平面直角坐标系之间的转换-Read
平面直角坐标系伸缩变换课件
伸缩变换的矩阵表示
伸缩变换
将平面中的点按照某个方向进行缩放,通常称为放缩变换。
伸缩变换矩阵
放缩变换可以通过一个二阶实对称矩阵来实现,该矩阵称为伸缩变 换矩阵。
伸缩变换矩阵的性质
具有正定的对角线元素,并且其特征值分别对应于放缩变换的两个 方向上的缩放因子。
平面直角坐标系伸 缩变换的优缺点及 展望
平面直角坐标系伸缩变换的优点
便于解决几何问题
通过伸缩变换,可以将复杂的几 何问题转化为简单的代数问题,
从而更便于解决。
丰富数学内容
伸缩变换是一种新的数学方法,可 以丰富数学的教学内容,提高学生 的学习兴趣。
应用广泛
伸缩变换在物理学、工程学等领域 都有广泛的应用,可以帮助学生更 好地理解这些领域的基础知识。
平面直角坐标系伸缩 变换课件
目录
CONTENTS
• 平面直角坐标系基础 • 伸缩变换的基本原理 • 伸缩变换的应用 • 伸缩变换的数学模型 • 伸缩变换的实现方法 • 平面直角坐标系伸缩变换的优缺
点及展望
01
平面直角坐标系基 础
定义与性质
定义
平面直角坐标系是一个二维的数 轴系统,它由两个互相垂直的坐 标轴构成。
伸缩变换的逆变换与等价变换
01
02
03
04
逆变换
如果一个变换可以通过逆变换 还原到原始状态,那么这个变
换就称为可逆的。
等价变换
两个变换可以相互转换,并且 它们对所有点的作用相同,那
么它们称为等价的。
伸缩变换的逆变换
通过伸缩变换矩阵的逆矩阵可 以获得逆变换矩阵。
等价变换的证明
直角坐标变换公式推导
直角坐标变换公式推导在数学中,直角坐标变换是一种常见的数学操作,用于将一个点在一个直角坐标系下的坐标转换为另一个直角坐标系下的坐标。
直角坐标变换公式的推导是理解这一概念的关键。
1. 二维平面直角坐标变换公式推导假设有两个二维平面直角坐标系,分别为OXY和O′X′Y′,现在需要将点P(x,y)在OXY坐标系下的坐标(x,y)转换为在O′X′Y′坐标系下的坐标(x′,y′)。
设坐标系O′X′Y′相对于OXY坐标系的角度为$\\theta$,则根据几何关系可推导得到直角坐标变换公式如下:$$ x' = x \\cos \\theta - y \\sin \\theta \\\\ y' = x \\sin \\theta + y \\cos\\theta $$这两个公式即是二维平面直角坐标变换的基本公式。
2. 三维空间直角坐标变换公式推导类似地,对于三维空间中的直角坐标变换,假设有两个直角坐标系OXYZ和O′X′Y′Z′,需要将点P(x,y,z)在OXYZ坐标系下的坐标(x,y,z)转换为在O′X′Y′Z′坐标系下的坐标(x′,y′,z′)。
设坐标系O′X′Y′Z′相对于OXYZ坐标系的绕x轴、y轴和z轴的旋转角分别为$\\alpha$、$\\beta$和$\\gamma$,则直角坐标变换公式可推导为:$$ x' = x \\cos \\beta \\cos \\gamma - y(\\cos \\alpha \\sin \\gamma - \\sin \\alpha \\sin \\beta \\cos \\gamma) + z(\\sin \\alpha \\sin \\gamma + \\cos\\alpha \\sin \\beta \\cos \\gamma) \\\\ y' = x \\cos \\beta \\sin \\gamma +y(\\cos \\alpha \\cos \\gamma + \\sin \\alpha \\sin \\beta \\sin \\gamma) -z(\\sin \\alpha \\cos \\gamma - \\cos \\alpha \\sin \\beta \\sin \\gamma) \\\\ z' = -x \\sin \\beta + y \\sin \\alpha \\cos \\beta + z \\cos \\alpha \\cos \\beta $$ 以上公式即是三维空间直角坐标变换的推导结果,应用这些公式可以在不同坐标系下方便地进行坐标转换。
平面直角坐标系下的图形变换
平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。
在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。
析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。
直角坐标系和坐标变换
直角坐标系和坐标变换直角坐标系是描述平面或空间中点位置的一种常用坐标系统。
它由两条互相垂直的坐标轴组成,通常被称为x轴和y轴。
坐标轴上的数值表示了点在对应轴上的位置,从而确定了点在整个坐标系中的位置。
而坐标变换则是通过一定的规则将点在一个坐标系中的表示转变为另一个坐标系中的表示。
一、直角坐标系直角坐标系是一种二维坐标系,由水平的x轴和垂直的y轴构成。
x轴和y轴的交点称为原点,通常用O表示。
在直角坐标系中,每个点都可以用一个有序数对(x, y)表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
x轴和y轴的正方向上,数值逐渐增大。
在直角坐标系中,可以通过距离和角度来描述点和图形的性质。
例如,两点之间的距离可以使用勾股定理计算,而斜率可以帮助我们理解直线的倾斜程度。
