六年级奥数分数巧算学生版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数的速算与巧算
1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握
裂项技巧及寻找通项进行解题的能力
2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数
与分数的主要利用运算定律进行简算的问题. 4、通项归纳法
通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨
一、裂项综合 (一)、“裂差”型运算
(1)对于分母可以写作两个因数乘积的分数,即1
a b
⨯形式的,这里我们把较小的数写在前面,即a b <,那么有
1111()a b b a a b
=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:
1(1)(2)n n n ⨯+⨯+,1
(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:
1111
[](1)(2)2(1)(1)(2)
n n n n n n n =-⨯+⨯+⨯+++
1111
[](1)(2)(3)3(1)(2)(1)(2)(3)
n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+
裂差型裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:
常见的裂和型运算主要有以下两种形式:
(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)
2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:
裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1
(1)(1)3
n n n =-⨯⨯+
(2) 1
123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+
二、换元
解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.
三、循环小数化分数 1、循环小数化分数结论:
0.9a =; 0.99ab =
; 0.09910990
ab =⨯=; 0.990abc =,……
2、单位分数的拆分: 例:
110=11
2020+
=()()11+=()()11+=()()11+=()()
11+ 分析:分数单位的拆分,主要方法是: 从分母N 的约数中任意找出两个m 和n,有:
11()()()()m n m n N N m n N m n N m n +==+
+++=11
A B
+ 本题10的约数有:1,10,2,5.。 例如:选1和2,有:
11(12)12111010(12)10(12)10(12)3015
+==+=++++ 本题具体的解有:
1111111111011110126014351530
=+=+=+=+ 例题精讲 模块一、分数裂项
【例 1】 11111
123423453456678978910
+++⋅⋅⋅++
⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯
【巩固】 333
......1234234517181920+++
⨯⨯⨯⨯⨯⨯⨯⨯⨯
【例 2】 计算:
57
19
123234
8910
++
+
=⨯⨯⨯⨯⨯⨯ .
【解析】 如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相
同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第n 个数恰好为n 的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为23n +,所以
()()()()()()
2323
121212n n n n n n n n n +=+
⨯+⨯++⨯+⨯+⨯+,再将每一项的()()
2
12n n +⨯+与
()()
3
12n n n ⨯+⨯+分别加在一起进行裂项.后面的过程与前面的方法相同.
【巩固】 计算:57
1719
1155234345
891091011
⨯++
+
+⨯⨯⨯⨯⨯⨯⨯⨯()
【巩固】 计算:345
12
124523563467
10111314
+++
+
⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