初中数学突破中考压轴题几何模型之正方形的半角模型教案有答案

合集下载

2023中考数学常见几何模型《全等模型-半角模型》含答案解析

2023中考数学常见几何模型《全等模型-半角模型》含答案解析

专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。

模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '.E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明)②如图3,如果点E,F分别是BC,CD延长线上的动点,且45EAF∠=︒,则EF,BE,DF之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=,求AF的长.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12=∠BAD.当BC=4,DC=7,CF=1时, CEF的周长等于.(4)如图4,正方形ABCD中, AMN的顶点M、N分别在BC、CD边上,AH⊥MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=,求EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B Ð、D ∠都不是直角,则当B Ð与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在△ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM =DN 时,(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D ,E 在边BC 上,∠DAE =45°.若BD =3,CE =1,求DE 的长.小明发现,将△ABD绕点A按逆时针方向旋转90º,得到△ACF,联结EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△FAE≌△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.(1)请回答:在图2中,∠FCE的度数是,DE的长为.参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,∠BAD.猜想线段BE,EF,FD之间的数量关系并说明理由.且∠EAF=128.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD是正方形,一个等腰直角三角板的一个锐角顶点与A点重合,将此三角板绕A点旋转时,两边分别交直线BC,CD 于M,N.(1)如图1,当M,N分别在边BC,CD上时,求证:BM+DN=MN(2)如图2,当M,N分别在边BC,CD的延长线上时,请直接写出线段BM,DN,MN之间的数量关系(3)如图3,直线AN与BC交于P点,MN=10,CN=6,MC=8,求CP的长.9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关∠EAF=12系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在△ABC中,∠ACB=90°,CA=CB,点P在线段AB 上,作射线CP(0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD⊥CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。

九年级中考几何模型之半角模型详解

九年级中考几何模型之半角模型详解

中考几何模型之半角模型【模型由来】半角模型是指:共顶点的两个一大一小的角,其中小角是大角的一半。

如下图中:若小角∠EAD等于大角∠BAC的一半,我们习惯上称之为“半角模型”。

【模型思想】通过旋转变化后构造全等三角形,实线边的转化。

【基本模型】类型一、90°中夹45°(正方形中的半角模型)条件:在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。

结论①:图1、2中,EF=BE+FD;证明:如图3中,将AF绕点A顺时针旋转90°,F点落在F’处,连接BF’,∴∠EAF’=90°-∠EAF=90°-45°=45°=∠EAF,且AE=AE,AF=AF’,∴△FAE≌△F’AE(SAS),∴EF=EF’,又∠D=∠ABF’=90°,∠ABE=90°,∴∠ABE+∠ABF’=90°+90°=180°,∴F’、B、E三点共线,∴EF’=BE+BF’=BE+DF。

结论②:图2中MN²=BM²+DN²;证明:如图4中,将AN绕点A顺时针旋转90°,N点落在N’处,连接AN’、BN’、MN’,∴∠N’AM=90°-∠EAF=90°-45°=45°=∠MAN,且AM=AM,AN=AN’,∴△MAN’≌△MAN(SAS),∴MN=MN’,又∠ADN=45°=∠ABN ’,∠ABD=45°,∴∠MBN ’=∠ABD+∠ABN ’=45°+45°=90°,∴在Rt △MBN ’中,MN ’²=BM ²+BN ’²,即MN ²=BM ²+BN ’²。

结论③:图1、2中EA 平分∠BEF ,FA 平分∠DFE 。

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)【范本模板】

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)【范本模板】

几何图形之半角模型主题半角模型教学内容教学目标1。

掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2。

掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题.4。

通过四边形的从属关系渗透集合思想。

5.通过理解四种四边形内在联系,培养学生辩证观点。

知识结构正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等.③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角.典型例题精讲例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD-DM=22-2=2(2—1), ∴AG=BM=2(2—1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+. 可得:222110(10)4x x =++. 故6x =.216256ABCD S ==.例3。

2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案(共14张PPT)

2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案(共14张PPT)
2 ——————————
间的数量关系是否仍然成立,请证明。
A
D
F
画板
顺 变式2
B
E
C
A
E′
D
结论:
F
EF= BE+DF
B
E
C
画板 变式2
A
D
结论:
F
E′
EF =BE+DF
B
E
C
画板 逆 变式2
Байду номын сангаас
(2)如图,在四边形ABCD中, AB=AD, ———————— ∠B+∠D= 180°,E、F分别是BC、CD上的点, —————————— ——————————————— 1 且 EAF BAD , BE、DF、EF三条线段之间 2 —————————— 的数量关系是否仍然成立?
A
D B E C F
画板
变式3
A
E′
D
结论:
B
F
EF= BE+DF
E C
画板 变式3
(3)如图,在四边形ABCD中, AB=AD, ———————— ∠B+∠D=180°,E、F分别是BC、CD延长线上 —————————— ———————————————————— 1 的点,且 EAF 2 BAD BE、DF、EF三条线段 —————————— 之间的数量关系是否仍然成立,若不成立,请 写出它们之间的数量关系,并证明.
A
E
B C F
D
画板
一、知识与技能:
1、“半角模型” 特征:
①共端点的等线段; ②共顶点的倍半角; ③等线段的相邻对角互补; 2、强化关于利用旋转变换解决问题: ①旋转的目的: 将分散的条件集中,隐蔽的关系显现; ②旋转的条件:具有公共端点的等线段; ③旋转的方法:以公共端点为旋转中心,相等的两条线段的夹

