基于MC14433和TC7107的三位半数字电子表设计
数字电路3位半直流数字电压表
一、课题名称:3½直流数字电压表二、内容摘要:数字电压表是常用的测量仪表之一,与同级别的指针式电压表相比较,使用方便,测量更准确,因此广泛使用。
它由模拟电路和数字电路两部分组成,模拟部分包括转换式输入放大器、基准电压源和A/D转换电路。
数字部分包括计数器、译码驱动显示及逻辑控制。
3½直流数字电压表具有以下7大特点:(1)显示清晰直观,读数准确(2)显示位数本设计中显示的位数为3位(3)高准确度(4)分辨率高(5)测量速率快(6)输入阻抗高(7)集成度高微功耗新型数字电压表采用CMOS 集成电路,整机功耗很低。
三、设计内容及设计要求:1. 了解双积分式A / D转换器的工作原理2. 熟悉位A / D转换器MC14433的性能及其引脚功能3. 掌握用MC14433构成直流数字电压表的方法4. 设计一个具有三位的十进制数字显示电压表四、试验器件清单:1.MC1403基准电源(1个)2.MC14433A/D转换器(1个)3.CD4511译码驱动(1个)4.LED共阴极数码管(4个)5.MC1413(ULN2003)(1个)6.电阻:10K(3个)1K(2个)47K(2个)3K(1个)470K(2个)100Ω(10个)10K的滑动变阻器(2个)7.电容:0.01µF(1个)0.1µF(3个)8.排针若干 9.覆铜板(2个) 10.导线若干 11.电池盒(2个)五、设计的系统方案:根据数字电路课程设计要求,在指定时间内系统的完成电路的设计、组装以及调试。
一、选题,根据数字电路技术基础课本大纲的要求,在网上搜集课题,筛选出能够体现和运用数字电路基本知识点的选题,确定设计方向。
二、根据选题进行思考,找出选题涉及的知识点,根据工作原理和相关专业知识,做到理解透彻,理清设计思路。
三、系统的对选题进行有层次的设计,画出初始电路图,再进一步的改进。
四、根据电路图连线、调试,使电路完成预期的设计要求和功能,并使电路达到最好的运行状态。
mc14433组成数字电压表的原理与应用
MC14433组成数字电压表的原理与应用1. 引言数字电压表作为一种常见的电子测量仪器,在工业、科研、教育等领域得到广泛应用。
本文将介绍MC14433芯片的原理和应用,它是构成数字电压表的核心元件之一。
2. MC14433芯片概述MC14433是一种数字显示器驱动芯片,常用于数字电压表等仪器设备中。
它具有以下主要特点:•支持四位七段LED数字显示器的驱动;•内部集成了BCD-7段解码器,可以将输入的BCD码转换为七段LED 数字管需要的信号;•提供多种显示模式,包括静态和动态显示模式;•内部电流放大器可供驱动外部的数字LED显示器。
3. MC14433芯片的原理MC14433芯片的原理基于BCD码到七段LED显示的转换。
BCD码是一种用二进制编码的十进制数表示方法,每个十进制数由4位二进制数字表示。
MC14433芯片接收输入的BCD码信号,并通过内部的解码器将其转换为七段LED数字管所需的信号。
计算机系统或其他测量设备可通过数字信号与MC14433芯片进行通信,将测量结果以BCD码的形式传输给芯片。
MC14433的内部电流放大器可为外部的数字LED显示器提供足够的驱动电流,确保显示器亮度均匀且清晰可见。
4. MC14433芯片的应用MC14433芯片广泛应用于数字电压表设备中,以下是其在该领域的几个主要应用场景:4.1 汽车电压表MC14433芯片可与传感器和汽车电路系统连接,实现对汽车电压的准确测量和显示。
通过MC14433芯片的驱动,可以将测量得到的电压值以数字形式显示在数码管上,提供给驾驶员参考。
4.2 工业自动化领域在工业自动化领域,数字电压表是一种常用的测量仪器。
MC14433芯片可与各种传感器和工控设备连接,实现对电压信号的检测和显示。
这对于监控和控制工业生产过程中的电压变化非常重要。
4.3 实验教学领域MC14433芯片可以用于实验教学中的电路实验,帮助学生理解电压测量原理和数字显示技术。
数字温度计设计
数字温度计摘要:温度计在实际生产和人们的生活中都有广泛应用。
该设计是数字温度计,首先是对总体方案的选择和设计;然后通过控制LM35进行温度采集;将温度的变化转为电压的变化,其次设计电压电路,将变化的电压量通过放大系统转化为所需要的电压;再通过TC7107将模拟的电压转化为数字量后直接驱动数码管LED对实时温度进行动态显示。
最后在Proteus仿真软件中构建了数字温度计仿真电路图,仿真结果表明:在温度变化时,可以通过电压的变化形式传递,最终通过3位十进制数显示出来。
关键词:温度计;电路设计;仿真目录1设计任务与要求 (1)2方案设计与论证 (1)3单元电路的设计及仿真 (2)3.1传感器 (2)3.2放大系统 (2)3.3 A/D转换器及数字显示 (4)4 总电路设计及其仿真调试过程 (6)4.1总电路设计 (6)4.2仿真结果及其分析 (7)5 结论与心得 (9)6 参考文献 (11)1 设计任务与要求温度计是工农业生产及科学研究中最常用的测量仪表。
本课题要求用中小规模集成芯片设计并制作一数字式温度计,即用数字显示被测温度。
具体要求如下:(1)测量范围0~100度。
(2)测量精度0.1度。
(3)3位LED数码管显示。
掌握线性系统的根轨迹、时域和频域分析与计算方法;(2)掌握线性系统的超前、滞后、滞后-超前、一二阶最佳参数、PID等校正方法;(3)掌握MATLAB线性系统性能分析、校正设计与检验的基本方法。
2 方案设计与论证数字温度计的原理是:通过控制传感器进行温度采集,将温度的变化转化为电压的变化;然后设计电压电路,将变化的电压通过放大系统转化为需要的电压;再通过A/D转换器将模拟的电压转换为数字量后驱动数码管对实时温度进行动态显示。
原理框图如图2-1所示:图2-1数字温度计原理框图由设计任务与要求可知道,本设计实验主要分为四个部分,即传感器、放大系统、模数转换器以及显示部分。
