理论力学第七版答案

合集下载

理论力学(I)第七版答案

理论力学(I)第七版答案
(4)研究 m ) 2
FN = (m+ m + m2 )g +α(−m r + m2r2 ) 1 11 (3) 研究 m ) 1
F 2 − m2 g = m2a2 = m2r2α T F 2 = m2 (g + r2α) T
3.动量矩守恒定律 . 常矢量; 若 ∑MO(F(e) ) ≡ 0,则 LO =常矢量; 常量。 若 ∑Mz (F (e) ) ≡ 0,则 Lz =常量。
J。
6. 查表法 物体 的形 状 细直 杆
均质物体的转动惯量 简 图 转动惯量 惯性半 径
m 2 JzC = l 12 m Jz = l 2 3
体积
ρz =
C
l 2 3
l ρz = 3
薄壁 圆筒
Jz = mR2
ρz = R
2R π lh
圆柱
1 JZ = mR2 2 Jx = Jy =
ρz =
R 2
2
(2) 均质细直杆对一端的 ) ml2 转动惯量
3
(3) 均质细直杆对中心轴 ) ml2 的转动惯量
12
4.组合法 . 例10:已知杆长为 质量为1 ,圆盘半径为 : l m d 质量为 m 。 2 求: JO。
解: JO = JO杆 + JO盘
1 2 JO杆 = ml 3
1 d 2 d 2 JO盘 = m ( ) + m (l + ) 2 2 2 2 2 3 2 2 = m2 ( d + l + ld) 8 1 2 3 2 2 JO = ml + m2 ( d +l +ld) 1 3 8
J z = J zC + md2
例11-9:均质细直杆,已知 :均质细直杆, 求:对过质心且垂直于杆的 解:对一端的 z 轴,有

哈尔滨工业大学 第7版 理论力学 第4章 课后习题答案

哈尔滨工业大学 第7版 理论力学 第4章 课后习题答案

解 (1)方法 1,如图 4-6b 所示,由已知得
Fxy = F cos 60° , Fz = F cos 30°
F = F cos 60°cos 30°i − F cos 60°sin 30° j − F sin 60°k = 3 i − 1 Fj − 3 Fk 44 2
41
理论力学(第七版)课后题答案 哈工大.高等教育出版社
A
F
β
MA
C
MB
F
10 N
β M θ − 90° C
MB
(a)
(b)
(c)
图 4-11
解 画出 3 个力偶的力偶矩矢如图 4-11b 所示,由力偶矩矢三角形图 4-11c 可见
MC =
M
2 A
+
M
2 B
=
3 0002 + 4 0002 = 5 000 N ⋅ mm
由图 4-11a、图 4-11b 可得
3 = 250 N 13
FRz = 100 − 200 ×
1 = 10.6 N 5
M x = −300 ×
3 × 0.1 − 200 × 1 × 0.3 = −51.8 N ⋅ m
13
5
M y = −100 × 0.20 + 200 ×
2 × 0.1 = −36.6 N ⋅ m 13
M z = 300 ×
z
F45° F3 F3′ B
F2A
E
F1
C
F5
F6
F F4 45°
D
y
K x
M
(a)
(b)
图 4-9
解 (1) 节点 A 为研究对象,受力及坐标如图 4-9b 所示

理论力学(哈工第七版) 课后练习答案 第三部分

理论力学(哈工第七版)  课后练习答案 第三部分
O M
A
ϕ
O
r ϕ
M
W=

∫ 4ϕ dϕ + (m
0
− mB ) g ⋅ 2π r
A B
A mAg
= 8π 2 + (mA − mB ) g ⋅ 2π r = 8π 2 + 1× 9.8 × 2π × 0.5 = 110 (J)
B
mBg
(a)
(b)
7
12-4 图示坦克的履带质量为 m,两个车轮的质量均为 m1。车轮被看成均质圆盘,半径为 R, 两车轮间的距离为 πR。设坦克前进速度为 v,计算此质点系的动能。 解:系统的动能为履带动能和车轮动能之和。将履带分为四部 分,如图b 所示。履带动能:
O
P2 P aB − 1 a A = FN − P 1−P 2 g g
其中, a A = a , aB = 解得
A
a 2 1 (2 P 1−P 2 )a 2g
B
(a)
FN = P 1+P 2 −
v FN
O
v P 1
A
v aA
v aB B
v P2
(b)
11-1 质量为 m 的点在平面 Oxy 内运动,其运动方程为

G1
320
B C
SB
S A = 170 mm S B = 90 mm
(b)
2
10-12 图示滑轮中,两重物 A 和 B 的重量分别为 P1 和 P2。如物体 A 以加速度 a 下降, 不计滑轮质量,求支座 O 的约束力。 解:对整体进行分析,两重物的加速度和支座 O 的约束力如图b 所示。由 动量定理知:
整体受力和运动分析如图b因为0xf所以x方向系统守恒有21cos0brbmvmvv??解得121cosbrmmvvm1所以该系统动能为设此时三棱柱a沿三棱柱b下滑的距离为s则其重力作的功为1sinwmgs??系统动能22b211221sin12cosmmtmmvm由系统动能定理tw即1sinwmgs??上式对时间求导并注意到rdsdtv整理后得22112121sinsincosbbrmmmmvamgvm?????得2b2a212b2b2r2122b21122

