

稳定性指标主要包括结构的整体稳定、局部稳定和构造稳定三个方面。

PKPM通过计算结构组件的刚度、弯曲承载力以及各个部位的变形极限等来评估结构的稳定性。

三、振动指标振动指标主要用于评估结构的抗震性能和减震效果,包括结构的自振频率、阻尼比、振型等参数。

PKPM通过计算结构材料的质量、刚度以及结构的支座刚度等来确定结构的振动特性。

四、疲劳指标疲劳指标用于评估结构在反复荷载下的疲劳性能,包括结构的疲劳寿命和安全系数等。

PKPM通过计算结构材料的疲劳强度、载荷作用频率以及结构的应力分布等来进行疲劳分析。

五、耐久指标耐久指标主要用于评估结构材料和构件在长期使用和环境作用下的耐久性能,包括结构的耐久寿命和耐久性等参数。

PKPM通过计算结构材料的抗裂性、抗腐蚀性以及结构的使用年限等来进行耐久性分析。

六、安全指标安全指标用于评估结构的安全性能和可靠性,包括结构的静态安全系数、动态安全系数、可修复性等参数。

PKPM通过计算结构的强度、刚度、稳定性以及荷载组合等来进行安全性分析。

七、经济指标经济指标主要用于评估结构设计的经济性和成本效益。

PKPM通过计算结构材料和构件的成本、施工周期以及施工难度等来进行经济性分析,帮助工程师在设计和施工过程中找到最经济、最合理的方案。

综上所述,PKPM的七大指标包括承载力指标、稳定性指标、振动指标、疲劳指标、耐久指标、安全指标和经济指标。

pkpm参数

pkpm参数

SATWE参数设置一:总信息1、水平力与整体坐标夹角(度):一般为缺省。

若地震作用最大的方向大于15度则回填。

2、混凝土容重(KN/m3):砖混结构25 KN/m3,框架结构26KN/m3。

3、刚才容重(KN/m3):一般情况下为78.0 KN/m3(缺省值)。

4、裙房层数:程序不能自动识别裙房层数,需要人工指定。

应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。

5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5.程序不能自动识别转换层,需要人工指定。

对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。

6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数+1)。

7、地下室层数:根据实际情况输入。

8、墙元细分最大控制长度(m):一般为缺省值1。

9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层,需要人工指定。

如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加到薄弱层号中,如不打勾,则需要用户手动添加。

此项打勾与在“调整信息”页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。

10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建议选择。

在进行结构内力分析和配筋计算时不选择。

11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定时保留弹性板面外刚度考虑。

特别是对于板柱结构定义了弹性板3、6情况。

但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。

12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。

不勾选的话位移偏小。

13、计算墙倾覆力矩时只考虑腹板和有效翼缘:应勾选,使得墙的无效翼缘部分内力计入框架部分,实现框架,短肢墙和普通强的倾覆力矩结果更合理。

14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度,自动实现梁板边界变形协调,计算结构符合实际受力情况,应勾选。

