数字图像处理系统论文
数字图像处理系统毕业论文
数字图像处理系统毕业论文基于ARM的嵌入式数字图像处理系统设计摘要简述了数字图像处理的应用以及一些基本原理。
使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。
该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。
应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。
整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。
在此基础上还会对系统进行不断地完善。
关键词:linnux 嵌入式图像处理边缘检测AbstractThis paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve.Keywords:linux embedded system image processing edge detection目录第一章绪论 (1)1.1 数字图像处理概述 (1)1.2 数字图像处理现状分析 (5)1.3 本文章节简介 (8)第二章图像处理理论 (8)2.1 图像信息的基本知识 (8)2.1.1 视觉研究与图像处理的关系 (8)2.1.2 图像数字化 (10)2.1.3 图像的噪声分析 (10)2.1.4 图像质量评价 (11)2.1.5 彩色图像基本知识 (11)2.2 图像变换 (12)2.2.1 离散傅里叶变换 (13)2.2.2 离散沃尔什-哈达玛变换(DWT-DHT) (20)2.2.3 离散余弦变换(DCT) (21)2.2.4 离散图像变换的一般表达式 (23)2.3 图像压缩编码 (24)2.3.1 图像编码的基本概念 (24)2.4 图像增强和复原 (24)2.4.1 灰度变换 (24)2.4.2 图像的同态增晰 (26)2.4.3 图像的锐化 (27)2.5 图像分割 (27)2.5.1 简单边缘检测算子 (27)2.6 图像描述和图像识别 (28)第三章需求分析 (28)3.1 系统需求分析 (28)3.2 可行性分析 (28)3.3 系统功能分析 (29)第四章概要设计 (29)4.1 图像采集 (30)4.2 图像存储 (30)4.3 图像处理(image processing) (31)4.4 图像显示 (31)4.5 网络通讯 (32)第五章详细设计 (32)5.1 Linux嵌入式系统的构建 (32)5.1.1 启动引导程序的移植 (32)5.1.2 Linux内核移植 (33)5.1.3 根文件系统的移植 (33)5.2 图像处理功能的实现 (33)5.2.1 彩色图像的灰度化 (34)5.2.2 灰度图的直方图均衡化增强 (34)5.2.3 图像二值化 (35)5.2.4 边缘检测 (35)第六章调试与维护 (36)附录 A (36)参考文献 (43)致谢 (44)第一章绪论1.1 数字图像处理概述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理应用论文数字图像处理技术论文
数字图像处理应用论文数字图像处理技术论文关于数字图像处理及其应用的研究摘要:首先对数字图像处理的关键技术以及相应的处理设备进行详细的探讨,然后对数字图像处理的应用领域以及发展趋势进行详尽论述。
关键词:数字图像处理:关键技术;应用领域0 引言人类通过眼、耳、鼻、舌、身接受信息,感知世界。
约有75%的信息是通过视觉系统获取的。
数字图象处理是用数字计算机处理所获取视觉信息的技术,上世纪20年代Bartlane电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到小于3个小时;上世纪50年代,计算机的发展,数字图像处理才真正地引起人们的巨大兴趣;1964年,数字图像处理有效地应用于美国喷气推进实验室(J.P.L)对“徘徊者七号”太空船发回的大批月球照片的处理;但是直到上世纪六十年代末至七十年代扔,由于离散数学理论的创立和完善,使之形成了比较完整的理论体系,成为一门新兴的学科。
数字图像处理的两个主要任务:如何利用计算机来改进图像的品质以便于人类视觉分析;对图像数据进行存储、传输和表示,便于计算机自动化处理。
图像处理的范畴是一个受争论的话题,因此也产生了其他的领域比如图像分析和计算机视觉等等。
1 数字图像处理主要技术概述不论图像处理是基于什么样的目的,一般都需要通过利用计算机图像处理对输入的图像数据进行相关的处理,如加工以及输出,所以关于数字图像处理的研究,其主要内容可以分为以下几个过程。
图像获取:这个过程基本上就是把模拟图像通过转换转变为计算机真正可以接受的数字图像,同时,将数字图像显示并且体现出来(例如彩色打印)。
数据压缩和转换技术:通过数据压缩和数据转换技术的研究,减少数据载体空间,节省运算时间,实现不同星系遥感数据应用的一体化。
图像分割:虽然国内外学者已提出很多种图像分割算法,但由于背景的多变性和复杂性,至今为止还没有一种能适用于各种背景的图像分割算法。
当前提出的小波分析、模糊集、分形等新的智能信息处理方法有可能找到新的图像分割方法。
数字图像处理相关论文
数字图像处理相关论文“数字图像处理”是一门利用计算机解决图像处理的学科。
并且,现代多媒体计算机中又广泛采用了数字图像处理技术。
下面是店铺给大家推荐的数字图像处理相关论文,希望大家喜欢!数字图像处理相关论文篇一浅谈“数字图像处理”课程教学改革实践摘要:数字图像处理技术是一种发展迅速且应用广泛的新兴技术,就“数字图像处理”课程的特点,从教学内容、教学手段和方法、教学理论和实践等方面进行改革与实践,增强了学生的实践创新能力,提高了教学质量,收到良好的教学效果。
关键词:数字图像处理;教学手段;实践作者简介:刘忠艳(1975-),女,黑龙江依安人,黑龙江科技学院计算机与信息工程学院,副教授;周波(1963-),男,黑龙江绥化人,黑龙江科技学院计算机与信息工程学院,教授。