哈尔滨工业大学 第七版 理论力学.13

哈尔滨工业大学 第七版 理论力学.13

1 2 T履 = ∑ mi vi = TI + TII + TIII + TIV 2
D II A
(a) 图 13-3
IV
2v
C
ω
v
III
Iv=0
(b)
B
由于 v1 = 0, vIV = 2v ,且由于每部分履带长度均为π R ,因此
mI = mII = mIII = mIV = TI =
m 4
1 2 mI vI = 0 2 1 1 m m 2 TIV = mIV v IV = × (2v) 2 = v 2 2 2 4 2 m m 2 II、III 段可合并看作 1 滚环,其质量为 ,转动惯量为 J = R ,质心速度为 v,角速度 2 2 v 为 ω = ,则 R 1 m 1 mv 2 1 m 2 v 2 m 2 TII + TIII = ⋅ v 2 + Jω 2 = + ⋅ R ⋅ 2 = v 2 2 2 4 2 2 2 R m m T履 = 0 + v 2 + v 2 = mv 2 2 2
理论力学(第七版)课后题答案 哈工大.高等教育出版社
第 13 章 动能定理
13-1 如图 13-1a 所示,圆盘的半径 r = 0.5 m,可绕水平轴 O 转动。在绕过圆盘的绳上 吊有两物块 A、B,质量分别为 mA = 3 kg,mB = 2 kg。绳与盘之间无相对滑动。在圆盘上作 用 1 力偶, 力偶矩按 M = 4ϕ 的规律变化 (M 以 N ⋅ m 计, ϕ 以 rad 计) 。 求由 ϕ = 0到ϕ = 2π 时,力偶 M 与物块 A,B 重力所作的功之总和。
第 2 阶段 :系统通过搁板继续运动 x2 距离后静止。由动能定理

理论力学第七版课后习题答案

理论力学第七版课后习题答案

理论力学第七版课后习题答案第一章: 引言习题1-11.问题描述:给定物体的质量m=2kg,加速度a=3m/s^2,求引力F。

2.解答:根据牛顿第二定律F=ma,其中m表示物体的质量,a表示物体的加速度。

代入已知值,可求得F=6N。

习题1-21.问题描述:给定物体的质量m=5kg,引力F=20N,求加速度a。

2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=4m/s^2。

第二章: 运动的描述习题2-11.问题描述:一个物体以恒定速度v=10m/s匀速直线运动,经过t=5s,求物体的位移。

2.解答:位移等于速度乘以时间,即s=vt。

代入已知值,可得s=50m。

习题2-21.问题描述:一个物体以初始速度v0=5m/s匀加速直线运动,加速度a=2m/s^2,经过t=3s,求物体的位移。

2.解答:由于物体是匀加速直线运动,位移可以通过公式s=v0t+0.5at^2计算。

代入已知值,可得s=(53)+(0.52*3^2)=45m。

第三章: 动力学基础习题3-11.问题描述:一个物体质量为m=4kg,受到的力F=10N,求物体的加速度。

2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2.5m/s^2。

习题3-21.问题描述:一个物体质量为m=3kg,受到的力F=6N,求物体的加速度。

2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。

第四章: 动力学基本定理习题4-11.问题描述:一个物体质量为m=8kg,受到的力F=16N,求物体的加速度。

2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。

习题4-21.问题描述:一个物体质量为m=6kg,受到的力F=12N,求物体的加速度。

2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。

以上是理论力学第七版课后习题的答案。

希望能对你的学习有所帮助!。

哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案

哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案

tan θ =
r sin ϕ h − r cos ϕ
sin ω 0 t h − cos ω 0 t r ]
图 7-5
注意到 ϕ = ω 0 t ,得
θ = tan −1 [
(2)
自 B 作直线 BD 垂直相交 CO 于 D,则
tan θ =
r sin ω 0 t BD = DO h − r cos ω 0 t
80
理论力学(第七版)课后题答案 哈工大.高等教育出版社
7-6 如图 7-6 所示,摩擦传动机构的主动轴 I 的转速为 n = 600 r/min 。轴 I 的轮盘与轴Ⅱ的轮 盘接触,接触点按箭头 A 所示的方向移动。距离 d 的变化规律为 d = 100 − 5t ,其中 d 以 mm 计, t 以 s 计。已知 r = 50 mm , R = 150 mm 。求: (1)以距离 d 表示轴 II 的角加速度; (2)当 d = r 时,轮 B 边缘上 1 点的全加速度。 解 (1)两轮接触点的速度以及切向加速度相同
∠CBO =
π , x B = 2 R cos ϕ 2 & B = 2 R + vt (↓) x B (0) = 2 R , x
(2 R) 2 − x B
2
vt vt 1 2 − 2 2 − ( )2 R R 2R 2 v v , vC = 2 Rω = − ω =− 2 R sin ϕ sin ϕ sin ϕ = =
两边对时间 t 求导:
vt l
& sec 2 ϕ = , ϕ & = cos 2 ϕ , ϕ && = − ϕ
当ϕ =
v l
v l
2v & cos ϕ sin ϕ ⋅ ϕ l

