八年级数学下等腰三角形和等边三角形培优练习题
八年级数学全等三角形(培优、数学竞赛)
北京四中八年级培优班数学全等三角形复习题1.如图1,已知在等边△ABC 中,BD =CE ,AD 与BE 相交于P ,则∠APE 的度数是 。
图1B 图2BA图32.如图2,点E 在AB 上,AC =AD ,BC =BD ,图中有 对全等三角形。
3.如图3,OA =OB ,OC =OD ,∠O =60°,∠C =25°,则∠BED 等于 度。
4.如图4所示的2×2方格中,连接AB 、AC ,则∠1+∠2= 度。
图4B图5AB图6CB5.如图5,下面四个条件中,请你以其中两个为已知条件,第三个为结论,推出一个正确的命题。
( )①AE =AD ;②AB =AC ;③OB =OC ;④∠B =∠C 。
6.如图6,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =21AB ,点E 、F 分别为边BC 、AC 的中点。
(1)求证:DF =BE ;(2)过点A 作AG ∥BC ,交DF 于点G ,求证:AG =DG 。
7.如图7,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AD ,下列结论正确的是( )A. AB -AD >CB -CDB. AB -AD =CB -CDC. AB -AD <CB -CDD. AB -AD 与CB -CD 的大小关系不确定图7BD图8CB8.In Fig. 8, Let △ABC be an equilateral triangle, D and E be points on edges AB and AC respectively, F be intersection of segments BE and CD, and ∠BFC=120°, then the magnitude relation between AD and CE is ( )A. AD>CEB. AD<CEC. AD=CED. indefinite(英汉小词典:equilateral 等边的;intersection 交点;indefinite 不确定的;magnitude 大小,量) 9.如图9,在△ABC 中,AC =BC =5,∠ACB =80°,O 为△ABC 中一点,∠OAB =10°,∠OBA =30°,则线段AO 的长是 。
八年级数学全等三角形(培优篇)(Word版含解析)
八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,ZABC=120° , AB=10cm,点P是这个菱形内部或边上的一点.若以P,B f C为顶点的三角形是等腰三角形,则P, A(P, A两点不重合)两点间的最短距离为____________ c m .【答案】1OJJ-1O【解析】解:连接3D,在菱形A3CD中,T Z ABC=120° , AB=BC=AD=CD=10 , :. Z A=Z C=60° ,二△ ABD , △ BCD都是等边三角形,分三种情况讨论:①若以边8C为底,则3C垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了"直线外一点与直线上所有点连线的线段中垂线段最短",即当点P与点D重合时,必最小,最小值^4=10 ;②若以边P3为底,ZPCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧3D (除点8外)上的所有点都满足APBC是等腰三角形,当点P在AC上时,AP 最小,最小值为lOjJ-10 ;③若以边PC为底,ZPBC为顶角,以点3为圆心,BC为半径作圆,则弧AC上的点&与点D均满足APBC为等腰三角形,当点P与点A重合时,必最小,显然不满足题意,故此种情况不存在;综上所述,必的最小值为10>/3-10 (cm).故答案为:10x/I—10 .点睹:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在等腰△遊中,肋丄肚交直线%于点以若妙丄万G则△磁的顶角的度数为【答案】30。
或150。
或90°【解析】试题分析:分两种情况:①3C为腰,②BC为底,根据直角三角形30。
角所对的直角边等于斜边的一半判断岀ZACD=3O°,然后分AD在^ABC内部和外部两种情况求解即可.解:①BC为腰,VAD丄 BC 于点D t AD= - BC f2:.ZACD二30。
《等腰三角形》培优专题
等腰三角形【分类解析】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
求证:M 是BE 的中点。
E例2. 如图,已知:AB C ∆中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。
ABCD例3. 已知:如图,AB C ∆中,AB CD AC AB ⊥=,于D 。
求证:DCB 2B AC ∠=∠。
C4、中考题型:1.如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有( )A. 6个B. 7个C. 8个D. 9个A 36° E DFBC 2.)已知:如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足。
求证:AE =AF 。
AE F BDC5、题形展示:例1. 如图,AB C ∆中, 100=∠=A AC AB ,,BD 平分ABC ∠。
求证:B C B D AD =+。
【实战模拟】1. 选择题:等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为( ) A. 2cmB. 8cmC. 2cm 或8cmD. 以上都不对2. 如图,AB C ∆是等边三角形,BC BD 90CBD ==∠, ,则1∠的度数是________。
CA 1DB2 33. 求证:等腰三角形两腰中线的交点在底边的垂直平分线上.4. AB C ∆中, 120A AC AB =∠=,,AB 的中垂线交AB 于D ,交CA 延长线于E ,求证:BC 21DE =。
【试题答案】(实战模拟) 1. B2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。
解:因为AB C ∆是等边三角形 所以 60ABC BC AB =∠=, 因为B C B D =,所以B D A B = 所以23∠=∠在AB D ∆中,因为 60ABC 90CBD =∠=∠, 所以 150ABD =∠,所以 152=∠ 所以 75ABC 21=∠+∠=∠3. 分析:首先将文字语言翻译成数学的符号语言和图形语言。
人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)
人教版八年级数学13.3 等腰三角形培优训练一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C 【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC. 6. 【答案】B7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D ,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC. ∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB=AC,D为BC的中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.18. 【答案】解:(1)证明:如图,过点D作DM∥AB,交CF于点M,则∠MDF=∠E.∵△ABC是等边三角形,∴∠CAB=∠CBA=∠C=60°.∵DM∥AB,∴∠CDM=∠CAB=60°,∠CMD=∠CBA=60°.∴△CDM是等边三角形.∴CM=CD=DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°, ∴∠E =∠FDM =30°. ∴∠BFE =∠DFM =30°. ∴BE =BF ,DM =MF.∵△DMF ≌△EBF ,∴MF =BF. ∴CM =MF =BF.又∵BC =AB =12,∴BF =13BC =4.19. 【答案】解:(1)∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠BEG =∠AGC′=48°. 由折叠的性质得∠CEF =∠C′EF , ∴∠CEF =12(180°-48°)=66°. (2)证明:∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠GFE =∠CEF. 由折叠的性质得∠CEF =∠C′EF , ∴∠GFE =∠C′EF.∴GE =GF ,即△EFG 是等腰三角形.20. 【答案】证明:∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°. ∵DE ∥AB ,∴∠EDC =∠B =60°,∠DEC =∠A =60°. ∵EF ⊥DE ,∴∠DEF =90°. ∴∠F =90°-∠EDC =30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。
八年级下证明二等腰三角形 - 培优
等腰三角形知识点等腰三角形⑴定义:有两条边相等的三角形叫做等腰三角形。
⑵性质:①等腰三角形的两个底角相等(简称“等边对等角”);②等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称“三线合一”)。
③等腰三角形是轴对称图形。
⑶判定方法:①等腰三角形的定义;②如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边” )。
等边三角形(也叫正三角形)(1)定义:三条边都相等的三角形叫做等边三角形。
