第七章 求矩阵特征值的数值方法和习题

合集下载

计算方法之计算矩阵的特征值和特征量

计算方法之计算矩阵的特征值和特征量

4
1 取对应于1=4的基础解向量 P1 1 则对应于1=4的全部特征向量为:kP1 (k 0)
(2)2=2 将1=2代入(A-E)X=0得(A-2E)X=0
3 2 1 x1 1 3 2 x 0 2

总可以用 Xi 的线性组合来表示: V(0)=1X1+ 2X2+...+ nXn(其中10) 取 V(1)=AV(0) V(2)=AV(1)=A2V(0) ……
10
V(k+1)=AV(k) =Ak+1V(0) 以构成向量迭代序列。 由矩阵特征值的定义有: AXi=iXi (i=1,2,...,n) 则有

k 1 1
i [ 1 X 1 i i2 1
n
k 1
Xi ]
11
V 同理可得:
(k )
i [ 1 X 1 i X i ] i2 1
n k 1 n k 1
k
V(k+1)的第j个分量:
16
(二)按模最大特征值是互为反号的实根 设n 阶方阵A有 n 个线性无关的特征向量 Xi , 其对应的特征值为i (i=1,2,...,n),且满足: |1| = |2|>|3| … |n|,设其中1>0, 1=- 2
由迭代变换: V ( k ) Ak V ( 0 )
3 1 求矩阵 A 1 3 的特征值与特征向量
3
解:计算特征多项式方程,即 3 1 A E ( 3 )2 1 0 1 3 解得A的两个特征值:1=4, 2=2。 (1)1=4 将1=4代入 (A-E)X=0得(A-4E)X=0

第7章矩阵特征值和特征向量的数值解

第7章矩阵特征值和特征向量的数值解

3 2.689 319 6.737 850 6.747 559 0.398 562 0.998 561 1.000 000
4 1.595 686 2.379 870 2.381 309 0.670 088 0.999 396 1.000 000
5 2.680 956 6.772 616 6.723 220 0.398 761 0.999 910 1.000 000
的常用方法是迭代每一步对向量 u (k ) 规范化。引入函数 max( u (k ) ),它表示取
向 量 u (k ) 中 按模 最大 的分 量,例 如, u (k ) =(2,-5,4)T,则 max( u (k ) )=-5,这 样
u(k) ma x(u
(k
)
)
的最大分量为
1,即完成了规范化。
7.1 幂法
(6) if mk m0 或 mk m0 (1 mk ) then 输
出 mk , vi (i 1,2,, n), 停止计算; (7) m0 mk ; k k 1; 返回第 3 步。
例 7.1.1 试用幂法求矩阵
7 3 - 2
A
3
4
-
1
- 2 -1 3
按模最大的特征值和相应的特征向量 ( 105 ) 。
k
u(k)
v(k)
0
0.4
0.5
0.6
0.666 667 0.833 33 1.000 00
1 2.833 335 7.000 06 7.166 673 0.395 349 0.976 744 1.000 00
2 1.604 652 2.372 096 2.395 352 0.669 902 0.990 291 1.000 000

矩阵特征值问题的数值方法.

矩阵特征值问题的数值方法.

矩阵特征值问题的数值方法矩阵特征值设A 是n 阶矩阵,x 是非零列向量. 如果有数λ 存在,满足那么,称x 是矩阵A 关于特征值λ的特征向量. 很显然一般地有主特征值的乘幂迭代法设n 阶矩阵A 的n 个特征值按模从大到小排序为:n 其对应的n 个线性无关的特征向量分别为:设是任意一个非零的n 维向量,则:假设,构造一个向量序列:则:或者:当时:如果是矩阵A 的关于特征值的一个特征向量,特征值个特征那么对于任意一个给定的,也是特征值的特征向量。

所以,是对主特征值对应的特征向量的近似。

如果则会变得很大或者如果,则会变得很大,或者如果,则会变得非常小,在实际计算中,为避免这种情况的出现需对做归一化处理况的出现,需对做归一化处理:由:左乘得:所以主特征值的近似值所以主特征值的近似值:残余误差向量定义为:当迭代次数充分大时,残余误差将充分小。

逆乘幂法:类似地,也可以求模最小特征值和对应的特征向量特征向量。

上述问题的主特征值问题就是矩阵A 的模最小特征值问题。

结果,逆乘幂法的迭代公式为:在实际应用中,无需计算逆矩阵,但需求解线性系统实对称矩阵的基本定理:对实对称矩阵A ,一定存在一个正交相似变换使得为对角矩阵且其对角矩阵P ,使得:为对角矩阵,且其对角的特征值元素为矩阵A 的特征值。

相似变换:相似变换保持矩阵特征值(但不是特征向量)不变不变。

(证明略)正交相似变换:中。

正交相似变换的例子—坐标旋转:叫旋转矩阵。

容易验证:。

适当选择旋转角,可消去xy 项—得到对角阵D 。

矩阵特征值问题的数值方法实对称矩阵的基本定理再看下面的例子:令:O 平面的坐标旋转变换适当同样地有:。

则是在x-O-z 平面的坐标旋转变换。

适当x z —D 。

选择旋转角可消去z 项得到对角阵实对称矩阵的Jacobi 方法:全部特征值和特征向量根据实对称矩阵的基本定理,求得矩阵A 的全部特征值的关键是找到正交相似变换矩阵P 使部特征值的关键,是找到正交相似变换矩阵P ,使得为对角阵。

矩阵特征值问题

矩阵特征值问题
2
§1、特征值的估计
由于工程计算中求矩阵尤其是高阶矩阵的 精确特征值通常比较困难,而许多情况下我们 只需要知道特征值在什么范围内变化或者落在 什么区域内,例如判断方阵的幂级数是否收敛 只要看方阵的特征值的模或谱半径是否小于1, 因此特征值的估计就显得尤其必要,这方面的 理论在特征值问题中相当经典。
由于
实际上是 的
一个
维子空间,因此我们希望将
搜索极值的空间放大到任意
维子空
间 。而增大后的集合的极大值不会比原集
合的小,极小值也不会比原集合大。
58
设有 则
,并假定
,即
59
并且当
时等号成立。因此
60
一般地,我们有
定理4 (Courant-Fischer)设

Hermite矩阵,其特征值为
,则
存在Hermite矩阵特征值的极值原理
48
一、 Rayleigh商
二次型
,如果存在
,那么
所以如果
,我们自然也希望
49
定义1 设
是Hermite矩阵,称
为矩阵 的Rayleigh商。 注意到
因此我们可以把对 在单位球面
的极性的讨论限定 上。
50
单位球面 是闭集,又因为
是 的连续
函数,因此根据多元函数的最值定理,
在 上存在最大值和最小值。由于特征值与
对于广义特征值问题
,可以通过
适当选择位移(shift)或极点(pole) ,再通过 求逆,将之转化为SEP:
这种方法的优点是特征向量不变,矩阵 奇 异时也可以使用,并且在求解邻近 的特征 值或绝对值很小的特征值时效率较高。缺点仍 然是 一般不是特殊矩阵。