理论力学(百度文库)-第七版答案-哈工大

理论力学(百度文库)-第七版答案-哈工大

哈工大理论力学(I)第7版部分习题答案1-2两个老师都有布置的题目2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3以下题为老师布置必做题目1-1(i,j), 1-2(e,k)2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-47-9, 7-10, 7-17, 7-21, 7-268-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-611-5, 11-1512-10, 12-15, 综4,15,16,18 13-11,13-15,13-166-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。

在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。

设运动开始时,角0=?。

求运动过程中角?与时间的关系,以及点B的轨迹方程。

10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。

两三棱柱的横截面均为直角三角形。

三棱柱A 的质量为mA三棱柱B 质量mB的 3 倍,其尺寸如图所示。

设各处摩擦不计,初始时系统静止。

求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。

11-4解取A、B 两三棱柱组成1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。

由于在水平方向无外力作用,且开始时系统处于静止,故系统质心位置在水平方向守恒。

设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c所示。

两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。

求它从铅直位无初速地倒下时,端点A相对图b所示坐标系的轨迹。

哈尔滨工业大学理论力学课后习题答案

哈尔滨工业大学理论力学课后习题答案

----------------------------------------理论力学(第七版)课后题答案哈工大 . 高等教育出版社--------------------------------第 1章静力学公理和物体的受力分析1-1 画出下列各图中物体 A ,ABC 或构件 AB ,AC 的受力图。

未画重力的各物体的自重不计,所有接触处均为光滑接触。

FN1 APFN 2(a)(a1)FTAPFN(b)(b1)A FN1P BFN 3FN 2(c)(c1)FTBFAyP1AP2F Ax(d) (d1)FA FBFA B (e) (e1)1理论力学(第七版)课后题答案哈工大 . 高等教育出版社qFFAy F BA FAxB(f) (f1)FBC F CF A A(g)(g1)FAy FCCA FAx BP1 P2(h)(h1)BFCF CDFAxAF Ay(i) (i 1)(j)(j1)BF B FCPF AyF AxA(k)(k1) 2理论力学(第七版)课后题答案哈工大 . 高等教育出版社FCA FABCF ACAF ABFACBA PFBA(l) (l1)(l2) (l3) 图1-11-2 画出下列每个标注字符的物体的受力图。

题图中未画重力的各物体的自重不计,所有接触处均为光滑接触。

B F N1C FN 2F N P2(a)(a1)F N1BFN1C F N 2FNP2PP1FAyF Ay1FAxFAxA A(a2)(a3)FN1APBFN31P2FN 2 (b)(b1)F NA B FN3P2PF N F N 21(b2) (b3)3理论力学(第七版)课后题答案哈工大 . 高等教育出版社(c)FTDFN2 BP1F N1(c2)(d)F AyA FAxCD FN2B P2P1FN1(c1)F AyA FAxF TP 2(c3)F AyFBqAF Ax C DBFC(d1)FAy FDyqqF BDB F FDxDy (d3)(e)FC(d2)F AyqFAxA BFCyPC FCx(e1)(f)F AyFAxAF1FAyA FBqBxB FBx FCxC PFByFBy FCy(e2) (e3)CF2 FByFAx FBxB(f1)4理论力学(第七版)课后题答案哈工大 . 高等教育出版社F1FAyAFAyF AxAFCxCFCyF Ax(f2)(g)FTD CFCx(g2)CFCyFAyA FAxF BBDF 1FCxF2F ByFBxB(f3)F BCBP(g1)F CyF TC FCxP(g3)F Cy FB(h)FAyAF BBFAx(h1)AF AxFAyCF2FCx B(h2)(i)FCyFCx CF CyA F EFOyF FOxC DFCx EO B(i1) (i2)5理论力学(第七版)课后题答案 哈工大 . 高等教育出版社A AF AxFF AyF E E C DFOyFBy FB yO FOxFBx F BxB B(i3) (i4)FAyD EFCxA F Ax CC FBy F TH FBy FCy BPBFBxFB x(j )(j1) (j2)FAy F DyFDF T2F T 2 E FAx CF C x EyF Dx F Ex A D FDx E FF T1F Ey F T3ExF Dy F (j3)(j4)(j5)CyEF F B D CEF CxB F CyF(k1)DE(k)FF BFCBFCxE CFCy90FD D DEFAy AyFA FAx A FAx(k2) (k3)6理论力学(第七版)课后题答案哈工大 . 高等教育出版社AF A(l)(l1) F2F D DEFE(l3)或F 1 F B FDy F Dy F 2F DxB D F Dx DC EF ExFC F Ey(l2) ’(l3) ’F AD(m)F ADDE HF B F1FF DBBB DCF C(l2)F1 F2DBA C EFA FC FE(l4)F1F2DBAC E FExF A F C F Ey(l4) ’AFCyFCxCF1B(m1)FADF2AF E FH D FAD(m2) (m3)7理论力学(第七版)课后题答案哈工大 . 高等教育出版社A FN AF kFOyO (n)FN1B D qF BF N 2FN3(n2)BF AA(o)BFN B FOx B(n1)FD FFCFEF GG C E(o1)FB DF BD FA FA F BF CFD C(o2) (o3)图 1-2F ED F F F(o4)E8理论力学(第七版)课后题答案 哈工大 . 高等教育出版社 第2章 平面汇交力系与平面力偶系2-1 铆接薄板在孔心 A , B 和 C 处受 3 个力作用,如图 2-1a 所示。