经过分析,传感器可以选择对温度比较敏感的器件,做好是在某参数与温度成线性关系,比如用温敏晶体管构成的集成温度传感器或热敏电阻等;放大系统可以由集成运放组成或反相比例运算放大器;A/D转换器需要选择有LED 驱动显示功能的,而可供选择的参考元件有ICL7107,ICL7106,MC14433等;显示部分用3位LED数码管显示。
MC14433在数字温度表中的应用
第20卷第3期河北建+筑工程学院学报Vol·20No·32002年9月JOURNALOFHEBEIINS删TEOFARCHITECllJRALENGINEERINGSep.2002MCl4433在数字温度表中的应用张一哲杨晓睛河北建筑-E程学院电气系摘要就在数字式温度表中的应用进行了探讨.关键词A/D变换;MCl4433;数字温度表中图号TM7MCl4433是美国摩托罗拉公司生产的主要用于数字电压表和数字面板表的一种三位半双积分式A/D变换器.它具有功耗低、输入阻抗高、抗干扰能力强、转换精度高(相当于二进制数11位)ftJ'l-接元件少等优点.利用它的这些特性。
可以进行多种模拟信号的测试和采集.1。
MCl4433的主要性能及其技术指标(1)MCl4433是将模拟电路和数字电路集成在一个芯片内的A/D转换器。
它除具有功耗低、精度高等特点外。
还具有和微型计算机连接的EOc端及DU端。
故与微型计算机和其它数字电路兼容.(2)MCl4433的满刻度电压(即基本量程)有两档,可通过改变其引脚4和引脚5之间的外接电阻Rl进行选择.其中,一档为±199.9mV,另一档为±1.999V.当Rl--27K时,为±199.9mV档;当R,--470KQ时。
为±1.999V档.这时,2N上的参考电压V哪应分别为+200.0mV和±2.00V.(3)MCl4433的A/D转换速率为每秒10~20次.(4)MCl4433没有A/D转换开始和停止控制功能。
一旦开始工作就一直在不停的进行A/D转换.(5)它有过量程指示功能.当被测信号超过量程时.它的第15脚就产生一个过量程状态信号输出.(6)MCl4433为±5V双电源供电。
也可使用一个+9v的单电源供电.当使用+9V的单电源供电时,要求V。
与V。
相连。
且模拟地v。
G端至少要比V。
端的电平高出2.8V.2MCl4433各引脚的功能‘MCl4433是一片24脚的双列直插式集成电路芯片.其各引脚的功能见表1所示.3在数字温度表中的应用利用MCl4433的上述功能.我们研制了一种专为供暖部门检测住户室内温度的数字式温度表.3.1电路的原理本电路由温度采集、A/D转换、译码驱动、数位驱动、数字显示和电源等5部分组成.其中:温度采集部分采,NVLMS0集成温度传感器;A/D转换部分采用-f'MCl4433、译码驱动部分采用-rMc4511、数位驱动部分采用了MCl413、数字显示部分采用了LED显示器.3.2电路原理图如图l所示.本文收稿日期:2001·04-26第一作者:男,1959年生,高级实验师,张家口市,075024河北建筑工程学院学报3.3电路设计说明+9V(1)本数字温度表是专为冬季供暖部门了解各住户的室内温度而设计的。
3位半数字表头芯片ICL7107的特点及原理介绍
3位半数字表头芯片ICL7107的特点及原理介绍(1) 31/2位双积分型A/D转换器ICL7107功能与特点① ICL7107是31/2位双积分型A/D转换器,属于CMoS大规模集成电路,它的最大显示值为士1999,最小分辨率为100uV,转换精度为0.05士1 个字。
② 能直接驱动共阳极LED数码管,不需要另加驱动器件,使整机线路简化,采用士5V两组电源供电,并将第21脚的GND接第30脚的IN 。
③ 在芯片内部从V+与COM之间有一个稳定性很高的2.8V基准电源,通过电阻分压器可获得所需的基准电压V REF。
④ 能通过内部的模拟开关实现自动调零和自动极性显示功能。
⑤ 输入阻抗高,对输入信号无衰减作用。
⑥ 整机组装方便,无需外加有源器件,配上电阻、电容和LED共阳极数码管,就能构成一只直流数字电压表头。
⑦ 噪音低,温漂小,具有良好的可靠性,寿命长。
⑧ 芯片本身功耗小于15mw(不包括LED)。
⑨ 不设有一专门的小数点驱动信号。
使用时可将LED共阳极数数码管公共阳极接V+.⑩ 可以方便的进行功能检查。
图1 ICL7107的引脚图及典型电路。
(2) ICL7107引脚功能及主要电气参数V+和V-分别为电源的正极和负极,au-gu,aT-gT,aH-gH:分别为个位、十位、百位笔画的驱动信号,依次接个位、十位、百位LED显示器的相应笔画电极。
Bck:千位笔画驱动信号。
接千位LEO显示器的相应的笔画电极。
PM:液晶显示器背面公共电极的驱动端,简称背电极。
Oscl-OSc3 :时钟振荡器的引出端,外接阻容或石英晶体组成的振荡器。
第38脚至第40脚电容量的选择是根据下列公式来决定:Fosl = 0.45/RCCOM :模拟信号公共端,简称“模拟地”,使 用时一般与输入信号的负端以及基准电压的负极相连。
TEST :测试端,该端经过500欧姆电阻接至逻辑电路的公共地,故也称“逻辑地”或“数字地”。
VREF + VREF- :基准电压正负端。
基于IC7107的万用表设计
摘要本次设计应用ICL7107和四位LED数码管作为显示核心部分。
它可以检测一定范围的直流电压、直流电流、电阻和温度。
主要由检测输入和显示输出两大部分构成。
输入由电阻分压方式获得,输出由IC7107芯片来实现。
输入部分通过接通不同的配置电阻可以实现不同的量程输入,电流检测时,由芯片的固定电源供电,再由被测电阻与已经分配好的分压电阻分压而检测得到。
本作品是基于集成块IC7107设计的实验多用表,可以实现小数点的切换,切换功能由拨动开关实现。
系统操作简单,使用方便,适用性广,价格便宜。
关键字:ICL7107;LED数码管;电阻分压;电阻分流。