(黑龙江哈尔滨 150027)一、“数字图像处理”概述数字图像处理技术是集微电子学、光学、应用数学和计算机科学等学科的一门综合性边缘技术。
[1,2]是当今信息社会中发展迅速且应用广泛的新兴科学技术。
数字图像处理技术广泛应用到通信、计算机、交通运输、军事、医学和经济等各个领域,在各个领域发挥着越来越重要的作用。
随着计算机技术的迅速发展,图像处理的技术和理论不断完善和丰富,新的理论、技术也不断涌现,并逐渐进行应用。
面对这样一门理论与实际紧密结合的课程,在学习过程中,学生常常会遇到很多问题,既为数字图像处理技术应用的广泛前景所吸引,也时常对课程的抽象理论感到苦恼,渐渐失去学习兴趣。
为了激发学生的学习兴趣,提高教学质量,对该课程进行教学改革,势在必行。
经过两年半的教学改革与实践,取得了一定的教学效果。
二、教学改革措施为了提高“数字图像处理”课程的教学质量,激发学生学习本课程的兴趣,对本门课程进行改革,采取以下措施:1.整合教学内容随着计算机技术的迅速发展,数字图像处理技术也得到快速发展。
近几年来,有很多新的应用点和研究涌现出来,在“数字图像处理”课程中加入新技术的介绍,对于学生了解国际的研究和应用热点,尽快地投入相应的研究与应用中去大有益处。
数字图像处理论文
数字图像处理论文数字图像处理在计算机视觉和图像分析领域中扮演着重要角色。
随着数字图像处理算法的不断发展和改进,对于图像的处理和分析有了更深入的理解。
本篇论文主要介绍了数字图像处理的一些基础概念、方法和应用。
首先,数字图像处理是基于计算机的图像处理技术,旨在改善图像的质量、增强图像的特征以及从图像中提取有用的信息。
数字图像处理的基本步骤包括图像获取、预处理、特征提取和图像重建等。
在图像获取的阶段,通过传感器或数码相机等设备获取图像的原始数据。
在预处理的阶段,对图像进行去噪、平滑和增加对比度等操作,以消除图像中的噪声和提高图像的视觉效果。
在特征提取的阶段,根据图像的特定特征,如边缘、纹理和颜色等,进行特征的提取和描述。
在图像重建的阶段,利用图像处理算法对图像进行重建和恢复。
常见的图像处理算法包括滤波、变换和编码等。
滤波算法主要用于图像平滑和去噪,如均值滤波、中值滤波和高斯滤波等。
变换算法主要用于提取图像的频域特征,如傅里叶变换和小波变换等。
编码算法主要用于图像的压缩和存储,如JPEG、PNG和GIF等。
除了基本的图像处理方法,数字图像处理还有许多应用领域。
其中之一是医学图像处理,包括医学图像的分割、配准和识别等。
另一个应用是遥感图像处理,用于地理信息系统和环境监测等领域。
此外,数字图像处理还在安全和认证、图像检索和图像合成等领域发挥重要作用。
总之,数字图像处理是一门研究如何使用计算机技术对图像进行处理和分析的学科。
通过了解数字图像处理的基本概念、方法和应用,可以更好地理解图像的特性和结构,提高图像处理的效果和精度,并在各个领域中发挥重要作用。
数字图像计算机处理技术论文范文
数字图像计算机处理技术论文范文推荐文章无人机应用技术论文优秀范文热度:物联网传感知识技术论文范文热度:维修电工技术论文范文大全热度:无人驾驶技术原理论文优秀范文热度:现代教育技术论文范文热度:数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。
小编整理了数字图像处理技术论文,欢迎阅读! 数字图像处理技术论文篇一浅谈数字图像处理技术摘要:本文针对目前广泛应用数字图像识别处理技术国内外研究现状进行了分析,阐述了数字图像处理技术的应用前景。
关键词:数字图像图像处理数字技术应用一、数字图像处理综述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息,数字图像处理作为一门学科大约形成于20世纪60年代初期,早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
首次获得实际成功应用的是美国喷气推进实验室(JPL),他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。
随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。
在以后的宇航空间技术,医学技术中数字图像处理技术都发挥了巨大的作用。
从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。
数字图像处理技术的探究论文_数字图像处理课程论文
数字图像处理技术的探究论文_数字图像处理课程论文数字图像处理技术的探究论文篇一《数字图像处理技术的探究》【摘要】目前,图像处理技术得到较好的发展,本文以数字图像处理技术为研究对象,对其发展与应用现状进行简述,并对此技术的优缺点以及制约因素进行系统的分析,概述了此项技术在日后发展中的应用范围。
通过对数字图像处理技术的分析,让我们更深入的了解此项技术,为日后的研究提供一定的理论基础。
【关键词】数字图像处理技术发展就图像处理技术而言,可分为模拟图像与数字图像处理两大类。
数字图像处理技术在发展的过程中,涉及多门学科,其中包括生物学、计算机、信息科学等。
因此,数理与边缘学科与图像处理技术的关系越来越密切。
在最近几年中,数字图像处理技术逐步趋于完善,在遥感、人工智能等多个领域中被广泛使用,并促进相关学科得到较好的发展。
1数字图像处理技术的发展与应用在上世纪六十年代,随着VLS与计算机的发展产生了数字图像处理技术,并不断完善、成熟的一项新技术。
不管是在理论还是实际方面,都取得了较好的进步。
在早期,图像处理主要是为了使图片的质量更加完善。
输入图像的质量较低,而输出图片的质量较高,通常采用复原、压缩等方式进行处理。
此项技术首次应用成功是在美国的喷气推进实验室中。
此后,在航空领域中得到很好的应用,促进了此门学科的发展。
除此之外,数字图像处理技术在医学上也得到了很好的应用。
自上世纪七十年代中期之后,计算机与智能化得到很好的发展,也促进了图像处理技术的进步。