西安科技大学研究生数值分析课件7章矩阵特征值与特征向量计算

西安科技大学研究生数值分析课件7章矩阵特征值与特征向量计算

7 矩阵特征值与特征向量地计算设A 为n 阶方阵,所谓A 地特征值问题是求数λ和非零向量x ,使x Ax λ=成立.数λ称作A 地一个特征值,非零向量x 称作与特征值λ对应地特征向量.求给定方阵地特征值与特征向量是先求解特征方程()||0E A ϕλλ=-=然后对应于每一个特征值i λ,再求解退化地齐次线性方程组()0i E A x λ-=从而得到A 地特征值i λ及对应地特征向量x .但是这种方法计算机很大,计算过程复杂,因此有必要研究相对简单地数值解法.本章主要介绍三类计算特征值地方法:计算大型(稀疏)矩阵主特征地幂法与反幂法,计算中小型(实对称)矩阵全部特征值地Jacobi 法,计算中小型矩阵全部特征值地QR 法.7.1 特征值估计在矩阵特征值计算中,有时需要对特征值所在范围给出一个估计.这里介绍一种从矩阵地元素出发,运用较简便地运算估计特征值地方法.定义7-1 设()n m ij A a C ⨯=∈,称由不等式||ii i z a R -≤在复平面上确定地区域为矩阵A 地第i 个盖尔圆(Gerschgorin 圆),并用i G 表示.其中1||ni ij j j i R a =≠=∑称为盖尔圆i G 地半径(1,2,,)i n =.定理7-1 矩阵()n m ij A a C ⨯=∈地一切特征值均落在它地n 个盖尔圆地并集中,即1(1,2,,)ni jj G i n λ=∈=.证明 设λ是A 地任一特征值,12(,,,)T n x x x x =是λ对应地特征向量.令01||max ||i i i nx x ≤≤=,则00i x ≠.由Ax x λ=,可得001()ni j j i j a x x λ==∑.即∑≠==-ni j j j j i i i i x a x a 000001)(λ于是有 000000011i i jni j j ji ni j j i jji i i R x x ax x aa ≤≤=-∑∑≠=≠=λ这表明任一特征值0i G λ∈,从而也在A 地第n 个盖尔圆地并集中.例7-1 估计矩阵10.10.20.30.530.10.210.310.50.20.30.14A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥---⎣⎦地特征值范围. 解 A 地4个盖尔圆为:1:|1|0.6G z -≤ 2:|3|0.8G z -≤ 3:|1| 1.8G z +≤ 4:|4|0.6G z +≤画在复平面上其区域如图7-1所示.图7-1 例7-1盖尔圆分布图于是A 地全部特征值就在这4个盖尔圆地并集中.为了更确切地知道某个特征值落在哪个或哪几个盖尔圆地并集中,给出如下第二盖尔圆盘定理.定理7-2 若A 地n 个盖尔圆中,有m 个盖尔圆构成地一个连通域(所谓连通域,是指其中地任意两点都可以用位于该区域内地一条折线连接起来),且该连通域与其余n m -个盖尔圆严格分离,则在该连通域中恰好有A 地m 个特征值(重特征值按重数重复计算).特别地,每个孤立地盖尔圆恰有A 地一个特征值(证明从略).由定理2可知,在例1中2G 与4G 中各有A 地一个特征值,而1G 与3G 构成地连通部分中有两个特征值,但不能确定这两个特征值具体落在哪个盖尔圆中.例7-2 估计矩阵10.80.50A -⎡⎤=⎢⎥⎣⎦地特征值范围. 解 A 地两个盖尔圆为:1:|1|0.8G z -≤,2:|0|0.5G z -≤在复平面上地区域如图7-2所示.图7-2 例7-2盖尔圆分布图此时只能判断A 地两个特征值落在1G 与2G 地并集中,至于是每个盖尔圆中各有一个特征值还是两个特征值都落在其中一个盖尔圆上则无法确定.实际上,由于1,21(12λ=±,1,2||0.5λ=>,所以两个特征值都不会在盖尔圆2G 中,而是落在盖尔圆1G 中.对于某些矩阵,可利用相似变换矩阵具有相同特征值地性质得到更确切地特征值范围.设()ij n m A a ⨯=,取正数12,,,n d d d 构成对角阵12diag(,,,)n D d d d =,对A 作相似变换,令1()iij n n jd B DAD a d -⨯==,由于B 相似于A ,所以B 与A 地特征值完全相同,又由于B 与A 地主对角线元素对应相等,所以B 与A 地盖尔圆圆心相同.这表明,若适当选取正数12,,,n d d d ,可以改变盖尔圆地半径,从而有可能将相交地盖尔圆分离得到仅含一个特征值地孤立盖尔圆.选取12,,,n d d d 地一般方法是:欲使A 地第i 个盖尔圆i G 地半径大而其余盖尔圆变小,就取1i d >,其余1()j d j i =≠.例7-3 求矩阵2050.841011210A j ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦地特征值范围. 解 A 地3个盖尔圆为:1:|20| 5.8G z -≤,2:|10|5G z -≤,3:|10|3G z j -≤其中1G 与2G 相交,而3G 孤立.记3G 中所含地一个特征值为3λ,如图7-3所示.为分离2G 与1G ,可以让A 地第3行元素绝对值变大,第3列元素绝对值变小.现取diag(1,1,2)D =,则12050.44100.52410B DAD j -⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦图7-3 例3盖尔圆分布图 图7-4 例7-3分离后盖尔圆分布图其3个盖尔圆分别是:1:|20| 5.4G z '-≤,2:|10| 4.5G z '-≤,3:|10|6G z j '-≤ 显然,B 地盖尔圆是3个孤立地盖尔圆,如图7-4,注意,此情况下,3G '地半径变大了.例7-4 设矩阵()ij n n A a ⨯=按行严格对角占优,则A 可逆.证明 由线性代数知,A 可逆地充分条件是||0A ≠,而1||nj j A λ==∏(其中j λ是A 地特征值),所以只要证明0j λ≠即可(1,2,,)j n =. 设λ是A 地任一特征值,则必存在某个盖尔圆i G 使∑≠=≤-ij ij i ii a R a λ.若0j λ=,则有∑≠≤ij ij ii a a ,而这与A 按行严格对角占优矛盾,故应有0λ≠,由λ地任意性,得||0A ≠.7.2 幂法与反幂法在线性代数中,设A 是n 阶方阵,若A 存在n 个线性无关地特征向量,则称这n 个特征向量构成A 地一个完全地特征向量组.例如,对矩阵320230005A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,110430102B -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦通过求解特征方程,不难求出A 地三个特征值为1231,5λλλ===,B地三个特征值为1232,1λλλ===.方阵A 可以找到三个线性无关地特征向量,而方阵B 找不到三个线性无关地特征向量.我们称方阵A 可对角化,而B 不可对角化. 7.2.1 幂法幂法地基本思想是构造一个向量序列使之逼近主特征值(矩阵地按模最大地特征值)对应地特征向量,然后求出主特征值.该方法简单易行,但收敛速度较慢.现设()ij n n A a ⨯=有一个完全地特征向量组12,,,n x x x ,其对应地特征值是12,,,n λλλ.已知A 地主特征值是单根1λ,即特征值满足条件12||||||n λλλ>≥≥任取一个非零初始向量0u ,由矩阵A 构造向量序列102210110k k k u Au u Au A u u Au A u++=⎧⎪==⎪⎪⎨⎪==⎪⎪⎩由于A 地完全特征向量组可以作为向量空间n R 地一组基,因此0u 可由12,,,n x x x 线性表示,即有01122n n u a x a x a x =+++ (设10a ≠)于是011122211111121()()k k k k k n n nn kk k i i i k i u A u a x a x a x a x a x a x λλλλλλελ===+++⎡⎤=+=+⎢⎥⎣⎦∑ 其中21()nk i k i i i a x λελ==∑.注意到),,2(11n i i=<λλ,故当k →∞时,0k ε→,因此有111k k u a x λ≈由于1x 是主特征值1λ对应地特征向量,其乘上常数因子11k a λ仍为1λ地特征向量,故当k 充分大时,迭代向量k u 是1λ地特征向量地近似向量.为了利用迭代向量求出主特征值1λ地近似值,设()k i u 表示k u 地第i 个分量,则1111111()()()[]()()()k i i k ik i i k iu a x u a x ελε+++=+ 于是 11()lim()k ik k iu u λ+→∞= 这表明两相邻迭代向量对应分量地比值收敛于主特征值,亦即当k 充分大时,可用两相邻迭代向量地分量比作为主特征值地近似值,即11()()k ik iu u λ+≈若主特征值是A 地r 重实特征值,即12(1)r r n λλλ===≤≤,对应地r 个线性无关特征向量为12,,,n x x x .则有01111()r nkk k i k i i i i i i r u A u a x a x λλλ==+⎡⎤==+⎢⎥⎣⎦∑∑当k 充分大时,11rkk i i i u a x λ=≈∑即k u 仍为主特征值对应地特征向量地近似向量,相邻两迭代向量地分量比仍为主特征值地近似值.综上所述,有定理7-3 设A 是n 阶实矩阵,具有完全地特征向量组,主特征值是r 重根,即112||||||||(1)r r n r n λλλλ++>≥≥≥≤≤则对任意非零初始向量0u ,迭代向量0k k u A u = 满足 111lim(0)rki ikk i u a x a λ→∞==≠∑ ,11()lim ()k ik k iu u λ+→∞= 或 11rk k i i i u a x λ=≈∑,11()()k ik iu u λ+≈ 这样用非零初始向量0u 及矩阵A 构造向量序列{}k u 以计算A 地主特征值1λ及相应地特征向量地方法称为幂法.不过从上面地讨论中可以看到,如果1||1λ>或11<λ,迭代向量k u 当k →∞时,其不为零地分量就会趋于无穷大或趋于零.为克服这个缺点,可以在每步迭代中加上对向量规范化地步骤,使迭代向量地数量级保持在一个稳定地量级上,归纳起来,幂法地计算步骤为:步骤 1 给定非零初始向量0u ,精度12,εε,令00v u =;令(0)10max()v λ=,1=k ;步骤 2 迭代1-=k k Av u ,()1max()k k u λ=,其中)max(k u 表示k u 绝对值最大地分量;步骤3 规范化max()kk k u v u =; 步骤 4 若11k k v v ε--<且()(1)112||k k λλε--<,则k v 即为1λ地近似特征向量,()1k λ即为1λ地近似值;否则,1+=k k ,转步骤2继续迭代.例7-5 用幂法计算1.0 1.00.51.0 1.00.250.50.252.0A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦地主特征值和相应地特征向量,结果见表7-1.表7-1而此题地准确值为1 2.5365258λ= 1(0.748221,0.649661,1.000000)T x =7.2.2 幂法地加速幂法地收敛速度由比值21r λλ=来确定,r 越小收敛越快,而当1r ≈时收敛可能很慢.为了克服这一缺点,常采用原点平移法对幂法进行加速.设B A pE =-,其中p 是待定参数.显然,若A 地特征值为12,,,n λλλ,则B 地相应特征值(1,2,,)i k i n =为12,,,n p p p λλλ---,且A .B 地特征向量相同.这是因为对A 有特征方程||0i A E λ-=,而对B 有特征方程|||()|0i i B k E A p k E -=-+=,所以,i i i i p k k p λλ=+=-另一方面,若i x 是A 地对应i λ地特征向量,即i i i Ax x λ=则 ()()i i i i i i Bx A pE x Ax px p x λ=-=-=-原点平移法地思想是引入矩阵B ,恰当地选择参数p ,使11k p λ=-是B 地主特征值,且其速比2211maxB A p r r p λλλλ-=<=-,这样用幂法求B 地主特征值1k 地收敛速度就快于用幂法求A 地主特征值1λ,而一旦1k 求出,由11k p λ+=可得A 地主特征值,达到了加速地目地.但是为了选取恰当地选择参数p ,需要对A 地特征值地分布地大致了解. 例7-6 设4阶方阵A 有特征值15(1,2,3,4)j jj λ=-=其速比210.9A r λλ=≈.作变换 (12)B A pEp =-=则B 地特征值为12k =,21k =,30k =,41k =-,其速比2112B A k r r k ==<. 