AbstractThe design application ICL7107 and four LED digital tube as the display core.It can detect a range of DC voltage, DC current, resistance and temperature.Mainly by the detection of the input and display output, two major parts.Input mode by the resistor divider to obtain the output from the IC7107 chip to achieve.Enter the part through the resistor can be connected to different configurations to achieve different scale input, current detection, the fixed power supply by the chip, then the measured resistance and has a good distribution of partial pressure of the test by the resistor divider.This work is based on the experimental design Manifold IC7107 multimeter, you can achieve the decimal point switch, toggle switch realized by the switching function.System is simple, easy to use, wide applicability, and cheaper prices. Keywords: ICL7107; LED digital tube; resistor divider; resistance shunt目录引言 (1)1. 方案的选择 (2)1.1. 显示模块的选择 (2)2. 系统框图: (4)3. 硬件电路分析 (4)3.1. 显示模块介绍 (4)3.2. ICL7107功能说明 (6)3.3. 本设计显示电路原理 (11)4. 检测输入模块节绍 (12)4.1. 温度检测 (12)4.2. 电压检测 (13)4.3. 电流检测 (14)4.4. 电阻检测输入: (15)5. 电路的制作与调试: (15)6. 结论: (15)谢辞 (17)参考文献: (18)附录.................................................................................. 错误!未定义书签。
ICL7107三位半数显表头
浙江天煌科技实业有限公司
ICL7107三位半数显表头
表头介绍:
1、ICL7107为三位半AD转换器同时可直接驱动LED共阳数码管;
2、第36、35脚为基准电压(Uref),通常为100mV、1V或0.8V;
3、第31、30脚为待转换的模拟电压(Uin),要求直流2V以下;
4、显示数值COUNT=(Uin/Uref)*1000,芯片不驱动小数点;
5、数码管公共端经30Ω电阻接到+5V电源,小数点(实质是发光二极管)通过开关切换,
其中一个经430Ω电阻到电源地构成负极和公共端(430Ω电阻一端)引出作成插座,点小数点则只需将公共端与某一个小数点对应的发光二极管的负极短接即可点亮小数点;
6、表头上黑色象三极管的为LM385,可认为是1.25V的稳压管;
7、第37脚短接到V+时,表头显示‘-1888’,此项常用对线路及数
五车间: 张盛。
最新三位半数字电压表
三位半数字电压表四、设计原理及电路图(1)数字电压表原理框图如下:方案1的原理框图如图a所示;方案2的原理框图如图b所示;方案3的原理框图如图c所示。
图a图b图c鉴于选用方案一,由数字电压表原理框图可知,数字电压表由五个模块构成,分别是基准电压模块, 3 1/2位A/D电路模块,字形译码驱动电路模块,显示电路模块,字位驱动电路模块.各个模块设计如下:量程转换模块采用多量程选择的分压电阻网络,可设计四个分压电阻大小分别为900K Ω,90KΩ,9KΩ和1KΩ。
用无触点模拟开关实现量程的切换。
基准电压模块这个模块由MC1403和电位器构成, 提供精密电压,供A/D 转换器作参考电压.3 1/2位A/D电路模块Output直流数字电压表的核心器件是一个间接型A / D转换器,这个模块由MC14433和积分元件构成,将输入的模拟信号转换成数字信号。
字形译码驱动电路模块这个模块由MC4511构成 ,将二—十进制(BCD)码转换成七段信号。
显示电路模块这个模块由LG5641AH构成,将译码器输出的七段信号进行数字显示,读出A/D 转换结果。
(2)实验芯片简介:数字显示电压表将被测模拟量转换为数字量,并进行实时数字显示。
该系统(如图1 所示)可采用MC14433—三位半A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED发光数码管组成。
本系统是三位半数字电压表,三位半是指十进制数0000~1999。
所谓3位是指个位、十位、百位,其数字范围均为0~9,而所谓半位是指千位数,它不能从0变化到9,而只能由0变到l,即二值状态,所以称为半位。
各部分的功能如下:三位半A/D转换器(MC14433):将输入的模拟信号转换成数字信号。
基准电源(MC1403):提供精密电压,供A/D 转换器作参考电压。
译码器(MC4511):将二—十进制(BCD)码转换成七段信号。
MC14433 CD4511 MC1413 MC1403 应用数字电压表电路图
MC14433 CD4511 MC1413 MC1403 应用数字电压表电路图时间:2009-10-24 17:53:35 来源:资料室作者:编号:1316 更新日期20110407 071636数字显示电压表将被测模拟量转换为数字量,并进行实时数字显示。
该系统(如图1 所示)可采用MC14433—位A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED发光数码管组成。
本系统是位数字电压表, 位是指十进制数0000~1999。