PKPM参数大全

PKPM参数大全

PKPM参数大全PKPM(简称Pohlke和Patoski方法)是结构设计常用的一种参数法。

该方法源于美国草原理工学院的Pohlke、Patoski教授。

PKPM方法适用于框架结构,能够方便快捷地计算结构的受力和刚度。

本文将介绍PKPM中常用的一些参数及其计算方法。

1.杆件长短比(L/r):杆件的长短比是指杆件长度与其截面半径的比值,用来反映杆件的细长程度。

细长杆件在受力时容易发生侧扭和屈曲,因此长短比超过一定值后,需要进行屈曲稳定分析。

一般情况下,屈曲稳定分析要求杆件的长短比不超过100。

2.一阶矩(M1)和二阶矩(M2):一阶矩是指结构中截面各杆件受到的外力与该杆件到结构重心的垂直距离的乘积之和。

二阶矩是指结构中截面各杆件受到的外力与该杆件到结构重心的垂直距离的平方乘积之和。

一阶矩和二阶矩的计算可以通过根据杆件的节点坐标和杆件上的荷载来求解。

3.弹性刚度(K):弹性刚度是指结构在受力下的刚度。

PKPM方法中通常将杆件的弹性刚度表示为杆件长度与截面的刚度比值。

刚度计算方法可以通过杆件的几何参数和材料力学性质来求解。

4.轴向力(N):轴向力是指杆件受到的沿杆件轴线方向的拉力或压力。

轴向力的计算可以通过杆件上的受力和几何参数来求解。

5.弯矩(M):弯矩是指杆件在受力时发生的弯曲变形引起的内力。

弯矩的计算可以通过受力和几何参数来求解。

6.剪力(V):剪力是指杆件在受力时发生的剪切形变引起的内力。

剪力的计算可以通过受力和几何参数来求解。

7. 屈曲载荷(Pcr):屈曲载荷是指杆件在受力时的临界载荷,即当杆件承受的载荷超过该临界值时,杆件将出现屈曲失稳现象。

屈曲载荷的计算可以通过杆件的几何参数和材料力学性质来求解。

8.挠度(Δ):挠度是指结构中杆件在受力下发生的弯曲变形引起的位移。

挠度的计算可以通过受力、几何参数和材料刚度来求解。

9.水平变位(Δh):水平变位是指结构中节点点在水平方向上的位移。

水平变位的计算可以通过节点受力和结构刚度来求解。

PKPM计算全参数

PKPM计算全参数

PKPM计算全参数PKPM(Physical Diagram Analysis Method)是一种针对钢结构进行结构分析和设计的计算方法。

它是根据物理图解分析的原理和方法,通过对结构的内力平衡条件和位移协调条件进行分析,来计算结构的受力状态和变形情况的一种理论计算方法。

在PKPM计算中,需要考虑的参数较多,下面将详细介绍PKPM计算的全参数。

1.结构材料参数:-弹性模量(E):钢结构的弹性模量是指单位面积受力后产生的应力与应变之比,是材料刚性和变形能力的量度。

根据每种钢材料的不同,其弹性模量的数值也会有差异。

-屈服强度(σy):钢材的屈服强度是指单位面积受力时,钢材开始发生塑性变形的应力值。

不同类型的钢材具有不同的屈服强度。

-破坏应变(εu):钢材的破坏应变是指材料发生破坏时的应变值。

不同类型的钢材在破坏时表现出不同的应变值。

2.截面参数:-截面面积(A):截面面积是指钢结构截面上各个部分的面积之和,是计算受力和弯曲等问题时的重要参数。

-惯性矩(I):惯性矩是指钢结构截面对于弯曲应力分布的阻力能力,是刚度和变形性能的一个重要指标。

3.荷载参数:-静载荷(G):静载荷是指所有稳定作用于结构上的自重和外部荷载的总和。

静载荷的大小直接影响结构的受力状态。

-活载荷(Q):活载荷是指结构在使用过程中受到的非永久性、可变化的荷载,如人员、货物等。

活载荷的大小会影响结构的变形和破坏。

4.边界条件:-支座刚度(k):支座刚度是指结构受力点的支座的刚度,是模拟结构与地基之间约束程度的参数。

支座刚度的大小会影响结构的位移和变形情况。

5.结构拆装参数:-焊接强度(τ):焊接强度是指焊接接头的承载能力和破坏程度的指标,是决定焊接接头在使用过程中是否安全可靠的参数。

-螺栓预紧力(N):螺栓预紧力是指通过对螺栓施加预紧力来使螺栓接头形成一定的摩擦力,从而使结构受力的一种方法。

螺栓预紧力的大小会影响结构的受力和变形情况。

6.安全系数:-安全系数(γ):安全系数是指结构或材料承受的荷载与其承载能力之间的比值,用于保证结构在使用过程中的安全性。

PKPM相关参数汇总

PKPM相关参数汇总

PKPM相关参数汇总PKPM(建筑结构设计软件)是中国建筑企业中广泛使用的一款计算机辅助设计软件,它具有强大的功能和广泛的适用性。

在进行建筑结构设计时,PKPM可以帮助工程师进行各种计算和分析,如静力、动力、抗震、结构检验等,从而提高工程质量和效率。

下面是一些与PKPM相关的参数的汇总。

1.基本参数:-工程名称:记录工程的名称,便于识别和区分。

-工程地址:记录工程所在的地址信息。

-图纸编号:记录绘制的图纸编号。

-设计标准:选择适用的设计标准,如《建筑结构设计规范》等。

2.结构类型:-结构形式:选择适用的结构形式,如框架结构、剪力墙结构、桁架结构等。

-结构高度:记录建筑的整体高度。

-层数:记录建筑的总层数。

-柱网:记录主体结构的柱网。

-梁网:记录主体结构的梁网。

-工程等级:选择适用的工程等级,如一般等级、较高等级、特别重要等级等。

3.荷载参数:-建筑物自重:记录建筑物自身的重量。

-活载:记录建筑物使用过程中产生的活动荷载。

-雪载:记录建筑物承受的雪的荷载。

