透射电子显微镜的原理

合集下载

透射电子显微镜步骤

透射电子显微镜步骤

透射电子显微镜步骤透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种非常重要的科学仪器,用于观察微观尺度下的物质结构。

与光学显微镜相比,透射电子显微镜使用的是电子束而不是光束,通过透射电子的原理来观察样本的巨细无遗的内部结构。

本文将介绍透射电子显微镜的工作原理和具体操作步骤。

一、透射电子显微镜的工作原理透射电子显微镜主要由电子源、电子光学系统(包括透镜和减速电势),样品台、显微镜筒和检测器等组成。

其工作原理基于透射电子的性质,通过像差补偿技术来获得清晰的图像。

首先,电子枪产生高能电子束,通过电子光学系统进行加速和聚焦。

然后,电子束通过样品台,与样品进行相互作用。

在样品内部,电子束受到不同区域的散射和吸收,产生干涉和衍射现象。

最后,通过检测器来记录电子束通过样品后的信号,形成图像。

二、透射电子显微镜的操作步骤1. 样品制备在使用透射电子显微镜之前,首先需要制备样品。

样品制备的过程包括选择合适的样品材料、切割样品成薄片或小块、样品抛光以去除表面粗糙度,并最终制备成适合透射电子显微镜观察的样本。

2. 样品放置将制备好的样品放置在透射电子显微镜的样品台上。

为保持样品的稳定性,通常会采用样品夹具或胶水等固定样品。

3. 外层真空打开透射电子显微镜的真空系统,将内部气体抽取,创造一个接近真空的环境。

这样可以防止电子束与空气中的分子发生散射。

4. 对准样品通过调整透射电子显微镜的调节杆,使电子束对准样品。

这个过程需要耐心和细致的调整,以确保电子束准确地通过样品。

5. 选择合适的倍数和放大率根据需要观察的样品特性,选择合适的倍数和放大率。

透射电子显微镜通常具有多个倍数和放大率可以选择,以满足不同的观察需求。

6. 调整对焦和亮度通过调整透射电子显微镜的对焦调节手轮,使得样品图像清晰可见。

同时,可以通过调节透射电子显微镜的亮度调节手轮,使图像亮度适宜。

7. 记录图像通过透射电子显微镜的检测器记录图像。

透射电子显微镜下的生物大分子结构解析

透射电子显微镜下的生物大分子结构解析

透射电子显微镜下的生物大分子结构解析一、透射电子显微镜技术概述透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束穿透样品的高分辨率显微镜技术。

与传统的光学显微镜相比,透射电子显微镜能够提供纳米级别的分辨率,这使得它在生物大分子结构解析领域具有独特的优势。

本文将探讨透射电子显微镜在生物大分子结构解析中的应用,分析其原理、技术特点以及在生物科学领域的重要作用。

1.1 透射电子显微镜的基本原理透射电子显微镜的工作原理基于电子光学原理,电子束通过电磁透镜聚焦,穿透样品后,由检测器接收并转换成图像。

由于电子波长远小于可见光,因此TEM能够达到比光学显微镜更高的分辨率。

1.2 透射电子显微镜的技术特点透射电子显微镜具有以下技术特点:- 高分辨率:能够达到原子级别的分辨率,适合观察生物大分子的精细结构。

- 多模式成像:除了传统的透射成像外,还可以进行扫描透射成像(STEM)和电子衍射等。

- 样品制备要求:需要将生物样品制备成极薄的切片,以确保电子束的有效穿透。

- 环境控制:需要在高真空环境下操作,以避免电子束与空气分子的相互作用。

1.3 透射电子显微镜在生物大分子结构解析中的应用透射电子显微镜在生物大分子结构解析中的应用非常广泛,包括蛋白质、核酸、病毒等生物大分子的形态学研究和结构分析。

二、生物大分子结构解析的技术和方法生物大分子结构解析是一个复杂的过程,涉及多种技术和方法。

透射电子显微镜技术在这一过程中扮演着重要角色,但也需要与其他技术相结合,以获得更全面和准确的结构信息。

2.1 样品制备技术生物大分子的样品制备是结构解析的第一步,也是关键步骤之一。

透射电子显微镜要求样品必须足够薄,通常需要使用超微切割、冷冻断裂或聚焦离子束等技术来制备样品。

2.2 高分辨率成像技术高分辨率成像是获取生物大分子结构信息的基础。

透射电子显微镜通过优化电子束的聚焦、样品的放置和成像条件,可以获得高质量的图像。

透射电子显微镜的原理

透射电子显微镜的原理

透射电子显微镜的原理透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种利用电子束来观察物质微观结构的工具。

相对于光学显微镜,TEM可以提供更高的分辨率和更大的放大倍数,因此在研究纳米尺度物体和物质的晶体结构等方面具有独特的优势。

下面将介绍TEM的原理以及工作过程。

TEM的主要组成部分包括电子源、电子光学系统、样品台以及探测器。

第一部分是电子源。

TEM使用的是热阴极电子源,通过加热材料产生的电子可以使它们跨越电子能障形成电子束。

电子束的形成需要经过一系列的加速器和准直透镜等装置,以确保电子束稳定的强度和方向。

第二部分是电子光学系统。

TEM的电子光学系统由一个或多个透镜组成,包括准直透镜、磁透镜和目标透镜。

准直透镜用于平行化电子束,磁透镜用于对电子束进行聚焦,目标透镜用于调整电子束的焦距。

这些透镜的组合可以将电子束聚焦到非常小的尺寸上,从而实现高分辨率的成像。

第三部分是样品台。

样品台是放置待观察样品的平台,可以通过控制样品的位置、倾斜角度等参数来调节观察角度和焦距。

第四部分是探测器。

探测器是接收和记录电子束穿过样品时所发生的相互作用的装置,常用的探测器包括像差探测器(Diffraction Contrast Detector)和投影光学探测器(Projection Optics Detector)。

