超声衍射时差(TOFD)技术原理简介(含图表)

合集下载

TOFD(杜迎九唐勇)

TOFD(杜迎九唐勇)

最小采样数
• 为了使数字化采样得到的波形能生成 一个正弦曲线,一个周期内至少需要2 个采样点
2个采样点形成的曲线可能产生错误
理想状态的最小采样数
5个采样点
每隔20%有一个采样点
数字化采集的优点:扫查过程中、每个检测点、完整、未修正
、A-扫信息。 1.能够实现海量数据的长期保存; 2.便于采取各种信号处理操作,例如多样的可视化显示、信号增强、平 均、叠加等; 3.取用、再分析、通讯传输方便; 4.精度高,抗干扰性强。
裂纹上尖端的信号
θ 度数 衍射波波幅随着角度变化的曲线
TOFD基本设臵
发射探头
直通波
接收探头
直通波(LW)
底面反射信号 底面反射波(BW)
缺陷上端点衍射波 缺陷下端点衍射波 射频A扫信号相位的变化
TOFD检测用探头及探测系统
• TOFD检测用探头
• TOFD检测的探测系统
TOFD检测探头
采用纵波进行TOFD检测原因
非平行扫查中有一种特殊的扫查,探头在焊缝两边不对称放臵, 扫查方向与超声波束方向不平行,这种特殊扫查被称为偏臵非平行扫查 例如解决轴偏离底面盲区问题。当工件的底面的焊缝较宽时,为 提高焊缝底面熔合区和热影响区的缺陷检出率就需要采用偏臵非平行 扫查。
焊缝底面宽度过宽的情况 偏臵非平行扫查可以减小底面盲区
TOFD(超声时差衍射法) 检测技术原理及其应用
杜迎九 唐勇
一.原理 Time-Of-Flight-Diffraction
衍射现象
• 衍射现象发生在缺陷的尖端
• 衍射现象要求缺陷和周围介质的声阻抗不 同
尖端衍射
• 尖端衍射示意图
纵波斜探头
缺陷尖端衍 射波

无损检测技术衍射时差法超声TOFD检测基本原理

无损检测技术衍射时差法超声TOFD检测基本原理

无损检测技术衍射时差法超声TOFD检测基本原理无损检测(Nondestructive Testing,简称NDT)技术是一种应用于工程领域的检测方法,其目的是在不损伤被测物体的情况下获得其内部和表面的缺陷信息,以判断材料的质量和可靠性。

衍射时差法超声TOFD(Time of Flight Diffraction)是无损检测中一种常用的超声检测技术,它通过分析超声波在被测物体内部的衍射图样和所传播时间的差异来确定缺陷的位置和尺寸。

衍射时差法超声TOFD检测的基本原理如下:1.超声波传播:超声波在被检测材料内部的传播速度是已知的,传播路径是直线传播的。

超声波发射器发射出短脉冲的超声波信号,经过材料中的声阻抗不一致表面发生反射;然后通过被检材料内部传播,当超声波遇到缺陷时,会部分反射、散射和透射;最后,超声波信号达到接收器并被记录。

2.衍射现象:当超声波遇到边界或缺陷时,会发生衍射现象。

衍射现象是指波通过开口或缝隙时,从波的前向运动方向上的边界或缝隙中发射出去一部分。

3.TOFD测量:TOFD测量的关键在于将两个特征回波的衍射声波进行时间差测量。

超声波发射器和接收器之间有一对平行排列的接收器,其中一个接收器用于接收来自发射器产生的超声波的第一个回波,另一个接收器用于接收来自发射器产生的超声波的第二个回波。

4.TOFD信号分析:通过同时接收两个回波,并测量二者之间的时间差,可以确定缺陷的位置和尺寸。

当超声波传播到缺陷区域时,由于缺陷的存在,衍射声波将被传播到两个接收器之间。

通过测量两个回波的时间差,可以计算出衍射声波的传播路径,从而确定缺陷的位置。

5.结果分析:将TOFD信号进行处理和分析,可以得到缺陷的尺寸、位置和形态。

同时,根据TOFD原理的高度灵敏度特点,可以检测到非常小的缺陷。

衍射时差法超声TOFD检测技术具有以下优点:1.高敏感性:TOFD检测技术可以检测到相对较小的缺陷,对大多数工程材料和结构缺陷的检测效果非常好。

超声波衍射时差(TOFD)技术 ppt课件

超声波衍射时差(TOFD)技术  ppt课件

ppt课件 4
TOFD技术概念


TOFD技术,即Time of flight diffraction technique,超声波衍射 时差检测技术. 概念:
超声波衍射时差法,是采用一发一收两只探头,利用 缺陷端点处的衍射信号探测和测定缺陷尺寸的一 种自动超声检测方法.