理论力学(第七版)2

理论力学(第七版)2

va =

va = 2 aω cos 30° aω 1 = 2 aω
ω=
ω1
2
= 1.5 rad/s (逆)
(b)套筒 A 为动点,动系固结于杆 O1 A ;绝对运动为绕 O2 圆周运动,相对运动为沿
va = O2 A ⋅ ω1 = 2aω cos 30° , ve = O1 Aω1 = aω 1 ve aω 1 由图 b1: v a = = cos30° cos30° aω 1 得 2aω cos 30° = cos 30° 2 ω = ω 1 = 2 rad/s (逆) 3 8-8 图 8-8a 所示曲柄滑道机构中,曲柄长 OA = r ,并以等角速度 ω 绕轴 O 转动。 装在水平杆上的滑槽 DE 与水平线成 60° 角。求当曲柄与水平线的交角分别为 ϕ = 0° , 30° , 60° 时,杆 BC 的速度。
y
如图 8-9a 所示,摇杆机构的滑杆 AB 以等速 v 向上运动,初瞬时摇杆 OC 水平。
摇杆长 OC = a ,距离 OD = l 。求当 ϕ =
va ve
C
vr
O
(a) 图 8-9
ϕ
l
(b)
A D
v
x
解 套筒 A 为动点,动系固结于杆 OC;绝对运动为上下直线,相对运动沿 OC 直线, 牵连运动为绕 O 定轴转动。速度分析如图 8-9b 所示,设杆 OC 角速度为 ω ,其转向逆时 针。由题意及几何关系可得 va = v (1)
ve1 − v r1 cos 30° = ve2 b b ω − ω ve1 − ve2 cos30° 1 cos30° 2 4b = = (ω 1 − ω 2 ) v r1 = cos30° cos30° 3 式(3)向 v r2 方向投影,得 1 2b (ω 1 − ω 2 ) = 0.4 m/s v r2 = v r1 = 2 3 0.1 ve2 = × 3 = 0.346 m/s 3 2 ⎧v = v 2 + v 2 = 0.529 m/s e2 r2 ⎪ a 所以 ⎨ ve2 0.346 = ,θ = 40.9° ⎪tan θ = 0 .4 v r2 ⎩

哈尔滨工业大学 第七版 理论力学.14

哈尔滨工业大学 第七版 理论力学.14
将 FI 值代入,得
m2 g )l sin ϕ − FI l cos ϕ = 0 2
ω2 =
2m1 + m2 g tan ϕ 2m1 (a + l sin ϕ )
14-5 曲柄滑道机械如图 14-5a 所示,已知圆轮半径为 r,对转轴的转动惯量为 J,轮上 作用 1 不变的力偶 M,ABD 滑槽的质量为 m,不计摩擦。求圆轮的转动微分方程。
∑ M x = 0, M − 2 FI ⋅ l cos ϕ = 0
其中 代入前式得
FI = m ⋅ l sin ϕ ⋅ ω 2
209
理论力学(第七版)课后题答案 哈工大.高等教育出版社
k (ϕ − ϕ 0 ) − 2 ⋅ m ⋅ l sin ϕ ⋅ ω 2 ⋅ l cos ϕ = 0
ω=
k (ϕ − ϕ 0 ) ml 2 sin 2ϕ
y
m2 g 2
FAy
A FI
FAx
x
ϕ
m1 g
(a) 图 14-4
(b)

取调速器外壳为研究对象,由对称可知壳与圆盘接触处所受约束力为 FN = m2 g/2
取左圆盘为研究对象,受力如图 14-4b 所示,惯性力为
FI = m1 ⋅ (a + l sin ϕ )ω 2
由动静法
∑ M A = 0, (m1 g +
FI
a
FI
a
FS FN mg
(a) (b) 图 14-1
A FN mg
(c)
FS
解 取圆柱形零件为研究对象,作受力分析,并虚加上零件的惯性力 FI。 (1)零件不滑动时,受力如图 14-1b 所示,它满足以下条件: 摩擦定律
Fs ≤ f s FN