所谓3位是指个位、十位、百位,其数字范围均为0~9,而所谓半位是指千位数,它不能从0变化到9,而只能由0变到l,即二值状态,所以称为半位。
各部分的功能如下:位A/D转换器(MC14433):将输入的模拟信号转换成数字信号。
基准电源(MC1403):提供精密电压,供A/D 转换器作参考电压。
译码器(MC4511):将二—十进制(BCD)码转换成七段信号。
驱动器(MC1413):驱动显示器的a,b,c,d,e,f,g七个发光段,驱动发光数码管(LED)进行显示。
显示器:将译码器输出的七段信号进行数字显示,读出A/D转换结果。
工作过程如下:位数字电压表通过位选信号DS1~DS4进行动态扫描显示,由于MC14433电路的A/D转换结果是采用BCD 码多路调制方法输出,只要配上一块译码器,就可以将转换结果以数字方式实现四位数字的LED发光数码管动态扫描显示。
DS1~DS4输出多路调制选通脉冲信号。
DS选通脉冲为高电平时表示对应的数位被选通,此时该位数据在Q0~Q3端输出。
每个DS选通脉冲高电平宽度为18个时钟脉冲周期,两个相邻选通脉冲之间间隔2个时钟脉冲周期。
DS 和EOC的时序关系是在EOC 脉冲结束后,紧接着是DS1输出正脉冲。
以下依次为DS2,DS3和DS4。
其中DS1对应最高位(MSD),DS4则对应最低位(LSD)。
自已动手制作数字电压表(ICL7107)
数字电压表(ICL7107)做了一款数字电压表,发现网上发表好多原理图都是有错误,会误导电子爱好者。
今天逛了下电子市场买了套数字表头外壳,想做成个市场上有卖很实用的表头。
把制作全过程共享给大家。
并提供套件给初学者.ICL7107引脚图如下:这是2种封装的引脚图,40PIN直插封装的使用普遍一些,买起来方便。
ICL7107是高性能、低功耗的三位半A/D转换器电路,它包含有七段译码器、显示驱动器、系统时钟等,并且ICL7107可以直接驱动共阳数码管。
实体图如下:芯片正面小圆点对应的是芯片的1脚,按照反时针方向去走,依次是第 2 至第 40 引脚。
安装的时候一定要注意。
整理一下原理图,如下:电子市场买的表头框:做好的PCB:配齐元件,准备焊接测试:开始焊接了,这时候要注意焊接的顺序,否则个别元件不好焊的。
首先:将40PIN的IC座处理一下,如下图:然后将IC座插入PCB,并焊好。
接着焊C2和C4的位置,并将这2个电容卧倒安装!再下来焊4个共阳的0.56英寸的数码管,注意不要焊反。
剩下元件的顺序没什么讲究,想焊哪个就焊哪个。
焊完后就变成这样了,如下:将ICL7107插入IC座,注意方向。
将自制的可调电源调到5V,接入表头。
用万用表测量ICL7107的26脚电压应该为-2.5 ~ -4V,因为D5,D6,C6,C7,R8,R9,Q1,L1组成负电压产生电路,如果没有这个负电压,显示就会出错。
接着就要调ICL7107的36脚电压,这是给IC的基准电压,调整VR1可调电位器,使36脚电压为100mV。
在标准电压源未接入的情况下,数码管应该显示000,有可能最后一位会跳到1,那就要看看你的手是不是直接拿的PCB了,是的话就把表头装进壳里再看显示。
将标准电压源调整到一个固定值,此时显示的电压值和标准电压源的电压值不一样,调整VR2使显示正确。
再将标准电压源调整到其他值,看表头显示是否正确。
反复调整,至其线性显示在接受范围。
基于ICL7107器件的量程自切换数字电压表的设计
封面中文摘要随着科学技术的发展,数字电压表的种类越来越多,功能越来越丰富,当然应用的领域也越来越广泛,给人们的工作和生活带来许多方便。
本文主要介绍的是基于ICL7107数字电压表的设计的设计, ICL7107是目前广泛应用于数字测量系统的一种31/2位A/D转换器,能够直接驱动共阳极数字显示器,够成数字电压表,此电路简洁完整,稍加改造就可以够成其他电路,如数字电子秤、数字温度计的等专门传感器的测量工具。
它采用的是双积分原理完成A/D转换,全部转换电路用CMOS大规模集成电路设计。
应用了ICL7107芯片数码管显示器等,芯片第一脚是供电,正确电压时DC5V,连接好电源把所需要测量的物品连接在表的两个端口,从而可以在显示器上看到所需要的结果。
目录第一章绪论........................................ 错误!未定义书签。
1.1 数字电压表的概术 (3)1.2 数字电压表的结构 (3)1.3 数字电压表应用领域 (4)1.4设计目的 (4)第二章课程设计方案、要求、任务实验原理 ........... 错误!未定义书签。
2.1方案选择..................................... 错误!未定义书签。
2.2 系统方框图................................. 错误!未定义书签。
2.3设计要求..................................... 错误!未定义书签。
2.4设计任务..................................... 错误!未定义书签。
2.5实验原理..................................... 错误!未定义书签。
第三章课程设计框图及工作原理 ...................... 错误!未定义书签。
3.1工作原理..................................... 错误!未定义书签。
三位半数字直流电压表的设计
三位半数字直流电压表的设计(总14页)-本页仅作为预览文档封面,使用时请删除本页-钦州学院数字电子技术课程设计报告三位半数字直流电压表的设计院系物理学院专业过程控制自动化学生班级 2010级1班姓名 xxxx学号 xxxx指导教师单位 xxxxx指导教师姓名 xxxx指导教师职称 xxxx2013年7月三位半数字直流电压表过程控制自动化专业2010级 xxx指导教师 xxx摘要:根据设计的指标和要求,结合平时所学的理论知识,设计出一个功能较齐全的数字直流电压表。