二、坐标变换坐标变换是指将点在一个坐标系中的表示转变为另一个坐标系中的表示。
常见的坐标变换包括平移、旋转、缩放和镜像等。
1. 平移平移是指将一个点在坐标系中沿着某个方向移动一定距离。
如果要将一个点P(x, y)沿着x轴方向平移a个单位,y坐标保持不变,则新坐标是P(x+a, y);如果要将点P沿着y轴方向平移b个单位,x坐标保持不变,则新坐标是P(x, y+b)。
2. 旋转旋转是指将一个点或图形绕某个中心点按一定角度进行旋转。
在二维直角坐标系中,可以使用旋转矩阵对点进行旋转。
设点P(x, y)绕原点逆时针旋转θ角度,则新坐标是P'(x', y'),其中:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ3. 缩放缩放是指将一个点或图形按照一定比例进行放大或缩小。
在二维直角坐标系中,可以使用缩放矩阵对点进行缩放。
设点P(x, y)按照比例s 进行缩放,则新坐标是P'(x', y'),其中:x' = s * xy' = s * y4. 镜像镜像是指将一个点或图形关于某个轴或面对称翻转。
平面直角坐标系知识点平面直角坐标系中的伸缩变换坐标系的作用
一、平面直角坐标系中的伸缩变换设点P(x,y)是平面直角坐标系中任意一点,在变换的作用下,点P(x,y)对应到P'(x',y'),称为平面直角坐标系中的伸缩变换。
在平面上取两条互相垂直并选定了方向的直线,一条称为x轴,一条称为y轴,交点O为原点。
再取一个单位长度,如此取定的两条互相垂直的且有方向的直线和长度单位构成平面上的一个直角坐标系,即为xOy。
数轴(直线坐标系):在直线上取定一点O,取定一个方向,再取一个长度单位,点O,长度单位和选定的方向三者就构成了直线上的坐标系,简称数轴.如图,平面直角坐标系:在平面上取两条互相垂直并选定了方向的直线,一条称为x轴,一条称为y轴,交点O为原点。
再取一个单位长度,如此取定的两条互相垂直的且有方向的直线和长度单位构成平面上的一个直角坐标系,即为xOy。
如图:建立坐标系必须满足的条件:任意一点都有确定的坐标与它对应;反之,依据一个点的坐标就能确定这个点的位置.坐标系的作用:①坐标系是刻画点的位置与其变化的参照物;②可找到动点的轨迹方程,确定动点运动的轨迹(或范围);③可通过数形结合,用代数的方法解决几何问题。
平面直角坐标系知识点(1)平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系。
(2)两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做x轴或横轴,垂直的数轴叫做y轴或纵轴,x轴y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
(3)x轴y轴将坐标平面分成了四个象限,右上方的部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。
第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(4)坐标平面内的点与有序实数对一一对应。
有序数对:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
两个平面直角坐标系转换公式
两个平面直角坐标系之间的转换公式包括以下三种情况:
1. 单纯移轴:设Oxy,O'x'y'是两个直角坐标系,坐标轴有相同的方向,O'在Oxy中的坐标为(x0,y0)。
用(x,y),(x',y')分别代表点M 在坐标系Oxy,O'x'y'中的坐标。
在移轴下,坐标转换公式是x=x'+x0,y=y'+y0。
2. 单纯转轴:设新旧坐标系有相同的坐标原点O,由Ox到Ox'的角度为t,坐标转换公式是x=x'cost-y'sint,y=x'sint+y'cost。
3. 一般的坐标转换公式:设Oxy,O'x'y'是两个坐标系,O'在Oxy 中的坐标为(x0,y0),由x轴到x'轴的角度为t,坐标转换公式是x=x'cost-y'sint+x0,y=x'sint+y'cost+y0。
以上是通过新坐标来表示旧坐标,同样可以通过旧坐标来表示新坐标。
平面直角坐标系中的平移变换 课件
平移
1.向量a 与平移到某位置的新向量b 的关系?
aa
a a =ab a a
a ba
2.设设FF是是坐坐标标平平面面内内的的一一个个图图形形,,将将FF上上所所有有点点按按照照同同
一一方方向向,,移移动动同同样样长长度度,,得得到到图图形象 ,与这F一之过间F程F的叫关 图系形?
r 按向量 a (2, 平3移)
小结: 1、向量的平移、图形的平移 2、点的平移公式
强调:1. 知二求三 2. 新旧顺序 3. 一个平移就 1
y
1
2
3
即对应点 的A坐标(1,3).
(2)由平移公式得
7 8 h
h 15
4 10 k 解得 k 14
即a 的坐标(-15,14).
例2.将函数y=2x 的图象 l 按a=(0,3)平移到l′,求l ′的 函数解析式.
解:设P(x, y)为l 的任意一点,它在 上的对应l点
看,一个平移就是一个向量.
o
F
F’ x
其二, 由于图形可以看成点的集合, 故认识图形的平
移, 就其本质来讲, 就是要分析图形上点的平移.
强调:1. 知二求三
2. 新旧顺序
3. 一个平移就是一个向量
例1.(1) 把点A(-2,1)按a=(3,2)平移, 求对应点A`的坐标(x`, y`) .