理论力学(第七版)思考题答案

理论力学(第七版)思考题答案

理论力学思考题答案1-1 (1)若F 1=F 2表示力,则一般只说明两个力大小相等,方向相同。

(2)若F 1=F 2表示力,则一般只说明两个力大小相等,方向是否相同,难以判定。

(3)说明两个力大小、方向、作用效果均相同。

1-2 前者为两个矢量相加,后者为两个代数量相加。

1-3 (1)B 处应为拉力,A 处力的方向不对。

(2)C 、B 处力方向不对,A 处力的指向反了。

(3)A 处力的方向不对,本题不属于三力汇交问题。

(4)A 、B 处力的方向不对。

1-4 不能。

因为在B 点加和力F 等值反向的力会形成力偶。

1-5 不能平衡。

沿着AB 的方向。

1-7 提示:单独画销钉受力图,力F 作用在销钉上;若销钉属于AC ,则力F 作用在AC 上。

受力图略。

2-1 根据电线所受力的三角形可得结论。

2-2不同。

2-3(a )图和(b )图中B 处约束力相同,其余不同。

2-4(a )力偶由螺杆上的摩擦力和法向力的水平分力形成的力偶平衡,螺杆上的摩擦力与法向力的铅直方向的分力与N F 平衡。

(b )重力P 与O 处的约束力构成力偶与M 平衡。

2-5可能是一个力和平衡。

2-6可能是一个力;不可能是一个力偶;可能是一个力和一个力偶。

2-7一个力偶或平衡。

2-8(1)不可能;(2)可能;(3)可能;(4)可能;(5)不可能;(6)不可能。

2-9主矢:''RC RA F F =,平行于BO ;主矩:'2C RA M aF =,顺时针。

2-10正确:B ;不正确:A ,C ,D 。

2-11提示:OA 部分相当一个二力构件,A 处约束力应沿OA ,从右段可以判别B 处约束力应平行于DE 。

3-13-2 (1)能;(2)不能;(3)不能;(4)不能;(5)不能;(6)能。

3-3 (1)不等;(2)相等。

3-4 (1)'()B Fa =-M j k ;(2)'RC F =-F i ,C Fa =-M k 。

理论力学(哈工第七版) 课后练习答案 第二部分

理论力学(哈工第七版) 课后练习答案 第二部分

5-1 图示曲线规尺的各杆, 长为OA =AB =200 mm ,CD = DE = AC = AE = 50mm 。

如杆 OA 以等角速度 rad/s 5πω=绕 O 轴转动,并且当运动开始时,杆 OA 水平向右,求尺上点 D 的运动方程和轨迹。

解:如图所示 ∠AOB =ωt ,则点 D 坐标为cos D x OA t ω=⋅sin 2sin D y OA t AC t ωω=⋅−⋅代入已知数据,得到点 D 的运动方程为200cos 5D x t π=× 200sin250sin 55100sin 5D y t t tπππ=×−××=×把以上两式消去 t 得点 D 轨迹方程22221200100x y += 即,D 点轨迹为中心在(0, 0),长半轴为0.2 m ,短半轴为0.1 m 的椭圆。

6-4 机构如图所示,假定杆AB 以匀速v 运动,开始时0ϕ=。

求当4πϕ=时,摇杆OC 的角速度和角加速度。

解:依题意,在0ϕ=时,A 在D 处。

由几何关系得tan vt l ϕ=杆OC 的运动方程为arctanvt lϕ= 角速度222vll v tωϕ==+& 角加速度322222()v lt l v t αϕ==+&&当4πϕ=时,vt l =。

将vt l =代入上二式得 2v lω=222v lα=另解:几何关系 tan vtlϕ=两边对t 求导,可得 2sec v l ϕϕ=& 即 2cos v l ϕϕ=& ;再求导,得 2cos sin v l ϕϕϕϕ=−⋅&&& ,将4πϕ=时,vt l=代入上二式得2vlωϕ==& 222v lαϕ==&&6-5 如图所示,曲柄 CB 以等角速度0ω绕轴 C 转动,其转动方程为0t ϕω=。

滑块 B 带动摇杆 OA 绕轴 O 转动。

哈工大理论力学(I)第七版答案、高等教育出版社出版

哈工大理论力学(I)第七版答案、高等教育出版社出版

哈工大理论力学(I)第7版部分习题答案1-2两个老师都有布置的题目2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3以下题为老师布置必做题目1-1(i,j), 1-2(e,k)2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-47-9, 7-10, 7-17, 7-21, 7-268-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-611-5, 11-1512-10, 12-15, 综4,15,16,18 13-11,13-15,13-166-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。