人们开始研究怎样通过计算机,对图像进行系统的解释,这被称作计算机视觉或图像理解。
上世纪几十年代,数字图像处理技术得到大力发展。
截止目前,此项技术在医疗设备、地理信息系统等多个领域中被广泛使用。
2数字图像处理技术的特点2.1优点(1)再现性较好。
数字图像处理技术不会因为各种变换操作而造成图片出现质量退化的现象,始终确保图像可以真实的再现。
(2)处理精度高。
根据当前技术,基本上能够把一副模拟的图像通过数字化做各种二维数组,与图像数字化设备能力有直接的关系。
数字图像处理论文
数字图像处理论文数字图像处理论文篇一:数字图像增强技术摘要:数字图像处理是指利用计算机技术对图像进行各种操作和处理的过程。
图像增强是数字图像处理中的一项重要技术,旨在改善图像的质量和视觉效果。
本文针对数字图像增强技术进行了综述,包括直方图均衡化、滤波和锐化等常用方法。
此外,还介绍了一些新近提出的图像增强算法,如基于深度学习的方法。
最后,对数字图像增强技术的发展趋势进行了展望。
关键词:数字图像处理;图像增强;直方图均衡化;滤波;锐化;深度学习1.引言数字图像处理是计算机科学和图像处理领域的重要研究方向。
随着数字图像在各个领域的广泛应用,对图像质量和视觉效果的要求也越来越高。
图像增强是数字图像处理的一项基础技术,通过改善图像的对比度、亮度和细节等特征,提高图像的可视化效果。
图像增强技术已被广泛应用于医学影像、无人驾驶、图像识别等领域。
2.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素值分布,提高图像的对比度和显示效果。
其基本思想是将原始图像的像素值映射到一个新的像素值域,使得新图像具有均匀分布的像素值。
直方图均衡化可以有效地增强图像的细节和纹理特征,但在一些情况下会导致图像过度增强或噪声增加。
3.滤波技术滤波是图像处理中常用的一种方法,通过对图像进行平滑或者锐化处理,改善图像的质量和视觉效果。
常用的滤波方法有均值滤波、中值滤波和高斯滤波等。
均值滤波通过计算像素点周围邻域像素的平均值来更新像素的值,可用于图像的平滑处理。
中值滤波通过计算像素点周围邻域像素的中值来更新像素的值,可有效地去除图像中的椒盐噪声。
高斯滤波通过对图像进行加权平均处理,对图像进行平滑和去噪。
4.锐化技术锐化是图像处理中常用的一种技术,通过增加图像中的高频成分,提高图像的边缘和细节等特征。
常用的锐化方法有拉普拉斯算子、Sobel算子和Canny算子等。
拉普拉斯算子通过计算图像的二阶导数来增强图像的边缘和细节。
Sobel算子通过计算图像的一阶导数来提取图像的边缘特征。
2024年数字图像处理论文doc
2024年数字图像处理论文doc标题:2024年数字图像处理论文doc一、引言随着技术的不断发展,数字图像处理在各个领域中的应用越来越广泛。
本文旨在探讨2024年数字图像处理领域的发展趋势,以及相关算法和技术的应用。
通过对数字图像处理的研究,希望能够为相关领域的发展提供一定的参考和帮助。
二、数字图像处理的基本原理数字图像处理是一种利用计算机对图像进行加工、处理和分析的技术。
数字图像处理的基本原理是将图像转换为数字信号,然后利用计算机对数字信号进行处理和分析。
数字图像处理技术包括图像增强、图像变换、图像滤波、图像恢复、图像分析等。
三、数字图像处理的应用范围数字图像处理技术的应用范围非常广泛,包括医学影像、安防监控、智能交通、工业生产、环境监测等领域。
随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
四、数字图像处理的热点问题和研究方向目前,数字图像处理的热点问题和研究方向包括深度学习、人工智能、虚拟现实等。
其中,深度学习在数字图像处理中的应用已经得到了广泛的认可,其在图像识别、目标检测、人脸识别等方面的应用已经取得了显著的成果。
此外,人工智能在数字图像处理中的应用也在不断发展,包括机器学习、神经网络等。
虚拟现实技术在数字图像处理中的应用也在逐渐增加,其在虚拟现实游戏、电影制作等方面的应用已经得到了广泛的应用。
五、数字图像处理的发展趋势和未来前景随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
未来,数字图像处理技术将会更加智能化、自动化和人性化,其在各个领域中的应用将会更加深入。
同时,数字图像处理技术也将会面临更多的挑战和机遇,包括如何提高图像处理的精度和速度、如何解决图像处理中的隐私和安全问题等。
六、总结本文对2024年数字图像处理领域的发展趋势进行了探讨,并介绍了相关算法和技术的应用。
数字图像处理技术已经成为各个领域中不可或缺的一部分,其未来的发展前景非常广阔。
希望本文能够对相关领域的发展提供一定的参考和帮助。
数字图像处理技术论文
数字图像处理技术论文数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。
下面是店铺整理的数字图像处理技术论文,希望你能从中得到感悟!数字图像处理技术论文篇一数字图像处理技术研究[摘要]数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。
图像处理科学与技术已经成了工程学、计算机科学、通信科学、信息科学、军事、公安、医学等众多学科学习和研究的对象。
本文从数字图像处理的基本概念,研究内容为出发点,重点探讨了数字图像复原技术,最后介绍了数字图像处理系统,但由于数字图像处理技术领域内容极其广泛,与其他很多学科都有着千丝万缕的联系,所以对这项技术的研究还需要人类的进一步努力。
[关键词]数字图像处理技术数字图像处理主要研究中图分类号:IP391.41 文献标识码:A 文章编号:1009-914X(2015)05-0280-011 引言“图”是物体透射光或反射光的分布,“像”是人的视觉系统对图的接收在大脑中形成的印象或认识。
前者是客观存在的,而后者为人的感觉,图像应是两者的结合。
图像处理就是对图像信息进行加工处理,以满足人的视觉心理和实际应用的要求。