关键词:电压表、电路、设计、A/D转换器目录前言 (1)1设计技术指标与要求 (1)设计技术指标 (1)设计要求 (1)2 方案的设计及元器件清单 (1)3 电路的工作原理 (2)4 各部分的功能 (3)三位半位双积分A / D 转换器CC14433 的性能特点 (3)基准电源(CC1403) (3)译码器(MC4511) (4)显示电路模块 (5)驱动器 (5)显示器 (5)5系统电路总图及原理 (5)电路组成 (5)电路的工作原理及过程 (6)三位半A/D转换器MC14433 (7)七段锁存-译码-驱动器CD4511 (8)高精度低漂移能隙基准电源MC1403 (9)6电路连接测试 (9)7经验体会 (10)参考文献 (10)前言数字电压表(Digital Voltmeter),简称DVM,是采用数字化测量技术,把连续的模拟信号转换成不连续、离散的数字形式并加以显示的仪表。
数字电压表的类型很多,其输入电路、设计电路和显示电路基本相似,只是电压—数字转换方法不同。
因此,我们此次设计电压表就是为了了解电压表的原理,从而学会制作电压表。
而且通过电压表的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。
1 设计技术指标与要求设计技术指标1. 量程:一档:+~0~-二档: +~0~-2. 用七段LED数码管显示读数,做到显示稳定、不跳变;3. 保持/测量开关:能保持某一时刻的读数;4. 指示值与标准电压表示值误差最低位在5之内。
3位半数字表头芯片ICL7107中文资料
3位半数字表头芯片ICL7107中文资料(1) 31/2位双积分型A/D转换器ICL7107功能与特点①ICL7107是31/2位双积分型A/D转换器,属于CMoS大规模集成电路,它的最大显示值为士1999,最小分辨率为100uV,转换精度为0.05士1 个字。
②能直接驱动共阳极LED数码管,不需要另加驱动器件,使整机线路简化,采用士5V两组电源供电,并将第21脚的GND接第30脚的IN 。
③在芯片内部从V+与COM之间有一个稳定性很高的2.8V基准电源,通过电阻分压器可获得所需的基准电压VREF 。
④能通过内部的模拟开关实现自动调零和自动极性显示功能。
⑤输入阻抗高,对输入信号无衰减作用。
⑥整机组装方便,无需外加有源器件,配上电阻、电容和LED共阳极数码管,就能构成一只直流数字电压表头。
⑦噪音低,温漂小,具有良好的可靠性,寿命长。
⑧芯片本身功耗小于15mw(不包括LED)。
⑨不设有一专门的小数点驱动信号。
使用时可将LED共阳极数数码管公共阳极接V+.⑩可以方便的进行功能检查。
(2) ICL7107引脚功能及主要电气参数V+和V-分别为电源的正极和负极,au-gu,aT-gT,aH-gH:分别为个位、十位、百位笔画的驱动信号,依次接个位、十位、百位LED显示器的相应笔画电极。
Bck:千位笔画驱动信号。
接千位LEO显示器的相应的笔画电极。
PM:液晶显示器背面公共电极的驱动端,简称背电极。
Oscl-OSc3 :时钟振荡器的引出端,外接阻容或石英晶体组成的振荡器。
第38脚至第40脚电容量的选择是根据下列公式来决定:Fosl = 0.45/RCCOM :模拟信号公共端,简称“模拟地”,使用时一般与输入信号的负端以及基准电压的负极相连。
TEST :测试端,该端经过500欧姆电阻接至逻辑电路的公共地,故也称“逻辑地”或“数字地”。
VREF+VREF- :基准电压正负端。
CREF:外接基准电容端。
INT:27是一个积分电容器,必须选择温度系数小不致使积分器的输入电压产生漂移现象的元件IN+和IN- :模拟量输入端,分别接输入信号的正端和负端。
数字电压表的设计
3. 数字电压表的测量原理与主要器件性能分析
直流数字电压表的核心器件是一个间接型A / D转换器: 3.1.双积分A/D转换器 1).转换方式 :V-T型间接转换ADC。输入的模拟电压信 号变换成易于准确测量的时间量,然后在这个时间宽度 里用计数器计时,计数结果就是正比于输入模拟电压信 号的数字量。 2).电路结构 :图-1是这种转换器的原理电路, ①积分器A1:定时信号控制开关S2,Qn为不同电平时, 极性相反的输入电压Vx和参考电压 VREF将分别加到积分 器的输入端,进行两次方向相反的积分,积分时间常数 τ=RC。 ②过零比较器A2:确定积分器的输出电压V0过零的时刻, V0≥0时比较器输出VC为低电平;当V0<0时,VC为高电平. 输出信号接至时钟控制门(G)作为关门和开门信号
Vi
8
1
7
2
6
3
5
4
MC1403
Vo GND
4.2. 标准电压源的连接和调整:
插上MC1403基准电源,用标准数字电压表检查输出是否为2.5V,然后 调整10KΩ电位器,使其输出电压为2.00V,调整结束后去掉电源线。
2018/10/16 9
4. 3. 总装测试的方法与步骤:
1)接线:按设计电路接好线路,并插上MC(TC)14433及MC1413等芯片。 2) 通电显示检查:接通+5V、-5V电源及地线,当输入端接地,此时显示 器将显示“000”值,否则,应依次检测电源正负电压,用示波器测量、 观察DS1~DS4 ,Q0~Q3波形,判别故障所在。 3) 电压粗测:调节输入电压VX 的高低,4位输出显示数码应相应变化,然 后进入下一步精调。 4)测量基准校正: 用标准数字万用表(示波器)测量输入电压,调节电位器,使
三位半数字直流电压表设计multisim
三位半数字直流电压表设计multisim多位半数字直流电压表是一种能够测量电路中直流电压的仪器。
它一般由数码显示部分和模拟-数字转换部分组成。
在Multisim中,我们可以通过建立电路模型来设计并模拟一个三位半数字直流电压表。
我们需要选择合适的元件来构建电路模型。
在三位半数字直流电压表中,最重要的元件是模数转换器(ADC)和显示部分。
在Multisim 中可以通过搜索栏找到这些元件并将它们添加到工作区。
在电路模型中,我们需要引入一个待测电路的输入信号,并连接到ADC的输入引脚上。
可以选择一种直流电源作为输入信号,并使用电阻来限制电流大小,以防止ADC被烧坏。
同时,需要为ADC提供一个参考电压,该电压与输入电压的量程相关。