初中数学突破中考压轴题几何模型之正方形的半角模型教案、

初中数学突破中考压轴题几何模型之正方形的半角模型教案、
求证: 是正三角形.
例2.如图,分别以 的 和 为一边,在 的外侧作正方形 和正方形 ,点 是 的中点.
求证:点 到边 的距离等于 的一半.
例4.如图,四边形 为正方形, , , 与 相交于 .
求证: .
例6.设 是正方形 一边 上的任一点, , 平分 .
求证: .
例7.已知: 是边长为1的正方形 内的一点,求 的最小值.
(1)求证: ;
(2)求证: .
【纵向应用】
6. 在正方形 中, .求证:
7. 在正方形 中, . ,求证:
8. 如图13,点 为正方形 对角线 上一点, ,
求证:
9.已知:点 、 分别正方形 中 和 的中点,连接 和 相交于点 ,
于点 .
(1)求证: ;
(2)如果 ,求 的长;
(3)求证:
例1.已知:如图, 是正方形 内点, .
3.如图9,已知正方形 的面积为35平方厘米, 、 分别为边 、 上的点. 、 相交于 ,并且 的面积为14平方厘米, 的面积为5平方厘米, 那么四边形 的面积是________.
4.如图, 、 、 三点在同一条直线上, 。分别以
、 为边作正方形 和正方形 ,连接 ,

求证: 。
5.如图 , 是正方形. 是 上的一点, 于 , 于 .
年初中数学突破中考压轴题几何模型之正方形的半角模型教案(、)
———————————————————————————————— 作者:
———————————————————————————————— 日期:

正方形角含半角模型升
例1.如图,折叠正方形纸片 ,先折出折痕 ,再折叠使 边与对角线 重合,得折痕 ,使 ,求 .

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型主题半角模型教学内容教学目标1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2。

掌握正方形的性质定理1和性质定理2。

3。

正确运用正方形的性质解题。

4。

通过四边形的从属关系渗透集合思想。

5.通过理解四种四边形内在联系,培养学生辩证观点。

知识结构正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结).正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全.小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行.②正方形四边相等.③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

典型例题精讲例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD-DM=22-2=2(2—1), ∴AG=BM=2(2-1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+. 可得:222110(10)4x x =++. 故6x =.216256ABCD S ==.例3。

2018年初中数学冲破中考压轴题几何模型之正方形的半角模型教案526

2018年初中数学冲破中考压轴题几何模型之正方形的半角模型教案526

正方形角含半角模型提升例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,而且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?例3. 如图,E 、F 别离为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,•垂足为M ,AM AB =,那么有EF BE DF =+,什么缘故?例 4. 如图,在正方形ABCD 的BC 、CD 边上取E 、F 两点,使45EAF ∠=,AG EF ⊥于G . 求证:AG AB =例5.(1) 如图1,在正方形ABCD 中,点E ,F 别离在边BC ,CD 上,AE ,BF 交于点O ,90AOF ︒∠=. 求证:BE CF =.(2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 别离在边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,90FOH ︒∠=,4EF =.求GH 的长.【双基训练】 1. 如图6,点A 在线段BG 上,四边形ABCD 与DEFG 都是正方形,•其边长别离为3cm 和5cm ,那么CDE∆的面积为________2cm .(6) (7)2.你能够依次剪6张正方形纸片,拼成如图7所示图形.•若是你所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③的面积相等,•那么正方形⑤的面积为________.3.如图9,已知正方形ABCD 的面积为35平方厘米,E 、F 别离为边AB 、BC 上的点.AF 、CE 相交于G ,而且ABF ∆的面积为14平方厘米,BCE ∆的面积为5平方厘米,•那么四边形BEGF 的面积是________.4. 如图,A 、B 、C 三点在同一条直线上,2AB BC =。

别离以AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN , EC 。

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型主题半角模型教学内容教学目标1。

掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2.掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题。

4.通过四边形的从属关系渗透集合思想.5。

通过理解四种四边形内在联系,培养学生辩证观点.知识结构正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角.说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等.③正方形四个角都是直角.④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