人类获取外界信息有视觉、听觉、触觉、嗅觉、味觉等多种方法,但绝大部分(约80%)是来自视觉所接受的图像信息,即所谓“百闻不如一见”。
因此,图像处理技术的广泛研究和应用是必然的趋势。
2 图像数字化2.1 基本概念一幅黑白静止平面图像(如照片)中各点的灰度值可用其位置坐标(x,y)的函数f(x,y)来描述。
显然f(x,y)是二维连续函数,有无穷多个取值。
这种用连续函数表示的图像无法用计算机进行处理,也无法在各种数字系统中传输或存贮,必须将代表图像的连续(模拟)信号转变为离散(数字)信号。
这样的变换过程,称其为图像数字化。
图像数字化的内容包括两个方面:取样和量化。
2.2 取样点数和量化级数的选取假定一幅图像取M×N个样点,对样点值进行Q级分档取整。
基于MATLAB的数字图像处理系统的研究毕业设计论文
摘要数字图像处理是近几年来新兴的研究领域,受到越来越多的学者的高度重视。
因为图像在生成、传递、压缩、储存、变换等诸多过程中,会受到不利成分的影响。
比方分别在不一样的照明情况下操作,会引起图像亮度的转变;操作设备时,不可避免地会发生抖动,这样做的话就会引起图像位移;捕获到的图像对比度较低或是位置不契合等等。
所以想要获得清晰的图像就要对图像进行数字图像的处理。
本文主要从图像增强、图像复原、图像编码的Matlab仿真以及GUI板块的设计四个角度进行研究。
在本文中图像增强主要深入讨论了使用灰度变换函数去拉伸图像的对比度,使用直方图均衡化去合理分配图像的灰度,使用空域滤波和频域滤波使图像变得越发清晰。
图像编码主要简述的就是编码冗余、空间冗余以及不相关信息,通过以上图像编码的三种方法可以减小图片的冗余度和加大数据压缩比等等。
图像复原主要概述的是维纳滤波、最小二乘法滤波以及L-R滤波三种滤波方法,这三种滤波方式可以达到过滤掉图像中模糊部分的目的。
通过可视化界面达到了将以上三种图像处理方法结合在一起的目的。
在GUI 界面中,只要选定一种处理方式并按下“开始”按钮就能够执行相应的处理方法,而且会同时得到原始图像与处理后的图像。
关键字:图像增强;图像压缩;图像复原;Matlab;GUIAbstractDigital image processing is the emerging research field in recent years, by more and more scholars attach great importance.Because the image in the generation, transmission, compression, storage, transformation and many other processes, will be affected by the adverse effects.For example, in the case of different lighting operations, will cause the image brightness changes; operating equipment, it will inevitably jitter, so it will cause image displacement;The captured image is low or the position is not fit and so on. So you want to get a clear image of the image is necessary to digital image processing.This paper mainly studies image enhancement, image restoration, Matlab simulation of image coding and GUI design.In this paper, the image enhancement mainly discusses the contrast of using the gray scale transformation function to stretch the image, and uses the histogram equalization to rationally distribute the gray scale of the image. The use of spatial filtering and frequency domain filtering makes the image become more and more clear.Image coding is mainly described in the coding redundancy, spatial redundancy and irrelevant information, through the above image encoding of the three methods can reduce the redundancy of the picture and increase the data compression ratio and so on.Image restoration is mainly summarized in the Wiener filter, least squares filtering and L-R filter three filtering methods, these three filtering methods can be filtered to filter out the purpose of the fuzzy part of the image.Through the visual interface to achieve the above three kinds of image processing methods together for the purpose. In the GUI interface, as long as the selection of a processing method and press the "start" button to be able to perform the appropriate processing methods, and will also get the original image and processed images.Key words: image enhancement; image compression; image restoration; Matlab; GUI第1章绪论1.1 课题研究背景及意义当今这个时代,信息传播迅速,大家也从各种渠道上获取信息,时刻掌握世界的动态。