像差探测器可以测量样品中的晶体缺陷和晶体结构,而投影光学探测器可以获得样品的原子分布图像。

TEM的工作过程如下:首先,样品被制成非常薄的切片,并被放置在样品台上。

然后,电子束由电子源发出,并通过光学系统的透镜进行聚焦。

接下来,聚焦的电子束穿过样品,并与样品中的原子和分子发生相互作用。

这种相互作用包括电子-电子相互作用、电子-晶格相互作用和电子-原子核相互作用。

然后,电子束到达探测器,根据不同的探测器可以得到不同的信息。

像差探测器可以根据电子束的衍射来获得样品中的晶体结构信息,而投影光学探测器则可以获得样品的原子分布图像。

透射电镜结构原理及明暗场成像

透射电镜结构原理及明暗场成像

透射电镜结构原理及明暗场成像透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束来观察物质微观结构的仪器。

与光学显微镜相比,透射电镜具有更高的分辨率和更强的放大能力。

其结构原理主要包括电子源、透射电子束、样品与透射电镜之间的相互作用、透射电镜成像系统。

1.电子源:透射电子显微镜主要使用热电子发射阴极作为电子源。

通常使用钨丝发射、氧化物表面发射或冷钨阴极等方式来产生电子束。

2.透射电子束:电子源发射出的电子经过一系列的电子光学透镜系统进行聚焦和调节,形成一束准直的电子束。

透射电子束的能量通常为几千伏到几十万伏之间,能量越高,穿透力越强。

3.样品与透射电镜之间的相互作用:透射电子束通过样品后,会与样品中的原子和分子发生相互作用。

这些相互作用包括散射、散射衍射和吸收。

这些相互作用使得电子束的方向、速度、能量等发生变化。

透射电子显微镜中的明暗场成像原理如下:1.明场成像:在明场条件下,样品中的透射电子束被物镜聚焦,形成一个清晰的像。

物体的亮度取决于电子束的强度,在没有样品的地方透射电子束强度最大,物体越厚,透射强度就越小,呈现出亮度变暗的效果。

明场成像适合于观察形貌和表面特性。

2.暗场成像:在暗场条件下,样品被遮挡住一部分区域,只有经过遮挡区域的电子束能够通过。

这样,只有经过散射才能把电子束引入投影镜,通过暗场的形成,呈现出样品的内部结构。

暗场成像适合于观察晶体缺陷、界面反应等。

总之,透射电子显微镜利用电子束的穿透性质,通过样品与电子束的相互作用以及透射电镜的光学系统,实现了对物质微观结构的高分辨率观察。

明暗场成像原理使得我们可以观察到不同结构和特性的样品的不同信息。

tem工作原理

tem工作原理

tem工作原理
TEM(透射电子显微镜)工作原理是利用电子束穿透物质样
本并通过透射方式形成样本的显微图像。

TEM是一种高分辨
率的显微镜,可用于观察和研究非常细小的物质结构。

TEM的基本构造包括电子源、透镜系统和探测器。

首先,电
子源产生高能电子束。

然后,电子束通过一系列透镜系统,包括电子透镜和物镜透镜,来聚焦电子束并使其通过样本。

透过样本后,电子束进入投射透镜,再通过聚焦透镜,最后进入探测器。

在通过样本的过程中,一部分电子束会被样本中的原子核、电子等相互作用而散射出去,另一部分电子束则会透过样本并与探测器相互作用。

探测器收集到的透射电子信号会转化为电信号,并通过电子学系统进行放大和处理。

最终,这些电信号被转化为图像,并通过显示器或拍摄设备进行观察和记录。

TEM的工作原理基于电子的波粒二象性,在透明薄样品的情
况下,电子束的穿透性可以用来解析样本内部的微观结构。

TEM在分辨率方面具有很高的优势,可以观察到纳米级别的
细小结构和特征。

同时,TEM还可以通过调整电子束的能量,实现不同样本性质的观测,如原子分辨率、晶体结构、元素分析等。

总而言之,TEM的工作原理是通过电子束穿透样本,利用透
射方式形成样本的显微图像。

这种技术在材料科学、生物科学和纳米科技等领域具有重要的应用价值。

透射电子显微镜的工作原理

透射电子显微镜的工作原理

透射电子显微镜的工作原理
透射电子显微镜是一种利用电子束来观察样品内部结构的仪器。

它的工作原理基于电子的波粒二象性和探测电子与样品的相互作用。

1. 电子源:透射电子显微镜的关键部件是电子源,通常使用热阴极电子枪作为电子源。

热阴极通过加热产生的电子被电场加速形成电子束。

2. 电子加速:电子束通过一系列电场透镜和加速电场,以加速电子的速度。

通常,加速电压可达到数十至数百千伏,使电子的动能足够高,以达到穿透样品的要求。

3. 样品制备:为了观察样品的内部结构,需要将样品制备成非晶质薄片,通常使用切片机或离心切片法将样品切割成纳米至微米厚度的薄片。

然后,将薄片置于透射电子显微镜的样品台上。

4. 电子束透射:加速的电子束通过样品时,会与样品内的原子发生相互作用。

其中,部分电子会被散射,部分会被吸收。

透射电子会穿过样品并保持其原有的信息。

5. 透射电子检测:透射电子进入具有电磁透镜功能的物镜透镜,物镜透镜根据透射电子的波动性将其聚焦。

透射电子经过物镜透镜后进入投影平面,通过透射电子探测器的探测,最终形成透射电子显微图像。

6. 图像处理与观察:通过对透射电子显微图像进行图像增强,噪声滤波等处理,可以进一步恢复样品的细节信息。

最后,通过观察透射电子显微图像,可以获得关于样品内部结构和原子排列的信息。

总之,透射电子显微镜利用电子的波粒二象性以及电子与样品的相互作用,通过探测透射电子形成样品内部结构的显微图像。

这种显微镜技术在材料科学、纳米科学等领域有着重要的应用价值。

透射电子显微镜的原理

透射电子显微镜的原理

透射电子显微镜的原理一、透射电子显微镜的成像原理可分为三种情况:1、吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。