典型例题精讲例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD,垂足为M . 由题意可知∠ADG=GDM, 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD —DM=22—2=2(2—1), ∴AG=BM=2(2—1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+. 可得:222110(10)4x x =++. 故6x =.216256ABCD S ==.例 3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,•垂足为M ,AM AB =,则有EF BE DF =+,为什么?【解析】:要说明EF=BE+DF,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME,△ADF ≌△AMF 即可. 理由:连结AE 、AF .由AB=AM ,AB ⊥BC ,AM ⊥EF,AE 公用, ∴△ABE ≌△AME . ∴BE=ME .同理可得,△ADF ≌△AMF .∴DF=MF .∴EF=ME+MF=BE+DF .例4.如下图E 、F 分别在正方形ABCD 的边BC 、CD 上,且45EAF ︒∠=,试说明EF BE DF =+. 【解析】:将△ADF 旋转到△ABC ,则△ADF ≌△ABG∴AF=AG ,∠ADF=∠BAG,DF=BG∵∠EAF=45°且四边形是正方形, ∴∠ADF ﹢∠BAE=45° ∴∠GAB ﹢∠BAE=45° 即∠GAE=45°∴△AEF ≌△AEG (SAS ) ∴EF=EG=EB ﹢BG=EB ﹢DF例5。

正方形中的半角模型 教学设计

正方形中的半角模型 教学设计

正方形中的半角模型教学设计【课题】《正方形中的半角模型》【内容】九年级下期数学总复习微专题【授课对象】九年级学生【目标确定的依据】1.基于课程标准的思考《数学课程标准(2011版)》要求,在数学课程中应当注重发展学生的模型思想。

模型思想是建立学生体会和理解数学与实际世界的基本途径。

模型思想是一种重要的数学思想,它能使复杂,难于解决的问题模型化。

当问题的条件具有模型的特征时,就可通过对应模型确定答案,提高学生快速准确的数学素养.2.基于教材理解本节课内容是在学生全面复习后的二轮复习中的微专题学习,它既是对前面所学知识的综合应用,也是对这些知识的拓展与延伸,使学生更熟练运用模型思想解决问题。

3.基于学情分析对于正方形中的半角模型,有少部分学生知道,但所知的知识是零碎的。

由于这个模型涉及知识是初中三年的重要的几何知识,综合度高,所以很有必要安排专题课引领,帮助学生分析总结,找到模型的结论的处理方法.【学习目标】1. 让学生经历从已有的知识出发,多角度对半角模型探索的过程,获得模型的结论和所得结论的方法;2. 让学生掌握正方形中的半角模型结论,能够利用此模型解决相关问题;3. 通过正方形中半角模型的应用,让学生体验模型思想在数学学习中的作用。

【学习重点】正方形中的半角模型多角度的探究及运用.【学习难点】从具体的问题中抽象出半角模型,并运用半角模型解决问题.【评价任务】1.借助小组讨论交流,能够归纳总结出正方形半角模型的多角度的结论。