数字图像处理论文
认识数字图像处理通过一个学期的多媒体应用知识的学习,我了解了有关多媒体的理论知识并且进行了对软件的实际操作,使我更加现代多媒体技术的发展。
在对理论知识的学习中,我对数字图像处理这个部分的知识比较感兴趣,为此我查阅了大量的资料来了解数字图像处理技术,下面主要总结了数字图像处理技术的四方面内容。
一、数字图像处理的基本概况及简要发展数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
它的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展;三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
20世纪20年代,图像处理首次应用于改善伦敦和纽约之间海底电缆发送的图片质量。
到20世纪50年代,数字计算机发展到一定的水平后,数字图像处理才真正引起人们的兴趣。
20世纪60年代末,数字图像处理具备了比较完整的体系,形成了一门新兴的学科。
20世纪70年代,数字图像处理技术得到迅猛的发展,理论和方法进一步完善,应用范围更加广泛。
20世纪70年代后期到现在,各个应用领域对数字图像处理提出越来越高的要求,促进了这门学科向更高级的方向发展。
数字图像处理已从一个专门的研究领域变成了科学研究和人机界面中的一种普遍应用的工具。
二、数字图像处理常用方法首先是图像变换方法,由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
其次是图像编码压缩,该技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
数字图像处理毕业论文
数字图像处理毕业论文目录第一章绪论 (3)1.1论文研究的背景与意义 (3)1.2数字图像评价研究现状及关键技 (3)第二章基本原理 (4)2.1 直方图均衡化 (4)2.2 小波变换 (4)第三章数字图像评价的原理 (5)3.1主观评价方法 (5)3.2客观评价方法 (6)3.3本章小结 (7)第四章数字图像处 (8)4.1数字图像处理系统基本组成 (8)4.2图像变换 (8)4.2.1:傅立叶变换 (8)4.2.2、其他常见变换概述 (9)4.3 数字图像处理容 (9)4.3.1、图像增强 (9)4.3.2、图像恢复 (10)4.3.3、图像压缩 (10)4.3.4、图像分割 (11)第五章总结和展望 (11)5.1总结 (11)5.2对未来的展望 (11)致谢 (13)参考文献 (14)第一章绪论1.1论文研究的背景与意义随着多媒体技术和网络技术的快速发展,数字图像处理已经广泛应用到了人类社会生活的各个方面,如:遥感,工业检测,医学,气象,通信,侦查,智能机器人等。
作为数字图像处理重要环节的图像评价技术的研究也受到广泛关注,在图像处理各项技术,如图像采集,图像压缩,图像增强与复原,以及图像去模糊等算法中,图像质量评价都起到了非常重要的作用。
总的来说,图像质量评价的主要应用有以下几方面:运用于图像或视频系统,使其能够获得最佳图像;作为图像系统的一项基准指标,用以评价图像或视频质量;作为反馈量,优化算法中的各项参量,改善系统性能等[1]。
由此可见,数字图像评价的研究具有重要意义。
数字图像评价是图像处理的重要技术,随着研究的不断深入,视频监控成为了现在数字图像处理很重要的一个研究方向,而且在实际的应用当中非常有实用价值。
如在由于车辆的牌照在交通道口经常会受到对面车灯强光等或外部光源的照射,使得摄像机拍摄出来的车牌照片反光,人眼根本无法识别的情况下,通过进行处理而不断改善图像质量,提取有效信息,从而分辨汽车牌照;又如通过数字图像评价系统的研究,改善摄像机对于一些由于逆光、弱光、暗光、偏色或综合因素影响的监控质量等等。
数字图像处理技术的浅析论文
数字图像处理技术的浅析论文数字图像技术的发展可以说与计算机的发展同步,数字图像的应用领域也越来越越广泛,目前已经应用到了广告摄影创作、视听资料、地质勘探等众多领域,在各领域均不断实现着突破。
下面是店铺给大家推荐的数字图像处理技术的浅析论文,希望大家喜欢!数字图像处理技术的浅析论文篇一《对数字图像处理技术的浅析》【摘要】数字图像处理技术就是把图像中的信号转化成数字信号,利用计算机进行处理的技术。
在一定程度上,数字图像技术的发展可以说与计算机的发展同步,数字图像的应用领域也越来越越广泛,目前已经应用到了广告摄影创作、视听资料、地质勘探、公安领域、智能交通以及航空航天、医学等众多领域,在各领域均不断实现着突破。
文章从数字处理技术的内容和特点出发,对其在广告摄影创作、视听资料、公安领域及智能交通等领域的应用进行研究,并对其发展进行展望。
【关键词】数字图像处理;内容;特点;关键技术;应用;展望【中图分类号】TP391.41【文献标识码】A【文章编号】1672-5158(2013)02-0129-021.数字图像处理技术的内容及特点1.1 研究内容不管应用到哪个领域的图像处理图像数据都要输入、加工和输出图像,其研究内容:(1)获取、表示和表现图像――把图像信号转化为计算机可以识别的形式,并把数字图像显示和表现出来。