发展条件: 因其原理与传统检测方式有很多不同,弥补了传统方法 的不足之处.
ppt课件 17
复合压电晶片
优点: 1.横向振动很弱,串扰声压小 2.机械品质因子Q值低 3.带宽大(80~100%) 4.机电耦合系数值大 5.灵敏度高,信噪比优于普通PZT探头 6.在较大温度范围内特性稳定 7.可加工形状复杂的探头 8.易与声阻抗不同的材料匹配 9.可通过陶瓷体积率的变化,调节超声波灵敏度
发射探头
接收探头
+ _
+ _
根据理论和实验证明,如果两个衍射信号的相位相反,则在两个信号间一定存在一 个连续不间断的缺陷。因此识别相位变化对于评定缺陷尺寸非常重要。利用上、下 端点的时间差来计算缺陷深度和自身高度是TOFD探伤最重要的部分
*注在一些特殊情况下,例如气孔,小夹渣之类的缺陷
ppt课件 由于几何尺寸太小不会产生两个分离的端点信号 24
实际上: 绝对深度的最大误差低于壁厚8 %. 内部(小)缺陷的高度估计误差是可以忽略的 。
ppt课件
30
平行扫查
平行扫查时,扩散声 束作用于缺陷时的衍 射信号传播时间较长 ,而当缺陷位于主声 束中心时即当探头相 对于缺陷处于对称位 置时,传播时间最短 。因此会形成一个抛 物线,抛物线的顶点 处所计算的深度为缺 陷实际深度
ppt课件 18
多点声源同时激发,产生大扩散声束,由于声束是 由多个声源在不同位置相互干涉和叠加形成,因此 主声束与扩散声束之间的能量差异不像单晶片探头 那么明显,从而达到大范围的扫查。

TOFD(衍射时差法)的原理及应用[1]

TOFD(衍射时差法)的原理及应用[1]

一TOFD原理超声TOFD(Time of Flight Diffraction Technique –衍射时差法)技术就是用两个探头相向对置,一发一收,利用缺陷端部产生的散射波和衍射波,来检测出缺陷和评定缺陷的方法。

下图即表示TOFD法的探伤原理、探伤波形的模式图。

(a)TOFD原理图(b)波形图图(a)中,①为发射探头发射横向纵波沿试件表面传播的正向侧向波(Lateral wave),它是区分和测量缺陷的参考。

④为底面负向反射波(Back-wall reflection),当有裂纹缺陷存在时,在①④间会接收到缺陷上端的负向衍射波②(Upper Crack Tip Signal)和缺陷下端的正向衍射波③(Lower Crack TipSignal )。

这里只考虑纵波声速V ,忽略缺陷处的波形变换产生的横波等。

说明:TOFD 技术采用一发一收的方式,通常使用高阻压、窄脉冲压力探头,主压力波的反射角范围是45º至70º。

假定两探头间的距离为S ,试件的厚度为H ,裂纹在试件厚度方向的高度为L ,裂纹上端距离试件表面的埋藏深度为D ,沿试件表面传播的侧向波的接收时间为t L , 接收到缺陷上端的负向衍射波的时间为t 1,接收到缺陷下端的正向衍射波的时间为t 2,接收到底面负向反射波的时间为t BW 。

试件的纵波声速为V 。

则:CS t L = CS D t 2214+= CS L D t 222)(4++= CS H t BW224+= 根据以上各个时间可以求出: 裂纹上端距离试件表面的埋藏深度 222121S C t D -=裂纹在试件厚度方向的高度 D S C t L --=222221二 TOFD 应用超声TOFD 法之所以引人注目,是由于此法对缺陷检测、定位、定量较一般的波幅法容易、直观,且有客观记录。