设A 地实特征值满足121n n λλλλ->≥≥>若2,n λλ地值可大致估计出,若要求1λ,考察待定参数p 地选取. 在原点平移法通过变换pE A B -=后,不论p 如何选取,矩阵地B 主特征值也只能是在n p λ-或 1p λ-.若希望求1λ,就应选择p ,使1p λ-称为B 地主特征值,即1||||n p p λλ->-这时B 地收敛速比B r 是比值21||/||p p λλ--和1||/||n p p λλ--中地较大者,即211||||max ,||||n B p p r p p λλλλ⎧⎫--=⎨⎬--⎩⎭显然B r 依赖于p 地选取,记做()B r p .为了使应用幂法求B 地主特征值地收敛速度尽可能快,我们希望选择最佳参数*p ,使*()min ()B B r p r p =由B r 地表示式(求二者之间地较大值)和)(*p r B 对)(p r B 地最小化要求,只有当2||||n p p λλ-=-时,()B r p 达到最小.由于2n p p λλ-=-会有得到矛盾地结果(2n λλ=),所以只能是2()n p p λλ-=--即 *22np λλ+=类似地,若用反幂法求最小特征值n λ,若1n λ-,1λ可大致估计,取最佳平移参数*112n p λλ-+=例7-7 取0.75p =,用原点平移法,计算例7-7中矩阵A 地主特征值.解 作变换B A pE =-,则0.2510.510.250.250.50.25 1.25B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对B 应用幂法,计算结果见表7-2.即1 1.7865914k ≈,则A 地主特征值1λ为110.75 2.5365914k λ=+=与例7-5比较,上述结果比例7-5迭代15次还好.表7-27.2.3 反幂法设方阵A 按模最小地特征值是n λ,且0n λ≠,则A 可逆.于是,由n n n Ax x λ=,可得11n n nA x x λ-=,这表明1nλ是1A -地主特征值.反幂法就是将幂法应用于1A -,通过求出1A -地主特征值得到A 地按模最小地特征值及其对应地特征向量.定理7-4 设A 是n 阶实矩阵,具有完全地特征向量组,其特征值满足12||||||0n λλλ≥≥≥>则对任意非零初始向量00u v =,按下述方式构造地迭代向量11k k u A v --= ,max()kk k u v u =满足lim max()n k k n x v x →∞=, 1lim max()k k nu λ→∞= /max()k n n v x x ≈,1max()k nu λ≈在实际计算中,可先对A 进行LU 分解,通过求解1k k Ly v -= ,k k Uu y =来求解方程组1k k Au v -=.反幂法地计算步骤为:步骤1 预先取定非零向量00u v =;给定精度12,εε;取(0)0m a x ()nu μ=; 步骤2 对矩阵A 作LU 分解,A LU =;令1=k ;步骤3 求解方程组1k k Ly v -= ,k k Uu y = 得到迭代向量k u ; 步骤4 规范化max()kk k u v u =步骤5 若11k k v v ε--<且()(1)2||k k n n μμε--<,则k v 即为A 地对应于n λ地近似特征向量,()1k nμ即为n λ地近似值;否则,令1+=k k ,转步骤3继续迭代.7.3 矩阵地两种正交变换本节先介绍镜面(初等)反射变换和平面旋转变换,它们是QR 算法和Jacobi 算法地基础.7.3.1 豪斯荷尔德(House holder )变换定义7-2 设有方阵B ,若当1i j >+时(,1,2,,)i j n =,0ij b =,则称B 是上Hessenberg 矩阵,即1112121222,1n n n n nn b b b b b b B b b -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦定义7-3 设向量ω满足21ω=,矩阵2T H E ωω=- (ω是列向量)称为初等反射矩阵,又称House holder 矩阵,记为()H ω,即211212212221212222122()2212n n n n n H ωωωωωωωωωωωωωωωω⎡⎤---⎢⎥---⎢⎥=⎢⎥⎢⎥---⎢⎥⎣⎦其中(1,2,,)i i n ω=是ω地分量.可以证明初等反射阵是对称阵()T H H =.正交阵()T H H E =. 例7-8 设向量0α≠,试证矩阵222TH E ααα=- 是一个初等反射阵. 证明 令2αωα=,则 222221||||||||1αωααα=== 由定义7-3,2222TTH E E ααωωα=-=-是初等反射阵.定理7-5 设,x y 是两个不相等地n 维列向量,且22||||||||x y =,则存在一个初等反射阵H,使得Hx y =证明 令2||||x yx y ω-=-,由例7-8可知22()()22||||T T Tx y x y H E E x y ωω--=-=-- 是一个初等反射阵.由于22||||()()T T T T Tx y x y x y x x y x x y y y -=--=--+ 注意到22||||||||x y =,即T T x x y y =,又()T T T T x y x y y x == ,故22||||2()T Tx y x x y x -=-从而22()()2||||T T x y x x y x Hx x x y --=--y y x x =--=)(. 例7-9 设1(1,2,2),(1,0,0)T T x e ==,用Householder 变换将x 化为与1e 同方向地向量.解 因为2||||3x =,可设13y e =,则22||||||||x y = 取21,1,1)||||T x y w x y -==--,构造Householder 矩阵[]11122212111,1,12123311221T H E ww -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则13Hx e =推论 设向量12(,,,)0T n x x x x =≠,12()||||r sign x x =,且1x r ε≠-,则存在初等反射阵1222||||T T uu H E E uu u ρ-=-=- 使1Hx r ε=- .其中,1(1,0,,0)T ε=,1u x r ε=+,22||||/2u ρ=.设12(,,,)T n u u u u =,则12(,,,)T n u x r x x =+22222122222112111||||[()]221(2)2()n n u x r x x r rx x x x r r x ρ==++++=+++++=+引入初等反射阵地目地,是设法用一系列初等反射阵将原始矩阵约化成上Hessenberg 阵.由于约化过程是逐列进行地,我们先给出计算Hx 地算法步骤,该算法算出H 及r ,使Hx r ε=-,u 地分量冲掉x 地分量.(1)1max ||i i nx η≤≤=;(2)(1,2,,)ii i x x u i n η←==,此步规范化是为避免计算r 时产生溢出;(3) 12211()()nii r sign x x ==∑;(4)11u u r ←+;(5) 1ru ρ=; (6) r r η←;于是初等反射阵1T H E uu ρ-=-,1Hx r ε=-.如果要将H 作用于矩阵A ,设i a 是A 地第i 列向量,则12(,,,)n A a a a =,12(,,,)n HA Ha Ha Ha = 其中,11()()(1,2,,)T T i i i i Ha E uu a a u a ui n ρρ--=-=-=.下面讨论用初等反射阵约化原始矩阵A 称为上Hessenberg 阵地步骤.11121(1)(1)2122211121(1)(1)212212n n n n nn a a a a a a a A A A a a a a a ⎡⎤⎢⎥⎡⎤⎢⎥===⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦步骤1 不妨设(1)210a ≠(否则这一步不需约化),选择初等反射阵1R ,使(1)12111R a r ε=-,其中: 1(1)(1)2212112(1)1211112111121211111()(())(1)1()2ni i T r sign a a u a r n u r r a R E u u εερρ=-⎧=⎪⎪⎪=+-⎨⎪==+⎪⎪=-⎩∑是维单位坐标列向量 令11100U R ⎡⎤=⎢⎥⎣⎦则(2)(2)(2)(1)111213111212111(2)(2)(1)(1)222312112210A a A a A R A U AU a A R a R A R ⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦其中,(2)11A 是21⨯阵,(2)22a 是2n -维列向量,(2)23A 是2n -阶方阵.步骤k 设对A 已进行了1k -步约化,即111(2)()()()()11121,111,11(2)()()()1222,12,2()()()1,1,()()()1,1,11,()()(),1(2,3,,1)k k k k k k k k k k k n k k k k kn k k k k kk k k k n k k k k k k k k nk k k nkn k nnA U A U k n a a a a a a r a a a a r a a a a a a a a a ----+--++++++==-⎡⎢-⎢=-⎣()()()111213()()22230k k k k k A a A a A ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦⎡⎤=⎢⎥⎣⎦其中,()11k A 是(1)k k ⨯-阵,()22k a 是n k -维列向量,()23k A 是n k -阶方阵.设()220k a ≠,选初等反射阵()k R n k -阶,使()221k k k R a r ε=-,其中1ε是n k -维单位坐标向量,可得1()()221,1()221()1,1()(())()nk k k k k ik i k k kk k k k kk nT k k k k r sign a a u a r r r a R E u u ερρ+=++-⎧=⎪⎪⎪=+⎨⎪=+⎪⎪=-⎩∑ 令 00k k E U R ⎡⎤=⎢⎥⎣⎦则 ()()()1112131()()2223()()()111213()12300k k k k k k k k k k k k k k k k k k k k k A a A R A U A U R a R A R A a A R r R A R ε+⎡⎤==⎢⎥⎣⎦⎡⎤=⎢⎥-⎣⎦ 可见1k A +地左上角1k +阶子阵为上Hessenberg 阵,从而约化又进了一步.重复此过程,直到122112211(2)122(3)233(1)1n n n n n nn A U U U AU U U a r a r a r a -----=⨯⨯⨯⎡⎤⎢⎥-⨯⨯⎢⎥⎢⎥=-⨯⎢⎥⎢⎥⎢⎥-⎣⎦使原始矩阵A 在一系列初等反射阵地作用下,约化为上Hessenberg 阵.综上所述,有定理7-6.定理7-6 如果A 是n 阶实矩阵,则存在初等反射阵122,,,n U U U -,使221122n n U U U AU U U C --=(上Hessenberg 阵)例7-10 试证矩阵A 与其约化成为地上Hessenberg 阵C 有相同地特征值.证明 记221n P U U U -=,由于初等反射阵是正交对称阵,故122T n P U U U -=,且P 是正交阵,故T PAP C =.于是||||||||||||T T C E PAP E P A E P A E λλλλ-=-=-=-其中T PP E =,||||1T P P =.这表明A 与C 具有相同地特征多项式,即两者有相同地特征值.进一步,设y 是C 地对应于特征值λ地特征向量,即Cy y λ=,则有T PAP y y λ= ()()T T A P y P y λ=这表明T P y 为A 地对应于λ地特征向量,于是求原始矩阵A 地特征值与特征向量可转化为求上Hessenberg 阵C 地特征值和特征向量.定理7-7 若A 是实对称矩阵,则存在初等反射阵122,,,n U U U -使2211221112211()n n n n n U U U AU U U c b b c b C b b c ----⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦对称三对角阵 证明 由定理7-6,存在初等反射阵可使A 约化为上Hessenberg 阵C ,当A 是对称矩阵时,C 亦为对称阵,即T C C =,且T C 亦为上Hessenberg 阵,故C 是对称三对角阵.