(2)图像复原――已知图像发生退化的缘由时,对图像进行修复,关键是建立退化模型。
复原是以模型和数据的图像恢复为基础,消除退化的影响。
(3)图像增强――对图像质量的常规改善。
当不知道图像退化原因时,还可用此技术比较主观的改善图像。
(4)图像分割――人类视觉系统可以轻松地将观察到的对象区分开来,但计算机却很难。
分割的基本问题目前是将各种方法融合使用,以此提高处理的质量。
(5)图像分析――检测和测量图像中的目标,获取其客观信息,是从图像到数据的过程。
(6)图像重建――指从数据到图像的处理。
(7)图像压缩编码――为减少数据容量、降低数据率、压缩信息量,在不影响其效果的前提下减少图像的数据量。
数字图像处理技术简述论文(2)
数字图像处理技术简述论文(2)数字图像处理技术简述论文篇二《浅谈数字化图像处理系统》[摘要]随着计算机技术和光电技术的飞速发展,数字图像处理技术得到了迅速发展和广泛应用,其中数字图像检测就是其重要应用。
采用这种自动成像检测系统能克服人工检测带来的不利因素,提高检测精度和效率,降低生产成本。
[关键词]数字图像处理;数字图像检测;精度;效率随着工业技术的高速发展,零部件尺寸检测和质量评价已成为工业生产中极为重要的一个环节,而且对尺寸检测技术水平的要求也越来越高。
一、数字图像处理技术研究背景当前,工业零部件尺寸有多种测量方法,但检测过程中都存在一些问题。
工业零部件的加工质量直接影响工业的正常生产,由于尺寸的检测缺陷,会影响生产并产生安全隐患。
因此如何采用一种行之有效的尺寸检测方法,是目前急需解决的问题,这不仅要求检测效果好,而且还要求检测速度快。
二、数字图像处理系统概述数字图像处理的英文名称为“Digital Image Processing”。
通常所说的数字图像处理是指用计算机进行的处理,因此也称为计算机图像处理(Computer Image Processing)。
数字图像处理就是利用数字计算机或者其他数字硬件,对从图像信息转换而得的电信号进行某些数学运算,以提高图像的使用性。
总的来说,数字图像处理包括以下几项内容:1.点运算。
主要是针对图像的像素进行加、减、乘、除等运算。
图像的点运算可以有效地改变图像的直方图分布,这对提高图像的分辨率以及图像均衡都是非常有益的。
2.几何处理。
主要包括图像的坐标转换,图像的移动、缩小、放大、旋转,多个图像的配准以及图像扭曲校正等,几何处理是最常见的图像处理手段,几乎任何图像处理软件都提供了最基本的图像缩放功能。
图像的扭曲校正功能可以将变形的图像进行几何校正,从而得出准确的图像。
3.图像增强。
图像增强的作用主要是突出图像重要的信息,同时减弱或者去除不需要的信息。
常用方法有直方图增强和伪色彩增强等。
数字图像处理论文
数字图像处理论⽂基于MATLAB图像处理——⾼空拍摄地⾯物体的识别院系:班级:姓名:学号:⼀.问题的提出数字图像处理是通过计算机对图像进⾏去除噪声、增强、复原、分割、提取特征等处理的⽅法和技术。
有处理精度⾼,处理内容丰富,可进⾏复杂的⾮线性处理,有灵活的变通能⼒。
但在处理速度上,特别是进⾏复杂的处理有⼀定的困难。
数字图像处理技术主要包括⼏何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解等⼏个⽅⾯。
在⾼空拍摄的地⾯物体由于天⽓,摄像机的像素等多⽅⾯因素的影响,获得的图⽚模糊,很难识别,从⽽提出了⾼空拍摄地⾯物体的识别的问题。
⼆.实验原理1.图像增强图像直⽅图是图像处理中⼀种⼗分重要的图像分析⼯具,它描述了⼀幅图像的灰度级内容,任何⼀幅图像的直⽅图都包含了丰富的信息,它主要⽤在图象分割,图像灰度变换等处理过程中。
在本系统中,先⽤rgb2gray这个函数实现把真彩图转换为灰度图,再⽤imhist函数⽤于显⽰灰度图像的N级直⽅图,灰度图默认N为256,再对直⽅图上的灰度级进⾏统计。
直⽅图规定化能够⾃动增强整个图像的对⽐度,但它的具体增强效果不容易控制,处理的结果总是得到全局均匀化的直⽅图。
实际上有时需要变换直⽅图,使之成为某个特定的形状,从⽽有选择地增强某个灰度值范围内的对⽐度。
这时可以采⽤⽐较灵活的直⽅图规定化。
⼀般来说正确地选择规定化的函数可以获得⽐直⽅图均衡化更好的效果。
所谓直⽅图规定化,就是通过⼀个灰度映像函数,将原灰度直⽅图改造成所希望的直⽅图。
2.图像分割与识别图像分割就是把图像分成若⼲个特定的、具有独特性质的区域并提出感兴趣⽬标的技术和过程。
它是由图像处理到图像分析的关键步骤。
现有的图像分割⽅法主要分以下⼏类:基于阈值的分割⽅法、基于区域的分割⽅法、基于边缘的分割⽅法以及基于特定理论的分割⽅法等。
近年来,研究⼈员不断改进原有的图像分割⽅法并把其它学科的⼀些新理论和新⽅法⽤于图像分割,提出了不少新的分割⽅法。
数字图像处理技术简述论文
数字图像处理技术简述论文在计算机多媒体技术与通信技术迅猛发展的今天,含有大量数据信息的数字图像处理技术应运而生,同时获得了突飞猛进的发展。
下面是店铺给大家推荐的数字图像处理技术简述论文,希望大家喜欢! 数字图像处理技术简述论文篇一《数字图像处理技术简述》摘要:在多媒体技术与通信技术迅猛发展的今天,含有大量数据信息的数字图像处理技术应运而生,同时获得了突飞猛进的发展。
接下来,文章针对数字图像处理技术开展相关浅述,望能够有一定的参考价值。
关键词:数字图像处理技术电子信息伴随着先进的网络技术与多媒体技术的迅猛发展,在人们的日常生活当中,数字图像处理技术获得了较为广泛的运用。
譬如,医学、通信、工业检测、智能机械人等方面,但是不管是哪个方面,数字图像处理技术的运用使得各事物间的逻辑关系都得到了很好的体现,使得数字图像处理技术的作用得到了最大限度上的发挥。
1 数字图像处理技术概述计算机的显著特征在于,能够对各类数据信息进行科学的处理,数字图像在经过采样-量化处理后转变为数字存储在计算机当中,在经过数字图像处理之后,数据信息便会被分割、增强、复原,这一过程就是我们所说的数字图像处理过程。
由此可见,数字图像处理是计算机软硬件有效结合的一种技术,伴随着先进计算机的快速发展及其各行业中广泛运用。