这对在役设备检测中的缺陷评价特别有价值。

如果结合常规的缺陷测长方法,就可掌握缺陷二维形状,就可利用断裂力学对被检测设备进行寿命评价。

浅谈超声衍射时差法TOFD检测技术

浅谈超声衍射时差法TOFD检测技术
在扫查凹面板时,可以引人爬波取代直通波;在扫 查凸面板时,可以引入横波作为组合压缩的爬波,以及 沿着检测表面爬行信号产生的爬波(折射模式压缩)。 另外,在检测异面板、不同壁厚和不同直径的承压设备、 T型接头盒管座角焊缝时要求采用特殊的检测工艺,必 要时需设计相应的试块进行试验。
4超声TOFD扫描方式及波形成像特征
对TOFD缺陷成像的图形进行分析,进而对缺陷定 性、定量。
首先,依据缺陷成像的形状对缺陷进行定性分析,
要多个TOFD探头组,此时可能看不到表面波或底面回
区分缺陷为何种形式。例如,熔焊试件的主要缺陷有气
波,应通过计算对壁厚进行合理分区,不同区域分别采 用TOFD探头组扫查。在检测奥氏体或高衰减的材料时,
l超声TOFD检测基本原理
超声TOFD检测方法的物理基础是惠更斯原理。
96航窄制造技术·2009年增刑
万方数据
惠更斯原理由荷兰物理学家惠更斯于1690年提出。该 原理指出,介质中的波动传到的各点,都可以看作是发 射声波的新波源(或称次波源),以后时刻的波阵面,可 由这些新波源发出的子波波前的包络面做出。
描为主,B扫描为辅,可以利用相位信息有效地检测出 缺陷。有时遇到D扫描或B扫描得到的图像比较模糊, 又要求对缺陷长度进行定量,此时需要对得到的灰度图 进行数字化处理。常用的数字化处理方法有:利用中值 滤波保护图像边缘,同时去除噪声;利用双曲线指针来 拟合缺陷的边缘;直通波或底波的拉直;直通波或底波 的消除等。ASTM标准E2373—2004中提到结合双轴曲 线捏合运算或合成孔径聚焦技术(sA盯)改善缺陷长度 方向定量。
Fig.5 TOFD detection system
很多因素影响TOFD的检测效果,在实际检测中需 要一一加以考虑。

TOFD–超声波衍射时差法培训课件

TOFD–超声波衍射时差法培训课件

TOFD检测技术的优势
高效性
TOFD检测技术具有高效性,能够快速准确 地检测出缺陷的位损伤,使用安全。
可靠性
由于其非接触性,TOFD检测技术不易受到 外界因素的干扰,检测结果可靠。
可视化
TOFD检测技术能够提供高清晰度的图像, 使缺陷可视化。
检测设备的组成
01
02
03
04
发射器
产生高频超声波信号,发射到 被检测物体上。
接收器
接收从被检测物体反射回来的 超声波信号。
控制器
控制发射器和接收器的操作, 处理和显示检测数据。
显示器
显示检测结果,便于观察和分 析。
检测设备的操作流程
准备工作
检查设备是否完好,确定被检测物体 的材质、尺寸和形状等参数。
检测设备的维护与保养
定期清洁
定期清洁发射器和接收器的探 头表面,保持清洁以免影响检
测结果。
检查电缆
定期检查电缆是否完好,如有 破损应及时更换。
定期校准
定期对设备进行校准,确保检 测结果的准确性。
存储环境
保持设备存储环境的干燥、通 风,避免高温和潮湿等恶劣环
境。
03
TOFD检测技术在实际应用 中的优势与局限性
与其他技术的融合
分析TOFD技术与其他无损 检测技术的融合应用,提 高检测效率和准确性。
应用领域的拓展
展望TOFD技术在更多领域 的应用前景,如航空航天、 新能源等领域。
如何将TOFD技术更好地应用于实际工作中
实践操作技巧
分享实际操作中的技巧和经验,提高 检测效率和准确性。
与其他技术的协同工作
标准与规范的学习
设备操作与维护
讲解了TOFD设备的操作 步骤、日常维护和常见故 障排除,确保学员能够熟 练操作和维护设备。