例7-11 用豪斯荷尔德方法将下述矩阵化为上Hessenberg 阵.1437232427A A ---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦解 (1)对1k =,确定变换阵111000U R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,(1)2124a ⎡⎤=⎢⎥⎣⎦ 其中1R 为初等反射阵,使(1)121110R a r ⎡⎤=-⎢⎥⎣⎦(1)12124.472136r a ==≈(1)12111 6.472136244u a r ε⎡⎡⎤+=+=≈⎢⎢⎥⎣⎦⎣⎦11121()2)28.94427r r a ρ=+≈[]1111110 6.4721361 6.472136401428.944270.4472070.8944230.8944230.447216TR E u u ρ-=-⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦--⎡⎤=⎢⎥-⎣⎦(2)计算(1)122R A .记(1)221232(,)27A a a ⎡⎤==⎢⎥⎣⎦,于是 (1)1221112 3.1304967.155419(,) 1.788855 1.341640R A R a R a --⎡⎤==⎢⎥-⎣⎦其中,111111111()()(1,2)T T i i i i R a E u u a a u a u i ρρ--=-=-=(3)计算(1)121A R 及(1)1221()R A R ,即求 1(1)121211(1)1223373.1304967.1554191.788855 1.341640T T T b A R b R R R A b ⎡⎤--⎡⎤⎡⎤⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦7.6026340.4472127.800030.3999990.399999 2.200000-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦其中,11111()(1,2,3)T T T Ti i i b R b b u u i ρ-=-=(4)计算2111A U AU =.(1)12121(1)1221447.6026340.4472124.4721367.8000030.39999900.399999 2.2000000A R A r R A R ⎡⎤--⎡⎤⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥-⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦为上Hessenberg 阵.7.3.2 平面旋转变换 定义7-4 称矩阵111(,)111i j csi P i j scj ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第列第列第行第行 为平面旋转矩阵,又称Givens 矩阵,其中cos c θ=,sin s θ=.平面旋转阵(,)P i j 是一个正交阵,与单位阵只有在(,),(,),(,i i i j j j j i四个位置上地元素不一样,用其左乘矩阵A 只改变A 地第i 行和第j 行元素.设12(,,,)T n x x x x =则平面旋转变换Px y =地结果为⎪⎩⎪⎨⎧≠=+-=+=ji k x y cx sx y sx cx y k kj i j j i i ,若令/i c x =,j s x =, 则平面旋转变换向量y 地第i个分两为22j i x x +,第j 个分量为0,其余分量即为x 对应地分量.和初等反射变换一样,用平面旋转变换也可以将一个方阵化为上Hessenberg 矩阵,也可以将将一个方阵化为上三角矩阵.7.4 QR 算法7.4.1 矩阵地QR 分解定理7-8 设A 是可逆矩阵,则存在正交矩阵121,,,n P P P -使121()n P P P A R -=上三角矩阵且R 地主对角元素0(1,2,,1)ii r i n >=-.证明 若10(2,3,,)j a j n ==,则A 地第一列不需约化.若有某个 10(2)j a j n ≠≤≤,则可选择1(1,)j P j P =使A 地第一列中第j 个元素变为零.一般地,可设平面旋转矩阵12131,,,n P P P ,使(2)(2)11121(2)(2)222113122(2)(2)200nn nn nn r a a a a P P P A A a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦记111312nP P P P =,则12P A A =.同理,若(2)20(3,4,,)j a j n ≠=,可选取23242,,,n P P P 使(2)(2)(2)1112131(3)(3)22232(3)(3)2212323333(3)(3)3nn n n n n nn r a a a r a a P P P A A a a a a -⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦记2223nP P P =,则213P P A A =.重复上述过程,可得一系列正交阵121,,,n P P P -使11121222121n n n nn r r r r r P P P A R r -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ 定理7-9 (矩阵地QR 分解)如果n 阶实矩阵A 可逆,则A 可分解为一正交阵Q 和上三角阵R 地乘积,即A QR =,且当R 地对角元素都为正数时分解唯一.证明 由定理8知存在正交阵11,,n P P -使121n P P P A R -=为上三角阵,记121T n Q P P P -=,于是T Q A R =由于(1,2,,1)i P i n =-是正交阵,则T Q 亦为正交阵,故A QR =. 若A 有两种QR 分解,记为1122A Q R Q R ==其中12,R R 为上三角阵且主对角元素都为正数,12,Q Q 为正交阵,于是12121T Q Q R R -=注意121R R -是上三角阵地乘积,结果仍为上三角阵,而12,TQ Q 是正交阵,所以121R R -也应是正交阵.若记121D R R -=,由其上三角性T D 应是下三角阵,1D -应是上三角阵;由其正交性由1T D D -=,故D 只能是对角阵,且有2T D D D E ==.又因12,R R 地主对角元素都为正数,即有222212diag[,,,]diag[1,1,,1]n D d d d E ===故1(1,2,,)i d i n ==,则D E =,于是12R R =,12Q Q =.例7-12 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=212240130A 地QR 分解. 解 方法1:利用初等反射阵进行QR 分解令(0)1(0,0,2)T a =,取(0)112||||2d a ==,则)2,0,2(81211)0(111)0(11-=--=e d ae d a u1110012010100TH E u u ⎡⎤⎢⎥=-=⎢⎥⎢⎥⎣⎦,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1302402121A H 再令(0)2(4,3)T a =,取(0)222||||5d a ==,则(1)2212(2)22121,3)||||T a d e u a d e -==--2224312345TH E u u ⎡⎤=-=⎢⎥-⎣⎦令2210014305534055H H ⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦于是21212051002H H A R ⎡⎤⎢⎥=-=⎢⎥⎢⎥-⎣⎦故123405521243005155002100T TA H H R ⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦方法2:利用平面旋转阵进行QR 分解. 取1202,0100221221=+==+=s c ,则130********T ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,132********T A ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦再取53)3(43,54)3(44222222-=-+-==-+=s c ,则231004305534055T ⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,2313212051002T T A R ⎡⎤⎢⎥=-=⎢⎥⎢⎥-⎣⎦ 故13233405521243005155002100T T A T T R ⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦例7-13 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110133044A 地QR 分解,使得R 地对角线元素为正数.解 A A =1地第一列T x ]0,3,4[1=,521=x .用1x 构造镜面反射阵1H ,使得T y x H ]0,0,5[111==,令T y x u ]0,3,1[111-=-=,有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=10005453053542221111u u u E H T ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-==11054005355112A H A 2A 地第2列对角线以下为T x ]1,0[2=,122=x .用2x 构造镜面反射阵2~H ,使得T y x H ]0,1[~222==,令T y x u ]1,1[222-=-=,易得 ⎥⎦⎤⎢⎣⎡=-=01102~222222u u u E H T,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=010100001~122H H 于是有R A H A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==54001105355333,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-==010540535305421H H Q容易验证,QR A =.请读者用平面旋转变换对本例地矩阵A 进行QR 分解.7.5.3 QR 算法QR 算法就是利用QR 分解构造一个矩阵序列{}k A ,当k 充分大时,k A 是近似地上三角矩阵,而该上三角阵地对角元素便是原始矩阵A 地全部特征值.设1()n n ij n n A A a R ⨯⨯==∈,对A 做QR 分解,即A QR =其中R 为上三角阵,Q 为正交阵.利用这个分解可得新矩阵(对QR 交换乘积)2T A RQ Q AQ == 由于2A 是1A 经过正交相似变换得到地,因此2A 与1A 有相同地特征值.再对2A 做QR 分解,按上述方式又可得新矩阵3A ,且3A 与2A 也具有相同地特征值.具体地说,其步骤为:设1A A =,做QR 分解111A Q R =求矩阵211111T A R Q Q A Q ==求得k A 后对k A 作QR 分解k k k A Q R =求矩阵1Tk k k k k k A R Q Q A Q +==只要A 可逆,由定理9可知,按上述方法可唯一确定矩阵序列{}k A ,且序列中任意k A 与原始矩阵有相同特征值.因此只要恰当选择正交相似变换阵12,,,k Q Q Q ,使1111111T T TT TT T k k k k k k k k k k k k k k A Q A Q Q Q A Q Q Q Q Q A Q Q Q +----====当k →∞时,逼近一个上三角阵,便可求出A 地全部特征值(为所逼近上三角阵地主对角元素).可见,QR 算法地关键在于选择正交变换阵(1,2,)k Q k =.从定理7-8地证明看到,正交变换阵k Q 是一系列平面转换矩阵地乘积,这些平面旋转矩阵是用来将k A 地主对角线以下元素约化为零地.