2.会准确选用合理的方法解决符合半角模型条件的问题。

【学习资源准备】多媒体几何画板课件、班班通资源【教学过程】一、 创设问题情境,导入新课角含半角模型,即一个角包含这它一半大小的角,这是几何图形中常见的模型。

通常出现在等腰直角三角形和正方形中,可以类推到一般四边形。

模型中蕴含着旋转,全等,相似,四点共圆等丰富的几何知识。

这节课我们就以正方形中的半角为例,来研究半角模型,获得解决半角模型的思路和方法。

万能解题模型(十六)半角模型【2021中考数学二轮复习】答案版

万能解题模型(十六)半角模型【2021中考数学二轮复习】答案版

万能解题模型(十六) 半角模型模型1 正方形内含半角模型基本模型演示:―→已知:四边形ABCD 为正方形,∠MAN =45°.辅助线:将△ADN 绕着点A 顺时针旋转90°至△ABN ′处,则AD 与AB 重合. 结论:(1)△ANM ≌△AN ′M ;(2)NM =N ′M ;(3)BM +DN =MN ;(4)∠AMB =∠AMN ,∠ANM =∠AN ′M =∠AND .思考:若AF ⊥NM ,则AF 与正方形ABCD 的边长有什么关系呢?基本模型变式:如图,在正方形ABCD 中,点E ,F 分别在边CB ,DC 的延长线上,∠EAF =45°,连接EF .1.如图,正方形ABCD 的边长为4,点E ,F 分别在AB ,AD 上.若CE =25,且∠ECF =45°,则CF 的长为(A )A .4103B .5103C .210D .71032.(2017·牡丹江)如图,在正方形ABCD 中,点E ,F 分别在边BC ,DC 上,AE ,AF 分别交BD 于点M ,N ,连接CN ,EN ,且CN =EN.下列结论:①AN =EN ,AN ⊥EN ;②BE +DF =EF ;③∠DFE =2∠AMN ;④EF 2=2BM 2+2DN 2;⑤图中只有4对相似三角形.其中正确结论的个数是(B )A .5B .4C .3D .2模型2 等腰直角三角形内含半角模型基本模型演示:―→已知:△ABC 为等腰直角三角形,∠DAE =45°.辅助线:将△ABD 绕着点A 逆时针旋转90°至△ACD ′处,则AB 与AC 重合. 结论:(1)△ADE ≌△AD ′E ;(2)BD =CD ′,DE =D ′E ;(3)BD 2+EC 2=DE 2(在Rt △ECD ′中);(4)∠AED =∠AED ′.3.如图,在△ABC 中,∠ACB =90°,AC =BC =1,E ,F 为线段AB 上两动点,且∠ECF =45°,过点E ,F 分别作BC ,AC 的垂线相交于点M ,垂足分别为H ,G.现有以下结论:①AB =2;②当点E 与点B 重合时,MH =12;③AF +BE =EF ;④MG·MH =12,其中正确结论的个数是(C )A .1B .2C .3D .44.如图,△ABC 是等边三角形,BD =CD 且∠BDC =120°,E ,F 在直线AB ,AC 上且∠EDF =60°.求证:①EF =BE +CF ;②C △AEF =2AB ;③ED 平分∠BEF ,FD 平分∠CFE.证明:延长AB 到点N ,使BN =CF ,连接DN.∵△ABC 是等边三角形,∴AB =AC ,∠ABC =∠ACB =60°.∵BD =CD ,∠BDC =120°,∴∠DBC =∠DCB =30°.∴∠ACD =∠ABD =30°+60°=90°=∠NBD.在△NBD 和△FCD 中,⎩⎨⎧BD =DC ,∠NBD =∠FCD ,BN =CF ,∴△NBD ≌△FCD(SAS ).∴DN =DF ,∠NDB =∠FDC ,∠BND =∠CFD.∵∠BDC =120°,∠EDF =60°,∴∠EDB +∠FDC =60°.∴∠EDB +∠BDN =60°.∴∠EDF =∠EDN.在△EDN 和△EDF 中,⎩⎨⎧DE =DE ,∠EDN =∠EDF ,DN =DF ,∴△EDN ≌△EDF(SAS ).∴∠NED =∠FED ,∠BND =∠EFD.∴∠BND =∠EFD =∠CFD.∴ED 平分∠BEF ,FD 平分∠CFE.(结论③)∴EF =EN =BE +BN =BE +CF ,即BE +CF =EF.(结论①)∴C △AEF =AE +EF +AF =AE +BE +CF +AF =AB +AC =2AB.(结论②)模型3 邻边相等,对角互补的任意四边形内含半角基本模型演示:―→已知:AO =CO ,∠EOF =12∠AOC ,∠A +∠C =180°. 辅助线:将△AOE 绕着点A 旋转至△COE ′处,使AO 与OC 重合.结论:(1)△OEF ≌△OE ′F ;(2)AE =CE ′,EF =FE ′;(3)AE +CF =EF ;(4)∠OEA =∠OEF =∠OE ′F ,∠OFC =∠OFE .5.(1)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E ,F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系. 小王同学探究此问题的方法是,延长FD 到点G ,使DG =BE.连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是BE +DF =FE .(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立?并说明理由. 解:结论EF =BE +DF 仍然成立.理由:延长FD 到点G ,使DG =BE ,连接AG.∵∠B =∠ADC =180°,∠ADC +∠ADG =180°,∴∠ADG =∠B.在△ABE 和△ADG 中,⎩⎨⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ).∴AE =AG ,BE =DG ,∠BAE =∠DAG.∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF.在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG.∵FG =DG +DF =BE +DF ,∴EF =BE +DF.(1)半角模型需要满足的基本条件是:①角含半角;②邻边相等.(2)半角模型的解题策略是:在半角的旁边再构造一个半角,从而得到轴对称全等三角形或旋转全等三角形.当题目满足半角模型条件时可以尝试旋转(或“截长补短”)构造全等,从而解决问题.总结口诀:遇半角,试旋转,造全等,巧解题.。