(2)点M(8,-10),按a 平移后的对应点M`的坐标 为(-7,4)求a
的平移. y
O
x
平移
设P(x,y)是图象F 上任一点,平移后对应点为
,且 的坐标
为P((hx,,ky)),则由 PP
y
P(x, y)
O F
平面直角坐标系中的变换
平面直角坐标系的图象变换 姓名一、平移变换1、平移定义:把平面上(或者空间里)每一个点按照同一个方向移动相同的距离,叫做平面(或者空间)的一个平移。
说明:(1)平移由移动的方向和距离决定。
(2)平移可由一个向量a 决定:a 的方向表示移动方向,a 的大小表示移动的距离。
2、平移公式:设(,)P x y , (,)P x y ''', (,)a m n =PP a '=由于 因此(,)(,)(,)x y x y m n ''-= ''x x m y y n -=⎧⎨-=⎩即:''x x m y y n =+⎧⎨=+⎩即: (平移公式)x x my y n'=-⎧⇒⎨'=-⎩(变形公式) 说明:(1)平移公式反映了图形中每一个点在平移前后新坐标和原坐标之间的关系.(2)平移公式只适用于坐标系不动,图形(或点)平移的情况.(3)在(,)P x y , (,)P x y ''', (,)a m n =中,知道其中任两个,可求另一个. 例1、(1)把点 A(-2 , 1)平移向量a =(3,2),求对应的点A ´的坐标。
(2)点B(8,-10)平移向量a 后的对应点B ´的坐标为(-7,4),求平移向量a 。
例2 、(1)已知函数2y x =的图像F 按向量(2,3)a =-平移得到'F ,求图像'F 的表达式。
(2)把函数2xy =的图像F 平移向量(3,2)a =到F ',求F '对应的函数解析式.(3) 函数2y x =的图像F 按向量(,)a m n =平移得到()2':13F y x =++,求平移向量a .注:一般可以证明,函数y=f(x)的图像平移向量(,)a a b =后,得到的函数表达式为:()y b f x a -=-。
中考数学易错题系列解析平面直角坐标系中的形变换问题
中考数学易错题系列解析平面直角坐标系中的形变换问题在中考数学中,平面直角坐标系是一个非常重要的概念。
在解题过程中,涉及到了平面直角坐标系中的形变换问题,这是一类考生容易出错的题型。
本文将针对中考数学中的平面直角坐标系中的形变换问题进行解析。
一、平移变换平移变换是指在平面上将所有的点按照指定的方向和距离进行移动。
当我们进行平移变换时,整个图形保持了原有的形状和大小,只是位置发生了改变。
例如,将点A(x, y)沿着x轴正方向平移p个单位长度,那么新的坐标点为A'(x+p, y)。
同理,将点A(x, y)沿着y轴正方向平移p个单位长度,那么新的坐标点为A'(x, y+p)。
在解平移变换问题时,要注意将坐标轴上的单位长度和平移距离进行对应,从而正确确定新的坐标点。
二、旋转变换旋转变换是指将平面上的图形按照指定的旋转角度进行旋转。
旋转的方向可以是顺时针或逆时针。
在平面直角坐标系中,旋转变换通常以原点O为旋转中心。
当我们进行旋转变换时,图形的形状和大小会保持不变,只是方向发生了改变。
例如,将点A(x, y)绕原点O逆时针旋转θ度,那么新的坐标点为A'(x', y')。
旋转变换的坐标点与原坐标点之间存在一定的关系,可以通过三角函数来计算。
在解旋转变换问题时,要注意确定旋转中心和旋转角度,以及在直角三角形中利用正弦、余弦函数关系计算旋转后的新坐标点。
三、对称变换对称变换是指将平面上的图形按照某个轴进行镜像对称,即左右对称或上下对称。
在平面直角坐标系中,常见的对称变换有关于x轴、y轴和原点的对称变换。
例如,将点A(x, y)关于x轴对称变换,那么新的坐标点为A'(x, -y);将点A(x, y)关于y轴对称变换,那么新的坐标点为A'(-x, y);将点A(x, y)关于原点对称变换,那么新的坐标点为A'(-x, -y)。
在解对称变换问题时,要注意确定对称轴的位置和方向,从而确定新的坐标点。
平面直角坐标系与极坐标系的转换
平面直角坐标系与极坐标系的转换引言:在数学中,平面直角坐标系和极坐标系是两种常见的坐标系类型。
它们在不同的数学问题和物理应用中有各自的优势和用途。
本文将介绍平面直角坐标系和极坐标系的基本概念,以及它们之间的转换方法和应用。
一、平面直角坐标系的基本概念平面直角坐标系是由两条互相垂直的坐标轴组成的。
通常我们将水平轴称为x轴,垂直轴称为y轴。
平面上的任意一点可以用一个有序数对(x, y)来表示,其中x代表点在x轴上的位置,y代表点在y轴上的位置。
平面直角坐标系可以用于描述平面上的几何图形、函数关系、运动轨迹等。
二、极坐标系的基本概念极坐标系是通过一个原点O和一个从该点出发的射线构成的。
极坐标系中,点的位置由两个参数确定,即极径r和极角θ。
极径r表示点O到该点的距离,极角θ表示该点的极轴与射线之间的夹角。
通常我们将极径r的正方向与直角坐标系中的x轴的正方向相对应,将极轴的正向与x轴的正方向相同。
极坐标系常用于描述平面上的圆、圆环以及极坐标方程所对应的图形。