如果将QR 算法直接应用于原始矩阵,计算量很大,所以在实际计算中,总是先将原始矩阵用豪斯赫尔德方法约化为上Hessenberg 阵,而后再对上Hessenberg 阵应用QR 算法.可以证明,由上Hessenberg 阵用QR 算法生成地矩阵序列中地每个矩阵仍为上Hessenberg 阵.7.5 雅可比方法雅可比方法是用来计算实对称矩阵地全部特征值及特征向量地一种有效方法.它地基本思想是,通过一组正交相似变换对称矩阵A 化为对角矩阵,得其全部特征值.定理7-10 设A 为n 阶对称矩阵,T C PAP =,其中P 为正交矩阵,则22||||||||F F C A = 证明 一方面2222111||||()()nnnFiji i j i A a tr A A λ======∑∑∑另一方面2221||||()()()nTFi i C tr C C tr C C λ====∑由假设()()i i A C λλ=,故22||||||||F F C A =.设n n A R ⨯∈为对称矩阵,(,)P i j 为一平面旋转矩阵,则T C PAP =(其中()ij n n C c ⨯=)地元素计算公式为:(1)22cos sin 2sin cos ii ii jj ij c a a a θθθθ=++22sin cos 2sin cos jj ii jj ij c a a a θθθθ=+-(2)1()sin 2cos 22ij ji jj ii ij c c a a a θθ==-+ (3)第i 行元素和第j 列元素cos sin (,)ik ki ik jk c c a a k i j θθ==+≠ (4)第j 行元素和第i 列元素 cos sin (,)jk kj jk ik c c a a k i j θθ==+≠(5)(,,)lk lkc a l k i j =≠这说明,当A 经过一初等正交相似变换化为C 时,只需按上述公式计算C 地第i 列.第j 列元素,由对称性可得第i 行和第j 行元素,C 地其余元素与A 地对应元素相同.设A 地非对角元素0ij a ≠,我们可选择平面旋转阵(,)P i j ,使T C PAP =地非对角元素0ij ji c c ==.由定理11可选择(,)P i j ,使sin 2cos 202jj iiij ji ij a a c c a θθ-==+=即选择θ,使22(||)4ij ii jja tg a a πθθ=≤-其中定理7-11 设n n A R ⨯∈为对称阵,0ij a ≠为A 地一个非对角元素,则可选择一平面旋转阵(,)P i j ,使T C PAP =地非对角元素0ij ji c c ==且T C PAP =与A 地元素满足下述关系(1)2222(,)ik jk ik jkc c a a k i j +=+≠(2)222222ii jj ii jj ij c c a a a +=++ (3)22(,,)iklk c a l k i j =≠证明 由上面地计算ij c 公式直接计算可知(1)成立.由(1)及定理7-10可证(2).如果用()S A 表示A 地非对角线元素地平方和,()D A 表示A 地对角线元素平方和,则2()()2ijD C D A a =+ ,2()()2ij S C S A a =- 这说明C 地对角线元素平方和比A 地对角线元素平方和增加了22ij a ,C 地非对角线元素平方和比A 地非对角线元素平方和减少了22ij a .下面介绍雅可比方法.首先在A 地非对角元素中选择绝对值最大地元素(称为主元素),如11||max ||i j lk l ka a ≠=可设110i j a ≠,否则A 已经对角化了.由定理12,选择一平面旋转矩阵111(,)P i j ,使111TAP AP =地非对角元素11110i j j i c c ==. 再选(1)1()lkn n A a ⨯=地非对角元素中地主元素,如 22(1)(1)||max ||0i j lk l ka a ≠=≠由定理12,又可选择一平面旋转矩阵222(,)P i j ,使2212T A P A P =地非对角元素2222(2)(2)i j j i a a ==(注意上次消除了地主元素这次又可能变为不是零). 继续这个过程,连续对A 实行一系列平面旋转变换,消去非对角线绝对值最大地元素,直到将A 地非对角元素全化为充分小为止,从而求得A 地全部(近似)特征值.定理7-12 (雅可比方法地收敛性)设()ij n n A a ⨯=为实对称矩阵,对A 施行上述一系列平面旋转变换1(1,2,)Tm m m mA P A P m -==则 lim ()m m A D→∞=对角矩阵证明 记()()m m lk n n A a ⨯=,()2()m m lk l kS a ≠=∑由定理7-11地(2)可得()212()m m m ij S S a +=-其中 ()()||max ||m m ijlk l ka a ≠= 又由于()2()2()(1)()m m m lk ij l kS a n n a ≠=≤-∑即()2()(1)m m ij S a n n ≤- 由以上得12(1)(1)m m S S n n +≤-- 反复应用上式,即得1102(1)(2)(1)m m S S n n n ++≤->-故 lim 0m m S →∞= 可以证明()lim m ll m a →∞存在(1,2,,)l n =. 下面介绍特征向量地计算.由雅可比收敛定理知,当m 充分大时2112T TTmm P P P AP P P D ≈记12T T T T m m R P P P =,则T m R 地列向量就是A 地近似特征向量.计算Tm R 可采用累积地办法,用一数组R 保存Tm R ,开始时R E ←,以后对A 每进行一次平面旋转变换,就进行计算Tm R RP ←用初等正交阵T m P 右乘R 只需计算R 地两列元素,若记(,)m m P P i j =,则Tm RP 地计算公式为()()cos ()sin (1,,)()()sin ()cos li li lj li li lj l n θθθθ←+⎧⎪=⎨←+⎪⎩R R R R R R关于sin θ和cos θ地计算如下.由定理7-11知,当0ij a ≠时,可选θ满足2tg2ij ii jja a a θ=-方ii jj a a ≠时,由22tg 1tg21tg dθθθ=≡- 得到tg θ地二次方程2tg 2tg 10d θθ+-=解得tg θ=选取tg 0d d θ>=<由此得 |tg |1θ≤可由集合{},,ii jj ij a a a 来计算sin ,cos θθ,设0,||max ||ij ij lk l ka a a ≠≠=,则210tg ,()10cos sin cos ii jj ija a d a d t s d d c t ct sθθθθ-⎧=⎪⎪⎪≥⎧⎪=≡=⎨-<⎨⎩⎪⎪=≡⎪⎪=⋅=≡⎩如果jj ii ij a a a -<<,则12ij ii jja t d a a ≈=-,将c,s 代入定理7-9地(1)中可得ii ii ij jj jj ij ij ji c a ta c a ta c c ⎧=+⎪=-⎨⎪==⎩ 每迭代一次地主要工作是选m A 地非对角线元素中地主元素与计算T 111m m m +++=A P AP .首先计算sin ,cos ,θθ,只需计算1m +A 地第i 列,第j 列元素,再算对称元素,不用做3个矩阵地乘法.计算机计算时,需要两组工作单元,以便存储A (或m A )和R .可用()2()m m lk l ka ε≠=<∑S 控制迭代终止,其中ε是要求地精度.例7-14 用雅可比方法计算对称阵210121012⎡⎤-⎢⎥--⎢⎥⎢⎥-⎣⎦A = 地特征值.解 第1步0=A A ,选非对角线元素中地主元素121(1,2)a i j =-==0,1,1/0.7071068,1/0.7071068d t c s ======T 111100.7071068030.70710680.70710680.70710682⎡⎤-⎢⎥==-⎢⎥⎢⎥--⎣⎦A P AP第2步 在1A 中选非对角元素地主元素(1)130.7071068(1,3)a i j =-==0.7071068,0.5176381,0.8880738,0.4597008d t c s ====T 22120.63397460.325057600.325057630.627963000.62798302.366025-⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦A P A P 第3步 在2A 中选非对角元素地主元素(2)230.627930(2,3)a i j =-==0.5047869,0.6153960,0.8516540,0.5241045d t c s =-=-==-T 33230.63397460.27683660.17036420.27683663.38644600.170364201.979579⎡⎤--⎢⎥=-⎢⎥⎢⎥-⎣⎦A P A P 第4步 在3A 中选非对角元素地主元素(3)120.2768366(1,2)a i j =-==4.971292,0.09958013,0.9950785,0.09909004d t c s ====T 44340.606407200.169525803.4140130.016881400.16952580.016881401.979579⎡⎤-⎢⎥=⎢⎥⎢⎥-⎣⎦A P A P 第5步 在4A 中选非对角元素地主元素(4)130.1695258(1,3)a i j =-==4.050038,0.1216293,0.9926842,0.1207395d t c s ==== 2T 255450.58578790.20382521000.203825210 3.4140130.0167579000.016757902.000198--⎡⎤⨯⎢⎥=⨯⎢⎥⎢⎥⎣⎦A P A P 于是A 地特征值为1233.414013, 2.000198,0.5857879λλλ===A 地精确特征值为12(1 3.414214λ=≈,22λ=,32(10.585786λ=-≈ 且可逐步求出412345T T T T T T R P P P P P =地列向量,即得A 地近似特征向量.雅可比方法是一个求对称矩阵A 地全部特征值及特征向量地迭代方法,精确度较高,但计算量较大,对稀松带状矩阵经过平面旋转变换后其稀松带状将被破坏,所以很少使用.习题71.设911203111(2102113810A j j B ⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦试估计它们地特征值所在地范围.2.编写幂法程序,并求矩阵732341213A -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦地主特征值及对应地特征向量(准确到小数点后3位).3.若p 是A 地特征值j λ地一个近似值,且||||()j i p p i j λλ-<-≠则1j pλ-是1()A pE --地主特征值.试用反幂法求矩阵134231111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦地最接近于6地特征值及对应地特征向量.4.设有向量(2,1,2)Tx=,试构造初等反射阵H,使(3,0,0)THx=.5.设(2,3,0,5)Tx=,(1,0,0,5)Te=,用Householder变换化x为与e同方向向量.6.设031042212A⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求其QR分解.7.设221022212A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求其QR分解.8.利用初等反射阵将134312421A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦正交相似约化为对称三对角阵.9.试用平面旋转变换阵对矩阵A作QR分解,其中111021245A⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦.10.按下列要求编写程序框图.(1)将一般矩阵用豪斯赫尔德方法约化称上Hessenberg阵.(2)对矩阵作QR分解.(3)对上Hessenberg阵应用QR算法求全部特征值及相应地特征向量.11.用QR算法求矩阵120211013A⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦地全部特征值.12.设A是对称矩阵,λ和(1)x x=是A地一个特征值及相应地特征向量.又设p是一个正交阵,使1(1,0,0,,0)Tpx e==证明T=是第一行和第一列除了λ外,其余元素均为零.B PAP。