ADC会将模拟信号转换为数字信号,并输出给显示部分。
在显示部分,我们可以选择七段数码管来显示数字。
在Multisim中,可以找到七段数码管的元件,并将其添加到工作区。
将ADC的输出和数码管的输入进行连接。
在Multisim中,可以使用导线工具将两者连接起来。
此外,为了显示多个数字,可以选择多个数码管,并通过逻辑电路将它们连接在一起。
在设计电路模型时,需要注意以下几点:1.选择合适的ADC和七段数码管。
ADC的位数决定了电压的精确度,而七段数码管的个数决定了显示的范围。
2.为ADC提供合适的参考电压。
参考电压的选取需要根据待测电路的电压范围来确定。
3.使用合适的电阻来限制输入电流,以保护ADC不受损坏。
4.在连接元件时,要确保正确地连接输入和输出引脚,以便电路正常工作。
完成电路模型的设计后,可以进行仿真。
在Multisim中,可以通过点击“仿真”按钮启动仿真过程。
仿真过程将模拟电路中的信号变化,并将结果显示在数码管上。
通过以上步骤,我们可以在Multisim中设计一个三位半数字直流电压表。
设计完成后,可以通过仿真来测试其在不同电压下的显示情况,以验证电路的正确性和稳定性。
总结起来,使用Multisim来设计一个三位半数字直流电压表需要选择合适的元件,构建电路模型,并进行仿真。
直流数字电压表
电子技术课程设计报告题目名称:直流数字电压表的设计姓名:学号:班级:指导教师:重庆大学电气工程学院2010 年6 月直流数字电压表摘要:传统的模拟指针式电压表功能单一,精度低,读数的时候也非常不方便,很容易出错。
而采用单片机的数字电压表由于测量精度高,速度快,读数时也非常的方便,抗干扰能力强等优点而被广泛应用。
本设计给出基于MC14433双积分模数转换器的一种电压测量电路。
数字电压表是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
该系统由MC144333位半A\D转换器、MC1413七路达林顿驱动器阵列、MC4543BCD七段锁存-译码-驱动器、基准电源MC1403和共阳极LED发光数码管组成。
本次设计的简单直流数字电压表的具体功能是:最高量程为1999V,分四个档位量程,即0~1.999V,0~19.99V0~199.9V,0~1999V,可以通过调档开关来实现各个档位。
一、设计内容及要求:1)设计直流数字电压表;2)直流电压测量范围:0V~1.999V,0V~19.99V,0V~199.9V,0V~1999V。
3)直流输入电阻大于100kΩ。
4)画出完整的设计电路图,写出总结报告。
5) 选做内容:自动量程转换。
二、比较和选定设计的系统方案,画出系统框图:方案:本次设计的直流数字电压表由测量电路、双积分模数转换电路电路、数码显示电路和量程转换电路组成,原理框图如图1 所示。
测量电路和量程转换将宽范围的输入直流电压变换为模数转换电路输入电压范围的直流电压,模数转换电路将其转换为数字量,送数码显示电路显示测量值。
三、单元电路设计、参数计算和器件选择:1)量程转换电路:R1、R2、R3、R4对输入电压进行分压,使x V 直流输入电压的范围是0V~2V 。
由于直流输入电阻要求大于100k Ω,设定总电阻为1000K Ω。
列出方程计算各电阻阻值:41234431234432123412340.0010.010.11000R R R R R R R R R R R R R R R R R R R R R R K ⎧=⎪+++⎪+⎪=⎪+++⎨⎪++⎪=+++⎪⎪+++=Ω⎩ 得:1234900;90;9;1R K R K R K R K =Ω=Ω=Ω=Ω 图2 量程转换电路图1直流数字电压表原理框图图3 小数点控制仿真电路(如图所示,当被测电压为6V时,百位上的小数点亮)2)双积分模数转换电路:集成双积分模数转换器MC14433原理电路和引脚图如图4所示。
MC14433模数转换程序
的 Q0~DS4 口,INT1 接 DU/EOC,单片机最小应用系统 1 的 P1.0、P1.1 连接到串行静态显示
模块的 DIN、CLK。模拟信号输入接+5V 电源和地。
2、用串行数据通信线连接计算机与仿真器,把仿真器插到模块的锁紧插座中,请注意
仿真器的方向:缺口朝上。
3、打开 Keil uVision2 仿真软件,首先建立本实验的项目文件,接着添加 MC14433.ASM
MC14433 300K
0.1uF 470K
0.1uF
74LS164
GND
Vin+ 10K
Vin-
VCC
1K
1 2 3 4
VIN NC VOUTNC GND NC NC NC
8 7 6 5
MC1403
GND
等于 1
屏蔽高四位 百位入缓冲
缓冲地址加 1
读入数据
DS3 值
屏蔽高四位 十位入缓冲
等于0 等于 1
缓冲地址加 1
读入数据
DS4 值
等于 1 屏蔽高四位 个位入缓冲
等于 0
LED 显示
五、思 考题
1、 本实验 的程序 是采用 查询方 式读取 A/D 转 换的数
返回初始化
据的,同学们可以考虑用中断方式实现。编写程序时要注意现场保护和恢复的问题。 2、本实验采用的是静态显示,还可以用动态显示电路来实现显示。
X1 X2
9 10 11
RESET RXD TXD
P00 P01 P02 P03 P04 P05 P06 P07
39 38 37 36 35 34 33 32
P20 P21 P22 P23 P24 P25 P26 P27
3位半数字电压表
目录第一章三位半数字电压表的设计方案题目及设计目的 (2)设计要求 (2)方案设计 (2)三位半数字电压表的设计思想 (4)第二章三位半数字电压表设计过程三位半数字电压表特点 (4)TC7107的介绍 (5)TC7107的性能特点 (6)TC7017的功能 (6)第三章电路仿真电路仿真 (7)第四章实验总结实验总结 (8)一:三位半数字电压表的设计案题目及设计目的1、题目:三位半位数字电压表2、设计目的:通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、应完成的工作内容和具体的设计方法,同时复习、巩固以往的模电、数电内容。