在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。

设运动开始时,角0=?。

求运动过程中角?与时间的关系,以及点B的轨迹方程。

10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。

两三棱柱的横截面均为直角三角形。

三棱柱A 的质量为mA三棱柱B 质量mB的 3 倍,其尺寸如图所示。

设各处摩擦不计,初始时系统静止。

求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。

11-4解取A、B 两三棱柱组成1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。

由于在水平方向无外力作用,且开始时系统处于静止,故系统质心位置在水平方向守恒。

设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c所示。

两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。

求它从铅直位无初速地倒下时,端点A相对图b所示坐标系的轨迹。

理论力学答案 第七版

理论力学答案 第七版
(k) 2
P FAx
(k1)
理论力学(第七版)课后题答案 哈工大.高等教育出版社
FCA
C A
FAB
′ FAC ′ FAB
A
FAC
B
FBA
(l)
(l1) 图 1-1
(l2)
P (l3)
1-2 画出下列每个标注字符的物体的受力图。 题图中未画重力的各物体的自重不计, 所 有接触处均为光滑接触。
C
FN 2
因对称
= 2 000 N
FT B = FT A = 2 010 N
2-7 如图 2-7a 所示液压夹紧机构中,D 为固定铰链,B,C,E 为活动铰链。已知力 F, 机构平衡时角度如图 2-7a,求此时工件 H 所受的压紧力。
y
y
y
F FN B FBC
′ FBC
θ
FCD x
′ FCE
θ
E
FN E
θ
B
C
FT A
y
10 m
10 m P/2 O
θ
(a) 图 2-6
D
C
FT C x
(b)
解 本题为悬索问题,这里采用近似解法,假定绳索荷重均匀分布。取 AC 段绳索为研 究对象,坐标及受力如图 2-6b 所示。图中:
W1 =
由平衡理论得
P = 200 N 2
(1)
∑ Fx = 0, FT C − FT A cosθ = 0
FE
F
D
C
O (i1)
E
B
(i2)
(i)
5
理论力学(第七版)课后题答案 哈工大.高等教育出版社
A
′ FAx
A
F C

哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案

哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案


设轮缘上任 1 点 M 的全加速度为 a,切向加速度 a t = rα ,法向加速度 a n = ω r ,如图
2
7-11b 所示。
tan θ =

α=
dω , θ = 60° 代入上式,得 dt
at α = 2 an ω
dω tan 60° = dt2
ω
分离变量后,两边积分:
∫ω

ω
0

ω
2
=∫
⎤ ⎡ ⎥ ⎢ sin ω t 0 θ = tan −1 ⎢ ⎥ ⎢ h − cos ω 0 t ⎥ ⎥ ⎢ ⎦ ⎣r

50 π ⋅ 600 100π r ω1 = rad/s ⋅ = 100 − 5t 30 10 − 0.5t d dω 5 000 π d ⎛ 1 000π ⎞ α2 = 2 = ⎜ ⎟= dt dt ⎝ 100 − 5t ⎠ (100 − 5π )2
故得
h1 =
h4 = 2 mm 6
图 7-7
7-8 如图 7-8 所示,纸盘由厚度为 a 的纸条卷成,令纸盘的中心不动,而以等速 v 拉纸条。求 纸盘的角加速度(以半径 r 的函数表示) 。 解 纸盘作定轴转动,当纸盘转过 2π rad 时半径减小 a。设纸盘转过 dθ 角时半径增加 dr ,则
dθ =
y
B
t aB
α j
O
vA x
ω
(a) 图 7-12
aC
(b)
i 45° A n
C
t aC

由图 7-12b 得出
84
理论力学(第七版)课后题答案 哈工大.高等教育出版社
v A = 0.2 j m/s , v A = ω × Ri , ω × 0.1i = 0.200 j , ω = 2k ,

哈尔滨工业大学 第七版 理论力学11

哈尔滨工业大学 第七版 理论力学11

上式代入式(4)得
FN = 4mB g − mB
11-10 如图 11-10a 所示,质量为 m 的滑块 A,可以在水平光滑槽中运动,具有刚性系 数为 k 的弹簧 1 端与滑块相连接,另 1 端固定。杆 AB 长度为 l,质量忽略不计,A 端与滑 块 A 铰接,B 端装有质量 m1,在铅直平面内可绕点 A 旋转。设在力偶 M 作用下转动角速度 ω 为常数。求滑块 A 的运动微分方程。
质量为 m2 的小车 D,由绞车拖动,相对于平台的运动规律为 s = 不计绞车的质量,求平台的加速度。
1 2 bt ,其中 b 为已知常数。 2
m2 g
y
S D
A
vr
m1 g FN
B
ω
v
(a) 图 11-8
x
(b)

受力和运动分析如图 11-8b 所示
& = bt vr = & s ar = & s& = b a Da = a e + a r = a AB + a r a Da = ar − a AB m2 (a r − a AB ) − m1a AB = F F = f (m1 + m2 ) g
1
(
)
开伞后,他受重力 mg 和阻力 F 作用,如图 11-2 所示。取铅直轴 y 向下为正, 根据动量定理有
mg y
图 11-2
mv 2 − mv1 = I y = (mg − F )t
由题知:当 t=5 s 时,有 v2=4.3 m/s 即
60 × (4.3 − 44.3) = (60 × 9.8 − F ) × 5
棱柱 B 接触水平面时系统质心坐标
a b ⎤ ⎡ m A (l − ) + m B ⎢l − (a − )⎥ 3 3 ⎦ 3(m A + m B )l − a (m A + 3m B ) + m B b ⎣ ′ = xC = m A + mB 3(m A + m B )