三、平面直角坐标系转换为极坐标系的方法将平面直角坐标系中的点(x, y)转换为极坐标系中的点(r, θ)有以下公式:r = √(x^2 + y^2)θ = arctan(y/x)其中,r为点(x, y)到原点O的距离,即极径;θ为点(x, y)与x轴的夹角,即极角。
需要注意的是,由于反三角函数的多值性,θ的取值范围应限定在[-π, π]之间。
四、极坐标系转换为平面直角坐标系的方法将极坐标系中的点(r, θ)转换为平面直角坐标系中的点(x, y)有以下公式:x = r * cos(θ)y = r * sin(θ)其中,r为点(r, θ)到原点O的距离,即极径;θ为点(r, θ)与x轴的夹角,即极角。
利用三角函数的定义,我们可以计算出x和y的值。
五、平面直角坐标系与极坐标系的应用平面直角坐标系和极坐标系在不同的数学问题和物理应用中有广泛的应用。
平面直角坐标系常用于平面几何、函数图像的绘制与分析、运动学等。
平面直角坐标系旋转公式
平面直角坐标系旋转公式在平面直角坐标系里,旋转公式可是个相当有趣的概念哦!想象一下,我们有一张纸,上面画着一个坐标系,X轴和Y轴交叉的地方就像两个好朋友在拥抱。
突然,有一天,我们决定给这张纸来个大变身,转个身,让它看起来焕然一新。
嘿,旋转公式就是帮助我们搞定这个变身的秘密武器!咱们要知道,旋转公式其实是个简单的公式。
旋转角度一般用希腊字母θ(theta)表示,听起来就高大上对吧?假设你手里有一个点,坐标是 (x, y)。
如果你想把它围绕原点旋转θ角度,公式就来了,x' = x * cos(θ) y * sin(θ),y' = x * sin(θ) + y * cos(θ)。
哇,听起来复杂,但其实简单得很!说白了,就是把这个点的位置“换个姿势”,让它跟着我们转动。
我们来聊聊为什么这个公式这么重要。
想象一下,你在玩游戏,角色需要转身打怪。
如果没有这个旋转公式,那角色可真是麻烦了!它们转不过身,永远只能面对一个方向。
这样一来,怪物就可以趁机上前,没准就会被打得稀里哗啦。
所以,旋转公式让角色能够灵活应对,真是拯救世界的英雄。
旋转公式不仅仅在游戏中有用,在现实生活中也无处不在。
比如说,车子转弯时,轮胎的每一个位置都在不停地旋转,想想,没了旋转公式,司机肯定得迷了路。
或者你在玩飞盘,飞盘在空中划出的优美弧线,都是因为旋转的魔力。
简直就像魔法一样,让生活充满乐趣。
不过,讲真,这个公式不是随便玩玩的。
你得学会如何使用三角函数,比如sin和cos。
这些数学工具就像是你的好帮手,没它们,公式就失去了灵魂。
拿出计算器,输入角度,转眼间,新的坐标就出现在你眼前。
太神奇了吧?就像变魔术一样,数学也是充满了惊喜。
大家可能会问,这个旋转角度到底是什么?它可以是任意的。
你想转多大就转多大,360度一圈又回到原点,180度就变了个样,90度更是直接换了个脸!这就让我们在空间中自由翱翔,真是想想就让人激动。
就像一只翱翔在蓝天的鸟儿,心中无忧无虑。
平面直角坐标系中的变换
第4讲 平面直角坐标系中的变换已知点P (a ,b ),则点P 到x 轴的距离为 ; 点P 到y 轴的距离为 . 若点P (a ,b )在第一、三象限的角平分线上,则 ,即横、纵坐标 ; 若点P (a ,b )在第二、四象限的角平分线上,则 ,即横、纵坐标 .【例1】基础过关(1)点A (3,-1)在第______象限,点B (-1,-3)在第______象限,点C (3, 1)在第______象限,点A (-3,1)在第______象限.(2)若点P (a ,b )在第二象限,则点(-b ,a )在第______象限.(3)如果点P 在轴上,则____,此时P 的坐标为_____ ;当____时,点P 在横轴上,此时P 点坐标为 ______ ;(4)点P(x ,y),若xy=0,则点P 在____________上.(5)已知点P (-x+1,2x-7)在第三象限的角平分线上,则x=______.(6)已知点P (2x ,x+3)在第二象限坐标轴夹角平分线上,则点Q (-x+2,2x+3)的坐标为 .(7)如果点A (2,m ),点B (n-6) 且AB//y 轴,则_______.(8)点P 在第四象限,且到x 轴的距离为2,到y 轴的距离为5,则点P 的坐标为_______.(9)点P (-a 2-2,b 2+1)到x 轴的距离为______,到y 轴的距离为______.【例2】基础过关(1)如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.()5,2a a +-y a =a =(),1a a -板块一 平面直角坐标系的基础知识(2)如果<0,那么点P (x ,y )在( )A 、第二象限B 、第四象限C 、第四象限或第二象限D 、第一象限或第三象限(3)点(x ,1-x )不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限(4)已知点P (2x-10,3-x )在第三象限,则x 的取值范围是( )A 、53<<xB 、3≤x ≤5C 、5>x 或3<xD 、x ≥5或x ≤3 点P (m ,n)关于x 轴的对称点为 ,即横坐标不变,纵坐标互为相反数;点P (m ,n)关于y 轴的对称点为 ,即纵坐标不变,横坐标互为相反数;点P (m ,n)关于原点的对称点为 ,即横、纵坐标都互为相反数;点P (m ,n)关于点Q (a ,b )的对称点是 .