TOFD–超声波衍射时差法

TOFD–超声波衍射时差法

TOFD–超声波衍射时差法超声波衍射时差法(TOFD)是一种非破坏性检测技术,常用于测量材料中的缺陷尺寸和位置。

TOFD基于超声波传播的原理,通过计算超声波信号的到达时间差来确定材料中的缺陷。

TOFD的原理是利用超声波在材料中的传播速度来测量缺陷。

当超声波传播到材料中的缺陷时,它将发生衍射现象,这导致超声波信号的出射角度和到达时间发生变化。

通过测量这些角度和时间的变化,可以计算出缺陷的尺寸和位置。

TOFD的检测设备包括一个超声波发射器和一个接收器。

发射器将超声波信号发送到被测材料上,接收器接收反射回来的信号。

接收器上的传感器测量信号的到达时间,并将数据发送给计算机进行处理。

TOFD的步骤如下:1.准备工作:确保被测材料表面清洁,并涂上耦合剂以方便超声波的传播。

2.发送超声波信号:发射器发送超声波信号,信号穿过被测材料并遇到任何缺陷。

3.接收超声波信号:接收器接收被缺陷反射的超声波信号,传感器测量信号的到达时间。

4.数据处理:计算机接收到传感器测量的到达时间数据后,使用TOFD原理计算缺陷的尺寸和位置。

TOFD的优点是能够提供准确而详细的缺陷信息。

它可以测量缺陷的尺寸和位置,并且在一次扫描中能够检测到多个缺陷。

此外,TOFD对材料的表面和涂层厚度没有严格要求,适用于不同类型的材料。

然而,TOFD也有一些限制。

首先,TOFD需要高度训练的操作员才能正确操作设备和解读结果。

此外,材料的形状和尺寸可能会影响到信号的传播,导致检测不准确。

此外,TOFD对材料的密度和声波传播速度也有一定要求。

总之,超声波衍射时差法是一种非破坏性检测技术,通过计算超声波信号的到达时间差来确定材料中的缺陷尺寸和位置。

它可以提供准确而详细的缺陷信息,适用于不同类型的材料。

然而,正确操作设备和解读结果需要高度训练的操作员,且对材料的形状、尺寸、密度和声波传播速度有一定要求。

TOFD超声波衍射时差法教程(共90张PPT)

TOFD超声波衍射时差法教程(共90张PPT)
➢ 3. 很多年以来TOFD一直在实验室里,各国做过大量实验直到 八十年代才为业界所认同;在这些实验中,用事实证明了 TOFD在可靠性和精度方面都是非常好的技术。
➢ 4. 利用TOFD技术探伤沿焊缝进行扫查基本能发现焊缝所有缺陷, 收集扫查数据组成B扫或D扫图像比单纯看A扫更容易判断缺陷的 尺寸和性质。
缺陷位置的不确切性
S
发射探头
S
接收探头
t1
t2
相等时间的轨迹
(t1+t2=ct)
实际上:
绝对深度的最大误差低于壁厚10 %. 内部(小)缺陷的高度估计误差是可以忽略的 。
dmin dmax
TOFD扫查模式
➢ 平行扫查:又称横向扫查,是指扫查方向与超声波束方向是平行的,扫 查结果称为B-scan,所得结果主要是Y轴和Z轴方向值.该扫查方 法能为我们提供很准确的深度结果,但因扫查时探头须越过焊缝, 操作起来相对烦琐.
➢ 2)TOFD技术可探测的厚度大,对厚板探伤的效果比较明显, 但射线对厚板的穿透能力非常有限
➢ 3)TOFD技术检测缺陷的能力非常强,特殊的探伤方式使 其具有相当高的检出率,约90%左右,而相比之下,射线检 测的检出率稍低,大约75%,在实际工作中,我们也发现有 TOFD检测出来的缺陷,X射线未能发现的情况,这给质量 控制带来了极大的隐患。
探头频率,晶片尺寸,探头角度,探头对数,扫查次数等. ➢ 设置探头间距:
根据工件及探头的选择情况计算并设置探头中心间距. ➢ A扫描采集参数选择:
激发脉冲宽度设置,时间窗口的设置,阻尼设置等.
➢ 增益设置: 根据工件实际情况选择合适检测灵敏度.
TOFD检测中探头的选择
➢ 探头角度 ➢ 探头频率 ➢ 探头晶片尺寸 ➢ 探头对数选择

衍射波时差法超声检测技术(TOFD).

衍射波时差法超声检测技术(TOFD).

衍射波时差法超声检测技术(TOFD王庆军大连西太平洋石油化工有限公司 116600简介:本文简要介绍了工业发达国家正在兴起和应用的TOFD技术的起源,原理,优缺点,标准规定和在实际产品订货中节约的费用和时间。

主题词:TOFD起源原理优缺点相关费用1. 衍射波时差法检测技术(TOFD的起源TOFD(Time-of-flight-diffraction technique检测技术是在1977年,由Silk根据超声波衍射现象提出来,意大利AEA sonovatiion公司在TOFD应用方面,已经有15年历史,此技术首先是应用于核工业设备在役检验,现在在核电,建筑,化工,石化,长输管道等工业的厚壁容器和管道方面多有应用,TOFD技术的成本是脉冲回声技术的1/10。

现在,TOFD检测技术在西方国家是一个热门话题,现在已经开始推广应用,经过几年以后,将有取代RT趋势的可能。

2. TOFD原理及系统组成2.1 TOFD原理是当超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生叠加到正常反射波上的衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。

TOFD原理当超声波在存在缺陷的线性不连续处,如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射波以外,还要发生衍射现象。