⑵性质:①等边三角形的各角相等,并且每一个角都等于60°;②等边三角形是轴对称图形。
⑶判定方法:①等边三角形的定义;②三个角都相等的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形。
典型例题等腰三角形例1.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线变式练习:性质“等腰三角形的三线合一”,其中所指的“线”之一是()A.等腰三角形底角的平分线B.等腰三角形腰上的高C.等腰三角形腰上的中线D.等腰三角形顶角的平分线变式练习.下列关于等腰三角形的性质叙述错误的是()A.等腰三角形两底角相等B.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合C.等腰三角形是中心对称图形D.等腰三角形是轴对称图形例2.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()A.17cm B.22cm C.17cm或22cm D.18cm变式练习.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()A.40°B.50°C.60°D.30°变式练习.等腰三角形的一个外角是80°,则其底角是()A.100°B.100°或40°C.40°D.80°变式练习.如图所示,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108°ECA F G例3:如图,在等腰△ABC 中,AB=AC ,一腰上中线BD 将这个三角形的周长分为16和8的两部分,求这个等腰三角形的腰长与底边长.变式练习:如图,若P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P1P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长是变式练习:如图,在△ABC 中,AB=AC=10,ABC=∠ACB=15°,CD 是腰AB 上的高;求:△ABC 的面积.变式练习:如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .例4:如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.(1)写出点D 到DABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论NMDBA C变式练习:在△ABC 中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P 旋转,观察线段PD 与PE 之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P 旋转,△PBE 是否能成为等腰三角形?若能,指出所有情况(即写出△PBE 为等腰三角形时CE 的长);若不能,请说明理由.培优例5:(1)等腰三角形的内角的度数之比为1:2,这个等腰三角形底角的度数为________(2)已知等腰三角形ABC 的三边长a,b,c 均为整数,且满足a+bc+b+ac=24,则这样的三角形共有__________个.例6.如图,若AB=AC ,BG=BH ,AK=KG ,则BAC ∠的度数是_______例7.如图,在△ABC 中,AC=BC ,90ACB ∠= ,D 是AC 上一点,AE BD ⊥交BD 的延长线于E ,且12AE BD =,求证:BD 是∠ABC 的角平分线例8.如图1,三角形ABC 的边BC 在直线l 上,AC BC ⊥,且AC=BC ,三角形EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF=FP 。
初二数学等腰等边三角形培优题1(完整资料).doc
此文档下载后即可编辑等腰等边三角形培优题11.如图,将△ABC 绕直角顶点C 顺时针旋转90°,得到△DEC ,连接AD ,若∠BBB =25∘,则∠BBB =______.2.如图,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC =_____.3.如图,在△BBBBBB 中,BB BB =BBBB ,CD 是∠BBBBBB 的平分线,BB BB //BBBB ,交AC 于点E .若∠BBBB =35∘,则∠BBB=.4.如图,等边△BBBBBB 中,AD 是中线,BBBB ⊥BBBB 于点E ,BBBB =3,则点D 到AB 的距离为:______.5.已知:在△ABC 中,AH ⊥BC ,垂足为点H ,若AB +BH =CH ,∠ABH =70∘,则∠BAC =______ ∘.6.如图,在△ABC 中,BI ,CI 分别平分∠ABC,∠ACB,过I 点作DE∥BC,交AB 于D ,交AC 于E ,给出下列结论:①△DBI 是等腰三角形;②△ACI 是(第1题) (第2题) (第3题)(第4题) (第6题) (第7题)等腰三角形;③AI 平分∠BAC;④△ADE 周长等于AB +AC .其中正确的是( )A . ①②③B . ②③④C . ①③④D . ①②④7.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,….若∠A=70°,则∠B n -1A n A n -1的度数为( )A . 702n ⎛⎫︒ ⎪⎝⎭B . 1702n +⎛⎫︒ ⎪⎝⎭C . 1702n -⎛⎫︒ ⎪⎝⎭D . 2702n +⎛⎫︒ ⎪⎝⎭8.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°, 在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的有 (填序号) 9.如图所示,在Rt △ABC 中,∠A=30°,∠B=90°,AB=12,D 是斜边AC 的中点,P 是AB 上一动点,则PC+PD 的最小值为 .10.如图,已知△BBBBBB 是等边三角形,D 为BC 延长线上一点,CE 平分∠BBBBBB ,BBBB =BBBB ,BBBB =7, 则 AE 的长度是 . 11.如图,△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD于点F ,连接CF .若∠A =60°,∠ABD =24°,则∠ACF 的度数为 .12.如图,已知点C 是线段AB 的中点,点D 是线段BC 上的定点(不同于端点B 、C ),过点D 作直线l 垂直线段AB ,若点P 是直线l 上的任意一点,连接PA 、PB ,则能使△PAB 成为等腰三角形的点P 一共有_______ 个.(填写确切的数字)(第11题) (第9题) (第10题)(第8题)(第12题) (第13题)13.如图,AB=2,BC=5,AB⊥BC于点B,l⊥BC于点C,点P自点B开始沿射线BC移动,过点P作PQ⊥PA交直线l于点Q,当BP= 时,PA=PQ. 14.已知△ABC是等边三角形,E是AC边上一点,F是BC边延长线上一点,且CF=AE,连接BE,EF.(1)如图1,若E是AC边的中点,猜想BE与EF的数量关系为___________________.(2)如图2,若E是线段AC上的任意一点,其它条件不变,上述线段BE、EF 的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图3,若E是线段AC延长线上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明。
等腰三角形和等边三角形培优精华
等腰三角形和等边三角形知识要点1、等腰三角形的定义:有两条边相等的三角形是等腰三角形。
等边三角形的定义:三条边都相等的三角形是等边三角形,又叫正三角形,等边三角形是特殊的等腰三角形。
2、等腰三角形的性质:(1)、等腰三角形的两个底角相等(简写成“等边对等角”)。
(2)、等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
(3)、等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
(4)、等腰三角形底边上的垂直平分线到两条腰的距离相等。
(5)、等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
(6)、等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
(7)、等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴, 3、等腰三角形的判定:(1)、在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。
(2)、在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
4、等边三角形的性质:⑴、等边三角形的三边都相等,内角都相等、且均为60度。
⑵、等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶、等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
5、等边三角形的判定: ⑴三边相等的三角形是等边三角形(定义)。
⑵三个内角都相等的三角形是等边三角形(有两个角等于60度的三角形是等边三角形)。
⑶有一个角是60度的等腰三角形是等边三角形。
6、含30°角的直角三角形的重要结论:30°角所对的直角边是斜边的一半。
7、常做辅助线的方法:“遇到等腰常做高” 练习题1 2.7、3、5、22、如图,在等边△ABC 中,D 、E AD=CE ,则∠BCD+∠CBE= 度。
3、如图,点D 为等边三角形ABC 内的一点,BD=AD ,BE=AB , ∠DBE=∠DBC ,则∠BED 的度数是 度。
等边三角形培优专项练习试题与答案