样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。

早期的透射电子显微镜都是基于这种原理。

2、衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射波的振幅分布不均匀,反映出晶体缺陷的分布。

3、相位像:当样品薄至100Å以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。

二、扫描电子显微镜成像原理扫描电子显微镜通过用聚焦电子束扫描样品的表面来产生样品表面的图像。

电子与样品中的原子相互作用,产生包含关于样品的表面测绘学形貌和组成的信息的各种信号。

电子束通常以光栅扫描图案扫描,并且光束的位置与检测到的信号组合以产生图像。

扫描电子显微镜可以实现分辨率优于1纳米。

样品可以在高真空,低真空,湿条件(用环境扫描电子显微镜)以及宽范围的低温或高温下观察到。

最常见的扫描电子显微镜模式是检测由电子束激发的原子发射的二次电子。

可以检测的二次电子的数量,取决于样品测绘学形貌,以及取决于其他因素。

通过扫描样品并使用特殊检测器收集被发射的二次电子,创建了显示表面的形貌的图像。

它还可能产生样品表面的高分辨率图像,且图像呈三维,鉴定样品的表面结构。

扩展资料:在使用透视电子显微镜观察生物样品前样品必须被预先处理。

随不同研究要求的需要科学家使用不同的处理方法。

1、固定:为了尽量保存样本的原样使用戊二醛来硬化样本和使用锇酸来染色脂肪。

2、冷固定:将样本放在液态的乙烷中速冻,这样水不会结晶,而形成非晶体的冰。

这样保存的样品损坏比较小,但图像的对比度非常低。

3、脱干:使用乙醇和丙酮来取代水。

4、垫入:样本被垫入后可以分割。

5、分割:将样本使用金刚石刃切成薄片。

透射电子显微镜的原理

透射电子显微镜的原理

透射电子显微镜的原理透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种利用电子束来观察和研究物质的光学仪器。

与光学显微镜相比,透射电子显微镜具有更高的分辨率,能够观察到更小尺寸的物体和更细微的结构。

1.电子源:透射电子显微镜使用热阴极或冷场发射阴极作为电子源。

热阴极通过电子加热产生热电子,冷阴极则利用材料的特殊电子发射特性产生电子束。

2.透镜系统:透射电子显微镜使用一系列电磁透镜来控制和聚焦电子束。

其中包括准直透镜、对焦透镜、物镜透镜和投影透镜。

这些透镜通过调节电流和电压来控制电子束的聚焦和成像。

3.样品台:样品台是支撑和处理样品的平台。

它通常具有位置调节和倾斜功能,以使得样品的成像角度和位置能够被调整。

4.探测器:透射电子显微镜使用不同的探测器来测量透射电子的强度和散射电子的角度。

最常用的探测器是透射电子探测器和散射电子探测器。

5.图像显示系统:透射电子显微镜的图像显示系统通常由CCD摄像机和显示器组成。

CCD摄像机将透射电子的信号转化为电信号,并通过计算机处理后在显示器上显示。

透射电子显微镜的分辨率取决于电子波长。

与可见光相比,电子具有更短的波长,能够给出更高的分辨率。

透射电子的波长约为0.004纳米到0.1纳米,比可见光的波长小3个数量级。

因此,透射电子显微镜能够观察到比光学显微镜更小的物体和更细微的结构。

透射电子显微镜的应用广泛,包括材料科学、生物学、纳米技术等领域。

在材料科学中,透射电子显微镜可以用来观察和研究材料的晶体结构、晶格缺陷以及元素分布等。

在生物学中,透射电子显微镜可以用来观察和研究生物分子的结构和细胞的超微结构。

在纳米技术中,透射电子显微镜可以用来观察和研究纳米材料和纳米器件的性质和性能。

总而言之,透射电子显微镜通过利用电子束来观察和研究物质的原理,具有较高的分辨率和广泛的应用领域。

它在科学研究和工业生产中发挥着重要的作用,为我们提供了深入认识和理解微观世界的工具。

tem工作原理

tem工作原理

tem工作原理TEM(透射电子显微镜)是一种高分辨率的显微镜,它利用电子束而不是光束来形成显微图像。

TEM的工作原理是通过透射电子来观察样品的内部结构和组成。

下面将详细介绍TEM的工作原理及其应用。

TEM通过发射高能电子束照射样品,样品中的原子核和电子云与电子束相互作用,产生散射和吸收现象。

这些散射和吸收现象会改变电子束的方向和强度,进而形成显微图像。

TEM使用电磁透镜来聚焦电子束,使其能够穿过样品并投影在物理探测器上,从而形成高分辨率的图像。

TEM的工作原理基于电子的波粒二象性。

电子具有波动性质,其波长与其动能有关。

由于电子的波长比可见光的波长要短得多,因此TEM能够实现比光学显微镜更高的分辨率。

此外,电子束的焦点和放大倍数可以通过调整电磁透镜的参数进行控制,从而进一步提高分辨率。

TEM还可以通过使用透射电子衍射(TED)来分析样品的晶体结构。

当电子束通过晶体样品时,会发生衍射现象,形成一个衍射图样。

通过分析衍射图样,可以确定样品的晶体结构、晶格常数和晶体缺陷等信息。

TEM广泛应用于材料科学、生物学、纳米技术等领域。

在材料科学中,TEM可以用于研究材料的晶体结构、晶格缺陷、界面性质等。

在生物学中,TEM可以用于观察生物样品的细胞结构和超微结构。

在纳米技术领域,TEM可以用于研究纳米材料的形貌、尺寸和结构。

除了观察样品的结构,TEM还可以进行成分分析。

通过在TEM中加入能量色散X射线光谱仪(EDS),可以测量样品中不同元素的含量和分布。

这种组合技术被称为透射电子显微镜-能量色散X射线光谱仪(TEM-EDS)。

总结一下,TEM利用电子束来观察样品的内部结构和组成。

它的工作原理基于电子的波粒二象性,通过调整电磁透镜的参数来实现高分辨率的成像。

TEM在材料科学、生物学和纳米技术等领域有着广泛的应用,可以帮助科学家研究和理解物质的微观世界。

透射电子显微镜(TEM)的原理

透射电子显微镜(TEM)的原理
26
3)非晶态物质衍射。
典型的非晶衍射花样
27
理论准备-----电子衍射原理
电子衍射是以满足(或基本满足)布 拉格方程作为产生衍射的必要条件。它与X 射线衍射相似。
28
布拉格定律