衍射能量在很大的角度范围内放射出并且假定此能量起源于裂纹末端(图1。

这与依赖于间断反射能量总和的常规超声波形成一个显著的对比。

图11 =发射波2 =反射波3 =穿透波4 =顶部裂纹端衍射波5 =底部裂纹端衍射波除了发现由缺陷衍射的能量变化以外,TOFD方法也探测到一个直接穿过两个探针的表面(横向波和达到试块底部(测试对面没有受到缺陷干涉的底部反射波(图1中的注1和4。

图. 21- 横向波 2 - 顶部裂纹端衍射波3 - 底部裂纹端衍射波 4- 对面器壁反射波这种现象的研究产生了用于下列应用衍射波时差法无损检测方法:■探伤检验因为来自于缺陷范围的信号可记录。

无损检测技术,衍射时差法超声TOFD检测基本原理

无损检测技术,衍射时差法超声TOFD检测基本原理

无损检测技术,衍射时差法超声TOFD检测基本原理目录1.TOFD检测技术定义及原理2.TOFD检测技术基本知识3.TOFD检测技术的盲区4.TOFD检测技术的特点5.几种典型缺陷TOFD图谱1TOFD检测定义及基本原理1.1TOFD检测的定义衍射时差法超声检测(Time of Flight Diffraction ,英文缩写TOFD)是依靠超声波与被检对象中的缺陷尖端或端部相互作用后发出的衍射信号来检测缺陷并对缺陷进行定位、定量的一种无损检测技术。

概况起来说 TOFD技术就是一种基于衍射信号实施检测的技术。

1.2 TOFD检测原理1.2.1 衍射现象衍射现象:是指波在传播过程中,遇到障碍物,能够绕过障碍物,产生偏离直线传播的现象。

缺陷端点衍射现象可以用惠更斯-菲涅尔原理解释:惠更斯提出,介质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。

菲涅尔充实了惠更斯原理,他提出波前上每个面元都可视为子波的波源,在空间某点的振动是所有这些子波在该点产生的相干振动的叠加。

图1.1缺陷端部衍射信号的解释由图示可见:当一束超声波入射到裂纹缺陷时:(1)在裂纹中部会形成有一定方向的反射波,其方向满足反射定律。

反射波接近平面波,其波阵面是由众多子波源反射波叠加构成;(2)在裂纹尖端则没有叠加现象发生。

这种裂纹尖端以独立的子波源发射的超声波即为衍射波。

衍射波的重要特点:1.没有明显的方向性;2.衍射波强度很弱。

衍射波的这两个特点都是由于裂纹尖端独立发射超声波没有波的叠加所造成的图1.2裂纹端点衍射波特点裂纹的上下端点都可以产生衍射波。

衍射波信号比反射波信号弱得多,且向空间的各个方向传播,即没有明显的指向性。

图1.3 端角反射与裂纹端点衍射信号波幅比较根据惠更斯-菲涅尔定理可知,缺陷端点形状改变会对衍射信号产生影响:(1)端点越尖锐,衍射特性越明显,(2)端点越圆滑,衍射特性越不明显,(3)当端点曲率半径大于波长(d>λ)时,主要体现的是反射特性。

TOFD技术介绍

TOFD技术介绍
发射探头 接收探头
横向波 反射信号
内壁反射波 LW BW
反射回波
数据显示
波幅 + 白色
时间
-
黑色
时间 A扫图用带黑度的线表示 扫图用带黑度的线表示
数据显示
LW A扫 扫
D扫 扫
BW
上表面
内壁
PCS t0 T
校准工具
t0 A扫 扫
c
LW
BW
PCS(探头入射点间 ( 距离) 壁厚, 速度, 距离), 壁厚 速度 探头延时, 探头延时 横向波或 内壁反射信号 不需要知道所有的参数 D-scan
Source: NDT On-line On-
衍射时差技术
TOFD发展简史 TOFD发展简史 衍射现象 TOFD原理 TOFD原理 实际操作 标准 TOFD优点和局限性 TOFD优点和局限性
TOFD发展简史 TOFD发展简史
七十年代中期由 UKAEA Harwell 发现的 定量很准 – 成为了一种标准的定量技术 在九十年代初, 在九十年代初,线形 TOFD 开始用于管线 单独使用TOFD 单独使用TOFD的检出率很高 TOFD的检出率很高
2 3
4
3
在直通波上我们可以看到宽波束在缺陷上的反映。
根部内凹
1
1
2
2 3
3
• 底面回波产生变形
层间未熔合
1 2 3
横向波线性化
发射探头 横向波 接收探头
耦合剂厚度变化 ⇒时间改变
横向波线性化
发射探头 横向波 接收探头
探头间距有小的变化 ⇒ 时间改变
TOFD可靠性 TOFD可靠性
•意大利 意大利SAIPEM公司 意大利 公司 经过研究表明 TOFD 检出率较高 •将 TOFD 和脉冲反 将 射法相结合时检出率 更高