数值分析-第7章 矩阵特征值问题的数值解法n

数值分析-第7章 矩阵特征值问题的数值解法n
(-3.406542,-2.460280, 6.920561) (-2.832406, -2.028615, 6.210333)
7
9 11 12
6.104716
6.026349 6.006637 6.003327
(-0.450275, -0.322058, 1.0)
(-0.445914, -0.318617, 1.0) (-0.444814, -0.31775, 1.0) (-0.444630, -0.317606, 1.0)
其中i为A的特征值,P的各列为相应于i的特征向量。
P -1 AP D
2

n
2
定理7.1.3 ARnn,1, …, n为A的特征值,则
(1)A的迹数等于特征值之和,即 tr ( A) aii i
i 1 i 1
n
n
(2)A的行列式值等于全体特征值之积,即
1 xi(k +1) / xi(k )
i 1,2,, n
可见,当k充分大时, ( k ) 近似于主特征值, ( k +1) 与x ( k )的对应非零分量的比值 x x 近似于主特征值。
在实际计算中需要对计算结果进行规 , 范化。因为当 1 1时,x (k ) 趋于零, 当1 1时, x ( k )的非零分量趋于无穷。 从而计算时会出现下溢 或上溢。
特征值的范围. 解 我们先分别求出各个圆盘区域。 D1 = {z:|z – 1|£0.6};D2 = {z:|z – 3|£0.8} D3 = {z:|z + 1|£1.8};D4 = {z:|z + 4|£0.6}. 易见D2和D4为 弧立圆盘分别 包含A的两个实 特征值.

特征值与特征向量矩阵特征值与特征向量的求解方法

特征值与特征向量矩阵特征值与特征向量的求解方法

特征值与特征向量矩阵特征值与特征向量的求解方法特征值和特征向量是线性代数中重要的概念,广泛应用于许多领域,如物理学、工程学和计算机科学等。

在本文中,我们将探讨特征值和特征向量的定义、求解方法及其在实际问题中的应用。

一、特征值与特征向量的定义特征值是一个矩阵所具有的与矩阵的线性变换性质有关的一个数值,特征向量是对应于特征值的非零向量。

对于一个n阶矩阵A,如果存在一个非零向量x和一个数λ,使得满足Ax=λx,那么λ就是矩阵A的一个特征值,x是对应于特征值λ的特征向量。

二、求解特征值与特征向量的方法有几种方法可以求解特征值和特征向量,其中比较常用的是特征多项式法和迭代法。

1. 特征多项式法特征多项式法是通过求解特征方程的根来得到特征值。

对于一个n阶矩阵A,其特征多项式定义为det(A-λI)=0,其中I是n阶单位矩阵,det表示行列式运算。

将特征多项式置为零,可以得到n个特征值λ1,λ2,...,λn。

将每个特征值代入原矩阵A-λI,解线性方程组(A-λI)x=0,就可以得到对应的特征向量。

2. 迭代法迭代法是通过不断迭代矩阵的特征向量逼近实际的特征向量。

常用的迭代方法包括幂法、反幂法和Rayleigh商迭代法。

幂法是通过不断迭代向量Ax的归一化来逼近特征向量,其基本原理是向量Ax趋近于特征向量。

反幂法是幂法的反向操作,通过求解(A-λI)y=x逼近特征向量y。

Rayleigh商迭代法是通过求解Rayleigh商的最大值来逼近特征向量,其中Rayleigh商定义为R(x)=x^T Ax/(x^T x),迭代公式为x(k+1)=(A-λ(k)I)^(-1)x(k),其中λ(k)为Rayleigh商的最大值。

三、特征值与特征向量的应用特征值与特征向量在实际问题中有广泛的应用。

其中,特征值可以用于判断矩阵是否可逆,当且仅当矩阵的所有特征值均不为零时,矩阵可逆。

特征向量可用于描述矩阵的稳定性和振动状态,如在结构工程中可以通过求解特征值和特征向量来分析物体的固有频率和振动模态。

矩阵的特征值与特征向量认识矩阵的特征值与特征向量的计算方法

矩阵的特征值与特征向量认识矩阵的特征值与特征向量的计算方法

矩阵的特征值与特征向量认识矩阵的特征值与特征向量的计算方法矩阵在数学与物理等领域中起着重要的作用,而矩阵的特征值与特征向量是矩阵理论中的重要概念。

本文将介绍矩阵的特征值与特征向量的定义与性质,并探讨了计算矩阵特征值与特征向量的方法。

一、矩阵的特征值与特征向量的定义在介绍矩阵的特征值与特征向量之前,我们先来了解一下矩阵的基本概念。

矩阵是由若干个数按照一定的规则排列成的矩形阵列。

矩阵可以表示成一个二维数组,其中的元素用于表示矩阵中的各个数值。

矩阵的特征值与特征向量是对矩阵进行分析与求解时非常有用的工具。

特征值可以理解为矩阵在某个方向上的缩放因子,而特征向量则表示在特征值对应的方向上的向量。

对于一个n阶矩阵A,如果存在一个非零向量X,使得AX=λX,其中λ是一个常数,那么称λ为矩阵A的特征值,X为矩阵A对应于特征值λ的特征向量。

特征值与特征向量的定义虽然比较抽象,但是通过对矩阵进行相应的计算可以得到具体的数值结果。

二、计算特征值与特征向量的方法1. 特征值的计算方法计算特征值的方法之一是通过求解矩阵特征方程来完成。

对于一个n阶矩阵A,其特征方程可以表示为det(A-λI)=0,其中det表示矩阵的行列式,I是单位矩阵,λ是特征值。

解特征方程可以得到矩阵的特征值。

由于特征方程是一个n次多项式方程,所以一般情况下可以得到n个特征值。

特征值的个数与矩阵的阶数相等。

2. 特征向量的计算方法计算特征值后,我们可以通过特征值来求解特征向量。

对于特征值λ,我们需要求解矩阵(A-λI)X=0的非零解,其中X是特征向量。

解特征向量的过程可以通过高斯消元法或者矩阵的初等变换来完成,得到的非零解即为特征向量。

三、特征值与特征向量的性质矩阵的特征值与特征向量具有一些重要的性质,这些性质在矩阵理论与应用过程中都具有重要作用。

1. 特征值和特征向量的对应关系对于一个n阶矩阵A,它有n个特征值与n个相应的特征向量。

特征值与特征向量是一一对应的关系,即每个特征值对应一个特征向量。

计算方法--矩阵特征值的数值计算方法(2011).

计算方法--矩阵特征值的数值计算方法(2011).

(3)对任意正整数 m ,m 是矩阵 A m 的特征值;
1 A (4)当矩阵 可逆时, 是矩阵 A 1 的特征值;

并且
x 仍然是矩阵 kA, kE A, A m 的分别对应于特征值
k , k , m , 1 的特征向量。
类似:若

是A的特征值,
( )是 ( A) 的特征值;
det(A3 2 A 4E)
设 f ( x) x 3 2x 4 ,则 f ( A) A3 2 A 4E 因为 A 的特征值为 1,2,3,所以
f ( A) A3 2 A 3E 的特征值为
f (1) , 1
f (2) , 4 f (3) 21
于是 det(A3 2 A 4E) (1) 4 21 84
AX X
成立,则 称为方阵A的特征值, X 称为A的对应于特征值 的特征向量。
矩阵的特征值与特征向量 如
1 A 2
1 4
取 2
1 X 1
1 AX 2
1 1 2 X 4 1 2
则特征向量 2 是特征值,
1 是特征向量. X 1
矩阵的特征值与特征向量
特征方程、特征根
A E 称为方阵A的特征多项式 记作f ( )
显然,A的特征值就是特征方程的根, 也称特征根。
注意
n阶方阵A有n个特征值。 (重根按重数计算),
1 0 0 求矩阵 A 2 5 2 的特征值和特征向量。 2 4 1
全部特征向量为 kp2 lp3
其中数 k , l 是不同时为零的任意常数。