29
倒易点阵
电子衍射斑点与晶体点阵有一定对应关系,但不是晶体 某晶面上原子排列的直观影像。这些斑点可以通过另外一个 假想的点阵很好的联系起来---倒易点阵。 可以说,电子衍射斑点就是与晶体相对应的倒易点阵中 某一截面上阵点排列的像。
短焦距强磁透镜。把经中间镜形成的二次中间像及衍 射谱投影到荧光屏上,形成最终放大的电子像及衍射谱。 它可以保持图像的清晰度不受中间镜放大倍数的影响。
16

物镜和投影镜属于强透镜,其放大倍数均为100
倍左右,而中间镜属于弱透镜,其放大倍数为0-20
倍。三级成像的总放大倍数为:
M 总 = M 物 ×M 中 ×M 投
我国电镜研制起步 较迟,1958年在长春 中国科学院光学精密 机械研究所生产了第 一台中型电镜,到 1977年生产的TEM分辨 率为0.3nm,放大倍率 为80万倍。
5
点分辨率:0.23nm
晶格分辨率:0.14nm
加速電圧:80~200kV 倍率:×50~1,500,000
日本电子公司透射电镜 JEM-2100(HR)
17
两种工作模式
成像操作 电子衍射操作
18
成像操作


当电子束透过样品后,透 射电子带有样品微区结构 及形貌信息,呈现出不同 强度,经物镜后,在像平 面上形成中间像1; 调节中间镜激磁电流,使 其物平面和物镜像平面重 合,则荧光屏上得一幅放 大像。这就是成像操作。
L1 L2

tem原理

tem原理

tem原理
TEM原理。

透射电子显微镜(Transmission Electron Microscope, TEM)是一种能够观察物质
微观结构的高分辨率显微镜,其原理基于电子的波动性和电子与物质相互作用的特性。

在TEM中,电子穿过薄样品并被聚焦成像,通过对电子的透射和散射来获取
样品的显微图像和结构信息。

TEM的工作原理可以简单概括为以下几个步骤:
1. 电子发射和加速,TEM中使用的电子源通常是热阴极或场发射阴极,通过
加速电场将电子加速到较高的能量。

2. 电子透射和散射,加速后的电子穿过样品,与样品原子核和电子云相互作用,发生透射和散射。

透射电子主要用于形成样品的显微图像,而散射电子则提供有关样品成分和结构的信息。

3. 电子成像,透射电子通过透镜系统进行成像,形成样品的显微图像。

透射电
子显微镜具有较高的分辨率,可以观察到纳米级甚至更小尺度的结构。

4. 分析和图像处理,通过对透射电子显微图像的分析和处理,可以获取样品的
晶体结构、成分分布、缺陷等信息。

在TEM的工作过程中,需要考虑到电子束的聚焦、样品的制备和处理、成像
参数的选择等因素,以获得高质量的显微图像和可靠的结构分析结果。

此外,还需要注意样品的厚度和化学成分对电子的透射和散射的影响,以避免由于样品特性造成的成像和分析误差。

总的来说,透射电子显微镜是一种非常强大的工具,能够帮助科学家和工程师
观察和研究各种材料的微观结构和性质。

通过深入理解TEM的工作原理和技术细
节,可以更好地利用这一先进的显微分析技术,推动材料科学、纳米技术、生物医学等领域的研究和应用。

透射电子显微镜 原理

透射电子显微镜 原理

透射电子显微镜原理透射电子显微镜(Transmission Electron Microscope, 简称TEM)是一种利用电子束传递样品来获得细微结构的高分辨率显微镜。

它的原理是通过在真空中加速电子,将电子束通过光学透镜系统聚焦到样品上,并通过样品的透射情况来形成图像。

TEM的关键组件包括电子源、电子透镜系统、样品台、探测器和成像系统。

电子源产生的电子束经过一系列透镜系统(包括准直透镜、磁场透镜、投影透镜等),被聚焦到样品上。

样品位于一个特殊的样品台上,可以微调样品的位置和角度。

透射电子束通过样品后,部分电子被散射、散射和吸收。

散射电子和透射电子被探测器捕捉,并转化为电信号。

TEM的成像原理基于透射电子束与样品交互作用的差异。

样品内不同的区域对电子束有不同的散射、吸收和透射能力,导致不同的强度对比。

探测器会测量透射电子的能量和强度变化,并将其转换为光学图像。

最终,通过调节透射电子束的聚焦和探测参数,可以得到具有高分辨率的样品图像。

TEM具有极高的分辨率和能够观察样品内部结构的能力。

与光学显微镜相比,TEM利用电子束的波长远小于光的波长,可以克服光学显微镜的衍射极限。

因此,TEM可以观察更小的结构和更高的放大倍数。

此外,TEM还可以通过选定区域电子衍射(Selected Area Electron Diffraction, SAED)技术来研究晶体的晶格结构和材料的晶体学性质。