等边三角形培优专项练习题双基训练1. 如图14-45,在等边ΔABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是。
2.如图14-46,ΔABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EFAB,AE=1,则AD= ,ΔEFC的周长= 。
3.如图14-47,在等边ΔABC中,AE=CD,BG⊥AD,求证:BP=2PG。
纵向应用1.如图14-48,已知等边ΔABC的ABC、ACB的平分线交于O点,若BC上的点E、F分别在OB、OC垂直平分线上,试说明EF与AB的关系,并加以证明。
2. 如图14-49,C是线段AB上的一点,ΔACD和ΔBCE是两个等边三角形,点D、E在AB同旁,AE 交CD于点G,BD交CE于点H,求证:GH∥AB。
3.如图14-50,已知ABC是等边三角形,E是AC延长线上一点,选择一点D使得ΔCDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:ΔCMN是等边三角形。
4.如图14-51,C是线段AB上一点,分别以BC、AC为边作等边ΔACD和ΔCBE,M为AE的中点,N为DB的中点,求证:ΔCMN为等边三角形。
5. 如图14-52,在四边形ABCD中,∠A+∠B=1200,AD=BC,以CD为边向形外作等边ΔCDE,连结AE,求证:ΔABE为等边三角形。
6. 如图14-53,已知ΔABC是等边三角形,D为AC上一点,∠1=∠2,BD=CE,求证:ΔADE是等边三角形。
7. 如图14-54,设在四边形ABCD中,∠A+∠B=1200,AD=BC,M、N、P分别是AC、BD、CD的中点。
求证:ΔMNP是等边三角形。
8. 如图14-55,在等腰梯形ABCD中,AB∥CD,AB>CD,AD=BC,对角线AC、BD交于点O,∠AOB=600,且E、F分别是OD、OA的中点,M是BC的中点,求证:ΔEFM是等边三角形。
9. 如图14-56,在ABCD中,ΔABE和ΔBCF都是等边三角形,求证:ΔDEF是等边三角形。
等腰三角形的判定同步培优题典(解析版)
专题3.4等腰三角形的判定姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•肥城市校级月考)如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC、∠BCD 的平分线,则图中的等腰三角形有()A.3个B.4个C.5个D.2个【分析】根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.【解析】共有5个.∵AB=AC∴△ABC是等腰三角形;∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=12∠ABC,∠ECB=12∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;∵∠A=36°,AB=AC,∴∠ABC=∠ACB=12(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=12∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:C.2.(2019秋•河西区期中)在△ABC中,∠A=45°,∠B=45°,则下列判断错误的是()A.△ABC是直角三角形B.△ABC是锐角三角形C.△ABC是等腰三角形D.∠A和∠B互余【分析】根据等腰直角三角形的判定解答即可.【解析】∵在△ABC中,∠A=45°,∠B=45,∴∠C=90°,即△ABC是等腰直角三角形,∠A和∠B互余故选:B.3.(2019秋•东海县期中)△ABC中,AD,BE分别是边BC,AC上的高,若∠EBC=∠BAD,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【分析】发现∠ABC与∠C分别是∠BAD与∠EBC的余角,得到二角相等,根据等腰三角形的判定可得答案.【解析】∵∠EBC+∠C=90°,∠C+∠CAD=90°,∴∠CAD=∠EBC,∵∠EBC=∠BAD∴∠BAD=∠CAD,∠CAD+∠C=90°∠BAD+∠ABC=90°∴∠ABC=∠C∴AB=AC∴为等腰三角形.故选:A.4.(2020春•松江区期末)如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组【分析】根据等腰三角形的判定定理逐个判断即可.【解析】①、∵△ABC中,AB=AC,∴△ABC是等腰三角形,故①正确;②、∵△ABC中,∠B=56°,∠BAC=68°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣68°﹣56°=56°,∴∠B=∠C,∴△ABC是等腰三角形,故②正确;③∵△ABC中,AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD,∠ADB=∠ADC,∵∠B+∠BAD+∠ADB=180°,∠C+∠CAD+∠ADC=180°,∴∠B=∠C,∴△ABC是等腰三角形,故③正确;④、∵△ABC中,AD⊥BC,AD平分边BC,∴AB=AC,∴△ABC是等腰三角形,故④正确;即正确的个数是4,故选:D.5.(2020•海门市一模)线段AB在如图所示的8×8网格中(点A、B均在格点上),在格点上找一点C,使△ABC是以∠B为顶角的等腰三角形,则所有符合条件的点C的个数是()A.4B.5C.6D.7【分析】根据题意可得,以点B为圆心,BA长为半径画圆,圆与格点的交点即为符合条件的点C.【解析】如图所示:使△ABC是以∠B为顶角的等腰三角形,所以所有符合条件的点C的个数是6个.故选:C.6.(2020春•阜宁县期中)以下列各组数据为边长,可以构成等腰三角形的是()A.1cm、2cm、3cm B.3cm、3cm、4cmC.1cm、3cm、1cm D.2cm、2cm、4cm【分析】根据三角形的三边关系即可作出判断.【解析】根据三角形的三边关系可知:A.1+2=3,不能构成三角形,不符合题意;B.3+3>4,能构成三角形,而且是等腰三角形,符合题意;C.1+1<3,不能构成三角形,不符合题意;D.2+2=4,不能构成三角形,不符合题意.故选:B.7.(2020•衡水模拟)在证明等腰三角形的判定定理“等角对等边”,即“如图,已知:∠B=∠C,求证:AB=AC”时,小明作了如下的辅助线,下列对辅助线的描述正确的有()①作∠BAC的平分线AD交BC于点D②取BC边的中点D,连接AD③过点A作AD⊥BC,垂足为点D④作BC边的垂直平分线AD,交BC于点DA.1个B.2个C.3个D.4个【分析】①②③分别从能否判定△ABD≌△ACD来分析,④从辅助线本身作法来分析即可.【解析】①作∠BAC的平分线AD交BC于点D,则由∠B=∠C,∠BAD=∠CAD,AD=AD,可判定△ABD≌△ACD(AAS),从而可得AB=AC,故①正确;②取BC边的中点D,连接AD,则∠B=∠C,BD=CD,AD=AD,无法判定△ABD≌△ACD,故没法证明AB=AC,故②错误;③过点A作AD⊥BC,垂足为点D,则由∠B=∠C,∠BDA=∠CDA,AD=AD,可判定△ABD≌△ACD(AAS),从而可得AB=AC,故③正确;④作BC边的垂直平分线AD,交BC于点D,过已知点不能作出已知线段的垂直平分线,辅助线作法错误,故④错误.综上,正确的有①③.故选:B.8.(2019秋•新泰市期末)如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB 于点D,交AC于点E,那么下列结论,其中正确的有()①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.A.1个B.2个C.3个D.4个【分析】根据角平分线的定义得到∠DBF=∠CBF,根据平行线的性质得到∠DFB=∠CBF,推出△BDF 是等腰三角形;故①正确;同理,EF=CE,于是得到DE=DF+EF=BD+CE,故②正确;根据三角形的内角和和角平分线的定义得到∠BFC=180°﹣65°=115°,故③正确;推出DF不一定等于EF,故④错误.【解析】∵BF是∠AB的角平分线,∴∠DBF=∠CBF,∵DE∥BC,∴∠DFB=∠CBF,∴∠DBF=∠DFB,∴BD=DF,∴△BDF是等腰三角形;故①正确;同理,EF=CE,∴DE=DF+EF=BD+CE,故②正确;∵∠A=50°,∴∠ABC+∠ACB=130°,∵BF平分∠ABC,CF平分∠ACB,∴∠FBC=12∠ABC,∠FCB=12∠ACB,∴∠FBC+∠FCB=12(∠ABC+∠ACB)=65°,∴∠BFC=180°﹣65°=115°,故③正确;当△ABC为等腰三角形时,DF=EF,但△ABC不一定是等腰三角形,∴DF不一定等于EF,故④错误;故选:C.9.(2019秋•江油市期末)如图:D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若BD=1,BC=3,则AC的长为()A.5B.4C.3D.2【分析】延长BD交AC于E,如图,利用CD平分∠ACB,BD⊥CD先判断△BCE为等腰三角形得到DE=BD=1,CE=CB=3,再证明EA=EB=2,然后计算AE+CE即可.【解析】延长BD交AC于E,如图,∵CD平分∠ACB,BD⊥CD,∴△BCE为等腰三角形,∴DE=BD=1,CE=CB=3,∵∠A=∠ABD,∴EA=EB=2,∴AC=AE+CE=2+3=5.故选:A.10.(2019秋•西青区期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC的值为()A.6B.7C.8D.9【分析】只要证明EG=EB,DF=DC即可解决问题.【解析】∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵FG=2,ED=6,∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•田家庵区期末)如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有8个.