【例3】基础过关(1)点P (3,-5)关于x 轴对称的点的坐标为( )A .(-3,-5)B .(5,3)C .(-3,5)D .(3,5)(2)点P (-2,1)关于y 轴对称的点的坐标为( )A . (-2,-1)B .(2,1)C .(2,-1)D .(-2,1)(3) 在平面直接坐标系中,P (-4,5)关于x 轴对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点是 .(4)点P (2,3)关于直线x =3的对称点为 ,关于直线y =5的对称点为 .(5)点(-2,3)关于点(1,2)对称的点是 .(6)已知点P (a +1,2a-1)关于x 轴的对称点在第一象限,求a 的取值范围.xy 板块二 坐标系中的对称【例4】对称的应用如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)观察与探究:由图观察已知A(2,0)关于直线l的对称点A’的坐标为(0,2),请在图中分别标明B(5,3),C(-2,5)关于直线l的对称点B’、C’的位置,并写出它们的坐标:B’,C’;(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a,b)关于第一、三象限的角平分线l的对称点P’的坐标为(不必证明);(3)运用与拓展:点A(a,b)在直线l的下方,则a,b的大小关系为;若在直线l的上方,则.板块三坐标系中的平移将点(x,y)向右平移a个单位长度,得到的对应点的坐标是:____________;将点(x,y)向左平移a个单位长度,得到的对应点的坐标是:____________;将点(x,y)向上平移b个单位长度,得到的对应点的坐标是:____________;将点(x,y)向下平移b个单位长度,得到的对应点的坐标是:.将一个图形各个点的横坐标加上(或减去)一个正数a,相应的新图形将向(或向)平移个单位长度;将一个图形各个点的纵坐标加上(或减去)一个正数a,相应的新图形将向(或向)平移个单位长度;平移只改变图形的,图形的和不发生改变.平行于x轴(或横轴)的直线上的点的相同;平行于y轴(或纵轴)的直线上的点的相同.【例5】基础过关(1)点M(-3,-5)向上平移7个单位得到点M1的坐标为;再向左平移3个单位得到点M2的坐标为.(2)在平面直角坐标系中,若将点p(x,y)向右平移a个长度单位得到点的坐标是,若向下平移b个长度单位,得到的点的坐标是.(3)平面直角坐标系中,线段A1B1是由线段AB经过平移得到的,点A(-1,-4)的对应点为A1(1,-1),点B(1,1)的对应点B1为.(4)将点P(m-2,n+1)沿x轴负方向平移3个单位,得到P1(1-m,2),则点P坐标是.【例6】平移的应用(1)如图1,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛坐标分别是(-4,2)(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是.(2)如图2是由若干个边长为1的小正方形组成的网格,请在图中作出将“蘑菇”ABCDE绕A点逆时针旋转90°再向右平移2个单位的图形(其中C、D为所在小正方形边的中点).图1 图2 图3 图4 板块四坐标系中的面积与规律问题【例7】面积问题(1)如图3,直角坐标系中,△ABC的顶点都在网格点上,其中点A的坐标为(2,-1),则△ABC的面积为平方单位.(2)如图4,已知直角坐标系中A(-1,4)、B(0,2),平移线段AB,使点B移到点C (3,0),此时点A记作点D,则四边形ABCD的面积是.(3)已知:如图,在平面直角坐标系中,四边形ABCD各项点的坐标分别为A(0,0),B(9,0),C(7,5),D(2,7).求四边形ABCD的面积.【例8】找规律问题(1)如图5,在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,图中的正方形的四个顶点都在格点上,观察图中每一个正方形四条边上的整点的个数,请你猜测由里向外第10个正方形四条边上的整点个数共有个.(清华附中期中)(2)如图6,在平面直角坐标系中,第1次将△OAB 变换成△OA 1B 1,第二次将三角形OAB 变换成OA 2B 2,第三次将△OAB 变换成△OA 3B 3.已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变化前后的三角形,找出规律,按此变化规律再将△OA 3B 3变换成△OA 4B 4,则点A 4的坐标是 ,则点B 4的坐标是 ,则点A n 的坐标是 ,则点B n 的坐标是 .(北京十二中期中)(3)如图,一个粒子在第一象限内及x 轴、y 轴上运动,在第1min 内它从原点运动到(1,0),而后接着按如图所示方式在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在1989min 后,求这个粒子所处的位置坐标.