综上所述,透射电子显微镜通过控制电子束的聚焦和探测参数,利用透射电子与样品相互作用的差异,获得高分辨率的样品图像。

它是研究材料科学和纳米技术的重要工具。

tem的工作原理

tem的工作原理

tem的工作原理
TEM(Transmission Electron Microscope,透射电子显微镜)
的工作原理是利用电子束的穿透性和波粒二象性,对物质的内部结构进行观察和分析。

TEM的工作原理可以概括为以下几个步骤:
1. 电子源发射电子束:TEM中通常采用热阴极或场发射阴极
作为电子源,通过加热或加电的方式产生电子束。

电子束在电子枪中发射出来,并进入加速管道。

2. 加速电子束:电子束进入加速管道后,受到静电场的加速作用,速度逐渐增加。

通常在加速管道中使用电压差使电子束加速。

3. 束缚电子进产生物质的相互作用:加速的电子束进入样品室,在进入样品之前,通过减速器减少电子束的能量,以避免对样品的损伤。

4. 物质的相互作用:电子束与样品中的物质相互作用时,发生散射、透射、吸收等过程。

散射会导致电子的偏转,通过探测器可以得到样品的散射图像信息。

5. 透射电子成像:经过样品的透射电子束会被透射电子透镜系统聚焦,进入投影平面,形成透射电子显微图像。

透射电子显微图像通过透射电子显微镜的成像系统将样品的微观结构放大到人眼可见的范围。

6. 分析和显示:透射电子显微图像通过相应的探测器进行采集和处理,利用计算机技术进行图像增强和重建,最终以图像的形式显示出来。

TEM的工作原理基于电子束的特性,能够实现对样品高分辨率的显微观测。

它在物理学、材料科学、生物学等领域有着广泛的应用,可以揭示物质的微观结构和性质,为科学研究提供了重要的工具和方法。

透射电子显微镜在纳米材料合成中的应用

透射电子显微镜在纳米材料合成中的应用

透射电子显微镜在纳米材料合成中的应用一、透射电子显微镜技术概述透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束作为照明源,通过样品的透射电子成像的高分辨率显微镜。

它在纳米材料的合成与研究中扮演着至关重要的角色。

透射电子显微镜通过电子束的高穿透力,能够观察到纳米尺度的材料结构,从而为纳米材料的合成提供了强有力的技术支持。

1.1 透射电子显微镜的基本原理透射电子显微镜的基本原理是利用电子束照射样品,电子束通过样品后,部分电子被样品吸收,部分电子透过样品并被探测器接收。

通过分析透过电子的强度和分布,可以获得样品的形貌和结构信息。

透射电子显微镜的分辨率可以达到原子级别,是研究纳米材料的理想工具。

1.2 透射电子显微镜的应用领域透射电子显微镜的应用领域非常广泛,包括但不限于材料科学、纳米技术、生物医学、化学等领域。

在纳米材料的合成中,透射电子显微镜不仅可以观察材料的形貌,还可以分析材料的晶体结构、缺陷、界面等微观特征。

二、透射电子显微镜在纳米材料合成中的应用2.1 纳米材料的形貌观察透射电子显微镜在纳米材料的形貌观察中发挥着重要作用。

通过TEM,可以直观地观察到纳米材料的形状、尺寸和分布。

例如,纳米颗粒、纳米线、纳米管等不同形态的纳米材料都可以通过TEM进行观察。

这种观察对于理解材料的合成机制和优化合成条件具有重要意义。

2.2 纳米材料的晶体结构分析纳米材料的晶体结构对其性能有着决定性的影响。

透射电子显微镜可以通过高分辨电子衍射(High-Resolution Electron Diffraction, HRED)技术,对纳米材料的晶体结构进行精确分析。

通过分析电子衍射图谱,可以获得材料的晶格参数、晶体取向等信息,从而为材料的合成和应用提供理论基础。

2.3 纳米材料的缺陷与界面研究纳米材料的缺陷和界面是影响其性能的关键因素。

透射电子显微镜可以通过高角环形暗场成像(High-Angle Annular Dark Field Imaging, HAADF)技术,对纳米材料的缺陷和界面进行高分辨率成像。

透射电镜原理

透射电镜原理

透射电镜原理
透射电镜是一种高分辨率的显微镜,它利用电子的波动性来观察物质的微观结构。

透射电镜原理基于电子的波粒二象性,因为电子具有波动性质,所以可以像光一样通过物质透射,并以相干或非相干的方式与物质相互作用。

透射电镜主要由以下几个关键部分组成:
1. 电子源:通常是热阴极或场发射枪,产生高能量的电子束。

2. 准直系统:通过透镜和光阑控制电子束的直径和角度,使其能够聚焦到样品上。

3. 样品台:支撑和定位待观察的样品。

4. 透射系统:通过样品的薄片或薄膜,将电子束透射至检测系统。

5. 检测系统:包括接收屏幕或像面,用于记录或显示透射电子在样品上的散射情况。

在透射电镜中,电子束穿过样品后与样品中的原子核和电子相互作用。

这些相互作用导致电子的散射、吸收和透射。

通过调整电子束的能量、角度和入射条件,可以获得不同的信息。

透射电子显微镜主要用于观察物质的晶格结构、原子排列、晶界、缺陷等微观结构特征。

它具有高分辨率、高放大倍数和宽广的可应用范围,对材料科学、物理学、生物学等领域的研究起到了重要的支持和推动作用。

透射电子显微镜原理

透射电子显微镜原理

透射电子显微镜原理透射电子显微镜(transmission electron microscope, TEM)是利用透射电子成像,因而要求样品极薄(加速电压100kV时,样品厚度不能超过100nm)。