【分析】以A点为顶点的等腰三角形可作3个,以B点为顶点的等腰三角形可作3个,以AB为底边的等腰三角形可作2个.【解析】如图,△ABC是等腰三角形,这样的格点C有8个.故答案为8.12.(2019秋•永定区期末)如图,∠AOB=56°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为124°或76°或28°.【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【解析】∵∠AOB=56°,OC平分∠AOB,∴∠AOC=28°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=28°,∴∠OEC=180°﹣28°﹣28°=124°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=12(180°﹣28°)=76°;③当E在E3时,OC=CE,则∠OEC=∠AOC=28°;故答案为:124°或76°或28°.13.(2019秋•樊城区期末)已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为70°或40°或20°.【分析】分三种情形分别求解即可;【解析】如图,有三种情形:①当AC=AD时,∠ACD=70°.②当CD′=AD′时,∠ACD′=40°.③当AC=AD″时,∠ACD″=20°,故答案为70°或40°或20°14.(2019秋•来凤县期末)如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在坐标轴上找一点P,使得△P AB是等腰三角形,则符合条件的点P共有6个.【分析】分类讨论:AB=AP时,AB=BP时,AP=BP时,根据两边相等的三角形是等腰三角形,可得答案.【解析】①当AB=AP时,在y轴上有2点满足条件的点P,在x轴上有1点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P,在x轴上有2点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.③当AP=BP时,在x轴、y轴上各有一点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.综上所述:符合条件的点P共有6个.故答案为:6.15.(2019秋•江油市期末)如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有9个.【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【解析】①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.16.(2018秋•恩施市期末)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH,添的钢管长度都与OE相等,则最多能添加这样的钢管5根.【分析】因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.【解析】如图所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QM,∴∠QMH=75°,∠HQM=180﹣75°﹣75°=30°,故∠OQM=60°+30°=90°,不能再添加了.故答案为5.17.(2019春•盐湖区校级月考)在△ABC中,∠B=50°,当∠A为50°或65°或80°时,△ABC是等腰三角形.【分析】由已知条件,根据题意,分两种情况讨论:①∠B是顶角;②∠B是底角,③∠B=∠C=50°,利用三角形的内角和进行求解.【解析】①∠B是顶角,∠A=(180°﹣∠B)÷2=65°;②∠B是底角,∠B=∠A=50°.③∠A是顶角,∠B=∠C=50°,则∠A=180°﹣50°×2=80°,∴当∠A的度数为50°或65°或80°时,△ABC是等腰三角形.故答案为:50°或65°或80°.18.(2018秋•宿松县期末)如图,△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD 为等腰三角形,则∠ADC的度数为20°或70°或100°.【分析】分三种情形分别求解即可.【解析】如图,有三种情形:①当AC=AD时,∠ADC=70°.②当CD′=AD′时,∠AD′C=100°.③当AC=AD″时,∠AD″C=20°,故答案为:70°或100°或20°三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2018秋•邵阳县期末)如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC(1)试判定△ODE的形状,并说明你的理由;(2)若BC=10,求△ODE的周长.【分析】(1)证明∠ABC=∠ACB=60°;证明∠ODE=∠ABC=60°,∠OED=∠ACB=60°,即可解决问题.(2)证明BD=OD;同理可证CE=OE;即可解决问题.【解析】(1)△ODE是等边三角形;理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°;∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°,∴△ODE为等边三角形.(2)∵OB平分∠ABC,OD∥AB,∴∠ABO=∠DOB,∠ABO=∠DBO,∴∠DOB=∠DBO,∴BD=OD;同理可证CE=OE;∴△ODE的周长=BC=10.20.(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.【分析】(1)根据等腰三角形的性质和三角形内角和得出∠DBC=36°,进而根据等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.【解答】证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.21.(2019秋•嘉祥县期末)(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F,试猜想EF、BE、CF之间有怎样的关系,并说明理由;(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,请直接写出EF、BE、CF之间的关系EF=BE﹣CF.【分析】(1)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系;(2)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系.【解析】(1)EF=BE+CF,理由:∵BO平分∠ABC,CO平分∠ACB,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF;(2)不成立,理由:∵BO平分∠ABC,CO平分∠ACD,∴∠EBO=∠OBC,∠FCO=∠OCD,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCD,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴EF=OE﹣OF=BE﹣CF.故答案为EF =BE ﹣CF .22.(2019秋•确山县期末)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.【分析】(1)由AB =AC ,∠ABC =∠ACB ,BE =CF ,BD =CE .利用边角边定理证明△DBE ≌△CEF ,然后即可求证△DEF 是等腰三角形.(2)根据∠A =40°可求出∠ABC =∠ACB =70°根据△DBE ≌△CEF ,利用三角形内角和定理即可求出∠DEF 的度数.【解答】证明:∵AB =AC ,∴∠ABC =∠ACB ,在△DBE 和△CEF 中{BE =CF ∠ABC =∠ACB BD =CE,∴△DBE ≌△CEF ,∴DE =EF ,∴△DEF 是等腰三角形;(2)∵△DBE ≌△CEF ,∴∠1=∠3,∠2=∠4,∵∠A +∠B +∠C =180°,∴∠B =12(180°﹣40°)=70°∴∠1+∠2=110°∴∠DEF=70°23.(2020•恩施州模拟)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC 即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解析】(1)∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵D为BC的中点,∴AD⊥BC,∴∠BAD=90°﹣∠ABC=90°﹣36°=54°.(2)∵BE平分∠ABC,∴∠ABE=∠EBC,又∵EF∥BC,∴∠EBC=∠BEF,∴BF=EF.24.(2019秋•永城市期末)如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD.(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.【分析】(1)根据角平分线的定义得到∠ABF=∠CBF=12∠ABC.根据平行线的性质得到∠ABF=∠E,推出△BCE是等腰三角形.根据等腰三角形的性质即可得到结论.(2)根据平行线的性质待定的∠ABC+∠BCD=180°.根据角平分线的定义即可得到结论.【解答】(1)证明:∵BE平分∠ABC,∴∠ABF=∠CBF=12∠ABC.∵AB∥CD,∴∠ABF=∠E,∴∠CBF=∠E,∴BC=CE,∴△BCE是等腰三角形.∵F为BE的中点,∴CF平分∠BCD,即CG平分∠BCD.(2)解:∵AB∥CD,∴∠ABC+∠BCD=180°.∵∠ABC=52°,∴∠BCD=128°.∵CG平分∠BCD,∴∠GCD=12∠BCD=64°.∵∠ADE=110°,∠ADE=∠CGD+∠GCD,∴∠CGD=46°.。