在先进计算机科学技术的推动下,数字图像处理技术在获得大程度发展的同时,展现出以下几方面的特点:1.1 图像处理的多样性数字图像编写算法及程序上存在一定差异,会造成最终的图像处理结果也是有所不同的。
1.2 图像处理精准度较高随着数字图像处理精准度的不断升高,图像再现性质量也得到了相应的提升,数字图像处理实则是利用多种计算方法对图像数据进行的相关编写与计算,伴随着先进计算机技术的进步,促使计算结果的精准度得到了有效的保障,除此之外,多种计算方法的融合会获得相近的计算结果,具有良好的再现性。
1.3 各学科技术的相互融合数学与物理是数字图像处理的基本性因素,除此之外,数字图像处理技术是与计算机技术、通信技术、电视技术等紧密的联系在一起。
数字图像处理相关论文(2)
数字图像处理相关论文(2)数字图像处理相关论文篇二《现代数字信号处理课程的教学改革与实践》摘要:针对现代数字信号处理的课程特点,开展课程的教学改革与实践,建立基于MATLAB实现的教学示例,并应用于课堂与实践教学,有助于提高教学质量,培养学生的研究能力和创新能力,且促进课程由传统课堂教学向研究型教学转化。
关键词:现代数字信号处理;教学;MATLAB;教学示例中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)06-0093-02随着计算机和微处理器技术的迅速发展,学科间的交叉与融合,数字信号处理技术得到了飞速发展,出现了以现代滤波器技术、现代谱分析理论、智能信息处理方法等为标志的现代数字信号处理理论及技术,并广泛应用于现代通信、新型雷达、精确遥测、医疗等众多领域。
目前,现代数字信号处理课程主要面向研究生层次学生开设。
由于该课程的理论性和实践性都很强,且其基本原理和方法已广泛应用于各领域,因此教师教好和学生学好该课程都很重要。
一、课程特点及传统教学中存在的困难现代数字信号处理课程具有数学理论推导较多、内容广泛、概念抽象等特点。
由于工科研究生的数学理论水平普遍不高,同时课程的学时有限,若教学方法不当,学生一方面在学习过程中常感到枯燥乏味,难以理解和掌握;另一方面易造成学生畏惧学习的心理,失去学习兴趣。
现代数字信号处理同时是一门以算法为核心,实践性很强的课程,其算法的应用实现主要基于计算机的数值计算。
如果教师采用传统的教学方式,主要讲授基础理论和算法的推导,学生则主要利用大量的公式、算法及推导进行学习和解题,而忽视让学生采用计算机动手设计、调试和分析课程中大量的、应用性较强的内容,会使得学生感觉该课程是一门数学理论课,不利于他们深层次理解数学概念中所蕴含的物理和工程意义,从而造成课后实践受到很大限制,不利于学生以后从事有关信号处理领域的研究工作。
因此,如何提高学生学习的兴趣和主动性,增强他们对知识的理解和掌握,培养学生综合应用所学知识解决实际问题的实践能力是本课程教学所要解决的关键问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理系统论文毕业设计说明书基于ARM的嵌入式数字图像处理系统设计学生姓名:张占龙学号: 0905034314学院:信息与通信工程学院专业:测控技术与仪器指导教师:张志杰2013年 6月摘要简述了数字图像处理的应用以及一些基本原理。
使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。
该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。
应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。
整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。
在此基础上还会对系统进行不断地完善。
关键词:linnux 嵌入式图像处理边缘检测AbstractThis paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve.Keywords:linux embedded system image processing edge detection目录第一章绪论 (1)1.1 数字图像处理概述 (1)1.2 数字图像处理现状分析 (5)1.3 本文章节简介 (7)第二章图像处理理论 (8)2.1 图像信息的基本知识 (8)2.1.1 视觉研究与图像处理的关系 (8)2.1.2 图像数字化 (9)2.1.3 图像的噪声分析 (10)2.1.4 图像质量评价 (10)2.1.5 彩色图像基本知识 (11)2.2 图像变换 (12)2.2.1 离散傅里叶变换 (12)2.2.2 离散沃尔什-哈达玛变换(DWT-DHT) (19)2.2.3 离散余弦变换(DCT) (20)2.2.4 离散图像变换的一般表达式 (21)2.3 图像压缩编码 (23)2.3.1 图像编码的基本概念 (23)2.4 图像增强和复原 (23)2.4.1 灰度变换 (23)2.4.2 图像的同态增晰 (24)2.4.3 图像的锐化 (25)2.5 图像分割 (25)2.5.1 简单边缘检测算子 (26)2.6 图像描述和图像识别 (26)第三章需求分析 (26)3.1 系统需求分析 (27)3.2 可行性分析 (27)3.3 系统功能分析 (27)第四章概要设计 (27)4.1 图像采集 (28)4.2 图像存储 (29)4.3 图像处理(image processing) (29)4.4 图像显示 (30)4.5 网络通讯 (30)第五章详细设计 (30)5.1 Linux嵌入式系统的构建 (30)5.1.1 启动引导程序的移植 (31)5.1.2 Linux内核移植 (31)5.1.3 根文件系统的移植 (31)5.2 图像处理功能的实现 (32)5.2.1 彩色图像的灰度化 (32)5.2.2 灰度图的直方图均衡化增强 (32)5.2.3 图像二值化 (33)5.2.4 边缘检测 (34)第六章调试与维护 (34)附录 A (34)参考文献 (41)致谢 (41)第一章绪论1.1 数字图像处理概述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理的主要研究内容包括以下几个方面:图像变换、图像编码压缩、图像增强和复原、图像分割、图像描述、图像分类(识别)。