其结构包括三大部分:电子学系统、真空系统和电子光学系统。

电子光学系统提供电子束,在高真空条件下照射到样品上,经过成像系统中的物镜成像,再经过中间镜和投影镜的进一步放大,获得的图像记录在CCD上。

TEM使用油扩散泵(Diffuse Pump)来实现高真空。

由于油扩散泵的启动和关闭都需要30分钟,导致TEM开机和关机都至少需要30分钟。

TEM发射出的高能电子束轰击到光路元器件上以及样品上,会产生以X-ray为主的等等其他射线辐射,因此建议孕妇等过敏性体质者尽量避免接触TEM。

由于平台现有TEM的加速电压为100kV,是一台生物电镜,因此无法满足材料科学上要求的高放大倍数(30万倍以上)、高分辨、衍射花样等实验要求,有这方面需求的科研人员请与武大、地大等单位联系。

TEM是研究结构生物学的有力工具。

除了电镜之外,现在尚没有一种仪器能使人们用肉眼直接观察到亚细胞结构、蛋白大分子(直径20nm以上)的排列结构形态。

利用电镜观察超微结构的形态和位置,可以研究解决部分形态和功能的问题。

TEM是研究超微结构必须的工具之一,但它存在一些缺点:(1)TEM的价格昂贵,维护费用及其配件、耗材都在几百甚至上千美元以上。

(2)TEM的维护和使用均要求较高的技术,也是一个精细、繁琐的过程。

TEM每3天要做一次维护和电子光路调整,每次调整和维护至少需要2个小时。

(3)TEM不能像光镜那样随时可用,受到很多限制。

TEM放大倍数有很多,再加上切片的限制,因此无法实现始终同一放大倍数的拍摄。

(4)TEM样品必须置于真空中,因此对活体标本的观察是不可能的。

(5)TEM样品取材及制备存在局限性。

TEM取材要求只有1mm3大小块状,而且观察面更小,如果把一个厚6µm的细胞核切成60nm的超薄切片,可以且100张,而一般光镜的石蜡切片厚度即为6µm。

透射显微镜的工作原理

透射显微镜的工作原理

透射显微镜的工作原理
透射电子显微镜(Transmission Electron Microscope, TEM)是
一种利用电子束传递来对样品进行观察和分析的仪器。

它在细胞生物学、材料科学等领域发挥着重要作用。

透射电子显微镜的工作原理可以分为以下几个步骤:
1. 电子源产生电子束:透射电子显微镜使用一个电子枪产生高速的电子束。

电子束首先通过专门设计的系统进行聚焦和收束,以保证电子束的直径足够小。

2. 束缚电子(束缚脱电子):电子束通过束流进样品。

所谓束缚电子指的是样品原子中的电子在电子束的作用下被激发到较高能级,这样使得它们遵循一定的路径发射出来,形成散射电子和被束囚电子。

这些束缚电子会以不同的角度散射出电子束。

3. 透射电子的形成:束囚电子的路径会受到样品物质的阻碍而改变方向,其中一部分束囚电子将经过样品而形成透射电子。

透射电子在通过样品时会和样品的原子、分子以及晶体结构发生相互作用。

4. 透射电子的收集和分析:透射电子进入显微镜的透射电子探测器,探测器会将透射电子转化为电荷信号,并将信号传递给显示屏或电子学器件。

然后根据散射模式和信号的强度,可以确定样品的结构、形态和成分。

通过透射电子显微镜,我们可以观察到极小的事物,像原子和分子,因为电子的波长比光的波长小得多。

在透射电子显微镜
中,细致的样品制备、高真空环境以及精密的光学系统都是保证获得高分辨率和清晰图像的关键。

透射电子显微镜的原理

透射电子显微镜的原理

透射电子显微镜的原理
透射电子显微镜是一种利用电子束代替可见光进行成像的显微镜。

其原理基于电子的波粒二象性及电子与物质中原子的相互作用。

透射电子显微镜的工作原理可以简要分为以下几个步骤:
1. 电子源产生电子束:透射电子显微镜中通常使用热阴极或冷阴极发射电子,通过加速电场使电子获得足够的动能,形成电子束。

2. 电子束的集束:经过加速后,电子束通过一系列的电磁透镜,如准直孔光阑、聚焦透镜等,来进行集束,使电子束尽可能的细致聚焦。

3. 电子束与样品的相互作用:电子束进入样品后,会与样品中的原子发生相互作用。

电子束与样品中的原子核和电子云之间相互散射,发生透射、散射、吸收等过程。

4. 透射电子的形成:部分电子束透过样品,形成透射电子。

透射电子的强度和分布情况受样品的厚度、结构以及样品内部的原子数密度等因素的影响。

5. 透射电子的探测与成像:透射电子通过射出样品的透射电子探测器进行探测,并转换成电信号。

利用这些信号,通过电子透射的强度和分布,可以形成对样品内部结构的显微图像。

透射电子显微镜相较于光学显微镜具有更高的分辨率,因为电子的波长比光的波长要短得多。

透射电子显微镜广泛应用于材料科学、生物学、纳米技术等领域的研究中,可以观察并研究到原子尺度的结构和细节。

透射电子显微镜原理

透射电子显微镜原理

透射电子显微镜原理
透射电子显微镜(Transmission Electron Microscope,TEM)
是利用电子束取代光束进行观察和研究物质微观结构的高分辨率显微镜。

透射电子显微镜的原理基于电子的波粒二象性。

电子具有很短的波长,远小于可见光的波长,因此可以获得更高的分辨率。

透射电子显微镜利用聚焦和成像系统将电子束聚焦到样品上,并通过样品传输的电子束进行观察。

首先,电子枪产生高能电子束,经过一系列的透镜系统,使电子束变得较为平行和聚焦。

然后,电子束直接照射在样品上。

样品是非晶态薄片或超薄金属晶片,电子束在样品中透射、发生散射或被吸收。

透射的电子被投射到一个投影和透镜系统中。

透射电子显微镜中的投影和透镜系统主要包括两个关键元素:物镜和目镜。

物镜具有较高的放大倍数,将透射的电子束转换为放大的显微图像。

目镜则进一步放大物镜所得到的显微图像,使其可以被人眼观察。

通过调整投影和透镜系统的电位差,可以控制电子束的聚焦、放大和成像效果。

同时,样品本身的性质也会影响到电子束的透射和散射行为,进而影响到显微图像的质量。

透射电子显微镜可以提供非常高的分辨率,在纳米尺度下观察和研究物质的微观结构。

它广泛应用于材料科学、生物学、纳
米技术等领域,在研究和开发新材料、探索生物分子结构以及研究纳米尺度现象方面发挥着重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