等腰三角形知识要点及培优试题
等腰三角形性质与判定知识点及精选练习题知识梳理知识点1:等腰三角形的性质定理1(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C(3)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)(4)定理的作用:证明同一个三角形中的两个角相等。
知识点2:等腰三角形性质定理2(1)文字语言:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)(2)符号语言:∵AB=AC,BD=DC∴∠1=∠2,AD⊥BC(3)定理的作用:可证明角相等,线段相等或垂直。
说明:在等腰三角形中经常添加辅助线,虽然“顶角的平分线,底边上的高、底边上的中线互相重合,如何添加要根据具体情况来定,作时只作一条,再根据性质得出另两条”。
知识3:等腰三角形的判定定理(1)文字语言:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)(2)符号语言:在△ABC中,∵∠B=∠C ∴AB=AC(3)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。
在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC(4)定理的作用:等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
说明:①本定理的证明用的是作底边上的高,还有其他证明方法(如作顶角的平分线)。
②证明一个三角形是等腰三角形的方法有两种:1、利用定义2、利用定理。
知识点4:等腰三角形的推论1. 推论:推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
初中数学培优-八年级数学等腰三角形巩固练习含答案
等腰三角形 (巩固练习)姓名 班级第一部分1、在等腰三角形中,已知有两边长为2和6,则此等腰三角形的周长是 .2、一个等腰三角形的周长为14 cm,,且一边长为4 cm,,则它的腰长为 .3、如图,已知AC 平分∠BAD,CD ⊥AD 于D,CB ⊥AB 于B.请找出图中的等腰三角形,并说明理由.4、如图3,在△ABC 中,CD 与BE 分别是AB,AC 边上的高,且CD=BE.试判断△ABC 的形状,并说明理由.5、如图4,AD 是等腰三角形ABC 的顶角的平分线,点E,F 分别在AB,AC 上,且它们关于AF 对称,则BE=CF.请说明理由.6、如图5, BD 是等腰三角形ABC 的顶角平分线,点E,F 分别在AB,AC 上,请分别作出E,F 关于直线BD 的对称点.图2图4 DFCBA图5图3第二部分1.如图1,点D 是△ABC 的边BC 上一点,且AB=AC,BD=AD,则图中有 个等腰三角形.2.如图1,等腰三角形ABD 的顶角是 ,底边是 .3. 在△MNP 中, 若MN=NP,则此等腰三角形的两个底角是: .4.等腰三角形有两边长分别为1cm,2cm,则它的腰长是 . .5.如果等腰三角形的两边长分别为4和7,则三角形的周长为 .6.下列说法:①等腰三角形是轴对称图形;②等腰三角形的对称轴是顶角的平分线;③等腰三角形的对称轴是顶角平分线所在的直线;④等腰三角形的对称轴有三条. 其中正确的说法有 .(填序号)7. 等腰三角形的底边长是8, 则它的腰的取值范围是 .解析:根据”三角形两边之和大于第三边”, 若设腰长为x, 则2x>8, ∴x>4.8. 已知:线段m 、n.用尺规作出一个等腰三角形,使它的底等于m, 腰等于n (保留作图痕迹,不写作法、不证明)9.如图7, ∠A=∠D,∠1=∠2,E 是AD 的中点.则△EBC 是等腰三角形吗?请说明理由.图7nm 图1参考答案第一部分5、如图4,AD是等腰三角形ABC的顶角的平分线,点E,F分别在AB,AC上,且它们关于AF 对称,则BE=CF.请说明理由.【解】∵AD是等腰三角形ABC的顶角的平分线,∴直线AD是等腰三角形ABC的对称轴.∵B,C 和E,F 是两对对称点,当将图形沿AD 对折时,点B 与点C 重合,点E 与点F 重合, ∴线段BE 与线段CF 重合, ∴BE=CF.6、如图5, BD 是等腰三角形ABC 的顶角平分线,点E,F 分别在AB,AC 上,请分别作出E,F 关于直线BD 的对称点.【解】∵BD 是等腰三角形ABC 的顶角平分线, ∴直线BD 是等腰三角形ABC 的对称轴.∴当把图形沿直线BD 对折时, AD 与DC, BA 与BC 重合, ∴E 的对称点E 1在BC 上, 且BE 1=BE, F 的对称点F 1在AD 上, 且DF 1=DF.如图, 点E 1, F 1分别是E, F 关于直线BD 的对称点.第二部分1.如图1,点D 是△ABC 的边BC 上一点,且AB=AC,BD=AD,则图中有 个等腰三角形.答案:22.如图1,等腰三角形ABD 的顶角是 ,底边是 .答案:∠ABD AB3. 在△MNP 中, 若MN=NP,则此等腰三角形的两个底角是: .答案:∠NMP ∠NPM4.等腰三角形有两边长分别为1cm,2cm,则它的腰长是 . .答案:2cm解析:若AB 为底,则由AB 的长是BC 的2倍可知,两腰之和等于底边,此时三角形不存在;故AB 为腰. ∵AB+BC+AC=40, ∴5BC=40,则BC=8,AB=2BC=16.答案:B5.如果等腰三角形的两边长分别为4和7,则三角形的周长为 .解析:当腰长为7时三角形才存在, 则周长为7+7+4=18. 答案:186.下列说法:①等腰三角形是轴对称图形;②等腰三角形的对称轴是顶角的平分线;③等腰DFF 1E 1CB A图1DFCA图5三角形的对称轴是顶角平分线所在的直线;④等腰三角形的对称轴有三条. 其中正确的说法有 .(填序号)解析:轴对称图形的对称轴是一条直线,故②错误. 一般的等腰三角形的对称轴只有一条,故④错误.答案:①③7. 等腰三角形的底边长是8, 则它的腰的取值范围是.解析:根据”三角形两边之和大于第三边”, 若设腰长为x, 则2x>8, ∴x>4.答案:x>4.8. 已知:线段m、n.用尺规作出一个等腰三角形,使它的底等于m, 腰等于n (保留作图痕迹,不写作法、不证明)解:△ABC就是所求的等腰腰三角形.9.如图7, ∠A=∠D,∠1=∠2,E是AD的中点.则△EBC是等腰三角形吗?请说明理由.分析:根据已知条件,可得△ABE≌△CDE(ASA),则EB=EC.解:∵E是AD的中点, ∴AE=DE.∵∠A=∠D,∠1=∠2, ∴△ABE≌△CDE(ASA). ∴EB=EC, ∴△EBC是等腰三角形图7nmCBA。
北师大版八年级下册 1.1 等腰三角形 培优训练同步习题
等腰三角形培优训练同步习题学校:___________姓名:___________班级:___________一、单选题1.等边三角形的边长为2,则该三角形的面积为()A. B. C. D. 32.如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是()A.6 B.8 C.9 D.103.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()C. 2D. -1B. 1+24.如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值为+ +A. 2B. 3C. 4D. 5二、填空题5.如图,在△ABC中,AB=AC,点P是BC边上的任意一点,PM⊥AB,PN⊥AC,垂足分别为M、N,BD是AC边上的高,BD=10,则PM+PN=_________.6.如图,)ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则)CEF周长的最小值为______.7.如图,在△ABC中,AB=AC=BD)DA=DC,则∠B的度数是______.8.如图,△ABC中,AB+14+AM平分∠BAC+∠BAM+15°,点D+E分别为AM+AB的动点,则BD+DE的最小值是______+9.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为__________.三、解答题10.已知△ABC中,AB)AC)BC)6.点P射线BA上一点,点Q是AC的延长线上一点,且BP)CQ,连接PQ,与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P,Q分别在射线BA和AC的延长线上任意地移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.11.+1+如图1,已知:在△ABC中,AB+AC+10+BD平分∠ABC+CD平分∠ACB,过点D作EF∥BC,分别交AB+AC于E+F两点,则图中共有______个等腰三角形;EF与BE+CF 之间的数量关系是_____+△AEF的周长是___________++2+如图2,若将(1)中“△ABC中,AB+AC+10”该为“若△ABC为不等边三角形,AB+8+AC+10”其余条件不变,则图中共有__________个等腰三角形;EF与BE+CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长++3+已知:如图3+D在△ABC外,AB+AC,且BD平分∠ABC+CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB+AC于E+F两点,则EF与BE+CF之间又有何数量关系呢?直接写出结论不证明12.如果经过三角形某一个顶点的一条直线可把它分成两个小等腰三角形,那么我们称该三角形为等腰三角形的生成三角形,简称生成三角形.(1)如图,已知等腰直角三角形ABC,∠A=90°,试说明:△ABC是生成三角形;(2)若等腰三角形DEF有一个内角等于36°,请你画出简图说明△DEF是生成三角形.(要求画出直线,标注出图中等腰三角形的顶角、底角的度数)13.