初中几何半角模型教案

初中几何半角模型教案

初中几何半角模型教案教案标题:初中几何半角模型教案教案目标:1. 理解半角的概念和性质。

2. 掌握使用半角模型解决几何问题的方法。

3. 培养学生的空间想象力和几何思维能力。

教学重点:1. 半角的概念和性质。

2. 半角模型的应用。

教学难点:1. 运用半角模型解决几何问题。

2. 提高学生的空间想象力和几何思维能力。

教学准备:1. 教师准备好黑板、白板、彩色粉笔、半角模型等教具。

2. 学生准备好几何工具、练习册等学习材料。

教学过程:Step 1:引入1. 教师用彩色粉笔在黑板上绘制一个直角三角形ABC,角A为直角,边AB为横坐标轴,边AC为纵坐标轴。

2. 教师解释什么是半角,并引导学生观察直角三角形ABC中的半角,即角B和角C。

3. 教师提问学生,半角的度数是多少?(答案:45度)Step 2:概念讲解1. 教师在黑板上绘制一个正方形DEFG,边DE平行于边FG。

2. 教师解释正方形DEFG中的半角模型,即将正方形沿对角线DG对折,形成的两个直角三角形。

3. 教师引导学生观察半角模型中的角度关系,并解释半角模型的性质:两个直角三角形的半角是相等的。

Step 3:应用练习1. 教师提供一些几何问题,要求学生使用半角模型解决。

2. 学生独立思考并解答问题,教师适时给予指导和帮助。

3. 学生展示自己的解题过程和答案,教师进行点评和讲解。

Step 4:拓展练习1. 教师提供更复杂的几何问题,要求学生通过运用半角模型解决。

2. 学生分组合作解题,教师在小组之间进行巡回指导和帮助。

3. 学生展示解题过程和答案,教师进行综合点评和总结。

Step 5:归纳总结1. 教师带领学生回顾本节课所学的内容,总结半角的概念和性质。

2. 教师强调半角模型在解决几何问题中的重要性,并鼓励学生在以后的学习中积极运用。

3. 教师布置相关的练习作业,巩固学生的学习成果。

教学延伸:1. 学生可以自行寻找更多与半角模型相关的几何问题,并进行解答和讨论。

中考数学专题复习 正方形之“半角”模型 学案

中考数学专题复习  正方形之“半角”模型 学案

九下专题:正方形之“半角模型”一、复习引入正方形的性质:1.边:相等,平行2.角:相等,都等于度3.对角线:4.对称性:二、模型讲解1、如图,在正方形ABCD中,E、F分别是BC,CD上的点,且45∠=︒,连接EAFEF.(1)求证:EF=BE+DF变式1:如图,在四边形中ABCD,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF= 12∠BAD,求证:EF=BE+DF;变式2:如图,在四边形中ABCD,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF= 12∠BAD, 变式1中的结论是否仍然成立?请写出证明过程.1、如图,在正方形ABCD中,E、F分别是BC,CD上的点,且45∠=︒,连接EAFEF.(2)求证: C△CEF=2AB。

(3)求证: EA平分∠BEF,即∠1=∠2。

(4)求证:FA平分∠DFE,即∠3=∠4。

(5)如果连接BD分别交AE,AF于点H,G,请探究线段GH,BH,DG的数量关系。

(6)如果不再增加辅助线,图中还有哪几对三角形相似?试再写出一两个关于线段的等积式、等比式。

(7)如果再连接AC,△AEC与△ADG相似吗?为什么? 试探究CE与DG的关系。

(8)追问1: 此时,△FCA与△HBA相似吗?为什么?试探究CF与BH的关系。

(9)追问2: 此时,△AEF与△AGH相似吗?为什么?试探究EF与GH的关系。

(10) 求证:BG-DG=√2BE(11)求证:BECE ∙DFCF=12(12)如果我们分别连接EG、FH,看看又可得到什么结论?[提示:可证明AG⊥EG, AH⊥FH]。

(13)如果我们将CH连接起来,看看又可得到什么结论?(14)如果点E为BC边的中点,求tan∠HCF的值。

三、课堂总结四、作业布置1.如图,点E,F分别在正方形ABCD的边BC,CD上,且∠EAF=45°,(1)线段BE,EF,DF之间的关系是____________(2)若正方形的边长为4,DF=2BE,则EF=______________2.在△ABC中,∠ACB=90°,CA=CB,点E、F在AB边上,∠ECF=45°,若AE=10,EF=15,则BF的长为__________.。

“正方形半角”模型在中考压轴题中的应用

 “正方形半角”模型在中考压轴题中的应用

“正方形半角”模型在中考压轴题中的应用作者:***来源:《初中生世界·九年级》2020年第08期【数学模型】如图1,若在正方形ABCD中,E、F分别在AD、CD上,且∠EBF=45°。

则有如下结论:(1)EF=AE+CF;(2)△EDF的周长=AD+CD=正方形周长的一半。

【解析】如图2,利用截长补短法,延长DC到G,使CG=AE,可以证明△ABE≌△CBG,所以BE=BG,∠ABE=∠CBG。

因为∠EBF=45°,所以∠GBF=45°,所以∠EBF=∠GBF,所以△EBF≌△GBF,从而证明EF=FG=FC+CG=FC+AE,△EDF的周长=AD+CD=正方形周长的一半。

【点评】在中考压轴题中,特别是动态几何问题中,如果出现正方形中存在45°的三角形时,我们可以加以应用。

命题者通常会把点E、F作为两边的动点,产生的Rt△EDF的边长改变,面积也会改变,但周长不变,图形在运动过程中就存在着变量与不变量,这也是最近几年压轴题的一个非常显著的特点。