哈尔滨工业大学 第七版 理论力学12

哈尔滨工业大学 第七版 理论力学12

求飞轮的转动惯量和轴承的摩擦力矩。
Mf
ω
FAx
A
FAy
m1 g
(a)
(b)
图 12-8
解 取飞轮 A 及重物为质点系,设摩阻力偶矩为 Mf,飞轮转动惯量为 JA,如图 12-8b
所示。根据对轴 A 的投影式动量矩定理有
dLA dt
=
−M f
+ m1gR , LA
=
J Aω
+ m1ωR2
两边积分得
(J A + m1R2 )dω = (M f +m1gR)dt
LO = m ⋅ vA ⋅ 2R + J Aωa
=
m ⋅ 2RωO
⋅ 2R +
1 mR2 2
⋅ (ωO
+ ωr )
= 5ωOmR2
=
20
kgm 2 /s
156
理论力学(第七版)课后题答案 哈工大.高等教育出版社
(3)在图 12-2c1 中,轮 A 绕 O 作圆周曲线平移
LO = m ⋅ 2RωO ⋅ 2R + J Aωa
12-10 如图 12-10 所示离心式空气压缩机的转速 n = 8 600 r/min,体积流量 qV = 370 m3/min,第 1 级叶轮气道进口直径为 D1 = 0.355 m,出口直径为 D2 = 0.6 m。气流进口绝对
速度 v1 = 109 m/s,与切线成角θ1 = 90° ;气流出口绝对速度 v2 = 183 m/s,与切线成角
(a)
(b)
图 12-4
解 以人和圆盘为质点系,由于作用于系统的外力(重力和轴 O 的约束力)对轴 O 的
矩均为零,所以人和圆盘组成的系统对轴 O 的动量矩守恒。设人在盘上绕轴 O 顺时针走圆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3-4 在图示刚架中,已知q =3kN/m ,F 可=62kN ,M =10kN ⋅m ,不计刚架自重。

求固
定端A 处的约束反力。

【知识要点】 平面的任意力系的平衡方程及应用,单个物体的平衡问题
【解题分析】 本题应注意固定端A 处的受力分析,初学者很容易丢掉约束力偶。

【解答】 以刚架为研究对象,受力如图。

题3-4图
∑=-⨯+=045cos 42
1,00F q F F Ax x ∑=-=045sin ,00F F F Ay y
∑=⨯+⨯--⨯⨯-
=0445cos 345sin 3
4421,0)(00F F M q M F M A A 解得 F A x =0, F A y =6kN, M A =m kN ⋅12 3-8 如图所示,行动式起重机不计平衡锤的重为P =500kN ,其重心在离右轨1.5m 处。


重机的起重量为P 1=250kN ,突臂伸出离右轨10m 。

跑车本身重量略去不计,欲使跑车满载或空载时起重机均不致翻倒,求平衡锤的最小重量P 2以及平衡锤到左轨的最大距离x 。

题3-8图
【知识要点】 平面平行力系的平衡方程及应用,单个物体的平衡问题。

【解题分析】 本题仍为翻倒问题,存在两种临界状态。

【解答】 以起重机为研究对象,受力如图。

若满载不翻倒
0105.13)3(,0)(12=---+=∑P P F x P F M
NA B 由 F NA ≥0,得P 2(x+3)≥3250 (1) 若空载不翻倒 05.43,0)(2∑=-+=P F x P F M NB A
由 F NB ≥0得22502≤x P (2) 由式(1)、(2)得kN P P 3.3331000322≥≥即
把kN P 3.3332=代入(2)得x ≤6.75m
3-11 如图所示,组合梁由AC 和DC 两段铰接构成,起重机放在梁上。

已知起重机重P 1=50kN ,重心在铅直线EC 上,起重载荷P 2=10kN ,如不计梁重,求支座A 、B 和D 三处的约束反力。

【知识要点】 平面任意力系得平衡方程及应用,物体系得平衡问题。

【解题分析】 先研究起重机,再研究连续梁。

连续梁一般先研究附梁最后研究主梁。

【解答】 以起重机为研究对象,受力如图。

题3-11图
0512,0)(21=⨯-⨯-⨯=∑P P F F M NG F
解得 F NG =50kN
以梁CD 为研究对象,受力如图。

016,0)(=⨯'-⨯=∑H G ND C F F F M
解得 F ND =8.33kN 以整体为研究对象,受力如图。

0,0==∑Ax x F F
∑=+--+=0,021ND NB AY y F P P F F F
∑=0)(F M A
036101212=⨯+⨯-⨯-⨯NB ND F P P F
解得 F A x =0, F A y =-48.33kN , F NB =100kN
3-21 图示构架中,物体P 重1200N ,由细绳跨过滑轮E 而水平系于墙上,尺寸如图。