如图,△ABC中,AC=BC=10 cm,AB=12 cm,点D是AB的中点,连结CD,动点P 从点A出发,沿A→C→B的路径运动,到达点B时运动停止,速度为每秒2 cm,设运动时间为t秒.)1)求CD的长)(2)当t为何值时,△ADP是直角三角形?(3)直接写出:当t为何值时,△ADP是等腰三角形?14.请在下图方格中画出三个以AB为腰的等腰三角形ABC.(要求:1、锐角三角形、直角三角形、钝角三角形各画一个;2、点C在格点上;3、只需画出图形即可,不写画法;4)标.上字母...,.每漏标一个扣......1.分.))15.如图)已知∠AOB)点P是∠AOB内部的一个定点)点E)F分别是OA)OB上的动点.(1)要使得△PEF的周长最小)试在图上确定点E)F的位置.(2)若OP)4)要使得△PEF的周长的最小值为4)则∠AOB)________)16.如图,已知点B+C+D在同一条直线上,+ABC和+CDE都是等边三角形.BE交AC于F+AD交CE于H++求证:+BCE++ACD++求证:CF=CH++判断+CFH的形状并说明理由+参考答案1.C【解析】如图,作CD⊥AB,则CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC 中,利用勾股定理,可求出S △ABC =12 故选:C .点睛:本题考查的是等边三角形的性质,熟知等腰三角形“三线合一”的性质是解题的关键.2.B【解析】延长ED 交BC 于M ,延长AD 交BC 于N ,作DF ∥BC ,∵AB=AC ,AD 平分∠BAC ,∴AN ⊥BC ,BN=CN ,∵∠EBC=∠E=60°,∴△BEM 为等边三角形,∴△EFD 为等边三角形,∵BE=6,DE=2,∴DM=4,∵△BEM 为等边三角形,∴∠EMB=60°,∵AN ⊥BC ,∴∠DNM=90°,∴∠NDM=30°,∴NM=2,∴BN=4,∴BC=2BN=8.故选B.点睛:本题主要考查了等腰三角形的性质、等边三角形的性质和30°直角三角形的性质,正确作出辅助线,求得MN 的长是解决问题的关键.3.B【解析】第一次折叠后,等腰三角形的底边长为1,腰长为2;第一次折叠后,,腰长为12,所以周长为11122++=+. 故答案为B.4.B【解析】由等边三角形的性质得,点B ,C 关于AD 对称,连接BE 交AD 于点P ,则EP+CP=BE 最小,又BE=AD ,所以EP+CP 的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.5.10【解析】解:如图,连接AP .∵S △ABC =S △ABP +S △ACP ,∴12AC •BD =12AB •PM +12AC •PN .∵AB =AC ,∴PM +PN =BD .∵BD =10,∴PM +PN =10.点睛:本题考查了等腰三角形的性质)三角形的面积)作辅助线把)ABC 分成两个三角形是解题的关键.6.6【解析】如图,因为90ADC ABC ∠=∠=︒,所以分别作点C 关于AD 、AB 的对称点M 、N ,连接MN ,MN 与AD 交于点E ,与AB 交于点F ,连接CE 、CF ,则此时△CEF 的周长最小, 连接AC ,交MN 于点P ,由作图可知CE=ME 、CF=FN ,∴△CEF 的周长:CE+CF+EF=MN ,∵△ABD 是等边三角形,∴AB=AD=3,∠DAB=∠ADB=∠ABD=60°,∵∠ADC=∠ABC=90°,∴∠CDB=∠CBD=30°,∴CD=CB ,∵DM=CD,BN=CB,∴CM=2CD=2BC=CN,MN//BD,∴∠M=∠N=∠CDB=30°,又∵AC=AC,∴△ADC≌△ABC,∴CD=CB,∠DAC=∠BAC=12∠DAB=30°,∴AC=2CD,∠M=∠DAC,∴AC=CM,又∵∠ACD=∠MCP,∴△ACD≌△MCP,∴MP=AD=3,∠MPC=∠ADC=90°,∴MN=2MP=6,即△CEF周长的最小值是6,故答案为:6.【点睛】本题考查了最短路径问题,涉及到等边三角形的性质,全等三角形的判定与性质,轴对称的性质等,正确根据轴对称的性质作出符合条件的图形是解题的关键.7.36°【解析】试题解析:设∠B=x)∵AB=AC)∴∠C=∠B=x)∵DA=DC)∴∠C=∠DAC=x)∴∠ADB=∠C+∠DAC=2x)∵AB=BD)∴∠ADB=∠BAD=2x)在△ABD中,∠B=x)∠ADB=∠BAD=2x)∴x+2x+2x=180°)解得x=36°)∴∠B=36°)故选C.8.7【解析】作点E关于AM的对称点H,则DE=DH,所以BD+DE=BD+DH,当BH⊥AC 时,BH的值最小,即BD+DE的最小值是垂线段BH的长.因为∠BAC=30°,∠AHB=90°,所以AB=2BH,所以BH=7,即BD+DE的最小值是7.故答案为7.9.2n【解析】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为2n.故答案为:2n.点睛:本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.10.(1)CD=32;(2)线段DE的长度保持不变,理由见解析.【解析】)1)过P点作PF∥AC交BC于F,即可构成小等边三角形BPF,再证明△PFD≌△QCD 即可求解;)2)根据(1)分两种情况:点P在线段AB上时,点P在BA的延长线上时分别求解即可得出结论.解:)1)过P点作PF∥AC交BC于F,∵点P为AB的中点,∴BP=12A B=3,∵AB)AC)BC )∴∠B)∠ACB)∠BAC)60°)∵PF∥AC)∴∠PFB)∠ACB)60°)∠BPF)∠BAC)60°)∴△PBF是等边三角形)∴BF)FP)BP)3)∴FC)BC)BF)3)由题意,BP)CQ)∴FP)CQ,∵PF∥AC)∴∠DPF)∠DQC,又∠PDF)∠QDC)∴△PFD≌△QCD,∴CD=DF=12FC=32;)2)当点P)Q在移动的过程中,线段DE的长度保持不变)分两种情况讨论:①当点P在线段AB上时)过点P作PF∥AC交BC于F,由(1)知PB)PF,∵PE⊥BC)∴BE)EF,由(1)知△PFD≌△QCD)CD)DF,∴DE=EF+DF=12BC=3,②当点P在BA的延长线上时,同理可得DE)3)∴当点P)Q在移动的过程中,线段DE的长度保持不变.点睛:本题主要考查了全等三角形的判定、性质和等边三角形的性质.综合运用已知条件并构造辅助线是解题的关键.11.+1+5+BE+CF+EF+C△AEF+20+(2) 2+EF+BE+CF+C△AEF+18+(3) EF+FC+BE【解析】试题分析:(1)根据角平分线的定义可得+EBD=+CBD++FCD=+BCD,再根据两直线平行,内错角相等可得+EDB=+CBD++FDC=+BCD,然后求出+EBD=+EDB++FDC=+BCD,再根据等角对等边可得BE=DE+CF=DF,然后解答即可;+2)根据角平分线的定义可得+EBD=+CBD++FCD=+BCD,再根据两直线平行,内错角相等可得+EDB=+CBD++FDC=+BCD,然后求出+EBD=+EDB++FDC=+BCD,再根据等角对等边可得BE=DE+CF=DF,然后解答即可;+3)由(2)知BE=ED+CF=DF,然后利用等量代换即可证明BE+CF+EF有怎样的数量关系.试题解析:解:(1+BE+CF=EF.理由如下:+AB=AC+++ABC=+ACB++BD平分+ABC+CD平分+ACB+++EBD=+CBD++FCD=+BCD+++DBC=+DCB++DB=DC++EF+BC+++AEF=+ABC++AFE=+ACB++EDB=+CBD++FDC=+BCD+++EBD=+EDB++FDC=+BCD++BE=DE+CF=DF+AE=AF++等腰三角形有+ABC++AEF++DEB++DFC++BDC共5个,+BE+CF=DE+DF=EF,即BE+CF=EF++AEF 的周长=AE+EF+AF=AE+BE+AF+FC=AB+AC=20+故答案为:5+BE+CF=EF+20++2+BE+CF=EF++BD平分+ABC+CD平分+ACB+++EBD=+CBD++FCD=+BCD++EF+BC+++EDB=+CBD++FDC=+BCD+++E BD=+EDB++FDC=+BCD++BE=DE+CF=DF++等腰三角形有+BDE++CFD++BE+CF=DE+DF=EF,即BE+CF=EF++AEF的周长=AE+EF+AF=AE+ED+DF+AF=AE+EB+CF+AF=AB+AC=8+10=18+此时有两个等腰三角形,EF+BE+CF+C△AEF+18++3+BE+CF=EF+由(1)知BE=ED++EF+BC+++EDC=+DCG=+ACD++CF=DF+又+ED+DF=EF++BE+CF=EF+点睛:本题主要考查的是等腰三角形的性质和判断,熟练掌握等腰三角形的判定定理是解题的关键.12.(1)见解析;(2)见解析.【解析】试题分析:(1)根据等腰直角三角形的性质,可得△ABD))ACD的形状,可得证明结论;(2)根据顶角是36°,可画底角的角平分线,可得答案,根据顶角是108°的等腰三角形,把顶角分成12,可得答案.试题解析:证明:过点A作AD)BC,垂足为D)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∠BAD=∠CAD=12∠BAC=45°,))B=)BAD))C=)CAD)))ABD和△ACD是等腰三角形,∴△ABC是生成三角形;)2)如图:))DEG 与△EFG 都是等腰三角形,△DEF 是生成三角形.点睛:本题考查了等腰三角形的判定与性质,等角对等边是判定等腰三角形的方法. 13.(1)8;(2)1.8;(3)1.8或5;(3)当 2.5t =或3t =或 3.6t =或 6.4t =时,△ADP 是等腰三角形.【解析】试题分析:(1)根据题意,运用等腰三角形的性质,求得AD 的长,再根据勾股定理求得CD 的长即可;(2)分两种情况进行讨论:当DP⊥AC 时,△ADP 是直角三角形,当PD⊥AD 时,△ADP 是直角三角形,分别根据相似三角形的性质求解即可;(3)分三种情况进行讨论:当PA=PD 时,当AP=AD 时,当AD=PD 时,分别做辅助线构造三角形,运用速度、路程、时间的关系,求得t 的值即可. 