设计要求采用课程或实验内容中所使用的元器件,设计一个三位半数字电压表,三位半是指个位、十位、百位的范围为0-9,而千位只有0和1两个状态,称为半位。
所以数字电压表测量范围为0001-1999。
数字电压表主要部分是A/D转换器,显示方法通常采用动态扫描(工作时四个数码管轮流点亮,利用人眼的视觉残留特性能够得到整体效果,当扫描频率过低时显示的数码会有闪烁感)方式,但需要字形译码驱动电路和字位驱动电路。
1.任务要求:2.基本要求:3.直流电压测量范围(0~200V)测量误差小于1%4.附加5.交流电压测量范围(0~200V)测量误差小于1%6.自动量程转换7.通过查阅资料,实现设计要求,写出实现原理,画出原理框图,描述其功能,并给出数字电压表电路原理图。
方案设计利用成熟芯片Tc7107实现电压的测量,用四位数码管显示出最后的转换电压结果。
优点:可直接驱动LED数码管,内部设有参考电压、独立模拟开关、逻辑控制、显示驱动、自动调零功能等。
数字电压表原理框图如下:三位半数字电压表的设计思想数字电压表的位数是指完整显示位,即能够显示0-9十个数字的位。
所谓三位半数字电压表,即只有3位完整显示位,而其最高位只能显示0或1,故称为半位。
数字电压表一般由模拟电路与数字电路两大部分组成,模拟部分包括输入放大器、A/D转换器和基准电压源;数字部分包括计数器、译码器、逻辑控制器、振荡器和显示器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言随着电子技术的发展,电子行业经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。
何况在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。
数字电压表(Digital Voltmeter )简称DVM ,它是采用数字化测量技术,把连续的模拟量(直流或交流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
由于数字式仪器具有读数准确方便、精度高、误差小、灵敏度高和分辨率高、测量速度快等特点而倍受青睐。
本次我们所做的课程设计就是基于数字电子技术和模拟电子技术的一个电子产品。
我们对自己的设计作品从各个角度分析了由A/D 转换器组成的数字电压表的设计过程及各部分电路的组成及其原理,并且分析了数模转换进而使系统运行起来的原理及方法。
通过自身实践提高了动手能力,也只有亲历亲为才能收获掌握到已经学过的知识。
其实也为建立节约成本的意识有些帮助,我们并没有采用单片机模块,而是直接采用A/D 转换,在MC1433系列找块带显示译码并带A/D 转换的片子并不难,相对于单片机有成本上的优势,但这里同时也牵涉几个问题:精度、位数、速度、还有功耗等不足之处,这些都要慎重考虑。
这些也是在这次实践中收获的吧!2 设计任务分析2.1设计说明 本题要求设计一个213位的数字电压表,213位是指个位、十位、百位的范围为0~9,而千位只有0和1两个状态,称为半位。
所以213数字电压表测量范围为0001~1999。
数字电压表主要部分是A/D 转换器,显示方法通常采用动态扫描(工作时四个数码管轮流点亮,利用人眼的视觉残留特性能够得到整体效果,当扫描频率过低时显示的数码会有闪烁感)方式,采用这种方式较为省电,但需要字形译码驱动电路和字位驱动电路。
任务要求:(1)直流电压测量范围(0~200V)(2)测量速度每秒为2~5次,任选(3)分辨率0.1mv(4)测量误差小于0.1%2.2方案分析1.根据题目利用所学过的知识通过上网或到图书馆查阅资料,设计出3个实现数字万用表的方案。
要求写出实现工作原理,画出原理框图,描述其功能。
2.对将要实验方案3位半数字万用表方案,须采用中小规模集成电路,mc14433A/D 转换器等电路进行设计;写出以确定方案详细工作原理,计算出参数。
2.2.1方案1:主要器件由芯片MC14433和共阴极半导体数码管LED组成。
MC14433是美国摩托罗拉公司生产的单片3位半A/D转换器,它适合构成带B码输出的3位半LED显示数字电压表,是目前应用较为普遍的一种低速A/D转换器。
MC14433的性能特点:(1)MC14433属于CMOS大规模集成电路,其转换准确度为±0.05%。
内含时钟振荡器,仅需外接一只振荡电阻。
能获得超量程(OR)、欠量程(UR)信号,便于实现自动转换量程。
能增加读数保持(HOLD)功能。
电压量程分两挡:200mV、2V,最大显示值分别为199.9mV、1.999V。
量程与基准电压呈1∶1的关系,即UM=UREF。
(2)需配外部的段、位驱动器,采用动态扫描显示方式,通常选用共阴极LED数管。
(3)有多路调制的BCD码输出,可直接配μP构成智能仪表。
(4)工作电压范围是±4.5 V~±8V,典型值为±5V,功耗约8mW。
2.2.2方案2:主要器件由芯片TC7106和液晶显示器LCD组成。
由于TC7106是把模拟电路与逻辑电路集成在一块芯片上,属于大规模CMOS 集成电路,因此本方案主要有以下特点:(1)采用单电源供电,可使用9V迭层电池,有助于实现仪表的小型化。
(2)芯片内部有异或门输出电路,能直接驱动LCD显示器。
(3)功耗低。
芯片本身消耗电流仅1.8mA,功耗约16mV。
(4)输入阻抗极高,对输入信号无衰减作用。
(5)能通过内部的模拟开关实现自动调零和自动显示极性的功能。
(6)噪声低,失调温标和增益温标均很小。
具有良好的可靠性,使用寿命长。
(7)整机组装方便,无须外加有源器件,可以很方便地进行功能检查。
2.3方案选择在设计思路上我们选择了MC14433,但由于在各个仿真软件中,我们无法找到MC14433元器件,故我们采用在思路上选择MC14433设计,仿真环节采用TC7106,这样既能有效地了解实验原理,更能仿真出实验结果。
3 单元模块分析数字电压表将被测模拟量转换为数字量,并进行实时数字显示。