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。
随着人类活动范围的不断扩大,图像处理的应用领域也随之不断扩大,在航天和航空技术、生物医学工程、通信工程、工业和工程、军事与安全、文化艺术等方面获得越来越广泛的应用。
数字图像处理的发展始于20世纪60年代初期,首次获得实际成功应用的是美国喷气推进实验室(JPL)。
他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功绘制出月球表面地图,获得了巨大成功。
这位人类登月创举奠定了坚实的基础,在以后的航空技术中,如对火星、土星等星球的探测研究中,数字图像处理都发挥了巨大的作用。
数字图像处理取得的另一个巨大成就是在医学上的应用。
1972年英国EMI 公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,简称CT(Computer Tomograph)。
CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,成为图像重建。
1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。
1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类做出了划时代的贡献。
于此同时,图像处理技术在许多其它应用领域受到广发重视并取得了重大的开拓性成就,属于这些领域的有工业检测、机器视觉、公安司法、军事制导、文化艺术等,是图像处理成为一门引人注目、前景远大的新型学科。
从20世纪70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。
很多国家,特别是发达国家投入更多地人力、物力研究计算机视觉(图像理解)领域,取得了不少重要的研究成果。
其中代表性的成果是20世纪70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想[1]。
图一-1 基于Marr视觉计算理论的方框图Marr视觉计算理论主要涉及描述三维物体的几何表示问题。
Marr理论认为描述三维物体有三个层次(图一-2):(1)图像特征(基元图)。
它反映了二维图像的重要特征。
是以原始图像中抽取如边缘、角点、纹理、线条、不连续点等基本特征,这些特征的集合称为基元图。
(2)2.5维图,又称为intrinsic图像。
它在以观察点为中心的坐标系统中,由输入图像和基元图恢复场景可见部分的深度、法线方向、轮廓等,这些信息包含了深度信息,但不是真正的物体三维表示,因此称为二维半图。
从图像特征恢复得到 2.5维图,可以有很多方法,如立体图、从图像序列、从阴影至形状从纹理至形状、从x至形状(其中x为新研究的方法)等方法恢复得到2.5维图。
(3)三维模型表示。
在以物体为中心的坐标系中,描述了三维物体的形状和它们在空间的结构基元是体积的或表面面积的基元。
Marr计算视觉理论框架虽然还不十分完善,许多方面还有争议,如该理论建立的视觉处理框架基本上是从上至下,而没有考虑反馈的作用;此外,该理论没有重视知识引导作用。
但是,它至今仍然是可接受的基本框架,它不仅推动了计算机视觉这门科学的形成和发展,也为计算机视觉领域提供了许多研究的起点。
计算机视觉是模仿人的视觉,由于人们对视觉机理的研究还没有突破性的进展,因此计算机视觉研究是一项艰巨而长远的任务。
尽管目前已有了不少图像理解的理论、方法、算法和初级图像理解系统,但真正能在实际应用中可以取代人的视觉功能的还不多见。
当前科学技术的发展使得许多领域迫切需要应用图像处理和理解,因此,应当在计算机视觉领域中,加强新理论与方法的探索和研究,使之有可能较大的降低视觉理解的难度,而仍然能解决不少有意义的实际问题。
近来兴起的“有目的、定性、主动地视觉”、基于CAD的视觉、距离图像的理解、多传感器融合等都是一些有代表性的研究方向。
这里特别要指出,从20世纪90年代,计算智能信息处理技术获得飞速的发展,它在数字图像处理和计算机视觉领域中获得了越来越广泛的应用,取得了许多引人注目的突破性成果。
这些成果不仅推动了计算智能信息处理技术的进一步发展,而且给数字图像处理和计算机视觉开辟了不少新的研究领域。
在计算机智能信息处理技术中,如模糊集与模糊逻辑、神经网络、小波分析、进化计算(遗传算法)、分形等,在图像编码、增强、分割、特征提取、描述以及识别等方面都有广泛的应用,获得了不少新方法、新算法。
另外,一些新的数学方法,如数学形态、粗糙集理论等数学工具在数字图像处理中也有成功的应用,引起了人们极大的关注。
可以相信,视觉作为人类最重要的一种感知,是人类智能活动不可缺少的。
因而,研究图像处理和理解将永远是一个挑战性的研究课题,无论存在多大的困难,总会取得突破性进展,并给人类社会各个方面的实际应用带来越来越多的效益。
下面就数字图像处理主要的几个方面作简要介绍:1)图像变换由于图像阵列很大,直接在空间与中进行处理,设计计算量很大。
因此,往往采用各种图像变换的方法,如傅里叶变换、哈尔变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,这不仅可以减少计算量,而且可获得更有效的处理(如傅里叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效地应用。
2)图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少存储器容量。