试题解析:解:(1))AB )12 cm )点D 是AB 的中点 ∴162AD AB cm == )AC )BC ,点D 是AB 的中点 ∴CD AB ⊥在Rt ADC ∆中, 8CD ===(2)当APD ∆为直角三角形时,有两种情况,分别为:①当90APD ∠=︒时,即点P 在AC 边上 由1122AC DP AD CD ⋅=⋅,得68 4.810DP ⨯==在Rt APD ∆中, 3.6AP ==∴ 3.61.82AP t v === ②当90ADP ∠=︒时,点P 与点C 重合如图, 此时, 1052AC t v ===(秒) ∴ 当t 为1.8秒或5秒时,△ADP 是直角三角形.(3)当 2.5t =或3t =或 3.6t =或 6.4t =时,△ADP 是等腰三角形. 14.答案见解析【解析】试题分析:根据等腰三角形、直角三角形、锐角三角形的特点和网格特点,再根据勾股定理画出即可. 试题解析:解:如图所示:点睛:本题考查了对等腰三角形的性质和勾股定理的应用,主要培养学生的观察能力和画图能力,题型较好,难度也不大. 15.(1) 作图见解析. (2)30° 【解析】试题分析:(1)分别作点P 关于OA 的对称点C ,关于OB 的对称点D ,连接CD ,交OA 于E)OB 于F. )2)由轴对称的性质知OP=OC)OP=OD ,且)PEF 周长的最小值是CD ,所以dqga4OCD 是等边三角形,而)COD=2∠EOF ,由此即可求解.试题解析:(1)如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E)OB于F.此时,△PEF的周长最小.(2)根据轴对称的性质得,OC=OP=OD))COE=∠POE,∠DOF=∠POF,)PEF的周长的最小值=CD)因为OP=4)△PEF的周长的最小值为4)所以)OCD是等边三角形.因为∠COE=∠POE,∠DOF=∠POF,所以∠PEF=12∠COD=30°.16.+证明见解析②证明△BCF≌△ACH;③△CFH是等边三角形【解析】试题分析:①利用等边三角形的性质得出条件,可证明:△BCE≌△ACD;②利用△BCE≌△ACD得出∠CBF=∠CAH,再运用平角定义得出∠BCF=∠ACH进而得出△BCF≌△ACH因此CF=CH.③由CF=CH和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH是等边三角形.试题解析:①证明:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD.又BC=AC、CE=CD,∴△BCE≌△ACD.②∵△BCE≌△ACD,∴∠CBF=∠CAH.∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH.又BC=AC,∴△BCF≌△ACH.∴CF=CH.③∵CF=CH,∠ACH=60°,∴△CFH是等边三角形.点睛:本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.。
八年级数学下----等腰三角形和等边三角形培优练习题
八年级数学下----等腰三角形和等边三角形培优练习题一、填空选择题:1.如下图1,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长为( ) A .32 B .23C .12D .342.如上图2,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC =6, 则DF 的长是( )(A )2 (B )3 (C )25(D )4 3.如上图3,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标 不可能...是( )A .(4,0) B .(1.0) C .(-22,0) D .(2,0)4.如上图1,AB =AC,BD =BC ,若∠A =40°,则∠ABD 的度数是( )A .20B .30C .35D .405.如上图2,△ABC 中,AB =AC =6,BC =8,AE 平分么BAC 交BC 于点E ,点D 为AB 的中点,连结DE ,则△BDE 的周长是( ) A .7+5 B .10 C .4+25 D .126.如上图3,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、△BCD 的角平分线, 则图中的等腰三角形有 ( ) (A)5个 (B)4个 (C)3个 (D)2个7.在等腰ABC △中,AB AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或108.等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm ,则其腰上的高为 cm . 9.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 . 10.在△A BC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°, 则∠B 等于_ 度.AD CP60°ED CBA(第6题) BA D C11.如下图1,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA=CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定12.如下图2,等腰△ ABC 中,AB=AC ,∠A=20°。
八年级数学全等三角形(培优篇)(Word版 含解析)
八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.故答案为10.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).5.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF 和△CDA 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,∴△BDF ≌△CDA (AAS ),∴BF=AC ,故①正确.∵∠ABE=∠EBC=22.5°,BE ⊥AC ,∴∠A=∠BCA=67.5°,故②正确,∵BE 平分∠ABC ,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF ,故③正确.作GM ⊥AB 于M .如图所示:∵∠GBM=∠GBH ,GH ⊥BC ,∴GH=GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.6.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.7.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴OP=OG= 22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.8.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
八年级数学下----等腰三角形和等边三角形培优练习题
八年级数学下----等腰三角形和等边三角形培优练习题一、填空选择题:1.如下图1,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长为( ) A .32B .23C .12D .342.如上图2,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC =6, 则DF 的长是( )(A )2 (B )3 (C )25(D )4 3.如上图3,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标 不可能...是( )A .(4,0) B .(1.0) C .(-22,0) D .(2,0)4.如上图1,AB =AC,BD =BC ,若∠A =40°,则∠ABD 的度数是( ) A .20B .30C .35D .405.如上图2,△ABC 中,AB =AC =6,BC =8,AE 平分么BAC 交BC 于点E ,点D 为AB 的中点,连结DE ,则△BDE 的周长是( ) A .7+5 B .10 C .4+25 D .126.如上图3,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、△BCD 的角平分线, 则图中的等腰三角形有 ( ) (A)5个 (B)4个 (C)3个 (D)2个7.在等腰ABC △中,AB AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或108.等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm ,则其腰上的高为 cm . 9.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 . 10.在△A BC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,AD PB60° ED CBA(第6题)BA DC1 2 3 4-1 12xy A则∠B 等于_ 度.11.如下图1,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA=CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定12.如下图2,等腰△ ABC 中,AB=AC ,∠A=20°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下等腰三角形和等边三角形培优练习题一、填空选择题:1.如下图1,等边△的边长为3,P 为上一点,且=1,D 为上一点,若∠=60°,则的长为( ) A .32B .23C .12D .342.