(2019·江苏徐州)如图3,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上。

△AOB的两条外角平分线交于点P,P在反比例函数y=9x的图像上。

PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD。

(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由。

【解析】(1)如图4,过点P分别作PE、PF、PN垂直于y轴、x轴、AB,垂足分别为E、F、N,容易求出P点坐标为(3,3),∠APB的度数为45°。

(2)(解法1)如图5,连接OP,∵∠APB=45°,∠POF=45°。

∴∠PCO=∠DPO,且∠POC=∠DOP=135°,∴△PCO∽△DPO,即CO·DO=PO2=(3∴△COD的面积=9。

人教版中考数学压轴题解题模型----几何图形之半角模型

人教版中考数学压轴题解题模型----几何图形之半角模型

几何图形之半角模型主题半角模型教课内容教课目的1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2. 掌握正方形的性质定理1 和性质定理2。

3.正确运用正方形的性质解题。

4.经过四边形的附属关系浸透会合思想。

5.经过理解四种四边形内在联系,培育学生辩证看法。

知识构造正方形的性质因为正方形是特别的平行四边形,仍是特别的矩形,特别的菱形,所以它拥有这些图形性质的综合,所以正方形有以下性质(由学生和老师一同总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等而且相互垂直均分,每一条对角线均分一组对角。

说明:定理2 包含了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特色,在应用时需要哪个结论就用哪个结论,并不是把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等。

③正方形四个角都是直角。

④正方形对角线相等,相互垂直均分,每条对角线均分一组对角。

典型例题精讲例 1.如图,折叠正方形纸片ABCD ,先折出折痕 BD ,再折叠使 AD 边与对角线 BD 重合,得折痕 DG ,使AD 2 ,求 AG .【分析】:作 GM⊥ BD,垂足为M.由题意可知∠ADG=GDM,则△ ADG≌△ MDG.∴ DM=DA=2. AC=GM 又易知: GM=BM . 而 BM=BD-DM=2 2 -2=2 ( -1 ),∴ AG=BM=2(2 -1 ).例 2 .如图, P 为正方形 ABCD 内一点, PA PB 10 ,而且 P 点到 CD 边的距离也等于 10,求正方形 ABCD 的面积【分析】:过 P 作 EFAB 于 F 交 DC 于 E .设 PFx ,则 EF 10x , BF1(10 x) .2由 PB 2 PF 2 BF 2 .可得: 102x21(10 x)2 .4故 x 6 .S ABCD 162256 .例3.如图,E 、F分别为正方形ABCD 的边 BC 、 CD 上的一点, AM EF , ?垂足为M ,AMAB ,则有 EFBEDF,为何【分析】:要说明 EF=BE+DF ,只需说明BE=EM ,DF=FM 即可, 而连结 AE 、AF .只需能说明△ ABE ≌△ AME , △ ADF ≌△ AMF 即可.原因:连结 AE 、 AF .由 AB=AM , AB ⊥BC , AM ⊥ EF , AE 公用,∴△ ABE ≌△ AME . ∴ BE=ME .同理可得,△ ADF ≌△ AMF . ∴ DF=MF .∴ EF=ME+MF=BE+DF .例 4.以以下图E 、F 分别在正方形ABCD 的边 BC 、CD 上,且EAF 45 ,试说明EFBE DF 。

数学中考复习专题 正方形中的半角模型及其应用

 数学中考复习专题 正方形中的半角模型及其应用

课堂教学设计教学时间:年月日教学环节教学活动过程课堂随记活动一:温故知新,探索模型.问题:如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°.求证:EF=DF+BE.多媒体播放微课视频“正方形中的半角模型”。

教师总结视频中解决问题的方法:方法一、利用旋转变换构造全等1.把△ABE绕点A逆时针旋转90°,得△ADE',则△ABE≌△ADE',F,D,E共线;2.证明△AEF≌△AE'F;3.EF=E'F=FD+DE'=FD+BE.方法二、利用轴对称变换构造全等1.作△ABE关于AE的轴对称图形△AB'E,则有△ABE≌△AB'E;2.连接FB',证明△ADF≌△AB'F;因为∠AB'E+∠AB'F=∠ABE+∠ADF=180°,所以E、B',F三点共线;3.EF=EB'+B'F=BE+FD.教师给出半角模型的概念及其特征:模型名称:正方形中的半角模型特征:从正方形一个顶点出发的两条线所夹的角等于正方形内角的一半,并且与正方形的边相交。

解决模型问题的方法:1.把半角一侧的三角形通过旋转变换或轴对称变换构造新的全等三角形,利用全等三角形的对应边相等或对应角相等来转化边和角,进而可以探究新的边边关系或角角关系;2. 截长补短。