【巩固练习】1.已知点A ()4,x y -,点()1,2B y x -关于x 轴对称,求x y 的值.2.如图,将边长为1的正方形OAPB 沿x 轴正方向边连续翻转2006次,点P 依次落在点1232006,,P P P P 的位置,则2006P 的横坐标2006x =______,2006P 的纵坐标2006y =______.3.在平面直角坐标系中,等腰三角形ABC 的顶点A 的坐标为(2,2).(1)若底边BC 在x 轴上,设点B 、C 坐标分别为(m ,0)、(n ,0),你认为m 、n 应满足怎样的条件?答:____________. (2)若底边BC 两端点分别在x 轴、y 轴上,设点B 、C 的坐标分别为(m ,0)、(0,n ),你认为m 、n 应满足怎样的条件?答:____________.课后作业1.(1)在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是()A.(-5,-2)B.(-2,-5)C.(-2,5)D.(-2,-5)(2)已知点P(x,y),Q(m,n),如果x+m=0,y+n=0那么点P,Q()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于过点(0,0)(1,1)的直线对称(3)已知:|x-1|+(y+2)²=0,则(x,y)关于原点对称的点为.(4)已知点P(a+3b,3)与点Q(-5,a+2b)关于x轴对称,则a=b= 2.(1)将点P(-4,3)先向右平移2个单位,再向上平移1个单位后,则得到点P’的坐标为.(2)点A向左平移3个单位,再向下平移1个单位到点(-1,3),则点A的坐标为.(3)在平面直角坐标系中有一个已知点A,现在x轴向下平移3个单位,y轴向左平移2个单位,单位长度不变,得到新的坐标系,在新的坐标系下点A的坐标系下点A的坐标为(-1,2),在旧的坐标系下点A的坐标为.(4)在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位(5)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.3.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中画出△ABC向右平移3个单位,再向下平移2个单位的图形△A1B1C1.(3)写出点A1,B1,C1的坐标.4.如图,在平面直角坐标系中,若每一个方格的边长代表一个单位.(1)线段DC是线段AB经过怎样的平移得到的?(2)若C点的坐标是(4,1),A点的坐标是(-1,-2),你能写出B、D两点的坐标吗?(3)求平行四边形ABCD的面积.5.如图,长为1,宽为2的长方形ABCD以右下角的顶点为中心顺时针旋转90°,此时A 点的坐标为;依次旋转2009次,则顶点A的坐标为.。
平面直角坐标系之间的转换-Read
L3, 0 3k
高程系统的由来及特点 在测量中有三种高程,分别是大地高,正高,正常高, 我国高程系统日常测量中采用的是正常高,GPS测量 得到的是大地高。 高程基准面是地面点高程的统一起算面,通常采用大地 水准面作为高程基准面。所谓大地水准面是假想海洋 处于完全静止的平衡状态时的海水面,并延伸到大陆 地面以下所形成的闭合曲面。 我国的高程系统目前采用的是1956黄海高程系统和1985 黄海高程系统。
1)平面直角坐标系之间的转换
假设原始坐标系为 xoy ,转换后为 x' o' y',令P表示平面上一个未 被转换的点,P’表示经某种变换后的新点,则平面直角坐标系 之间存在三种变换分别是平移变换、比例变换和旋转变换。 Ty 为沿Y方向 对于平移变换,假定 Tx 表示点P沿X方向的平移量, 的平移量。则有相应的矩阵形式为。 (1)
1 1 1 1 H m 0
H m 为当地平均海拔高程, 0 为该地区平均高程异常 式中,
在地方投影面的确定过程中,应当选取过测区中心的经线为独立 中央子午线,并选取当地平均高程面为投影面。
直角坐标系与坐标变换
直角坐标系与坐标变换直角坐标系,又称笛卡尔坐标系,是描述平面或空间中点位置的常用坐标系统。
它由两条垂直的坐标轴组成,通常标记为x和y。
直角坐标系中,原点表示位置的参考点,x轴和y轴分别表示水平和垂直方向。
在平面直角坐标系中,每个点都可以由一对有序实数(x,y)来表示。
x坐标表示点在x轴上的位置,y坐标表示点在y轴上的位置。
点的坐标是相对于原点的水平和垂直距离。
在立体直角坐标系中,除了平面直角坐标系中的两个坐标轴,还加入了一条垂直于平面的z轴。
每个点都可以由一个有序实数元组(x,y,z)来唯一确定。
坐标变换是指将一个点的坐标从一个坐标系转换到另一个坐标系。
常见的坐标变换方式有平移、旋转和缩放等。
平移是通过将坐标系整体移动,实现点的坐标变换。
平移的实质是在原有的坐标基础上加上一个平移向量,使所有点的坐标都发生相应的变化。
旋转是通过将坐标系绕着某一点或某一轴进行旋转,实现点的坐标变换。