透射电子显微镜的原理XXX(大庆师范学院物理与电气信息工程学院 2008级物理学 200801071293 黑龙江大庆163712)摘要:透射电子显微镜在成像原理上与光学显微镜类似。

它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。

在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。

由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。

关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。

0引言:工业多相催化剂是极其复杂的物理化学体系。

长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。

为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。

在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。

为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。

1透射电子显微镜的定义/组成1.1定义在一个高真空系统中,由电子枪发射电子束,穿过被研究的样品,经电子透镜聚焦放大,在荧光屏上显示出高度放大的物像,还可作摄片记录的一类最常见的电子显微镜称为透射电子显微镜。

[1]1.2组成透射电子显微镜由照明系统、成像系统、记录系统、真空系统和电器系统组成。

(如图1)2透射电子显微镜的照明系统照明系统的作用是提供亮度高、相干性好、束流稳定的照明电子束。

它主要由发射并使电子加速的电子枪和会聚电子束的聚光镜组成。

图1透射电子显微镜结电子显微镜使用的电子源有两类:一类为热电子源,即在加热时产生电子;另一类为场发射源,即在强电场作用下产生电子。

为了控制由电子源产生的电子束,并将其导人照明系统,须将电子源安装在称为电子枪的特定装置内。

对热电子源和场发射源,电子枪的设计不同。

目前绝大多数透射电镜仍使用热电子发射源。

为改善阴极发射电子的稳定性,通常采用自偏压方法,即在栅极上施加比阴极负几百至近千伏的偏压,限制阴极尖端发射电子的区域。

三极电子枪本身对电子束还有一定聚焦作用。

阴极发射的电子被阳极电位加速,穿过栅极孔,在电极间的电场作用下,在栅极和阳极间会聚为尺寸为d0的交叉点。

样品上需要照明的区域大小与放大倍数有关。

放大倍数愈高,照明区域愈小,相应地要求以更细的电子束照明样品。

由电子枪直接发射出的电子束的束斑尺寸较大,相干性也较差。

为了更有效地利用这些电子,获得亮度高、相干性好的照明电子束以满足透射电镜在不同放大倍数下的需要,由电子枪发射出来的电子束还需要进一步会聚,提供束斑尺寸不同、近似平行的照明束。

这个任务通常由两个被叫做聚光镜的电磁透镜完成。

第一聚光镜通常保持不变,其作用是将电子枪的交叉点成一缩小的像,使其尺寸缩小一个数量级以上。

照明电子束的束斑尺寸及相干性的调整是通过改变第二聚光镜的激磁电流和第二聚光镜光栏孔径实现的。

为获得尽可能平行的电子束,通常要适当地减弱第二聚光镜的激磁电流。

例如拍摄衍射谱时,总是要适当减弱第二聚光镜的激磁电流,以使衍射斑更为明锐。

采用小孔径聚光镜光栏,可降低电子束的会聚角度,即增强其相干性或平行度,但同时却使得电子束流减小,图像亮度降低。

通过第一聚光镜、第二聚光镜可获得直径几个肿的近似平行电子束,相应的放大倍数范围为几千至十万倍。

此外,在照明系统中还安装有束倾斜装置,可以很方便地使电子束在2~3度的范围内倾斜,以便以某些特定的倾斜角度照明样品[例如以后将要提到的中心暗场成像时要将照明束(入射束)倾斜,使一个特定的衍射束平行于光轴]。

3成像系统透射电子显微镜的成像系统由物镜、中间镜(1、2个)和投影镜(1、2个)组成。

成像系统的两个基本操作是将衍射花样或图像投影到荧光屏上。

照明系统提供了一束相干性很好的照明电子束,这些电子穿越样品后便携带样品的结构信息,沿各自不同的方向传播(比如,当存在满足布拉格方程的晶面组时,可能在与入射束交成2q角的方向上产生衍射束)。

物镜将来自样品不同部位、传播方向相同的电子在其背焦面上会聚为一个斑点,沿不同方向传播的电子相应地形成不同的斑点,其中散射角为零的直射束被会聚于物镜的焦点,形成中心斑点。

这样,在物镜的背焦面上便形成了衍射花样。

而在物镜的像平面上,这些电子束重新组合相干成像。

通过调整中间镜的透镜电流,使中间镜的物平面与物镜的背焦面重合,可在荧光屏上得到衍射花样。

若使中间镜的物平面与物镜的像平面重合则得到显微像。

通过两个中间镜相互配合,可实现在较大范围内调整相机长度和放大倍数。

由衍射状态变换到成像状态,是通过改变中间镜的激磁强度(即改变其焦距)实现的。

在这个过程中,物镜和投影镜的焦距不变,中间镜以上的光路保持恒定。

通常为了便于图像聚焦,物镜的焦距只需在很小的范围内变化。

从上述成像原理可以看出,物镜提供了第一幅衍射花样和第一幅显微像。

物镜所产生的任何缺陷都将被随后的中间镜和投影镜接力放大。

可见,透射电镜分辨率的高低主要取决于物镜,它在透射电镜成像系统中占有头等重要的位置。

为获得高分辨本领,通常采用强激磁、短焦距物镜。

中间镜属长焦距弱激磁透镜。

投影镜与物镜一样属强激磁透镜,它的特点是具有很大的景深和焦长。

这使得在改变中间镜电流以改变放大倍数时,无须调整投影镜电流,仍能得到清晰的图像,同时容易保证在离开荧光屏平面(投影镜像平面)一定距离处放置的感光片上所成的图像与荧光屏上的相同。