该系统可采用MC14433三位半A/D转换器、MC1413七路达林顿驱动器阵列、CD4511BCD到七段锁存-译码-驱动器、能隙基准电源MCl403和共阴极LED发光数码管组成。
本系统是三位半数字电压表,三位半是指十进制数0000~1999。
所谓3位是指个位、十位、百位,其数字范围均为0~9,而所谓半位是指千位数,它不能从0变化到9,而只能由0变到l,即二值状态,所以称为半位。
3.1各部分的功能三位半A/D转换器(MC14433):将输入的模拟信号转换成数字信号。
基准电源(MC1403):提供精密电压,供A/D 转换器作参考电压。
译码器(MC4511):将二—十进制(BCD)码转换成七段信号。
驱动器(MC1413):驱动显示器的a,b,c,d,e,f,g七个发光段,驱动发光数码管(LED)进行显示。
显示器:将译码器输出的七段信号进行数字显示,读出A/D转换结果。
3.2引脚功能说明MC14433 采用24引线双列直插式封装,外引线排列,参考图3.1的引脚标注,各主要引脚功能说明如下:(1) 端:VAG ,模拟地,是高阻输入端,作为输入被测电压UX和基准电压VREF的参考点地。
(2) 端:RREF,外接基准电压输入端。
(3) 端:UX,是被测电压输入端。
(4) 端:RI,外接积分电阻端。
(5) 端:RI /CI,外接积分元件电阻和电容的公共接点。
(6) 端,C1,外接积分电容端,积分波形由该端输出。
(7) 和 (8) 端:C01和C02,外接失调补偿电容端。
推荐外接失调补偿电容C取0.1μF。
(9) 端:DU,实时输出控制端,主要控制转换结果的输出,若在双积分放电周期即阶段5开始前,在DU端输入一正脉冲,则该周期转换结果将被送入输出锁存器并经多路开关输出,否则输出端继续输出锁存器中原来的转换结果。
若该端通过一电阻和EOC 短接,则每次转换的结果都将被输出。
(10) 端:CPI (CLKI),时钟信号输入端。
(11) 端:CPO (CLKO),时钟信号输出端。
(12) 端:VEE,负电源端,是整个电路的电源最负端,主要作为模拟电路部分的负电源,该端典型电流约为0.8mA,所有输出驱动电路的电流不流过该端,而是流向VSS端。
(13) 端:VSS负电源端.(14) 端:EOC,转换周期结束标志输出端,每一A/D转换周期结束,EOC端输出一正脉冲,其脉冲宽度为时钟信号周期的1/2。
(15) 端:OR ,过量程标志输出端,当|UX|>VREF时,OR输出低电平,正常量程OR为高电平。
(16)~(19) 端:对应为DS4~DS1,分别是多路调制选通脉冲信号个位、十位、百位和千位输出端,当DS端输出高电平时,表示此刻Q。
~Q3输出的BCD 代码是该对应位上的数据。
(20)~(23)端:对应为Q0-Q3,分别是A/D 转换结果数据输出BCD代码的最低位(LSB)、次低位、次高位和最高位输出端。
(24) 端:VDD,整个电路的正电源端。
图3.1 MC14433管脚图3.3工作过程分析三位半数字电压表通过位选信号DS1~DS4进行动态扫描显示,由于MC14433电路的A/D转换结果是采用BCD码多路调制方法输出,只要配上一块译码器,就可以将转换结果以数字方式实现四位数字的LED发光数码管动态扫描显示。
DS1~DS4输出多路调制选通脉冲信号。
DS选通脉冲为高电平时表示对应的数位被选通,此时该位数据在Q0~Q3端输出。
每个DS选通脉冲高电平宽度为18个时钟脉冲周期,两个相邻选通脉冲之间间隔2个时钟脉冲周期。
DS和EOC的时序关系是在EOC 脉冲结束后,紧接着是DS1输出正脉冲。
以下依次为DS2,DS3和DS4。
其中DS1对应最高位(MSD),DS4则对应最低位(LSD)。
在对应DS2,DS3和DS4选通期间,Q0~Q3输出BCD全位数据,即以8421码方式输出对应的数字0~9.在DS1选通期间,Q0~Q3输出千位的半位数0或l及过量程、欠量程和极性标志信号。
在位选信号DS1选通期间Q0~Q3的输出内容如下:Q 3表示千位数,Q3=0代表千位数的数宇显示为1,Q3=1代表千位数的数字显示为0。
Q2表示被测电压的极性,Q2的电平为1,表示极性为正,即UX>0,Q2的电平为0,表示极性为负,即UX<0。
显示数的负号(负电压)由MC1413中的一只晶体管控制,符号位的“-’阴极与千位数阴极接在一起,当输入信号UX为负电压时,Q2端输出置“0”, Q2负号控制位使得驱动器不工作,通过限流电阻RM使显示器的“-”(即g 段)点亮;当输入信号UX 为正电压时,Q2端输出置“1”,负号控制位使达林顿驱动器导通,电阻RM接地,使“-”旁路而熄灭。
小数点显示是由正电源通过限流电阻RDP供电燃亮小数点。
若量程不同则选通对应的小数点。
过量程是当输入电压UX超过量程范围时,输出过量程标志信号OR---。
当OR--- = 0 时,|UX |>1999,则溢出。
|UX|>UR则OR---输出低电平。
当OR--- = 1时,表示|UX |<UR。
平时OR输出为高电平,表示被测量在量程内。
MC14433的OR---端与MC4511的消隐端BI---直接相连,当UX超出量程范围时,OR---输出低电平,即OR--- = 0 →BI--- = 0 ,MC4511译码器输出全0,使发光数码管显示数字熄灭,而负号和小数点依然发亮。
3.3.1三位半A/D转换器MC14433在数字仪表中,MC14433电路是一个低功耗三位半双积分式A/D转换器。
和其它典型的双积分A/D转换器类似,MC14433A/D转换器由积分器、比较器、计数器和控制电路组成。
如果必要设计应用者可参考相关参考书。
使用MC14433时只要外接两个电阻(分别是片内RC 振荡器外接电阻和积分电阻RI)和两个电容(分别是积分电容CI 和自动调零补偿电容C)就能执行三位半的A/D转换。
MC14433内部模拟电路实现了如下功能:(1)提高A/D 转换器的输入阻抗,使输入阻抗可达l00MΩ以上;(2)和外接的RI 、CI构成一个积分放大器,完成V/T 转换即电压—时间的转换;(3)构造了电压比较器,完成“0”电平检出,将输入电压与零电压进行比较,根据两者的差值决定极性输出是“1”还是“0”。