旋转的实质是通过一系列的线性变换将原有坐标系中点的坐标映射到新坐标系中。
缩放是通过改变坐标系中的比例尺度,实现点的坐标变换。
缩放的实质是通过乘以一个比例因子来改变点的位置。
除了上述基本的坐标变换方式,还有一种特殊的坐标变换叫做仿射变换。
仿射变换是指保持直线在变换前后的位置关系不变的变换。
它可以用来实现平移、旋转和缩放等各种变换。
总结来说,直角坐标系是一种常用的坐标系统,用于描述平面或空间中点的位置。
坐标变换是指将点的坐标从一个坐标系转换到另一个坐标系。
常见的坐标变换方式有平移、旋转、缩放和仿射变换等。
通过坐标变换,我们可以方便地进行几何问题的分析和计算。
平面直角坐标系中点的变化规律
平面直角坐标系中点的变化规律嘿,伙计们!今天我们来聊聊一个有趣的话题:平面直角坐标系中点的变化规律。
你们知道吗,这个看似复杂的问题,其实可以用简单的语言和形象的比喻来解释。
别着急,我们一步一步来,先来给大家讲讲什么是坐标系吧。
坐标系,就是用来表示点在平面上位置的一种方法。
在平面直角坐标系中,我们用两个数来表示一个点的位置,这两个数分别叫做横坐标和纵坐标。
横坐标表示点在水平方向上的位置,纵坐标表示点在垂直方向上的位置。
好了,现在我们已经知道了坐标系的基本概念,接下来我们就来看看点在坐标系里是怎么变化的吧。
我们来说说点的平移。
平移就是把点沿着某个方向移动一定的距离。
比如说,我们现在要把点A从原点向右移动5个单位长度,那么我们只需要把A点的横坐标加上5就可以了。
这样一来,点A的新位置就变成了(5, 0)。
同样的道理,如果我们要把点A向下移动3个单位长度,那么我们只需要把A点的纵坐标减去3就可以了。
这样一来,点A的新位置就变成了(5, -3)。
接下来,我们来说说点的旋转。
旋转就是把点绕着某个点(通常是原点)旋转一定的角度。
比如说,我们现在要让点B绕着原点逆时针旋转45度,那么我们可以先把点B平移到原点的左侧或右侧一个单位长度,然后再把它顺时针旋转90度。
这样一来,点B的新位置就变成了(-√2/2, √2/2)。
同样的道理,如果我们要让点B绕着原点顺时针旋转45度,那么我们可以先把点B平移到原点的右侧或左侧一个单位长度,然后再把它逆时针旋转90度。
这样一来,点B的新位置就变成了(√2/2, -√2/2)。
我们来说说点的缩放。
缩放就是把点的大小按照一定的比例进行放大或缩小。
比如说,我们现在要让点C的大小变为原来的两倍,那么我们只需要把点C的横坐标和纵坐标都乘以2就可以了。
这样一来,点C的新位置就变成了(10, 10)。
同样的道理,如果我们要让点C的大小变为原来的一半,那么我们只需要把点C的横坐标和纵坐标都除以2就可以了。
平面直角坐标变换
§5.7 平面直角坐标变换为了考虑同一图形在不同的坐标系下的方程之间的关系,我们首先需要建立同一个点在不同的坐标系下的坐标之间的关系,这就是坐标变换的问题,因为我们研究的图形是点的轨迹.我们仅考虑平面直角坐标变换.设在平面上给出了由两个标架 {O ;i , j } 和 {O';i', j’ } 所决定的右手直角坐标系,这里i 和j 以及i' 和j' 是两组坐标基向量,它们是平面上的两个标准正交基,我们依次称这两个坐标系为旧坐标系和新坐标系.由于坐标系的位置完全由原点和坐标基向量所决定,所以新坐标系与旧坐标系之间的关系,就由O' 在 {O ;i , j } 中的坐标以及i' 和j’ 在 {O ;i , j } 中的分量所决定.任一直角坐标变换总可以分解成移轴(也叫坐标平移)和转轴(也叫坐标旋转)两个步骤.1.移轴如果两个标架 {O ;i , j } 和 {O';i , j' } 的原点O 与O’ 不同,O’ 在{O ;i , j }中的坐标为 (x 0,y 0),但两标架的坐标基向量相同,即有i’ = i , j' = j那么标架 {O';i', j’} 可以看成是由标架 {O ;i , j } 将原点平移到O'点而得来的(图5.7.1).这种坐标变换叫做移轴(坐标平移).设P 是平面内任意一点,它对标架 {O ;i , j } 和 {O’;i', j’} 的坐标分别为 (x ,y ) 与 (y x '',),则有P O O O OP '+'=但 j i y x OP +=,j i y x P O '+'=', j i 00y x O O +='于是有j i j i )()(00y y x x y x +'++'=+故 {x ,y } = {x 0,y 0} + {x',y ’ }根据向量相等的定义得移轴公式为 图5.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标系转换的种类
1 大地坐标系与空间直角坐标系之间的转换 例如:大地坐标系与北京54坐标系之间的转换,换算关系如下, 其中N为椭球卯酉圈的曲率半径,e为椭球的第一偏心率,a、b 为椭球的长短半径。
X ( N H ) cos B cos L Y ( N H ) cos B sin L Z N (1 e2 ) H sin B
第二章 测量中的坐标系及其 坐标转换
பைடு நூலகம் 坐标转换的种类