衍射时差法TOFD和相控阵超声检测PAUT技术应用指南CCS

衍射时差法TOFD和相控阵超声检测PAUT技术应用指南CCS

衍射时差法TOFD和相控阵超声检测PAUT技术应用指南CCS衍射时差法TOFD(Time-of-Flight Diffraction)和相控阵超声检测PAUT(Phased Array Ultrasonic Testing)技术是目前非破坏检测中常用的超声波检测技术。

本文将介绍这两种技术的基本原理、应用领域和操作指南。

一、TOFD技术TOFD技术是一种全声程全记录的方法,通过检测超声波从缺陷的前端和后端边界发生的绕射波,通过分析绕射波到达的时差来确定缺陷的位置和大小。

TOFD技术具有以下特点:1.高灵敏度:TOFD技术能够检测到非常小的缺陷。

2.高精度:通过分析超声波的传播时差可以得到精确的缺陷位置和大小。

3.全声程扫描:TOFD技术能够扫描整个检测区域,不会遗漏任何可能的缺陷。

TOFD技术主要应用于以下领域:1.裂纹检测:TOFD技术能够准确地检测到各种裂纹,特别适用于高温、高压管道等环境下的裂纹检测。

2.焊缺陷检测:TOFD技术能够检测到焊缺陷的位置、大小和形态,对焊接质量的评估非常有帮助。

3.壳程检测:TOFD技术能够检测到壳程中的腐蚀、磨损等缺陷,有助于判断设备的安全性和可靠性。

TOFD技术的操作指南如下:1.设定扫描参数:包括扫描范围、扫描步长、发射和接收的超声波参数等。

2.放置探头:将探头与被检测物表面接触,并按照指定位置进行扫描。

3.开始扫描:根据设定参数开始扫描,同时记录采集到的数据。

4.数据分析:根据采集到的数据,分析缺陷的位置、大小和形态。

5.缺陷评定:根据分析结果进行缺陷的评定和分类。

二、PAUT技术PAUT技术是一种利用超声波的相位控制技术,通过控制多个发射和接收元件的相位差,达到改变超声波束的方向和焦点位置的目的,从而实现对被检测物的全面检测。

PAUT技术具有以下特点:1.快速扫描:PAUT技术能够快速地扫描整个检测区域。

2.高分辨率:通过控制超声波的发射和接收,可以实现高分辨率的检测。

TOFD基本原理及典型缺陷图

TOFD基本原理及典型缺陷图

2
密集型气孔
横向裂纹
1
1
2
1 2 3
2
3
4
3
在直通波上我们可以看到宽波束在缺陷上的反映。
根部内凹
1
1
2
2 3
3
• 底面回波产生变形
层间未熔合
1 2 3
TOFD +脉冲回波
技术描述 数据浏览 检测结果 优点

技术描述
TOFD PE 45 SW PE 60 SW
多通道系统允许TOFD和脉冲回波同时进 行检测和分析。
TOFD 的局限性
在上、下表面附近盲区
对“噪声”敏感 夸大了一些良性的缺陷,
如气孔, 冷夹层, 内部
未熔合。 解释比较困难 注意标准问题 (有待解决)
TOFD结语
TOFD设置正确时是一种很好的缺陷定量和定
位方法; 根据标准和检出率的要求把TOFD和脉冲反射 法相结合。
一些典型缺陷
向外表面延伸的缺陷
向内表面延伸的缺陷
水平方向的平面形缺陷
向外表面延伸的裂纹
发射探头
横向波被隔开了
接收探头
内壁反射波
BW 没有横向波
裂纹尖端
向内表面延伸的裂纹
发射探头 接收探头
பைடு நூலகம்
横向波
内壁反射信号被隔开了 LW
没有内壁 反射波
尖端信号
水平方向的平面形缺陷
(层间未熔, 冷夹层)
发射探头 接收探头
常见缺陷在TOFD中的显示
近表面裂纹
1 2
1
2
裂纹阻挡了直通波,下尖端衍射信号显示在A-扫描中。
根部未焊透
2 3 4 1

衍射时差法超声检测技术(TOFD技术)课件整理2018.12.