如上图2,△中,D 、E 分别是、的中点,平分∠,交于点F ,若=6, 则的长是( )(A )2 (B )3 (C )25(D )4 3.如上图3,点A 的坐标是(2,2),若点P 在x 轴上,且△是等腰三角形,则点P 的坐标 不可能...是( )A .(4,0) B .(1.0) C .(-22,0) D .(2,0)4.如上图1,==,若∠A =40°,则∠的度数是( ) A .20oB .30oC .35oD .40o5.如上图2,△中,==6,=8,平分么交于点E ,点D 为的中点,连结,则△的周长是( ) A .7+5 B .10 C .4+25 D .126.如上图3,在△中,,∠36°,、分别是△、△的角平分线, 则图中的等腰三角形有 ( ) (A)5个 (B)4个 (C)3个 (D)2个7.在等腰ABC △中,AB AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或108.等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 ,则其腰上的高为 . 9.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 . 10.在△中,=,的垂直平分线与所在的直线相交所得到锐角为50°, 则∠B 等于_ 度.AD CPB60° ED CBA(第6题)BA DC1 2 3 4-1 12xy A11.如下图1,过边长为1的等边△的边上一点P ,作⊥于E ,Q 为延长线上一点,当=时,连交边于D ,则的长为( )A.13 B .12 C .23D .不能确定12.如下图2,等腰△ 中,,∠20°。
线段的垂直平分线交于D ,交于E ,连接,则∠等于( ) A 、80° B 、 70° C 、60° D 、50°ACDB13.如上图3,△内有一点D ,且,若∠20°,∠30°,则∠的大小 是( )A.100° B.80° C.70° D.50°14.已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )A .8B .7C . 4D .315.如下图1,在△中,D ,E 分别是边,的中点, 连接.若平分∠,则下列结论错误的是 ( )A .=2 B .∠A =∠ C .=2 D .⊥16.如上图2所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC 为等腰三角形.....,则点C 的个数是( ) A .6B .7C .8D .9BA第8题图AD BEC17、如上图3,把等腰直角△沿折叠,使点A 落在边上的点E 处.下面结论错误的 是( )A .= B .=C .=D .=18.已知:一等腰三角形的两边长x 、y 满足方程组2-3,328,x y x y =⎧⎨+=⎩则此等腰三角形的周长为( )A .5B .4C .3D .5或419.如图,点C 是线段上的一个动点,△和△是在同侧的两个等边三角形,,分别是△和△的高,点C 在线段上沿着从点A 向点B 的方向移动(不与点A ,B 重合),连接,得到四边形.这个四边形的面积变化情况为( )(A )逐渐增大 (B) 逐渐减小 (C) 始终不变 (D) 先增大后变小20.如图,吴伯伯家有一块等边三角形的空地,已知点E 、F 分别是边、的中点,量得=5米,他想把四边形用篱笆围成一圈放养小鸡,则需用篱笆的长是( )A 、15米B 、20米C 、25米D 、30米 21.如图1,△中,,∠80°。
则∠B 的度数是( ) A .40° B .35° C .25° D .20° 22.已知:△中,x ,6,则腰长x 的取值范围是( ) A .03x << B .3x > C .36x << D .6x >23.已知等腰三角形的一个内角为70°,则另外两个内角的度数是( )A .55°,55°B .70°,40°C .55°,55°或70°,40°D .以上都不对 24.如下图1,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取 △A 1B 1C 1三边的中点A 2,B 2,C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第8个正△A 8B 8C 8的面积是( )A .731()2⨯B.831()2⨯C .731()4⨯ D .831()4⨯ (第20题图)FE CB A……图③图②图①25.如上图2所示,已知△和△均是等边三角形,点B、C、E在同一条直线上,与交于点O,与交于点G,与交于点F,连结、,则下列结论:①=②=③∥④∠=∠,其中正确结论的个数()A.1个B.2个C.3个D.4个26.如上图3,△中,垂直平分交于E,∠30°,∠80°,则∠.27.等腰三角形的两边长为4、9,则它的周长是 A.17 B.17或22 C.20 D.22 28.如下图3,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有个正三角形.29.如上图1,等边△的边长为6是边上的中线是上的动点是边上一点.若2的最小值为 . 30.如上图2,在△中,13,10,D是的中点,过点D作⊥于点E,则的长是。
31.如下图1,等腰三角形中,已知=,∠A=30°,的垂直平分线交于D,则∠的度数为 .32. 如上图2,在ABC△中,13AB AC==,10BC=,点D为BC的中点,DE DE AB⊥,垂足为点E,则DE等于() A.1013B.1513C.6013D.751333.如果一个等腰三角形的两边长分别是5和6,那么此三角形的周长是A.15 B.16 C.17 D.16或1734.边长为6的等边三角形中,其一边上高的长度为.35. 已知等边△中,如上图3,点分别在边上,把△沿直线翻折,使点B落在点Bˊ处,ˊˊ分别(第26题)EDCBA交边于点F ,G ,若∠80º ,则∠的度数为36. 在等腰△中,∠90°,=1,过点C 作直线l ∥,F 是l 上的一点,且=,则点F 到直线的距离为 .37. 如下图1,等边三角形中,D 、E 分别为、边上的两个动点,且总使,与交于点F ,⊥于点G ,则FGAF.38. 如上图2,在△中,,∠的角平分线交边于点D ,5,6,则.39. 等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 二、解答题1. 如图,已知点D 为等腰直角△内一点,∠=∠=15°,E 为延长线上的一点,且=.(1)求证:平分∠;(2)若点M 在上,且,求证: .2.如图,在等腰三角形中,∠90°,D 为边上中点,过D 点作⊥,交于E ,交于F ,若4,3,求长.GFE CBA第37题D3.如图,等边△中,是∠的角平分线,D 为上一点,以为一边且在下方作等边△,连结. (1) 求证:△≌△;(2) 延长至Q, P 为上一点,连结、使==5, 若=8时,求的长.4. 已知:如图,锐角△的两条高、相交于点O ,且,(1)求证:△是等腰三角形;(2)判断点O 是否在∠的角平分线上,并说明理由。
5. 已知:在△中,,∠900,点D 是的中点,点E 是边上一点。
(1)直线垂直于于点F ,交于点G (如图①),求证:;(2)直线垂直于于,垂足为H ,交的延长线于点M (如图②),找出图中与相等的线段,并说明。
BAEDF C6.(1)如图,已知AB AC AD AE ==,.求证BD CE =.7.如图,点E ,F 在上,=,∠A =∠D ,∠B =∠C ,与交于点O . (1)求证:=;(2)试判断△的形状,并说明理由.8、如图,△和△都是等腰直角三角形,∠=∠=90°,交于F ,分别交,于点G 、H 。
试猜测线段和的位置和数量关系,并说明理由.ACED BADB EF CO9.如图,BCD∆和都是等腰直角三角形,∠∠90°,D为边上一点。
ACB∆(1)求证:△≌△;(2)若5,12,求的长。
10.如图1-28所示,D为△的边的延长线上一点,过D作⊥,垂足为F,交于E,且=,求证△是等腰三角形.11、如图1-29所示,在△中,∠=90°,⊥于点D,点E在上.=,过点E作的垂线,交的延长线于点F,求证=.12.如图,点E、C在上,,∠∠45°,∠∠90°.(1)求证:;(2)若交于M32,将线段绕点C顺时针旋转,使点E旋转到上的G处,求旋转角∠的度数.B13.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?14.如图, 已知等边三角形中,点D ,E ,F 分别为边,,的中点,M 为直线上一动点,△为等边三角形(点M 的位置改变时, △也随之整体移动) .(1)如图①,当点M 在点B 左侧时,请你判断与有怎样的数量关系?点F 是否在直线上?都请直...接.写出结论,不必证明或说明理由; (2)如图②,当点M 在上时,其它条件不变,(1)的结论中与的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中与的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.15. 如图1,在等边△中,点D 是边的中点,点P 是线段上的动点(点P 与点C 不重合),连结. 将△绕点P 按顺时针方向旋转α角(0°<α<180°),得到△A 1B 1P ,连结1,射线1分别交射线、射线B 1B 于点E 、F .(1) 如图1,当0°<α<60°时,在α角变化过程中,△与△始终存在 关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠β . 当60°<α<180°时,在α角变化过程中,是否存在△与△全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E 、F 与点B 重合. 已知4,设,△A 11的面 积为S ,求S 关于x 的函数关系图1图2图3111图① 图②图③A· BCD EF··N MFEDCB ANMFEDCBA·16、如图,△中,,∠36°,的垂直平分线交于E,D为垂足,连结.(1)求∠的度数;(2)若5,求长.。