第7章 计算矩阵的特征值和特征向量

第7章  计算矩阵的特征值和特征向量

A (7)
0 0 2.125825 = 0 8.388761 0.000009 0 0.000009 4.485401
从而A的特征值可取为 A
λ1≈2.125825, λ2≈8.388761, λ3≈4.485401
V
下面分析吉文斯变换作用到对称矩阵后正 交相似的变换效果。
注:
bpp = (app cosϑ − aqp sinϑ) cosϑ − (apq cosϑ − aqq sinϑ) sinϑ
注:
1 − s
2 t 1 − t
2
= 0 ⇒
t
2
+ 2 st
− 1 = 0
雅可比方法就是对A连续施行以上变换的方法。 取p,q使 a pq = max aij
由于求解高次多项式的根是件困难的事上述方法一般无法解出阶数略大n4的矩阵特征值的精确解在实际计算中难以按定义计算矩阵特征值
第7章 计算矩阵的特征值和特征向量
在线性代数中,一个n阶矩阵A,若有数λ及非零n维向量 v满足Av=λv,则称λ为A的特征值,v为属于特征值λ的特征 向量。在线性代数中,先计算矩阵A的特征多项式,即计算 det(λ I - A)= λn +…+(-1)ndetA的根,算出A的n个特征值λ i, i=1,2, …,n。然后解线性方程组(A- λiI)v=0,计算出对 应于λ i的特征向量。由于求解高次多项式的根是件困难的事, 上述方法一般无法解出阶数略大(n>4)的矩阵特征值的精确解, 在实际计算中难以按定义计算矩阵特征值。 本章介绍一些简单有效的计算矩阵特征值和特征向量 的近似值的数值方法。
7 .2
反 幂 法
反幂法
Av = λv ⇒ A v =

矩阵特征值问题的数值计算

矩阵特征值问题的数值计算

矩阵特征值问题的计算方法特征值问题:A V=λV¾直接计算:A的阶数较小,且特征值分离得较好 特征值:det(λI-A)=0,特征向量:(λI-A)V=0¾迭代法:幂法与反幂法¾变换法:雅可比方法与QR方法内容:一、 特征值的估计及其误差问题二、 幂法与反幂法三、 雅可比方法四、 QR方法一、 特征值的估计及其误差问题 (一)特征值的估计结论 1.1:n 阶矩阵()ij n n A a ×=的任何一个特征值必属于复平面上的n 个圆盘:1,||||,1,2,ni ii ij j j i D z z a a i n =≠⎧⎫⎪⎪=−≤=⎨⎬⎪⎪⎩⎭∑"(10.1) 的并集。

结论1.2:若(10.1)中的m个圆盘形成一个连通区域D,且D与其余的n-m个圆盘不相连,则D中恰有A的m个特征值。

(二)特征值的误差问题结论1.3:对于n 阶矩阵()ij n n A a ×=,若存在n 阶非奇异矩阵H ,使得11(,,)n H AH diag λλ−=Λ=", (10.2)则11min ||||||||||||||i p p p i nH H A λλ−≤≤−≤∆ (10.3)其中λ是A A +∆的一个特征值,而(1,,)i i n λ="是A 的特征值,1,2,p =∞。

结论1.4:若n 阶矩阵A 是实对称的,则1min ||||||i p i nA λλ≤≤−≤∆。

(10.4)注:(10.4)表明,当A 是实对称时,由矩阵的微小误差所引起的特征值摄动也是微小的。

但是对于非对称矩阵而言,特别是对条件数很大的矩阵,情况未必如此。

二、 幂法与反幂法(一) 幂法:求实矩阵按模最大的特征值与特征向量假设n 阶实矩阵A 具有n 个线性无关的特征向量,1,iV i n =",则对于任意的0nX R ∈,有 01ni ii X a V ==∑,从而有01111112((/))n nk k k i i i i ii i nk k i i i i A X a A V a V a V a V λλλλ======+∑∑∑.若A 的特征值分布如下:123||||||||n λλλλ>≥≥≥",则有01111()k kk A X a V λλ→∞⎯⎯⎯→为对应的特征向量须注意的是,若1||1λ<,则10kλ→,出现“下溢”,若1||1λ>,则1kλ→∞,出现“上溢”,为避免这些现象的发生,须对0kA X 进行规范化。

矩阵特征值求解

矩阵特征值求解

多项式 f () det( A I ) 的根可能对多项式的系数非常敏感.因此,这个方法只
能在理论上是有意义的,实际计算中对一般矩阵是不可行的.首先,若矩阵 A 的阶
数较大,则行列式 det( A I ) 的计算量将非常大;其次,根据 Galois 理论,对于次
数大于四的多项式求根不存在一种通用的方法,基于上述原因,人们只能寻求其
如下分割
Tn T (0) T (1) E
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

矩阵特征值求解

矩阵特征值求解

矩阵特征值求解的分值算法12组1.1矩阵计算的基本问题(1)求解线性方程组的问题•即给定一个n阶非奇异矩阵A和n维向量b,求一个n维向量X,使得Ax =b (1. 1. 1 )(2)线性最小二乘问题,即给定一个mx n阶矩阵A和m维向量b ,求一个n维向量X,使得|AX -b| =min{ | Ay -比严R n} (1.1.2 )(3)矩阵的特征问题,即给定一个n阶实(复)矩阵A,求它的部分或全部特征值以及对应的特征向量,也就是求解方程(1. 1. 3 )一对解(4 X),其中R(C), x- R n(C n),即A为矩阵A的特征值,X为矩阵Ax = ZxA的属于特征值A的特征向量。

在工程上,矩阵的特征值具有广泛的应用,如大型桥梁或建筑物的振动问题:机械和机件的振动问题;飞机机翼的颤振问题;无线电电子学及光学系统的电磁振动问题;调节系统的自振问题以及声学和超声学系统的振动问题•又如天文、地震、信息系统、经济学中的一些问题都与矩阵的特征值问题密切相关。

在科学上,计算流体力学、统计计算、量子力学、化学工程和网络排队的马尔可夫链模拟等实际问题,最后也都要归结为矩阵的特征值问题.由于特征值问题在许多科学和工程领域中具有广泛的应用,因此对矩阵的特征值问题的求解理论研究算法的开发软件的制作等是当今计算数学和科学与工程计算研究领域的重大课题,国际上这方面的研究工作十分活跃。

1.2矩阵的特征值问题研究现状及算法概述对一个nxn阶实(复)矩阵A,它的特征值问题,即求方程(1.1.3)式的非平凡解,是数值线性代数的一个中心问题•这一问题的内在非线性给计算特征值带来许多计算问题•为了求(1.1.3)式中的A ,—个简单的想法就是显式地求解特征方程det (A 一几I)二0 (121 ) 除非对于个别的特殊矩阵,由于特征方程的系数不能够用稳定的数值方法由行列式的计算来求得,既使能精确计算出特征方程的系数,在有限精度下,其特征多项式f〃)二det(A-ZJ)的根可能对多项式的系数非常敏感能•因此,这个方法只在理论上是有意义的,实际计算中对一般矩阵是不可行的数 _ . _ . 人较大,则行列式det (A -几I)的计算量将非常大;其次,根据•首先,右矩即AfbJ阳数大于四的多项式求根不存在一种通用的方法,基于上述原Galois理论对于次因,人们只能寻求其它途径•因此,如何有效地!精确地求解’矩阵特征值问题,就成为数值线性代数领域的一个中心问题.目前,求解矩阵特征值问题的方法有两大类:一类称为变换方法,另一类称为向量迭代方法•变换方法是直接对原矩阵进行处理,通过一系列相似变换,使之变换成 一个易于求解特征值的形式,如Jacobi 算法,Givens 算法,QR 算法等。

线性方程组与矩阵特征值求解的数值方法

线性方程组与矩阵特征值求解的数值方法

线性方程组与矩阵特征值求解的数值方法线性方程组与矩阵特征值求解是线性代数中的两个重要问题。

线性方程组解决了形如Ax=b的方程组,其中A为一个m×n的矩阵,b为一个m 维的向量,求解x使得该方程组成立。

矩阵特征值求解是求解形如Ax=λx的特征值和特征向量问题,其中A为一个n×n的矩阵,λ为特征值,x为特征向量。

这两个问题在实际应用中有广泛的应用,如计算机图形学、仿真和优化等领域。

本文将介绍线性方程组和矩阵特征值求解的数值方法。

一、线性方程组的求解方法1.1直接法直接法是指通过一系列的代数运算和变换直接求解线性方程组的解。

经典的直接法有高斯消元法、LU分解法和Cholesky分解法等。

这些方法的时间复杂度通常为O(n^3)。

直接法的优点是解的精度高,稳定性好,适用于小规模的问题。

1.2迭代法迭代法是指通过迭代计算逼近线性方程组的解。

迭代法的基本思想是将原方程组转化为递推的形式,并选择一个初始解,通过递推计算得到趋于或精确的解。

常用的迭代法有Jacobi迭代法、Gauss-Seidel迭代法和SOR迭代法等。

这些方法的时间复杂度通常为O(n^2)。

迭代法的优点是适用于大规模问题,但收敛速度慢,精度较差。

二、矩阵特征值求解方法2.1幂法幂法是求解特征值最大的特征值与对应特征向量的方法。

假设有一个n×n的矩阵A,选择一个初始向量x(0),通过迭代计算x(k)=Ax(k-1)/,Ax(k-1),其中,·,表示向量的范数,直到收敛为止。

最后得到的x为特征向量,特征值为λ=(Ax·x)/(x·x)。

幂法的收敛速度较慢,但适用于特征值分布差异较大的情况。

2.2反幂法反幂法是求解特征值最小的特征值与对应特征向量的方法。

和幂法类似,反幂法选择一个初始向量x(0),通过迭代计算x(k)=(A-λI)^-1x(k-1)/,(A-λI)^-1x(k-1),其中I为单位矩阵,λ为近似的特征值,直到收敛为止。