衍射时差法超声检测技术(TOFD技术)课件整理2018.12.

衍射时差法超声检测技术(T O F D技术)第一章TOFD技术的基本知识 2018.11.301.衍射时差法:是采用一发一收探头对工作模式、主要利用缺陷端点的衍射波信号探测和测定缺陷位置及尺寸的一种超声检测方法。

2.缺陷的衍射信号与哪些因素无关?①与衍射信号的角度无关②与衍射信号的幅度无关因为衍射信号与角度和振幅无关,所以,TOFD技术在原理和方法上与传统脉冲反射超声波检测技术有根本性的区别。

3.传统超声检测技术是: 1、根据缺陷反射信号检出缺陷; 2、根据缺陷幅度评定缺陷尺寸4.传统超声检测技术影响缺陷的定量因素: 1、入射声束角度;2、检测方向; 3、缺陷表面粗糙度;4、工件表面状态;5、探头的压力。

5.TOFD仪器性能:1.更宽的接收放大系统频带;2.更快的数字化采样频率;3.更高的信号处理速度;4.更大的存储量6.TSG R0004-2009 《固定式压力容器安全技术监察规程》于2009年12月1日起施行,做出如下规定:无损检测人员应当按照相关技术规范进行考核取得相应资格证书后,方能承担与资格证书的种类和技术等级相对应的无损检测工作。

7.压力容器焊接接头无损检测方法的选择:压力容器的对接接头应当采用射线检测或者超声检测,超声检测包括衍射时差法超声检测(TOFD)、可记录的脉冲反射法超声检测(自动检测)和不可记录的脉冲反射法超声检测(手动检测);当采用不可记录的脉冲反射法超声检测(手动检测)时,应当采用射线检测或者衍射时差法超声检测做为附加局部检测;8.衍射现象:波在传播路径中遇到障碍物,发生绕过障碍物,产生偏离直线传播的现象,称为波的衍射。

衍射也是波在传输过程中与界面作用而发生的不同于反射的另一种物理现象。

9.裂纹的上下端点都可以产生衍射波。

衍射波信号比反射波信号弱得多,向空间的各个方向传播,没有明显的指向性、能量低、衍射方向不取决于入射角。

10.惠更斯-菲涅尔原理:惠更斯提出,介质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。

PE管道热熔对接接头的TOFD检测

PE管道热熔对接接头的TOFD检测

随着聚乙烯(PE)管材生产技术的日益发展,其产品的质量和性能得到了大幅提升,已在许多领域替代传统的金属管道。

在城市燃气管网领域,PE管道凭借密度小、韧性好、耐腐蚀的特性及易焊接和方便施工的优点,成为了燃气管网的主流材料。

近年来多次燃气泄漏及爆炸事故的发生,使得燃气管道的安全性和稳定性受到公众的广泛关注。

相关统计资料表明,目前多数PE管线事故的发生源于PE管材焊接接头的失效。

PE管线需要在施工现场焊接完成安装,受施工现场的复杂环境因素及施工技术水平影响,其焊接接头可能会产生气孔、夹杂、未熔合等埋藏缺陷。

早期PE管材缺乏相应的检测技术,导致当时施工单位往往只依靠经验进行宏观检测或不进行检测直接施工,给现在正在使用的PE管网埋下了大量的安全隐患。

“为此,安徽华夏高科技开发有限责任公司的检测人员研究了PE管材热熔对接接头的超声衍射时差法检测工艺特性,通过对人工缺陷试样及现场实际缺陷进行检测,来验证该工艺的可靠性。

01PE管材热熔接头的超声衍射时差法检测PE管材与传统的金属管材在材料性质及焊接工艺上存在很大的差异。

传统脉冲回波法超声检测工艺通过检测缺陷的反射波发现缺陷,缺陷方向会影响反射波的波幅使脉冲回波法难以发现特定方向的缺陷,同时其检测结果无法留存且难以复现,这导致传统的脉冲回波法在PE管材上难以使用。

超声衍射时差法(TOFD)是一种新型超声检测方法,与常规的超声脉冲回波方法不同,TOFD通过检测目标缺陷在波束中产生的衍射波来发现缺陷,其检测原理如图1所示。

图1 超声衍射时差法检测原理检测时,由发射探头发射的非聚集脉冲波束进入工件,在无缺陷的情况下,接收探头会接收到沿工件表面传播的直通波脉冲和底面反射回来的底波脉冲,这两个脉冲信号的相位相反,是TOFD系统评定缺陷深度的参考。