不计杆和滑轮的重量,求支承A 和B 处的约束反力,以及杆BC 的内力FR 。

【知识要点】 平面任意力系得平衡方程,构架得平衡问题
【解题分析】 在求解二力杆BC 的内力时,不能以杆BC 为研究对象,因为其上没有已知条件。

本题也可以通过研究杆CDE 和滑轮求解F BC 。

【解答】 以整体为研究对象,受力如图。

)5.1(4)2(,0)(0
,00
,0=-⨯-⨯--⨯=+-==-=∑∑∑r F F r P F M F P F F F F F T Ay B NB Ay Y T Ax x = 其中 F T = P
解得 F A x =1200N ,F A y =150N, F NB =1050N
以杆ADB 为研究对象,受力如图。

0222sin ,0)(=⨯-⨯+⨯=∑Ay NB BC D F F F F M θ
解得 F BC =-1500N
3-27 在图示构架中,各杆单位长度的重量为30N/m ,载荷P =1000N ,A 处为固定端,B 、
C 、
D 处为铰链。

求固定端A 处及B 、C 铰链处的约束反力。

【知识要点】 平面任意力系的平衡方程,构架的平衡问题。

【解题分析】研究整体求得A 处反力。

再研究AC 可列三个独立方程,需补充一个方程。

研究CD ,对点D 取矩可得补充方程。

杆BD 非二力杆。

【解答】 以整体为研究对象,受力如图。

题3-27图
∑∑∑=---==----===0632,0)(0,00
,03
2321P P P M F M P P P P F F F F A A Ay y Ax x
其中 P 1 =P 3 =180N, P 2 =150N
解得 F A x =0 , F A y =1510N, M A =6840N ·m
以杆CD 为研究对象,受力如图。

∑=-+'=024,0)(1P P F F M Cy D
解得 N F Cy
455=' 以杆ABC 为研究对象,受力如图。

∑∑∑=++==++==++=0
36,0)(0,00,0Bx Ax A C Cy By Ay y Cx Bx Ax x F F M F M F F F F F F F F
解得 F B x =-2280N , F B y =-1785N, F C x =2280N 3-29 图示构架,由直杆BC 、CD 及直角弯杆AB 组成,各杆自重不计,载荷分布及尺寸如图。

销钉B 穿透AB 及BC 两构件,在销钉B 上作用一铅垂力F 。

已知q ,a ,M ,且2qa M =。

求固定端A 的约束力及销钉B 对杆BC ,杆AB 的作用力。

【知识要点】 平面任意力系得平衡方程,构架的平衡问题。

【解题分析】 求销钉B 对杆BC 和杆AB 的作用力需把销钉B 与杆AB 、BC 分离。

掌握三角形载荷的处理方法。

【解答】 以杆CD 为研究对象,受力如图。

∑=⨯
-=02,0)(a qa aF F M Cx D 解得 qa F Cx 2
1= 以杆BC 为研究对象(含销钉B ),受力如图。

题3-29图
0,0)(0,0=+-=='-=∑∑Pa a F M F M F F F BAy C Cx BAx x
解得 qa F F BAx BAx 2
1==' qa P F F BAy BAy
+==' 以弯杆AB (不含销钉B )为研究对象,受力如图。

∑∑∑=⨯⨯-⨯'+'-=='-=='-⨯+
=032
130)(0,0032
1,0a a q a F a F M F M F F F F a q F F BAx BAy A A BAy Ay y BAx Ax x , 解得 F A x =-qa ,F A y =P+qa, M A =(P+qa)a
3-35 平面桁架的支座和载荷如图所示。

ABC 为等边三角形,E 、F 为两腰中点,又AD =DB 。

求杆CD 的内力F 。

【知识要点】 平面简单桁架的内力计算。

【解题分析】 本题先以整体为研究对象求得支座B 的反力,然后用截面法截出杆FB ,求
得杆CF 内力,再以点C 为研究对象求得杆CD 内力。

【解答】 以整体为研究对象,受力如图。

题3-35图
∑=⋅⋅
-⋅=060sin 21,0)(0AB F AB F F M NB A 解得 F F FC 2
1= 以节点C 为研究对象,受力如图。

∑∑=---==-=030cos 30cos ,0030sin 30sin ,00000CF CE CD y CE CF x F F F F F F F
解得 F F F CD 866.02
3-=-= 3-38 平面桁架的支座和载荷如图所示,求杆1、2和3的内力。

【知识要点】 平面简单桁架的内力计算。

【解题分析】 截出CDF ,求得杆2,3内力。

再以点C 为研究对象,求得杆1的内力。

【解答】 由截面法截取CDF 部分,受力如图。

题3-38图
32,0)(0
,023=--==-=∑∑aF aF F M F F D x 解得 F F F 3
2,023-== 以节点C 为研究对象,受力如图。

∑=⋅-⋅=032,0)(21a F a F F M F 解得 F F 941-
=。

相关文档
最新文档