活动二:变换图形,拓展模型如图,正方形ABCD中,点E,F分别在边BC,DC上,∠EAF=45°,连接BD,分别交AE,AF于M,N.求证:△DMA∽△AMN.总结拓展:连接BD,分别交AE,AF于M,N,则有△DMA∽△AMN∽△BAN∽△BME∽△DFN.活动三:简单应用,熟悉模型1.如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,若△ABE,△ADF的面积分别为5和3,则△AEF的面积为___________.2.如图,正方形ABCD的边长为4,点E,F分别在边BC,CD上,∠EAF=45°,则△CEF的周长_______________.活动四:改变图形,运用模型1.已知△AMN的顶点M,N分别在正方形ABCD的边CB,DC的延长线上,且∠MAN=45°.(1)如图,求证:MN+BM=DN;(2)如图,作射线DB交直线AM于点P,若MN=10,CM=8,求AP的长.2.将两块等腰直角三角板按如图所示方式摆放.(1)如图1,若AD=53,AE=102,DE=5,求BC的长;(2)如图1,求证:DE2=BD2+CE2;(3)如图2,若AG交BC的延长线于点E,则等式DE2=BD2+CE2还成立吗?请说明理由.课后活动与作业如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是BC,CD上的点,且∠EAF=21∠BAD,则BE,DF,EF三条线段之间的数量关系为__________,请证明你的结论.板书设计教后反思1、正方形中的半角模型中,条件往往会给出45°角,如果题目一开始没有给出正方形,我们就想方设法地通过延长线段、翻折变换等手段构造出正方形,从而用相关结论解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学突破中考压轴题几何模型之正方形的半角模型教案有答案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2.掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题。

4.通过四边形的从属关系渗透集合思想。

5.通过理解四种四边形内在联系,培养学生辩证观点。

正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等。

③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

例1.如图,折叠正方形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD 重合,得折痕DG,使2AD=,求AG.【解析】:作GM⊥BD,垂足为M.由题意可知∠ADG=GDM,则△ADG≌△MDG.∴DM=DA=2. AC=GM又易知:GM=BM.而BM=BD-DM=22-2=2(2-1),∴AG=BM=2(2-1).例2 .如图,P为正方形ABCD内一点,10==,并且P点到CD边的距离也PA PB等于10,求正方形ABCD的面积?【解析】:过P作EF AB⊥于F交DC于E.设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+.可得:222110(10)4x x =++.故6x =.216256ABCD S ==.例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,•垂足为M ,AM AB =,则有EF BE DF =+,为什么? 【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即可.理由:连结AE 、AF .由AB=AM ,AB ⊥BC ,AM ⊥EF ,AE 公用, ∴△ABE ≌△AME . ∴BE=ME .同理可得,△ADF ≌△AMF . ∴DF=MF .∴EF=ME+MF=BE+DF .例4.如下图E 、F 分别在正方形ABCD 的边BC 、CD 上,且45EAF ︒∠=,试说明EF BE DF =+。

【解析】:将△ADF 旋转到△ABC ,则△ADF ≌△ABG∴AF=AG ,∠ADF=∠BAG ,DF=BG ∵∠EAF=45°且四边形是正方形, ∴∠ADF ﹢∠BAE=45°∴∠GAB ﹢∠BAE=45° 即∠GAE=45°∴△AEF ≌△AEG (SAS ) ∴EF=EG=EB ﹢BG=EB ﹢DF例5. 如图,在正方形ABCD 的BC 、CD 边上取E 、F 两点,使45EAF ∠=,AG EF ⊥于G . 求证:AG AB =【解析】:欲证 AG=AB ,就图形直观来看,应证Rt △ABE 与Rt △AGE 全等,但条件不够. ∠EAF=45°怎么用呢?显然∠1+∠2=45°,若把它们拼在一起,问题就解决了. 【证明】:把 △AFD 绕A 点旋转90°至△AHB.∵∠EAF=45°,∴∠1+∠2=45°. ∵∠2=∠3,∴∠1+∠3=45°. 又由旋转所得 AH=AF ,AE=AE. ∴ △AEF ≌△AEH.例6.(1) 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,90AOF ︒∠=. 求证:BE CF =.(2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,90FOH ︒∠=,4EF =. 求GH 的长.图21.已知点E ,H ,F ,G 分别在矩形ABCD 的边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,90FOH ︒∠=,4EF =. 直接写出下列两题的答案: ①如图3,矩形ABCD 由2个全等的正方形组成,求GH 的长;②如图4,矩形ABCD 由n 个全等的正方形组成,求GH 的长(用n 的代数式表示).【解析】(1) 证明:如图1,∵ 四边形ABCD 为正方形,∴ AB =BC ,∠ABC =∠BCD =90°, ∴ ∠EAB +∠AEB =90°. ∵ ∠EOB =∠AOF =90°,∴ ∠FBC +∠AEB =90°,∴ ∠EAB =∠FBC , ∴ △ABE ≌△BCF , ∴ BE =CF . (2) 解:如图2,过点A 作AM 如图6,点A 在线段BG 上,四边形ABCD 与DEFG 都是正方形,•其边长分别为3cm 和5cm ,则CDE ∆的面积为________2cm .(6) (7)2.你可以依次剪6张正方形纸片,拼成如图7所示图形.•如果你所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③的面积相等,•那么正方形⑤的面积为________.图3图4图2O ′NM 图1AB CDEF12GA H 3.如图9,已知正方形ABCD 的面积为35平方厘米,E 、F 分别为边AB 、BC 上的点.AF 、CE 相交于G ,并且ABF ∆的面积为14平方厘米,BCE ∆的面积为5平方厘米,•那么四边形BEGF 的面积是________.4. 如图,A 、B 、C 三点在同一条直线上,2AB BC =。