测量中常用的坐标系 1:北京54坐标系,西安80坐标系,地方独立坐标系,WGS84 坐标系,大地坐标系,高斯-克吕格平面直角坐标系, 1956和1985黄海高程系统
北京54坐标系的由来及特点
它是一种参心坐标系,采用的是克拉索夫斯基椭球参数,并 与前苏联1942年坐标系进行联测,可以认为是前苏联1942 年坐标系的延伸,它的原点并不在北京而是在前苏联的普 尔科沃。 该坐标系曾发挥了巨大作用,但也有不可避免的缺点: 1:椭球参数有较大误差; 2:参考椭球面与我国大地水准面差距较大,存在着自西向 东的明显的系统性的倾斜; 3:定向不明确; 4:几何大地测量和物理大地测量应用的参考面不统一;
5:椭球只有两个几何参数,缺乏物理意义; 6:该坐标系是按分区进行平差的的,在分区的结合部 误差较大。
西安80坐标系的由来及特点
它也是一种参心坐标系,大地原点位于我国陕西省泾阳县永乐镇。 1:采用的国际大地测量和地球物理联合会于1975年推荐的椭球参 数,简称1975旋转椭球。它有四个基本参数: 地球椭球长半径 a=6378140m GM 3.986005 1014 m 3 / s 2 G是地心引力常数 J 2 1.08263 108 地球重力场二阶带谐系数 7.292115 105 rad / s 地球自转角速度 2:椭球面同大地水准面在我国境内最为拟合; 3:椭球定向明确,其短轴指向我国地极原点JYD1968.0方向,大 地起始子午面平行于格林尼治平均天文台的子午面。 4:大地高程基准面采用1956黄海高程系统。
新北京1954年北京坐标系
新北京1954坐标系是由1980西安坐标系转换得来的,它是在采用 1980西安坐标系的基础上,仍选用克拉索夫斯基椭球为基准椭 球,并将椭球中心平移,使其坐标轴与1980西安坐标系的坐标 轴平行。其特点如下: 1:是采用克拉索夫斯基椭球; 2:采用多点定位,但椭球面同大地水准面在我国境内并不最佳 拟合; 3:椭球定向明确,其短轴指向与我国地极原点JYD1968.0方向平 行,大地起始子午面平行我国起始天文子午面。 4:大地高程基准面采用1956黄海高程系统; 5:大地原点与1980西安坐标系相同,但起算数据不同;
1 1 1 1 H m 0
H m 为当地平均海拔高程, 0 为该地区平均高程异常 式中,
在地方投影面的确定过程中,应当选取过测区中心的经线为独立 中央子午线,并选取当地平均高程面为投影面。
大地坐标系的由来及特点 大地坐标系的定义是:地球椭圆的中心与地球质心重合, 椭球短轴与地球自转轴重合,大地纬度B为过地面点 的椭球法线与椭球赤道面的夹角,大地经度L为过地 面点的椭球子午面与格林尼治平子午面的夹角,大地 高H为地面点沿椭球法线至椭球面的距离。
WGS84坐标系 前面的均是参心坐标系,就整个地球空间而言,有以下 缺点: (1)不适合建立全球统一的坐标系统 (2)不便于研究全球重力场 (3)水平控制网和高程控制网分离,破坏了空间三维 坐标的完整性。 WGS84坐标系就是能解决上述问题的地心坐标系。
高斯-克吕格投影平面直角坐标系的由来及特点
L3, 0 3k
高程系统的由来及特点 在测量中有三种高程,分别是大地高,正高,正常高, 我国高程系统日常测量中采用的是正常高,GPS测量 得到的是大地高。 高程基准面是地面点高程的统一起算面,通常采用大地 水准面作为高程基准面。所谓大地水准面是假想海洋 处于完全静止的平衡状态时的海水面,并延伸到大陆 地面以下所形成的闭合曲面。 我国的高程系统目前采用的是1956黄海高程系统和1985 黄海高程系统。
地方独立坐标系的由来及特点
基于限制变形、方便、实用和科学的目的,在许多城市和工程测 量中,常常会建立适合本地区的地方独立坐标系,建立地方独 立坐标系,实际上就是通过一些参数来确定地方参考椭球与投 影面。 地方参考椭球一般选择与当地平均高程相对应的参考椭球,该椭 球的中心、轴向和扁率与国家参考椭球相同,其椭球半径a增 大为:
为了建立各种比例尺地形图的控制及工程测量控制,一般应将椭 球面上各点的大地坐标按照一定的规律投影到平面上,并以相 应的平面直角坐标表示。 目前各国常采用的是高斯投影和UTM投影,这两种投影具有下列 特点: (1)椭球面上任意一个角度,投影到平面上都保持不变,长度投 影后会发生变形,但变形比为一个常数。 (2)中央子午线投影为纵轴,并且是投影点的对称轴,中央子 午线投影后无变形,但其它长度均产生变形,且越离中央子午 线越远,变形愈大。 (3)高斯平面直角坐标系的坐标轴与笛卡儿直角坐标系坐标轴 相反,一般将y值加上500公里,在y值前冠以带号。 (4)带号与中央子午线经度的关系为 L6, 0 6n 3
2 大地坐标系与高斯投影平面直角坐标系之间的转换 分为两种公式,分别是正算公式和反算公式 由大地坐标计算高斯坐标为正算公式,反之为反算公式。
N a /W W (1 e 2 sin 2 B ) 2 2 a b e2 a2
1 2
ae2 sin B B arctgtg 1 Z W Y L arctg X R cos H N cos B
Z arctg 2 2 1/ 2 ( X Y ) R [ X 2 Y 2 Z 2 ]1 / 2