若检测区域存在缺陷,声波会在缺陷的尖端形成覆盖较大角度范围的衍射波信号,接收探头会接收到缺陷上下尖端形成的两个衍射信号。

通过衍射波信号和直通波信号与底波信号的时间差可以计算出缺陷在深度方向上的位置和尺寸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声衍射时差(TOFD)技术原理简介(含图表)
1.超声衍射时差(TOFD)技术介绍
“TOFD”即Timeofflightdiffraction,译成中文是“超声波衍射时差法检测”,TOFD检测技术原理是利用超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生迭加到正常反射波上的衍射波,探头探测到衍射波,从而判定缺陷的大小和深度。

极大地提高了缺陷检出率。

TOFD检验技术具有缺陷检出能力强、缺陷定位精度高、节省设备的制造时间等特点,在检测资料上保证安全,并且可以用数字型式永久保存,恰好弥补了常规超声波检测技术的不足。

此技术首先是应用于核工业设备检验,如今在电力、石化、管道、压力容器、钢结构等方面多有应用。

上个世纪七十年代早期,英国原子能管理局(UnitedKingdomAtomicEnergyAuthority,即UKAEA)的国家无损检测研究中心的Harwell实验室提出了了超声波衍射在UT中应用的原理。

UKAEA为了开发比常规超声波检测更精确的缺陷定量技术,最早由史可·毛瑞斯(SILKMG)博士开发出了超声衍射时差技术
- 1 -
(TimeofFlightDiffraction,简称TOFD)。

后来欧美国家的有关机构进行了大量的试验,到80年代早期证实,对于核反应堆的压力容器和主要部件,TOFD技术作为超声检测是可行的,其可靠性和精度要高于常规超声检测(即脉冲回波)技术;相比常规的脉冲回波技术,当时的TOFD 技术有几个最明显的不同,一是很高的定量精度,绝对误差<±1mm,而裂纹监测的误差<±0.3mm;二是对缺陷的方向和角度不敏感,不向脉冲回波技术那样对某些方向的缺陷有“盲区”;三是对缺陷的定量不是基于信号的波幅,而是基于缺陷尖端衍射信号的声程和时间。

后来开发了便携的设备系统(即国际无损检测中心的ZIPSCAN),TOFD技术被国际工业界广泛公认。

90年代,该项技术开始应用与石油化工管线的检测。

此后,BSI、ASTM、ASME以及EN等相继承认了TOFD检测技术,颁布并不断修订了有关标准。

而发展到今天,世界上有很多无损检测设备制造商开发了很多数字化的无损检测系统可以满足上述标准进行TOFD检测。

当然,顶尖的制造商的设备系统可能还具备或者同时兼容常规超声、超声相控阵(PA)、常规涡流(ECT)和涡流阵列(ECTARRY)检
- 2 -
测。

2.TOFD的主要原理
超声衍射时差技术(TOFD)是一种依靠从检件工件内部结构,主要是指缺陷的“端角”和“端点”处得到的衍射能量来检测缺陷的方法。

当超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生叠加到正常反射波上的衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。

当超声波在存在缺陷的线性不连续处(欧洲很多标准中都使用discontinuity一词,即理解为材质的不连续结构),如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射波以外,还要发生衍射现象。

衍射能量在很大的角度范围内放射出并且假定此能量起源于裂纹末端。

这与依赖于间断反射能量总和的常规超声波形成一个显著的对比。

超声波在工件内的传播遵循惠更斯原理,除在缺陷表面产生超声波的反射波外,还在缺陷的端点或端角处产生衍射波。

衍射波被接收后经过仪器放大,由于缺陷端点和端角间的传播时间的差异,检测仪器可以自动记录和计算出时间差,进而对缺陷大小进行计算;同时计算机系统还
- 3 -
搜集相关的数据,通过全功能的A扫、B扫和C扫,对该缺陷进行数字成像,形成易于理解的被检工件的截面图,对缺陷进行成像显示,进而对缺陷进行定性。

如图
2.1.1所示。

3.TOFD技术的优势
使用两个超声波探头,一个发射超声波信号,另一个接收衍射信号、表面横波和底波,因此在A扫显示四个幅值信号,结合软件技术可以实现全功能的A扫、B扫和C扫;
TOFDA可提供被检区域(如焊缝和热影响区)大范围的覆盖的单线扫查,检测效率高;
TOFD对各种缺陷都非常敏感,且对缺陷的方向不敏感;
可以实现手动扫查,也可以进行半自动的扫查布置;
被检材料的厚度范围很宽,一般可达10mm~400mm,有的设备甚至可以实现6mm~600mm
- 4 -。

相关文档
最新文档