用幂法求矩阵的按模最大特征值例题

用幂法求矩阵的按模最大特征值例题

用幂法求矩阵的按模最大特征值例题上线性代数中,矩阵的特征值和特征向量是非常重要的概念。

特征值可以用于描述矩阵的特性和行为,而特征向量则可以帮助我们理解矩阵的变换规律。

而求解矩阵的特征值和特征向量是线性代数中的一个重要问题,其中幂法是一种常用的数值方法。

幂法是一种迭代算法,用于计算矩阵的按模最大特征值和对应的特征向量。

其基本思想是通过矩阵的幂次来逼近特征向量,从而得到特征值的近似值。

接下来,我们将通过一个具体的例题来介绍如何使用幂法求解矩阵的按模最大特征值。

例题:考虑矩阵\[A = \begin{bmatrix} 4 1 \\ 2 3 \end{bmatrix}\]我们的目标是使用幂法求解矩阵A的按模最大特征值和对应的特征向量。

步骤如下:1. 选择一个初始向量\(\mathbf{v}_0\),并将其归一化得到单位向量\(\mathbf{q}_0\)。

通常可以选择\(\mathbf{v}_0 = [1, 1]^T\)作为初始向量。

2. 计算矩阵A与单位向量\(\mathbf{q}_0\)的乘积:\(\mathbf{z}_1 = A\mathbf{q}_0\)。

3. 根据\(\mathbf{z}_1\)更新单位向量\(\mathbf{q}_1\):\(\mathbf{q}_1 = \frac{\mathbf{z}_1}{||\mathbf{z}_1||}\)。

4. 重复步骤2和步骤3,直到收敛或达到预定迭代次数。

接下来,我们通过代码来实现这个幂法求解矩阵的按模最大特征值的过程:```pythonimport numpy as np# 定义矩阵AA = np.array([[4, 1], [2, 3]])# 设定初始向量v = np.array([1, 1])# 设定迭代次数max_iter = 1000tolerance = 1e-6# 进行幂法迭代for i in range(max_iter):z = np.dot(A, v)v = z / np.linalg.norm(z)eigenvalue = np.dot(np.dot(v, A), v)if i > 0 and np.abs(eigenvalue - old_eigenvalue) < tolerance: breakold_eigenvalue = eigenvalueprint("按模最大特征值:", eigenvalue)print("对应的特征向量:", v)```通过运行上面的代码,我们可以得到矩阵A的按模最大特征值和对应的特征向量。

矩阵特征与特征向量的计算

矩阵特征与特征向量的计算

矩阵特征与特征向量的计算首先,我们来定义矩阵的特征值和特征向量。

设A是一个n阶方阵,如果存在一个数λ和一个n维非零向量v,使得Av=λv,那么称λ是矩阵A的一个特征值,v称为对应于特征值λ的特征向量。

接下来我们来看矩阵特征值的计算。

设A是一个n阶方阵,特征多项式定义为f(λ)=,A-λE,其中E是n阶单位矩阵。

特征多项式f(λ)是一个以λ为变量的n阶多项式。

那么矩阵A的特征值就是使得特征多项式f(λ)为0的λ的解。

特征多项式的根可以通过解方程f(λ)=0得到,但通常这样的计算是非常繁琐的,特别是对于高阶矩阵。

所以我们通常使用特征值的性质和计算方法来简化计算。

首先,特征值有一个非常重要的性质:特征值是与A的行列式相等的。

即特征值的和等于矩阵A的迹(即主对角线上元素的和),特征值的乘积等于矩阵A的行列式。

这个性质可以方便地用于计算特征值的近似值。

其次,特征值还有一个重要的性质:特征值与矩阵A的转置矩阵和逆矩阵相等。

即如果λ是矩阵A的特征值,那么对应的特征向量也是矩阵A的转置矩阵和逆矩阵的特征向量。

这个性质可以方便地用于计算特征向量。

接下来我们来看特征向量的计算。

对于给定的特征值λ,我们要找到对应的特征向量v。

我们可以将特征向量问题转化为求解线性方程组的问题,即求解(A-λE)v=0。

这个线性方程组称为齐次线性方程组,他的解空间就是特征值λ的特征向量的集合。

我们可以使用高斯消元法、矩阵的行列式等方法来求解这个线性方程组。

最后,我们来总结一下计算矩阵特征和特征向量的步骤:1.计算特征多项式f(λ)=,A-λE,展开并化简得到f(λ)=a_nλ^n+a_(n-1)λ^(n-1)+...+a_1λ+a_0。

2.解方程f(λ)=0,得到特征值λ1,λ2,...,λn。

3.对于每个特征值λ_i,求解线性方程组(A-λ_iE)v_i=0,得到对应的特征向量v_i。

4.对特征向量进行归一化处理,使其模长为1实际应用中,矩阵特征和特征向量的计算通常使用计算机进行,可以使用数值方法如幂法、反幂法、QR分解等来近似计算特征值和特征向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

zk Azk 1 A2 zk 2 ... Ak z0 ,
又设 z0 a1 x1 a2 x2 ... an xn ,


Ax j j x j ( j 1, 2,..., n) ,
n j k k 因此有: zk 1 a1 x1 a j ( ) x j 。 1 j 2
k
12
k 1 n j A a1 x1 a j x j 1 j 2 mk max( Azk 1 ) max , k 1 n j max a1 x1 a j x j j 2 1
am m x am1 m1 x ...... a1 x a0 x P x
即, P 是 P A 的一个特征值
5
定理 5. 为方阵 A 的特征值, 若 x1 , x2 都是属于 的特征向量, 则:
a1 x1 a2 x2 a1 a2 0
其中 max( yk ) 是 yk 中绝对值最大的分量(注意,不是绝对值! ) .
例如, y 2, 3,1 ,则 max y 3 . y 2, 3, 1 ,则
max y 3 。
10
Azk 1 A2 zk 2 Ak z0 Ak z0 于是, zk , ...... k k mk mk mk 1 max( A z0 ) mj
j 1
由此可得:
j a1 x1 a j x j 1 j 2 zk , k n j max a1 x1 a j x j j 2 1
n
11
k
mk max Azk , k 1, 2,... .
1
定理 1. 设 A (aij ) R nn ,则下列条件等价 (1) A 为正定矩阵。 (2) A 的所有特征值都是正数。 (3) A 的各阶顺序主子式均大于零。
T
定义 3. 设 A (aij ) C nn ,且 A A I ,则称 A 为正交矩阵。
2
定理 2.关于正交矩阵有如下结论 (1)单位矩阵是正交矩阵。 (2)若 A 为正交矩阵,则 A
所以, zk 渐近于特征方向,但是
zk 可能无限增长或收敛于零. 8
2 0 1 例如,矩阵 A 1 1 0 ,取 z0 (1, 0,1)T ,利用上述方法 1 0 2
计算如下
k
0 1 0 1
1 3 1 1
2 7 4 -1
3 13 11 -9
4 17 24 -31
Ax x ,即齐次线性方程组 I A x 0 有非零解.所以
于 的特征向量是
4
I A x 0 的非零解.
定理 4. 为方阵 A 的特征值,P t 是一个多项式, 则 P 是
P A 的一个特征值.
1
AT 。
(3)若 A 为正交矩阵,则 A 也是正交矩阵。 (4)若 A 为正交矩阵,则 A 1 或 A 1 。 (5)若 A, B 为同阶正交矩阵,则 AB 与 BA 也是正交矩阵。
3
T
定理 3. 为方阵 A 的特征值,则 是方程
I A 0
的根.
注.显然,若 为方阵 A 的特征值,则存在向量 x 0 ,使得:
也是属于 的特征向量.
证明: A a1 x1 a2 x2 a1 Ax1 a2 Ax2 a1 x1 a2 x2 ,
所以. a1 x1 a2 x2 是属于 的特征向量.
6
2.幂法
幂法是计算实矩阵按模最大的特征值及其对应特征 向量的一种迭代方法, 主要适用于中小型矩阵和大型稀疏 矩阵。
j (1) 当 1 2 ... n 时,由于 1, 1
j 0k . 1
故有
k 1 n j A a1 x1 a j x j 1 j 2 mk max( Azk 1 ) max , k 1 n j max a1 x1 a j x j j 2 1
1、预备知识
定义 1 设 A (aij ) nn , 如果 AT A ,则称 A 为对称矩阵。
定义 2 设 A (aij ) R nn 是对称矩阵,且对 x Rn , x 0 , 都有
xT Ax aij xi x j 0 ,
i , j 1
n
则称 A 为正定矩阵。
设 n 阶矩阵 A= (aij ) 有 n 个线性无关的特征向量 x1 , x2 ,..., xn , 对 应 的 特 征 值 分 别 是
1 , 2 ,...,n , 按 模 排 列 为
1 2 ... n ,称 1 为矩阵 A 的主特征值。
7
对于任何初始向量 z0 ,构造迭代序列:
5 3 41
6 44
7 -29
zk
-73 -307
-79 -161 -249
9
为了控制 zk 的无限增长或收敛于零,利用如下幂法的计算格式.
任取初始向量 z0 , z0


1 ,

yk Azk 1 mk max( yk ) z y / m k k k
k 1, 2,
证明: 设 P t am t m am1t m1 ...... a1t a0 ,x 是属于 的 特征向量.则:
P A am Am am1 Am1 ...... a1 A a0 I ,
P A x am Am x am1 Am1 x ...... a1 Ax a0 x
相关文档
最新文档