分别以AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN , EC 。

求证:FN EC =。

5.如图 ,ABCD 是正方形.G 是BC 上的一点,DE AG ⊥于 E ,BF AG ⊥于 F . (1)求证:ABF DAE △≌△; (2)求证:DE EF FB =+. 【纵向应用】6. 在正方形ABCD 中,12∠=∠.求证:BE OF 21=7. 在正方形ABCD 中,12∠=∠.AE DF ⊥,求证:CE OG 21=8. 如图13,点E 为正方形ABCD 对角线BD 上一点, EF BC ⊥, EG CD ⊥ 求证:AE FG ⊥9.已知:点E 、F 分别正方形ABCD 中AB 和BC 的中点,连接AF 和DE 相交于点G , GH AD ⊥于点H .一、求证:AF DE ⊥ ;DGAEB CF 13ADE F CB二、如果2AB=,求GH的长;三、求证:CG CD=【练习题答案】1.6cm2.2.36.3.42027cm2(面积法).4.证明:FN=EC。

证明:在正方形ABEF和正方形BCMN中,AB=BE=EF,BC=BN,∠FEN=∠EBC=90°∵AB=2BC∴EN=BC∴△FEN≌△EBC∴FN=EC。

5.略6.提示:注意到基本图形中的AE=AF.一.两次应用内角平分线定理和CE=CF可证二.过点O作OG‖DE和CO=CG,CF=CE可证.3,过点O作OH‖BE, OF= OH=BE217.提示:一条线段的一半或2倍这两者的位置关系有哪两种8.提示:延长AE交GF于点M,DC,使CH=DG,连接HF,证四边形对角互补,法2:延长FE,AE证全等三角形9.(1)略(2)45(3)作CM⊥DG,证DM=AG=(1)定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

(2)特征:边:两组对边分别平行;四条边都相等; 内角:四个角都是90°;对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角。

(3)主要识别方法:1:对角线相等的菱形是正方形 2:对角线互相垂直的矩形是正方形3:四边相等,有一个角是直角的四边形是正方形 4:一组邻边相等的平行四边形是正方形5:一组邻边相等且有一个角是直角的平行四边形是正方形 依次连接四边形各边中点所得的四边形称为中点四边形。

不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。

正方形的中点四边形是正方形。

例1. 已知:如图,P 是正方形ABCD 内点,15PAD PDA ︒∠=∠=. 求证:PBC ∆是正三角形.【证明】:如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形APCDB例2. 如图,分别以ABC ∆的AC 和BC 为一边,在ABC∆的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.【证明】:过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。

可得PQ=2EGFH。

由△EGA ≌△AIC ,可得EG=AI , 由△BFH ≌△CBI ,可得FH=BI 。

从而可得PQ= 2AI BI=2AB, 从而得证。

例4. 如图,四边形ABCD 为正方形,DE AC ∥,AE AC =,AE 与CD 相交于F . 求证:CE CF =.【证明】:顺时针旋转△ADE ,到△ABG ,连接CG. 由于∠ABG=∠ADE=900+450=1350从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。

推出AE=AG=AC=GC ,可得△AGC 为等边三角形。

∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。

又∠EFC=∠DFA=450+300=750. 可证:CE=CF 。

AFDEP C GFBQADE例6. 设P 是正方形ABCD 一边BC 上的任一点,PF AP ⊥,CF 平分DCE ∠. 求证:PA PF =.【证明】:作FG ⊥CD ,FE ⊥BE ,可以得出GFEC 为正方形。

令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。

tan ∠BAP=tan ∠EPF=X Y =Z YXZ,可得YZ=XY-X 2+XZ , 即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,得到PA =PF ,得证 。

例7. 已知:P 是边长为1的正方形ABCD 内的一点,求PA PB PC ++的最小值.【证明】:顺时针旋转△BPC 600 ,可得△PBE 为等边三角形。

相关文档
最新文档