4记录系统[2]4.1观察室透射电镜的最终成像结果,显现在观察室内的荧光屏上,观察室处于投影镜下,空间较大,开有1~3个铅玻璃窗,可供操作者从外部观察分析用。

对铅玻璃的要求是既有良好的透光特性,又能阻断X线散射和其他有害射线的逸出,还要能可靠地耐受极高的压力差以隔离真空。

由于电子束的成像波长太短,不能被人的眼睛直接观察,电镜中采用了涂有荧光物质的荧光屏板把接收到的电子影像转换成可见光的影像。

观察者需要在荧光屏上对电子显微影像进行选区和聚焦等调整与观察分析,这要求荧光屏的发光效率高,光谱和余辉适当,分辨力好。

目前多采用能发黄绿色光的硫化锌-镉类荧光粉做为涂布材料,直径约在15~20cm。

荧光屏的中心部分为一直径约10cm的圆形活动荧光屏板,平放时与外周荧屏吻合,可以进行大面积观察。

使用外部操纵手柄可将活动荧屏拉起,斜放在45°角位置,此时可用电镜置配的双目放大镜,在观察室外部通过玻璃窗来精确聚焦或细致分析影像结构;而活动荧光屏完全直立竖起时能让电子影像通过,照射在下面的感光胶片上进行曝光。

4.2照相室在观察中电子束长时间轰击生物医学样品标本,必会使样品污染或损伤。

所以对有诊断分析价值的区域,若想长久地观察分析和反复使用电镜成像结果,应该尽快把它保留下来,将因为电子束轰击生物医学样品造成的污染或损伤降低到最小。

此外,荧光屏上的粉质颗粒的解像力还不够高,尚不能充分反映出电镜成像的分辨本领。

将影像记录存储在胶片上便解决了这些问题。

照相室处在镜筒的最下部,内有送片盒(用于储存未曝光底片)和接收盒(用于收存已曝光底片)及一套胶片传输机构。

电镜生产的厂家、机型不同,片盒的储片数目也不相同,一般在20~50片/盒左右,底片尺寸日本多采用82.5mm×118mm,美国常用82.5mm×101.6mm,而欧州则用90mm×120mm。

每张底片都由特制的一个不锈钢底片夹夹持,叠放在片盒内。

工作时由输片机构相继有序地推放底片夹到荧光屏下方电子束成像的位置上。

曝光控制有手控和自控两种方法,快门启动装置通常并联在活动荧光屏板的扳手柄上。

电子束流的大小可由探测器检测,给操作者以曝光指示;或者应用全自动曝光模式由计算机控制,按程序选择曝光亮度和最佳曝光时间完成影像的拍摄记录。

现代电镜都可以在底片上打印出每张照片拍摄时的工作参数,如:加速电压值、放大率、微米标尺、简要文字说明、成像日期、底片序列号及操作者注解等备查的记录参数。

观察室与照相室之间有真空隔离阀。

以便在更换底片时,只打开照相室而不影响整个镜筒的真空。

4.3阴极射线管(CRT)显示器电镜的操作面板上的CRT显示器主要用于电镜总体工作状态的显示、操作键盘的输入内容显示、计算机与操作者之间的人机对话交流提示以及电镜维修调整过程中的程序提示、故障警示等。

5真空系统电镜镜筒内的电子束通道对真空度要求很高,电镜工作必须保持在10-3~10-4Pa以上的真空度(高性能的电镜对真空度的要求更达10-7Pa以上),因为镜筒中的残留气体分子如果与高速电子碰撞,就会产生电离放电和散射电子,从而引起电子束不稳定,增加像差,污染样品,并且残留气体将加速高热灯丝的氧化,缩短灯丝寿命。

获得高真空是由各种真空泵来共同配合抽取的。

5.1机械泵(旋转泵)机械泵因在其他场合使用非常广泛而比较常见,它工作时是靠泵体内的旋转叶轮刮片将空气吸入、压缩、排放到外界的。

机械泵的抽气速度每分钟仅为160L左右,工作能力也只能达到0.1~0.01Pa,远不能满足电镜镜筒对真空度的要求,所以机械泵只做为真空系统的前级泵来使用。

5.2油扩散泵扩散泵的实物外形和内部结构见图4-23。

它的工作原理是用电炉将特种扩散泵油加热至蒸汽状态,高温油蒸汽膨涨向上升起,靠油蒸汽吸附电镜镜体内的气体,从喷嘴朝着扩散泵内壁射出,在环绕扩散泵外壁的冷却水的强制降温下,油蒸汽冷却成液体时析出气体排至泵外,由机械泵抽走气体,油蒸汽冷却成液体后靠重力回落到加热电炉上的油槽里循环使用,见图4-23(c)。

扩散泵的抽气速度很快,约为每秒钟570L左右,工作能力也较强,可达10-3~10-4Pa 。

但它只能在气体分子较稀薄时使用,这是由于氧气成分较多时易使高温油蒸气燃烧,所以扩散泵通常与机械泵串联使用,在机械泵将镜筒真空度抽到一定程度时,才启动扩散泵。

近年来电镜厂商在制作中为实现超高压、超高分辨率,必须满足超高真空度的要求,为此在电镜的真空系统中又推出了离子泵和涡轮分子泵,把它们与前述的机械泵和油扩散泵联用可以达到10-7Pa的超高真空度水平。

5.3真空阀、真空规真空阀是用于启闭真空通道各部分的关卡,使各部分能独立放气、抽空而不影响整个系统的真空度。

真空规用于镜筒各部位真空度的检测,向真空表和真空控制电路提供信号,根据检测目标的真空度不同,真空规分为“皮拉尼规”和“潘宁规” 2种。

相关文档
最新文档