-风载:记录建筑物承受的风的荷载。

-地震作用:记录地震荷载的参数,如场地类别、设计地震分组等。

4.材料参数:-混凝土强度等级:选择适用的混凝土强度等级。

-钢筋强度等级:选择适用的钢筋强度等级。

-混凝土抗震设防等级:选择适用的混凝土抗震设防等级。

-钢材抗震设防等级:选择适用的钢材抗震设防等级。

5.分析参数:-槽形截面计算:用于槽形截面的设计和计算。

-T型截面计算:用于T型截面的设计和计算。

-等效框架计算:用于框架结构的等效框架计算。

-自动分析:用于自动进行结构的静力、动力和抗震分析。

-局部缺陷分析:用于分析结构的局部缺陷,如脆性破坏等。

6.设计结果:-抗震设防烈度:记录结构的抗震设防烈度。

-应力分析结果:记录结构各个部位的应力分析结果。

-位移分析结果:记录结构各个部位的变形和位移分析结果。

-稳定性分析结果:记录结构的稳定性分析结果。

以上只是一些与PKPM相关的参数的汇总,实际使用时可能还有其他参数和功能。

2024版PKPM参数的介绍

2024版PKPM参数的介绍

2024版PKPM参数的介绍PKPM(Parallel-Key Primitive Matrix)是一种专门为分布式计算而设计的矩阵计算模型。

它是由中国科学院计算技术研究所于2024年发布的,并被广泛用于高性能计算和大规模数据处理领域。

以下是对2024版PKPM参数的详细介绍:1. 数据分布参数(Data Distribution Parameters):(1)块大小(Block Size):决定了数据在分布式系统中的划分方式。

块大小越小,划分得越细,有利于提高并行计算的粒度,但也会增加通信和计算开销。

(2)划分策略(Partitioning Strategy):指定了将数据划分到各个计算节点上的方式。

常见的划分策略包括按行划分、按列划分以及按块划分。

2. 任务调度参数(Task Scheduling Parameters):(1)任务粒度(Task Granularity):指定了在分布式系统中一个任务(如矩阵乘法)被划分为多个子任务的粒度大小。

任务粒度越小,可以提高并行度,但也会增加调度和通信开销。

(2)调度策略(Scheduling Policy):决定了如何将子任务分配给空闲的计算节点。

例如,可以采用负载均衡的策略,将子任务分配给负载最轻的计算节点。

4. 存储参数(Storage Parameters):(1)数据布局(Data Layout):指定了矩阵数据在内存中的存储方式,主要有行存储和列存储两种方式。

行存储适用于以行为单位进行计算的情况,而列存储适用于以列为单位进行计算的情况。

5. 算法参数(Algorithm Parameters):(1)并行算法选用(Parallel Algorithm Selection):指定了在分布式系统中使用的具体算法。

不同的算法在性能和精度等方面存在差异,可以根据问题的特点和要求进行选择。

总之,2024版PKPM参数是为分布式计算而设计的矩阵计算模型的关键参数,包括数据分布参数、任务调度参数、通信参数、存储参数和算法参数等。

PKPM中的参数的意义及设定

PKPM中的参数的意义及设定

《建筑结构CAD—PKPM应用与设计实例》小论文1姓名:沈鹏飞学号:0903011045专业班级:09土木一班成绩:教师评语:年月日PKPM中的参数的意义及设定PMCAD模块是后续模块TAT-8、TAT、SAT-8、SATWE、JCCAD的基础,因此其数据的准确程度将直接影响到后续模块数据、计算的准确度。

它数据检查提出的问题应消除,不应带入后续模块。

需要定义的设计参数不多也比较简单,要在后序模块里检查是否已准确的转入。

一、楼层组装设计参数<一>、总信息:1、结构体系:按结构布置的实际状况确定。

共分:框架结构、框剪结构、框筒结构、筒中筒结构、板柱剪力墙结构、剪力墙结构、短肢剪力墙结构、复杂高层结构、砖混底框结构、共9种类型。

确定结构类型即确定与其对应的有关设计参数。

进入后续模块尚需调整。

2、结构主材:钢筋混凝土,砌体,钢和混凝土。

共3个选项:钢筋砼结构;钢与砼混合结构;有填充墙钢结构;无填充墙钢结构;砌体结构。

按含义选取,砌体结构用于底框结构。

选定结构材料及特性即选定结构设计的相关规范。

进入后续模块尚需调整。

3、结构重要性系数:共三挡:1.1、1.0、0.9。

《混规》3.2.2条。

4、底框层数:最多三层,填1或2或3。

《抗规》。

5、地下室层数:最多两层,填1或2。

6、与基础相连的最大楼层号:平地建筑填1,坡地建筑可填大于1。

7、框架梁端负弯矩调幅系数:默认值0.85。

可采用也可修改。

<二>材料信息:1、混凝土容重(kN/m3):隐含值25。

构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。

2、钢材容重(kN/m3):隐含值78。

可行。

3、钢结构钢材:按钢材代号填入。

代号有Q235、Q345、Q390、Q420四种。

4、钢截面净毛面积比值:默认0.85。

5、墙:5.1主要墙体材料:填烧结砖,混凝土,蒸压砖,砼砌块,根据实际情况选择。

5.2砌体容重(kN/m3):根据荷载规范选取,默认22。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。

轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。

轴压比不满足时的调整方法:
1、程序调整:SATWE程序不能实现。

2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规
5.2.5,高规3.3.13及相应的条文说明。

这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。

剪重比不满足时的调整方法:
1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。

2、人工调整:如果还需人工干预,可按下列三种情况进行调整:
1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。

2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。

3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。

三、刚度比:主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规5.1.14予以加强。

刚度比不满足时的调整方法:
1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。

2、人工调整:如果还需人工干预,可按以下方法调整:
1)适当降低本层层高,或适当提高上部相关楼层的层高。

2)适当加强本层墙、柱和梁的刚度,或适当削弱上部相关楼层墙、柱和梁的刚度。

四、位移比:主要为限制结构平面布置的不规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。

见抗规3.4.2,高规 4.3.5及相应的条文说明。

位移比不满足时的调整方法:
1、程序调整:SATWE程序不能实现。

2、人工调整:只能通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距;调整方法如下:
1)由于位移比是在刚性楼板假定下计算的,最大位移比往往出现在结构的四角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度;同时在设计中,应在构造措施上
对楼板的刚度予以保证。

2)利用程序的节点搜索功能在SATWE的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中快速找到位移最大的节点,加强该节点对应的墙、柱等构件的刚度;也可找出位移最小的节点削弱其刚度;直到位移比满足要求。

五、周期比:主要为限制结构的抗扭刚度不能太弱,使结构具有必要的抗扭刚度,减小扭转对结构产生的不利影响,见高规4.3.5及相应的条文说明。

周期比不满足要求,说明结构的抗扭刚度相对于侧移刚度较小,扭转效应过大,结构抗侧力构件布置不合理。

周期比不满足时的调整方法:
1、程序调整:SATWE程序不能实现。

2、人工调整:只能通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大周期方向的刚度。

当结构的第一或第二振型为扭转时可按以下方法调整:
1)SATWE程序中的振型是以其周期的长短排序的。

2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。

见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”。

3)当第一振型为扭转时,说明结构的抗扭刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的抗侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度。

4)当第二振型为扭转时,说明结构沿两个主轴方向的抗侧移刚度相差较大,结构的抗扭刚度相对其中一主轴(第一振型转角方向)的抗侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的抗侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,并适当加强结构外围(主要是沿第一振型转角方向)的刚度。

5)在进行上述调整的同时,应注意使周期比满足规范的要求。

6)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求。

六、刚重比:主要是控制在风荷载或水平地震作用下,重力荷载产生的二阶效应不致过大,避免结构的失稳倒塌,见高规5.4.1和5.4.4及相应的条文说明。

刚重比不满足要求,说明结构的刚度相对于重力荷载过小;但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。

刚重比不满足时的调整方法:
1、程序调整:SATWE程序不能实现。

2、人工调整:只能通过人工调整增强竖向构件,加强墙、柱等竖向构件的刚度。

七、层间受剪承载力比:主要为限制结构竖向布置的不规则性,避免楼层抗侧力结构的受剪承载能力沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.3及相应的条文说明;对于形成的薄弱层应按高规5.1.14予以加强。

层间受剪承载力比不满足时的调整方法:
1、程序调整:在SATWE的“调整信息”中的“指定薄弱层个数”中填入该楼层层号,将该楼层强制定义为薄弱层,SATWE按高规5.1.14将该楼层地震剪力放大1.15倍。

2、人工调整:如果还需人工干预,可适当提高本层构件强度(如增大柱箍筋和墙水平分布筋、提高混凝土强度或加大截面)以提高本层墙、柱等抗侧力构件的抗剪承载力,或适当降低上部相关楼层墙、柱等抗侧力构件的抗剪承载力。

如果结构竖向较规则,第一次试算时可只建一个结构标准层,待结构的周期比、位移比、剪重比、刚度比等满足之后再添加其它标准层;这样可以减少建模过程中的重复修改,加快建模速度。

上述几个参数的调整涉及构件截面、刚度及平面位置的改变,在调整过程中可能相互关联,应注意不要顾此。

相关文档
最新文档